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Abstract

Recent advances of end-to-end models have outperformed con-
ventional models through employing a two-pass model. The
two-pass model provides better speed-quality trade-offs for on-
device speech recognition, where a 1st-pass model generates
hypotheses in a streaming fashion, and a 2nd-pass model re-
scores the hypotheses with full audio sequence context. The
2nd-pass model plays a key role in the quality improvement of
the end-to-end model to surpass the conventional model. One
main challenge of the two-pass model is the computation la-
tency introduced by the 2nd-pass model. Specifically, the orig-
inal design of the two-pass model uses LSTMs for the 2nd-pass
model, which are subject to long latency as they are constrained
by the recurrent nature and have to run inference sequentially.
In this work we explore replacing the LSTM layers in the 2nd-
pass rescorer with Transformer layers, which can process the
entire hypothesis sequences in parallel and can therefore utilize
the on-device computation resources more efficiently. Com-
pared with an LSTM-based baseline, our proposed Transformer
rescorer achieves more than 50% latency reduction with quality
improvement.
Index Terms: Streaming speech recognition, Transformer, La-
tency, Rescoring

1. Introduction
There has been a growing interest in building on-device stream-
ing speech recognition models, which provide recognition re-
sults instantly as words are being spoken [1]. Such models make
predictions based on partial context under strict latency require-
ments [2, 3, 4]. As a result the streaming models tend to be less
accurate than non-streaming models, which have access to the
entire utterance.

Previous work have shown that this issue can be alleviated
by combining a second-pass rescoring model [5] with streaming
models, where the rescoring model uses the Listen, Attend, and
Spell (LAS) architecture [6]. LAS has access to the full con-
text of the utterance and therefore provides better quality than
the streaming models [7]. From user’s perspective, such a two-
pass speech model exhibits the advantages of both streaming
and non-streaming models—words are recognized as they are
spoken and the final results have high accuracy.

The canonical architecture of the LSTM-based LAS model,
however, is designed for beam search and is not efficient as
a 2nd-pass rescoring model. The LSTM [8] layers process
hypothesis tokens sequentially, with temporal dependency be-
tween timesteps. On the other hand, for the 2nd-pass rescoring,
all hypothesis tokens are available. A more efficient design of
the rescorer model will be to rescore all tokens in parallel.
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Figure 1: The architecture of two-pass model with Transformer.

In recent years there have been a growing success in ap-
plying Transformer [9] for machine translation and language
modeling [10], and speech recognition [11, 12, 13, 14]. Trans-
former applies self-attention to capture the sequential relation
among input features, and therefore does not have the recurrent
constraint. This allows Transformer to compute self-attention
in parallel and significantly increase the computation efficiency.
The Transformer architecture proposed in [9] consists of an en-
coder and a decoder, where each decoder layer has an additional
cross-attention that summarizes the encoder output based on the
self-attention output.

In this work, we address the sequential dependency is-
sue of the original LSTM-based rescoring model with Trans-
former. Specifically, the paper proposes to use Transformer as
the second-pass rescorer for parallel rescoring of hypothesis to-
kens. Unlike beam search, where the Transformer decoder still
has to run autoregressively, the rescoring scenario allows paral-
lel processing of the full hypothesis sequence. Such parallelism
reduces the lengths of temporal dependency paths from O(n)
toO(1), where n corresponds to the hypothesis length. This al-
lows the Transformer rescorer to utilize on-device computation
capacity much more efficiently. We further improve the infer-
ence speed of the Transformer rescorer by reducing the number
of cross-attention in the decoder. The Transformer rescorer im-
proves the Word Error Rate (WER) of Googles voice search
query test set to 5.7% from 6.0% with LSTM rescoring. On
Librispeech [15] the Transformer rescorer improves the WER
to 3.9% on test clean and 9.8% on test other compared to 4.0%
and 10.0% with LSTM rescoring. The 90th percentile second-
pass latency, benchmarked on a Google Pixel4 phone on CPUs,
is reduced to 57ms from previous 127ms with LSTM rescoring.

ar
X

iv
:2

00
8.

13
09

3v
3 

 [
ee

ss
.A

S]
  2

 S
ep

 2
02

0



Additional 
encoder

RNN-T 
encoder

RNN-T hypothesis

acoustic frames
x1 , …, xT

Transformer rescorer

e1 , …, eT

y1 , …, ys

Decoder

Self-attention

Cross-attention

Feed Forward

Self-Decoder

Self-attention

Feed Forward

Decoder

Self-Decoder

Figure 2: Transformer rescorer. The Transformer rescorer com-
bines conventional Transformer decoders (containing cross-
attention) and Transformer self-decoders (without cross-
attention) for more efficient inference. The figure omits the nor-
malization and residual links to simplify the illustration.

2. Transformer Rescorer
2.1. Two-Pass Model

A two-pass model consists of a 1st-pass model and a 2nd-
pass model. Here we use RNN-T [16, 17] as the 1st-pass
model and Transformer for the 2nd-pass model. Specifically,
our Transformer-based two-pass model, as demonstrated in Fig-
ure 1, consists of four components: RNN-T encoder, RNN-
T decoder, additional encoder, and Transformer decoder as
the rescorer. The input acoustic frames are denoted as x =
(x1, ..., xT ), where xt ∈ Rd are stacked log-mel filterbank en-
ergies (d = 512) and T is the number of frames in x. In the
1st-pass, each acoustic frame xt is passed through RNN-T en-
coder, consisting of a multi-layer LSTM [8], to get encoder out-
put. RNN-T decoder takes the acoustic features from RNN-T
encoder to generate the hypotheses in a streaming fashion, de-
noted as y = (y1, ..., ys) where s is the label sequence length.
Here y is a sequence of word-piece tokens [18]. In the 2nd-
pass, the full output of the RNN-T encoder is passed to a small
additional encoder to generate e1, ..., eT , which is then passed
to Transformer decoder. The additional encoder is added as it is
found to be useful to adapt the encoder output to be more suit-
able for the second-pass model [2]. The RNN-T model struc-
ture and the additional encoders are exactly the same as [2].
During training, the Transformer decoder computes output la-
bel sequence according to the full audio sequence e1, ..., eT .
More details about the rescorer training is elucidated in Sec-
tion 2.3. During decoding, the Transformer decoder rescores
multiple top hypotheses from RNN-T, y1, ..., ys.

2.2. Transformer Rescorer Architecture

The architecture of our Transformer rescorer is based on
the conventional Transformer decoder [9] with some cross-
attention layers being removed. The conventional Transformer
decoder layer contains both the self-attention and the cross-
attention, where the query of the cross-attention originates from
the output of the self-attention. In the Transformer rescorer, we
improve the rescorer efficiency by removing the cross-attention

from some decoder layers and interleave those layers with the
conventional decoder layers. The decoder layer without the
cross-attention shares the same architecture as the conventional
Transformer encoder layer [9]. The architecture of the result-
ing rescorer is illustrated in Figure 2, where layers without
cross-attention are annotated as self-decoder. The Transformer
rescorer takes the RNN-T’s hypothesis as input and feed the to-
kens to the self-attention layer. And the cross-attention layers
attend to the encoder output to summarize the acoustic signals.
In our rescorer model, there are 4 Transformer layers, each with
the attention model dimension dmodel = 640 and feed forward
dimension dff = 2560. Both cross-attention and self-attention
layers use multi-headed attention with 8 heads. The rescorer
model has 27.6M parameters.

Our design of keeping only two cross-attention layers in
the rescorer is based on observing the attention mechanism
of the Transformer decoder. In the first Transformer decoder
layer, the self-attention conditions only on the hypothesis to-
kens, therefore the resulting cross-attention generates its query
solely based on language modeling information. The missing
of acoustic information on generating attention query inherently
limit the effectiveness of the first cross-attention. After the first
cross-attention layer, the output of the first decoder layer con-
tains acoustic information, and the following decoder layers can
condition on both the acoustic and language modeling infor-
mation to generate effective cross-attention queries. Thus, it is
critical to have the second cross-attention layer in the decoder.
On the other hand, the additional cross-attention layers beyond
the second one do not introduce additional modality and have
diminishing returns in terms of the model quality. As a compar-
ison, the cross-attention of the LAS model conditions on both
the previous attention context and the text tokens, and requires
only one cross-attention in the decoder. We demonstrated these
property with an ablation study in Section 3.

2.3. Rescorer Training

Same with the LAS rescoring training described in [5], Trans-
former rescorer model is trained after the 1st-pass model train-
ing. During 2nd-pass training, RNN-T encoder and RNN-
T decoder are freezed. Additional encoder and Transformer
rescorer are trained in two stages: cross entropy (CE) and
minimum word error rate (MWER) training [19]. During CE
training, frozen RNN-T encoder generates the acoustic features
for additional encoder, and Transformer rescorer is trained to
predict groundtruth sequence with the full audio context from
additional encoder and the prefix of the label sequence con-
text: p(yl|x, y1...yl−1), where l is the label to predict. Dur-
ing MWER training, the Transformer rescorer is trained to re-
rank the hypotheses generated from RNN-T, which bridges the
gap from CE training to inference [5]. More specifically, given
acoustic input x, groundtruth transcript y∗, the probability com-
puted by rescorer model P (ym|x) for any given target sequence
ym, and a set of hypotheses Hm = h1, ..., hb where b is the
beam-size, the MWER loss is defined as

LMWER(x, y∗) =
∑

ym∈Hm(x)

P ′(ym|x,Hm)
[
W ′(ym, y∗)− Ŵ

]
where P ′(ym|x,Hm) = P (ym|x)∑

yi∈Hm
P (yi|x)

represents the con-

ditional probability the Transformer rescorer assigns to hypoth-
esis ym among all hypotheses in Hm, and W ′(y∗, ym) is the
number of word errors of ym, and Ŵ is the average number of
word errors among Hm. In our MWER training we use the N-



Table 1: Librispeech test sets word error rate

Model Test clean Test other

RNN-T only 4.9 11.2
LSTM rescorer 4.0 10.0

Transformer rescorer 3.9 9.8

Best approximation approach for calculating the expected word
errors [19].

3. Quality Experiments
3.1. Experiment Setup

We conduct experiments on the Librispeech [15] dataset and a
large-scale internal dataset. We use SpecAugment [20] with the
same configuration as described in [21] during training. Similar
to [2], we apply constant learning rate and maintain Exponential
moving average (EMA) [22] of the weights during training, and
use the EMA weights for evaluation. Both LSTM and Trans-
former rescorer are trained with CE and MWER. The N-Best
size of MWER training is 4, which matches the rescoring be-
havior during evaluation, where top 4 hypotheses from RNN-T
are used for rescoring. The prediction targets are 4096 word
pieces [18] derived using a large corpus of text transcripts. The
LSTM-based rescorer has size 33M and the Transformer has
27.6M parameters. All models are implemented in Tensorflow
[23] using the Lingvo [24] toolkit and trained on 8 × 8 Tensor
Processing Units (TPU) slices with a global batch size of 4096.

3.2. Librispeech Experiment

In this experiment, the models are trained on the Librispeech
960h training set and evaluated on the clean and noisy test
sets without an external language model. In order to maintain
low-latency streaming speech recognition, the 1st-pass RNN-T
models in all the compared systems use a uni-directional LSTM
encoder with 0 right context frame. As is shown in Table 1, both
the LSTM rescorer and the Transformer rescorer significantly
improve the WER of the clean and noisy test sets compared
to the RNN-T only model with 10-20% relative improvement,
alleviating the limited context problem for the 1st-pass model
while still maintaining low-latency streaming recognition. The
Transformer rescorer further improves the WER slightly over
the LSTM rescorer, and also significantly reduce the 2nd-pass
latency, which is studied in detail in Section 4.

3.3. Large Scale Experiment on Voice Search

We perform a large scale experiment on an internal task, Google
Voice Search, and show the proposed Transformer rescorer
is also effective. In this experiment, the models are trained
on a multi-domain training set as described in [25]. These
multi-domain utterances span domains of search, farfield, tele-
phony and YouTube. The test set includes ∼ 14K Voice-
search utterances (VS) extracted from Google traffic. All
datasets are anonymized and hand-transcribed. The transcrip-
tion for YouTube utterances is done in a semi-supervised fash-
ion [26, 27]. Following [28, 29, 2], we train the first-pass RNN-
T to also emit the end-of-sentence decision to reduce the end-
pointing latency, allowing 2nd-pass rescoring to execute early.

As is shown in Table 2, the Transformer rescorer im-
proves the WER from 6.0 to 5.7 on the VS test set compared
with the LSTM rescorer, both of which are trained with CE

Table 2: Voice Search test set word error rate

Model VS

RNN-T only 6.4
LSTM rescorer 6.0
Transformer rescorer CE 5.9
Transformer rescorer MWER 5.7

and MWER. Compared with 1st-pass model, the Transformer
rescorer achieves relative 10% WER improvement.

3.4. Full Context Rescoring

The additional capability that the Transformer rescorer can
bring is to utilize the full hypothesis when rescoring every tar-
get token. The original LSTM-based rescorer scores each tar-
get token conditioned only on the tokens before it. Specif-
ically, the LSTM rescorer learns a conditional probability
p(yt|x, y0, ..., yt−1) for each prediction target yt where y de-
notes hypothesis tokens from RNN-T and x denotes acoustic
features. A conventional Transformer decoder uses causal self-
attention and also learns p(yt|x, y0, ..., yt−1). We explored ex-
tending the self-attention to access also the future label con-
text and as a result learns to score target tokens with p(yt|x, y).
During CE training, using groundtruth sequence as the full con-
text makes the training target trivial. Thus we randomly swap
different proportions of the groundtruth tokens that fed to the
self-attention layer with alternative tokens sampled within the
word-piece vocabulary. Some sentinel tokens like SOS, EOS,
UNKNOWN and RNN-T’s blank symbol are excluded to be
used as random tokens. The prediction targets are the origi-
nal groundtruth sequence. During MWER training, the RNN-T
hypothesis is used as the decoder input to match the inference
scenario. With this experiment, 15% random proportion works
out the best and achieves the same 5.7% WER on the voice
search task. Thus, we report results with causal self-attention
for the experiments throughout the paper.

4. Latency Optimizations
In this section, we measure the additional latency introduced by
the 2nd-pass rescorer on a Google Pixel4 phone on CPUs. For
efficient on-device execution, all models are converted to Ten-
sorFlow Lite format with post-training dynamic range quantiza-
tion using the TensorFlow Lite Converter [30]. Matrix multipli-
cation is operated in 8-bits with little accuracy loss. The bench-
mark suite consists of 89 utterances with voice action queries.
The LSTM rescorer latency baseline is fully optimized and is
measured with lattice rescoring with batching described in [2].

4.1. Effect of Cross-Attention Layers

We investigate the impact of the number of cross-attention lay-
ers on quality and latency. As shown in Table 3, we start
with cross-attention on the 1st decoder layer and gradually
add more. We observe a noticeable quality improvement at
first, which later quickly diminishes. Specifically, with 2 cross-
attentions the rescorer achieves a 0.4 WER improvement than
1 cross-attention, but no further improvement is realized by
adding more of it. In addition, when 2 cross-attentions are used,
we find that applying them on the 1st and 3rd layers improves
WER by 0.15 than on the 1st and 2nd layers. In the end, by
selectively applying cross-attention, we achieved a ∼ 20ms la-



Figure 3: Parallel rescoring with Transformer.

tency reduction (Table 4) and a 12.3% (4M ) parameter size
reduction without quality compromise.

Table 3: Effect of cross-attention layers

Cross attention layers WER

1st 6.1
1st & 2nd 5.8
1st & 3rd 5.7
All 4 layers 5.7

4.2. Parallelism in Transformer Rescoring

As is illustrated in Figure 3, with hypothesis labels ready from
the 1st-pass decoder output, Transformer rescorer can finish the
computation in a single batch step as opposed to a series of se-
quential steps as in LSTM rescorer, which could better lever-
age multi-threading during inference. The batch size for trans-
former rescorer corresponds to

number of hyps× hyp length× number of attention heads.

Taking the utterance at the 90th percentile latency as an exam-
ple, with the top 4 hypotheses used, the batch size is 4×12×8 =
384. This large batch size provides better parallelism and as a
result benefits more from using 2 threads which reduces 35ms
latency (Table 4). The multi-threading benefit is not witnessed
in the LSTM-based rescorer. Potentially it might be due to (1)
limited parallelism in LSTM, where batching is done within
each inference step with a relatively smaller batch size be-
ing number of hyps× number of gates and (2) utilizing multi-
threading within each inference step could introduce extra over-
head due to context switch across inference steps and layers.

4.3. Latency Measurements and Distributions

An overall breakdown for latency optimizations is shown in Ta-
ble 4. The Transformer rescorer achieves a 55% latency reduc-
tion compared to the LSTM rescorer, measured on the utterance
with the 90th percentile latency with the LSTM rescorer, which
has 6s audio and 12 word-piece tokens in the transcript.

The initial latency of the Transformer rescorer with 4 cross-
attention layer is 106ms, which then improves to 92ms by
keeping only 2 cross-attentions. Compared to 127ms from
LSTM baseline, the 27% latency improvement is from the
reduced FLOPs. Transformer rescorer with 4 and 2 cross-
attentions provide a 15% (340M ) and 20% (320M ) FLOPs
reduction compared to LSTM (400M ).

Figure 4: Latency comparison by percentile.

Using two threads reduces the latency by an additional
35ms for Transformer rescorer, while the LSTM rescorer does
not benefit from multi-threading.

Table 4: Computational latency for the Transformer rescorer
with various optimizations, benchmarked on Pixel4 CPUs.

Optimizations Latency(ms)

Initial latency (4 cross attention) 106
2 cross attention 92
Parallelism in two threads 57
LSTM baseline 127

We also compared the latency distribution over the full
benchmark suite, demonstrated in Figure 4. The speech time
ranges from 1.5s to 9.3s in the benchmark. The output label
sequence length varies from 3 to 29. Transformer rescorer is
consistently ∼ 50% faster than LSTM rescorer at almost every
latency percentile.

5. Conclusion
In this work we present a Transformer rescorer for a two-
pass model. Our proposed Transformer rescorer reduces more
than 50% of the on-device computation latency in second-pass
model by taking advantage of the parallelism in Transformer
decoder and reducing the number of cross attention layers. On
a Google Voice Search task the Transformer rescorer achieves
5.7% WER compared with 6.0% of an LSTM rescorer. On
Librispeech the Transformer rescorer achieves 3.9% and 9.8%
WER on test clean and test other, also lower than 4.0% and
10.0% of the LSTM rescorer, respectively.
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