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ABSTRACT

Various data augmentation techniques have been recently proposed in image-
based deep reinforcement learning (DRL). Although they empirically demonstrate
the effectiveness of data augmentation for improving sample efficiency or gener-
alization, which technique should be preferred is not always clear. To tackle this
question, we analyze existing methods to better understand them and to uncover
how they are connected. Notably, by expressing the variance of the Q-targets and
that of the empirical actor/critic losses of these methods, we can analyze the ef-
fects of their different components and compare them. We furthermore formulate
an explanation about how these methods may be affected by choosing different
data augmentation transformations in calculating the target Q-values. This anal-
ysis suggests recommendations on how to exploit data augmentation in a more
principled way. In addition, we include a regularization term called tangent prop,
previously proposed in computer vision, but whose adaptation to DRL is novel to
the best of our knowledge. We evaluate our proposition1 and validate our analysis
in several domains. Compared to different relevant baselines, we demonstrate that
it achieves state-of-the-art performance in most environments and shows higher
sample efficiency and better generalization ability in some complex environments.

1 INTRODUCTION

Although Deep Reinforcement Learning (DRL) has shown its effectiveness in various tasks, like
playing video games (Mnih et al., 2013) and solving control tasks (Li et al., 2019), it still suffers
from low sample efficiency and poor generalization ability. To tackle those two issues, data aug-
mentation, a proven simple and efficient technique in computer vision (Kumar et al., 2023), starts
to be actively studied in image-based DRL where it has been implemented in various ways (Laskin
et al., 2020; Kostrikov et al., 2020; Raileanu et al., 2021). However, most such work has been mainly
experimental and a more principled comparison between these state-of-the-art methods is lacking.

In this paper, we study data augmentation techniques in image-based online DRL. We formulate a
general actor-critic scheme integrating data augmentation. We then show that current data augmen-
tation methods, categorized as explicit/implicit regularization, are instances of this general scheme.
In explicit regularization, image transformations are used in regularization terms calculated with
augmented samples to explicitly enforce invariance in the actor and critic. By contrast, image trans-
formations are directly applied on the observations during training in implicit regularization.

Following the analysis about implicit and explicit regularization, we propose a principled data aug-
mentation method in DRL and further justify its design. We start the justification with a discussion
about applying different image transformations in calculating the target Q-values. Hansen et al.
(2021) propose to avoid using complex image transformations in calculating the targets to stabilize
the training. We provide further analysis on why some image transformations are complex and not
suitable for calculating the target and how to judge whether an image transformation is complex or
not.

1The source code of our method: https://github.com/Jianshu-Hu/drqv2
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In addition, we justify other components of our method (e.g., KL regularization in policy) by an-
alyzing the variance of the actor/critic losses and the variance of the Q-estimation under image
transformation, which is important to control since applying random image transformations neces-
sarily increase the variance of those statistics. The analysis also reveals the importance of learning
the invariance in critic for stabilizing the training. This latter observation motivates us to include an
adaption of tangent prop (Simard et al., 1991) regularization in the training of the critic.

Contributions: (1) We analyze existing state-of-the-art data augmentation methods in image-
based DRL and show how they are related. (2) We provide an empirical and theoretical analysis
for the different components in these methods to justify their effectiveness. (3) Based on our anal-
ysis, we propose a principled data augmentation actor-critic scheme, which also includes tangent
prop, which is novel in DRL. (4) We empirically validate our analysis and evaluate our method.

2 RELATED WORK

Many data augmentation techniques for DRL have been proposed, mostly for image-based DRL
(Ma et al., 2022), although the fully-observable setting has also been considered Lin et al. (2020).
Data augmentation can be used to generate artificial observations, transitions, or trajectories for an
existing DRL algorithm or for improving representation learning. Most propositions investigate the
usual online DRL training, but recently data augmentation with self-supervised learning in DRL
(Srinivas et al., 2020; Schwarzer et al., 2021) has become more active following its success in com-
puter vision (He et al., 2020; Grill et al., 2020). For space reasons, we focus our discussion on the
most relevant methods for our work: data augmentation for image-based online DRL.

The first methods to leverage data augmentation in DRL apply transformations directly on obser-
vations to generate artificial ones to train the RL agent, which can lead to better generalization
(Cobbe et al., 2018). In particular, Reinforcement learning with Augmented Data (RAD) (Laskin
et al., 2020) extends Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) to directly train with augmented observations. Instead,
Data-regularized Q (DrQ) (Kostrikov et al., 2020) introduces in SAC the idea of using an aver-
aged Q-target by leveraging more augmented samples. Using Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2015), DrQ-v2 (Yarats et al., 2021) provides various implementation and
hyperparameter optimizations and gives up the idea of averaged Q-target. SVEA (Hansen et al.,
2021) avoids using complex image transformation when calculating the target values because doing
so increases the variance of the target value. Raileanu et al. (2021) argue that simply applying image
transformations on the observations in PPO may lead to a wrong estimation of the actor loss and
instead propose adding regularization terms in the actor and critic losses. They also propose some
methods of automatically choosing image transformation. In recent work like (Liu et al., 2023; Yuan
et al., 2022), they investigate problems of using a trainable image transformation which is orthogonal
to ours.

3 BACKGROUND

In this section, we define notations, recall invariant transformations in DRL, formulate a generic
actor-critic scheme exploiting data augmentation, and explain how existing methods fit this scheme
according to how data augmentation is applied in the actor and critic losses.

Notations For any set X , ∆(X ) denotes the set of probability distributions over X . For a random
variable X , E[X] (resp. V[X]) denotes its expectation (resp. variance). For any function ϕ and i.i.d.
samples x1, . . . , xN of X , Ê[ϕ(X)] = 1

N

∑N
i=1 ϕ(xi) is an empirical mean estimating E[ϕ(X)].

A Markov Decision Process (MDP) M = (S,A, r, T, ρ0) is composed of a set of state S, a set of
action A, a reward function r : S × A → R, a transition function T : S × A → ∆(S), and a
probability distribution over initial states ρ0 ∈ ∆(S). In reinforcement learning (RL), the agent is
trained by interacting with the environment to learn a policy π(· | s) ∈ ∆(A) such that the expected
return Eπ[

∑∞
t=0 γ

trt | s0 ∼ ρ0] is maximized.
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Algorithm 1 Data-Augmented Off-policy Actor-Critic Scheme
Hyperparameters: total number of training steps T , mini-batch size N , policy update frequency
κ, image transformation set FT = {fτ | τ ∈ T }, distributions P,B ∈ ∆(T ), random variables
ν ∼ P, µ ∼ B to transform states.

1: Initialize critic Qϕ(s, a), actor πθ(s), and empty replay buffer D.
2: Start with initial state s0.
3: for t = 0 . . . T do
4: Interact with the environment using action from current policy at ∼ π(· | st).
5: Save transition (st, at, rt, st+1) in replay buffer D.
6: if episode ends then reset st+1 to an initial state end if
7: // Actor-critic update
8: Sample mini-batch {(si, ai, ri, s′i) | i = 1, . . . , N} from D.
9: Lϕ = 1

N

∑
i ℓϕ(si, ai, ri, s

′
i, ν, µ)

10: Update ϕ (critic parameters) with gradient of Lϕ.
11: if t mod κ = 0 then
12: Lθ = 1

N

∑
i ℓθ(si, µ)

13: Update θ (actor parameters) with gradient of Lθ.
14: end if
15: end for

In image-based RL, the underlying model is actually a partially observable MDP (POMDP): the
agent observes images instead of states. However, following common practice, we approximate this
POMDP with an MDP by assuming that a state is a stack of several consecutive images. With data
augmentation, the same transformation is applied on all the stacked images of that state.

Invariant Transformations Data augmentation in image-based control tasks assumes that a set
FT = {fτ : Rh×w → Rh×w | τ ∈ T } of parameterized (h × w-sized) image transformations fτ
that leave optimal policies invariant is given for some parameter set T . Exploiting this property in
online RL is difficult, since an optimal policy is unknown. However, it suggests to directly focus
learning on policies that are invariant with respect to this set FT . Recall:
Definition 1 (π-invariance). A policy π is invariant with respect to an image transformation fτ if:

π(a | s) = π(a | fτ (s)) for all s ∈ S, a ∈ A. (1)

Interestingly, the Q-functions of those policies satisfy the following invariance property:
Definition 2 (Q-invariance). A Q-function is invariant with respect to image transformation fτ if:

Q(s, a) = Q(fτ (s), a) for all s ∈ S, a ∈ A. (2)

The definitions imply that FT can be assumed to be closed under composition without loss of gener-
ality. We assume that set T contains τ0 such that fτ0 is the identity function, which would allow the
possibility of not performing any image transformation. Examples of image transformation are for
instance: (small) random shift, which pads and then randomly crops the images; random overlay,
which combines original images with extra images. Empirically, random shift has been shown to
be one of the best transformations to accelerate DRL training across a diversity of RL tasks, while
random overlay is helpful for generalization.

We formulate a simple actor-critic scheme (Algorithm 1), which boils down to standard off-policy
actor-critic if the original losses are applied. Existing data-augmentation-based DRL methods fit
this scheme by enforcing Q-invariance and/or π-invariance via explicit or implicit regularization,
as explained next. We discuss them next and explain how they fit Algorithm 1. Due to the page
limit, we recall all the related DRL algorithms in Appendix A and consider SAC (Haarnoja et al.,
2018) as the base algorithm in the main text and discuss the variant with DDPG (Lillicrap et al.,
2015) in the corresponding appendices.

3.1 EXPLICIT REGULARIZATION

The invariant transformations FT can be directly used to promote the invariance of the learned
Q-function and learn more invariant policies with respect to them. Formally, this can be achieved
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by formulating the following (empirical) critic loss and actor loss with two explicit regularization
terms: for a transition (s, a, r, s′) and random variables ν, µ over T ,

ℓEϕ (s, a, r, s
′, ν) =

(
Qϕ(s, a)− y(s′, a′)

)2

+ αQÊν [(Qϕ(fν(s), a)−Qϕ,sg(s, a))
2] and (3)

ℓEθ (s, µ) = α log πθ(â | s)−Qϕ(s, â) + απÊµ

[
DKL

(
πθ,sg(· | s) ∥πθ(· | fµ(s))

)]
, (4)

where ϕ, θ are the parameter of the critic Qϕ and actor πθ, target y(s′, a′) is defined as r +
γQϕ̄(s

′, a′) − α log πθ(a
′|s′) with a′ ∼ πθ(· | s′) and target network parameter ϕ̄, action â is

sampled from πθ(· | s), coefficients α, αQ, and απ respectively correspond to the entropy term and
the regularization terms to promote invariance in the critic and actor, and subscript sg represents
”stop gradient” for the corresponding term.

In practice, Equations 3 and 4 could be used in an actor-critic algorithm: for instance, they could
replace the losses in lines 9 and 12 in Algorithm 1. Note that DrAC (Raileanu et al., 2021) uses them
by setting the distribution of ν and µ to be uniform (although DrAC is based on the PPO algorithm).

3.2 IMPLICIT REGULARIZATION

Another commonly used data augmentation method in DRL is directly applying the image trans-
formation on states during training. Formally, for a transition (s, a, r, s′) and random variables ν, µ
over T , the (empirical) critic and actor losses with implicit regularization are respectively:

ℓIϕ(s, a, r, s
′, ν, µ) = Êν

[(
Qϕ(fν(s), a)− Êµ[y(fµ(s

′), a′)]
)2]

and (5)

ℓIθ(s, µ) = Êµ

[
α log πθ(â | fµ(s))−Qϕ(fµ(s), â)

]
, (6)

with y(fµ(s
′), a′) = r+γQϕ̄(fµ(s

′), a′)−α log πθ(a
′|s′), a′ ∼ πθ(· | fµ(s′)), and â∼ πθ(· | fµ(s)).

The empirical means can be calculated with different numbers of samples: M and K samples for
Êν and Êµ in the critic loss, and J samples for Êµ in the actor loss. Note that with K > 1, the
corresponding empirical expectation corresponds to the average target used in DrQ. If ν and µ have
a uniform distribution, Equations 5 and 6 are the losses used in DrQ (Kostrikov et al., 2020) with
J = 1 and RAD (Laskin et al., 2020) with M = 1,K = 1, and J = 1. Moreover, different
image transformations for ν and µ can be used. In SVEA (Hansen et al., 2021), complex image
transformations are only applied on states s and included in random variable ν in the critic loss.

4 THEORETICAL DISCUSSION

In this section, we theoretically compare explicit regularization with implicit regularization.

4.1 CRITIC LOSS

Before comparing the critic losses in these two regularizations, we first compare an alternative ex-
plicit regularization one may think of to enforce Q-invariance, which uses:

ℓEϕ (s, a, r, s
′, ν) =

(
Qϕ(s, a)− y(s′, a′)

)2

+ αQÊν

[(
Qϕ(fν(s), a)− y(s′, a′)

)2]
. (7)

The only difference compared with Equation 3 is to replace the target in the regularization term with
y(s′, a′). Intuitively, using y(s′, a′) is a better target because it not only promotes the invariance
in the critic, but also serves as a target to improve the critic. In Appendix C.1, we show that using
y(s′, a′) leads to a smaller bias which may be preferred in explicit regularization.

Now the critic losses in explicit regularization and implicit regularization can be connected by setting
the distributions of the image transformation parameters, as shown in the following simple lemma:
Lemma 1. (C.2)2 There exist distributions for ν̂ and µ̂ such that we have for any sample (s, a, r, s′):

(αQ + 1)ℓIϕ(s, a, r, s
′, ν̂, µ̂) = ℓEϕ (s, a, r, s

′, ν)

Note that the extra factor αQ+1 can be controlled by adjusting the learning rate of gradient descent.
Therefore, explicit regularization amounts to assigning a higher probability to τ0.

2All detailed derivations/proofs are in the appendix. The appendix number is provided for ease of reference.
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4.2 ACTOR LOSS

Obviously, using the actor loss in explicit regularization (Equation 4) promotes the invariance in
the policy. More interestingly, the actor loss in implicit regularization (Equation 6) also implicitly
enforces policy invariance, but under some conditions, as we show next. First, recall that like in SAC,
the target policy used in the actor loss for state s can be defined as g(a | s) = exp( 1

αQϕ(s, a) −
logZ(s)), in which Z is the partition function for normalizing the distribution. We can prove that
the actor loss in implicit regularization can be rewritten with a KL regularization term:
Proposition 4.1. (B.1) Assume that the critic is invariant with respect to transformations in FT , i.e.,
Qϕ(fτ (s), a) = Q(s, a) for all τ ∈ T , a ∈ A. For any random variable µ, the actor loss in implicit
regularization (Equation 6) can be rewritten:

ℓIθ(s, µ) = Êµ

[ ∫
a

πθ(a | fµ(s)) log
πθ,sg(a | s)
g(a | s)

]
+ Êµ

[
DKL

(
πθ(· | fµ(s)) ∥πθ,sg(· | s)

)]
. (8)

Intuitively, with the actor loss in implicit regularization, the policy πθ(· | fµ(s)) for each augmented
state is trained to get close to its target policy g(· | fµ(s)), which is completely defined by the critic.
When the invariance of the critic has been learned, the πθ(· | fµ(s))’s for different augmented states
are actually trained to get close to the same target policy, which then induces policy invariance.

Interestingly, the direction of the KL divergences in Equation 4 and Equation 8 is reversed with
respect to the stop gradient. The KL divergence in Equation 4 should be preferred because the
other one also implicitly maximizes the policy entropy (see Appendix D), which leads to less stable
training, as we have observed empirically. Since policy invariance is only really enforced when the
critic is already invariant and that the implicitly enforced KL divergence has opposite direction, it
seems preferable to directly enforce policy invariance like in explicit regularization (Equation 4).

Following the idea of using averaged target in the critic loss, another interesting question about
applying a KL regularization is whether to use a policy πθ,sg(· | fη(s)) of a transformed state as the
target:

ℓEθ (s, µ) = α log πθ(â | s)−Qϕ(s, â)+απÊµ

[
Êη

[
DKL(πθ,sg(· |fη(s)) ∥πθ(· |fµ(s))

]]
, (9)

where η and µ follow the same distribution. Intuitively, the regularization term in this equation
enforces the invariance across policies of different transformed states and somehow is equivalent to
using an averaged policy as the target. As shown in Appendix C.3, the loss in Equation 9 is an upper
bound of the loss with an averaged policy πavg(· | s) = Êη[πθ,sg(· |fη(s))] as the target:

ℓEθ (s, µ) = α log πθ(â | s)−Qϕ(s, â)+απÊµ

[
DKL(πavg(· | s) ∥πθ(· |fµ(s)))

]
. (10)

So using Equation 9 is somehow equivalent to using an averaged policy as the target in the KL
regularization term and thus has an effect of smoothing, which may be preferred.

5 PRINCIPLED DATA-AUGMENTED OFF-POLICY ACTOR-CRITIC
ALGORITHM

Following these analyses, we finally propose our generic algorithm and provide a justification for it.

5.1 GENERIC ALGORITHM

Formally, our generic algorithm follows the structure in Algorithm 1 but with the following (empir-
ical) critic and actor losses, ℓϕ(s, a, r, s′, ν, µ) and ℓθ(s, µ), for a single transition (s, a, r, s′) 3:

ℓϕ =

nT∑
i=1

αiÊνi

[(
Qϕ(fνi

(s), a)−Êµ[y(fµ(s
′), a′)]

)2
]
+ αtpÊµ[∇µQϕ(fµ(s), a)] and (11)

ℓθ= Êµ

[
α log πθ(â |fµ(s))−Qϕ(fµ(s), â)+απÊη

[
DKL(πθ,sg(· |fη(s)) ∥πθ(· |fµ(s))

]]
, (12)

3To simplify notations, we drop the parameters of the losses when there is no risk of confusion.
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where nT is the number of types of image transformations used in the training, fνi
(resp. fµ, fη)

corresponds to the transformation parameterized by random variable νi (resp. µ, η) and αi (resp.
αtp, απ) is the coefficient of the mean-squared errors for different image transformations (resp.
tangent prop term, KL regularization term). Note that η and µ follow the same distribution.

5.2 JUSTIFICATION FOR THE GENERIC ALGORITHM

In this section, we justify further the formulation of our generic algorithm by analyzing first the
effects of applying different image transformations in calculating the target Q-values and then the
estimation of the empirical actor/critic losses under data augmentation. While the variances of these
estimations are unavoidably increased when random image transformations are applied, they can be
controlled by several techniques, as we discuss below. Recall that a lower variance of an empirical
loss implies a lower variance of its corresponding stochastic gradient, which leads to less noisy
updates and may therefore stabilize training. Moreover, a lower variance of target Q-values entails
a lower variance of the empirical critic loss, which then similarly leads to more stable training.

Applying image transformations in calculating the target A simple technique to reduce the
variance of an estimator is to use more samples. Recall that in contrast to RAD, DrQ leverages
more augmented samples and introduces the average target, which can be interpreted as using more
augmented samples for estimating the target Q-values. In Appendix E.1, we show that DrQ enjoys
a smaller variance of the empirical critic loss and the target Q-values than RAD, which may explain
the empirical better performance of DrQ (see e.g., (Kostrikov et al., 2020)).

However, when facing complex image transformations, Hansen et al. (2021) propose to avoid using
them in calculating the target Q-values to reduce the variance of the target and thus stabilize the
training. Interestingly, we observe experimentally that even using complex image transformation
such as random conv in the target does not induce a large variance in the target while a much larger
bias is observed for the trained critic, as shown in Appendix F. Compared to using random shift
which is a finite set of image transformations, using random conv actually applies an infinite set of
transformations. To maintain the invariance among augmented states, more updates are required to
train the agent sufficiently. To validate the idea that the invariance with respect to complex image
transformations is harder to learn and more updates are required when using them in calculating the
target, we evaluate increasing the number of updates in each iteration when using different image
transformations in calculating the target, as shown in Appendix F. From the experimental results,
we observe that the cosine similarity between the augmented features at early stage (e.g., 100k
training steps) could be used as a criterion for judging if an image transformation is complex or not.
Moreover, for those complex image transformations, updating more is helpful when we apply them
in calculating the target Q-values.

Adding KL regularization The analysis in Section 4.2 suggests that explicitly adding a KL regu-
larization term, Dη,µ = DKL(πθ(· |fη(s)) ∥πθ(· |fµ(s)) with η and µ following the same distribu-
tion over FT , in the actor loss can help better learn the invariance of the actor. Thus, we define the
actor loss in the generic algorithm as the sum of the actor loss in implicit regularization (Equation 6)
and this KL regularization term. Below, we provide two additional justifications for this choice.

Firstly, we show in the following proposition that the variance of the actor loss in implicit regu-
larization can be controlled by a KL divergence if the invariance is already learned for critic Qϕ.
Hence, adding a KL regularization term in the actor loss may both enforce invariance and reduce the
variance of the implicit actor loss.

Proposition 5.1. (E.2) Assuming that critic Qϕ is invariant with respect to transformations in FT ,
we have:

Vµ[ℓ
I
θ(s, µ)] ≤

1

n
Eµ

[(
Eη[Dη,µ + c(fν(s))

√
2Dη,µ]

)2]
, (13)

where c(fν(s)) > 0 and n is the number of samples to estimate the empirical mean ℓIθ(s, µ).

In addition, under invariance of the target critic Qϕ̄, we can prove that the variance of target Q-values
can be controlled by a KL divergence. Therefore, training with a KL regularization term may further
reduce the variance of the target, which would also consequently reduce the variance of the critic
loss.
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Proposition 5.2. (E.3) Assuming that target critic Qϕ̄ is invariant with respect to transformations
in FT , we have

Vµ[Ŷ (s′, µ)] ≤ 1

n
Eµ

[(
Eη

[
max
a′

(y(fµ(s
′), a′)− r)

√
2Dη,µ + α ·Dη,µ

])2]
(14)

where target Ŷ (s′, µ) = Êµ[Ea′∼πθ(·|fµ(s′))[y(fµ(s
′), a′)]], y(fµ(s′), a′) = r + γQϕ̄(fµ(s

′), a′)−
α log π(a′|fµ(s′)) and n is the number of samples to estimate the empirical mean Ŷ (s′, µ).

Although those results are obtained under invariance of the (current or target) critics, we may expect
an approximate reduction of the variances by adding a KL regularization term, when the critics are
approximately invariant. Experimentally, we can observe that the variance of target and critic losses
can be reduced thanks to this KL regularization term.

Tangent Prop We now introduce an additional regularization to promote the invariance of the
critic. This addition is motivated by our previous analysis, which indicates that the critic invari-
ance is an important factor for stabilizing training. This additional regularization term is based on
tangent prop (Simard et al., 1991), which was proposed for computer vision tasks, to promote in-
variance by enforcing that the gradient of the trained model with respect to the magnitude of image
transformation be zero. In DRL, when applied to the critic, it can be formulated as follows.

If the invariance of Q-function over the whole set of the image transformation parameter τ is required
and the Q-function is differentiable with respect to τ , tangent prop regularization is actually adding
the constraints on the derivative of the Q-function with respect to τ :

∂Q(fτ (s), a)

∂τ
=

∂Q(fτ (s), a)

∂fτ (s)

∂fτ (s)

∂τ
≈ ∂Q(fτ (s), a)

∂fτ (s)

fτ+δτ (s)− fτ (s)

δτ
= 0. (15)

Although the computational cost is increased due to the differentiation of Q, this regularization is
still beneficial since sample efficiency is often one of main concerns when applying DRL. Compared
to the original tangent prop, we also extend it to a broader application by applying it not only on
the original state but also on the transformed states. Specifically, instead of only calculating the
derivative around τ0, the derivative is estimated at any τ ∈ T . A theoretical justification for how
tangent prop regularization is related to the training of the critic can be found in Appendix B.2.

6 EXPERIMENTAL RESULTS

In order to validate our theoretical analysis and show the effectiveness of our proposed algorithm, we
perform a series of experiments to (1) experimentally validate our propositions, (2) conduct a case
study explicitly showing the statistics we analyzed, (3) compare our final proposed algorithm with
state-of-the-art baselines (RAD, DrAC, DrQ, DrQv2, SVEA) to verify its sample efficiency, and
evaluate its generalization ability against SVEA, which was specifically-designed for this purpose.

Experimental Set Up We evaluate different methods on environments from DeepMind Control
Suite (Tassa et al., 2018) with normal background for evaluating sample efficiency and distracted
background for evaluating generalization ability. DeepMind Control Suite is a commonly used
benchmark for evaluating methods of applying data augmentation in DRL. Across different envi-
ronments, all hyperparameters are listed in Appendix G such as learning rates and batch size for
the actor and critic. All experiments are performed with 5 different random seeds and the agent
is evaluated every 10k environment steps, whose performance is measured by cumulative rewards
averaged over 10 evaluation episodes.

Ablation study To validate our propositions, we first compare RAD [M=1,K=1], RAD+
[M=2,K=1] and DrQ [M=2,K=2] using the official implementation from DrQ 4, where [M,K] are
respectively the numbers of samples used for estimating the empirical mean over random variables
[ν, µ] in the critic loss. We then show the effectiveness of KL regularization and tangent prop reg-
ularization by adding them one by one based on DrQ. All these methods are trained with normal

4https://github.com/denisyarats/drq
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Figure 1: Aggregated results of validating our propositions.

Figure 2: Performance of different
methods in walker run environment.

Methods Std of critic loss Std of target Q Std of actor loss KL

RAD 0.772
±0.359

0.321
±0.084

4.971
±1.044

0.266
±0.015

RAD+ (a) 0.271
±0.043

0.234
±0.031

5.011
±0.463

0.248
±0.021

DrQ 0.358
±0.123 (a) 0.225

±0.055
5.077
±0.964

0.293
±0.055

DrQ+KL(fix target) 0.384
±0.042

0.221
±0.007

5.708
±1.259

0.135
±0.009

DrQ+KL 0.319
±0.053 (b) 0.183

±0.018 (b) 4.469
±0.745 (b) 0.099

±0.010

ours (c) 0.280
±0.004 (c) 0.182

±0.001
4.815
±0.412

0.101
±0.007

Table 1: Important statistics of different methods in walker
run environment. (a)(b)(c) are discussed in the main text.

background using random shift as the image transformation and also evaluated with normal back-
ground. When applicable, we adopt hyperparameters from (Kostrikov et al., 2020) except that we
reduce the batch size from 512 to 256 (to make the algorithms easier to run on our computing device,
equipped with one NVIDIA RTX 3060 GPU and Intel i7-10700 CPU). Considering that only one
image transformation (random shift) is applied, the weight αi for it is set as 1 in Equation 11. We
tune the weights αKL and αtp based on a quick grid search in {0.1, 0.5, 1.0} and finally choose 0.1
for both αKL and αtp. The results of validating our proposition are shown in Figure 1. We follow
the recommendations from Agarwal et al. (2021) to plot the aggregated performance over totally 9
environments. Detailed training curves in each environments are included in Appendix H.1.

Case study We conduct a comprehensive evaluation in walker-run using the same setting as above
to answer the following questions: 1) Does our proposition help reduce the variance we are con-
cerned about? 2) Does our proposition help learn the invariance in the feature space? Moreover,
we run the experiment of using a fixed target in the KL regularization to validate our analysis in
Section 4.2.

Note that the set of parameters T is finite when using random shift as image transformation. So,
augmented Q-values Qϕ(fτ (s), a) and augmented target Q-values Qϕ̄(fτ ′(s′), a′) for all τ, τ ′ ∈ T
are recorded within a mini-batch for every 10k environment steps. These are used to calculate the
standard deviation of the empirical critic loss and the target Q-values. The KL divergence between
policies for two augmented samples is also recorded with the same frequency. The results for this
case study are shown in Figure 2 and Table 1. From the table, we can see (a) the variance of the
critic loss and the variance of the target Q decrease thanks to more augmented samples, (b) KL
regularization helps enforce the invariance in the actor and reduce the variance of the target and the
variance of the actor loss, (c) tangent prop further improves learning the invariance in the critic.

Meanwhile, the feature vectors of augmented samples within a mini-batch after the encoder from
the actor and critic are recorded with the same frequency. To estimate the invariance in the feature
space, we first calculate the cosine similarities between the augmented features. We also apply t-
SNE (van der Maaten & Hinton, 2008) to project the latent features into 2D space and calculate the
L2-distance between the projected points. With these measures, the learned invariance of the actor
and critic features along the training are shown in Appendix H.2. Following our proposition, the
agent can learn well the invariance in the feature spaces of both the actor and critic. From another
view, this achieves the same goal as using the self-supervised learning losses (Srinivas et al., 2020;
Grill et al., 2020) to explicitly enforce the invariance in the latent space.
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Figure 3: Partial results of evaluating sample efficiency for our methods.

Environments SVEA ours

walker walk 449.52±60.33 508.28±79.82

walker stand 788.80±89.31 843.27±51.33

cartpole swingup 351.96±62.36 366.77±58.08

ball in cup catch 445.04±145.42 569.50±142.99

finger spin 338.35±77.65 447.99±73.52

Table 2: Comparison of SVEA and ours in
DMControl with video-hard backgrounds
for training 500k env steps.

Methods Std of critic loss Std of target Q KL

SVEA 5.780
±1.029

0.936
±0.097

0.404
±0.019

ours 3.197
±0.760

0.530
±0.038

0.205
±0.034

Table 3: Statistics for the trained model of SVEA and
our method using random overlay in walker walk en-
vironment.

Main result We evaluate our proposed methods in sample efficiency and generalization ability.
For sample efficiency, we evaluate our method (ours) against state-of-the-art baselines: RAD, DrQ,
DrAC (with SAC as the base algorithm), DrQv2 (with DDPG as the base algorithm) and SVEA (with
random overlay). The experimental results shown in Figure 3 confirm that our method outperforms
previous ones. Due to the page limit, the additional evaluations are included in Appendix H.3.

For generalization, we compare SVEA with our method based on the official implementation of
SVEA5. Considering that random overlay shows the best generalization ability among the image
transformations listed in SVEA, our comparison also includes random overlay. When applicable,
we adopt the same hyperparameter values as in SVEA. Thus, we use the same αi = 0.5 for random
shift and random overlay, reuse αKL = 0.1 from previous experiments and tune αtp based on a quick
grid search in {0.1, 0.5} and finally choose 0.5 for αtp. Both methods (SVEA and ours) are trained
in normal background for 500k environment steps, and evaluated in video-hard backgrounds. The
final results comparing SVEA and our method are shown in Table 2. We can see the improvement
in generalization especially in environments such as ball in cup catch, finger spin, and walker walk.
Meanwhile, similar statistics we discussed before are recorded, as shown in Table 3. The complete
curves for evaluations and the recorded statistics are listed in Appendices H.4 and H.5.

7 CONCLUSION

We revisit state-of-the-art data augmentation methods in DRL. Our theoretical analysis helps under-
stand and compare different existing methods. In addition, this analysis provides recommendations
on how to exploit data augmentation in a more theoretically-motivated way. We included tangent
prop, a regularization term to promote invariance, which is novel in DRL. We validated our proposi-
tions and evaluated our method in DeepMind control tasks with normal background for comparing
sample efficiency and distracted background for comparing generalization ability with the state-of-
the-art methods. Limitations are discussed in Appendix I due to the page limit.

5https://github.com/nicklashansen/dmcontrol-generalization-benchmark
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Reproducibility For the experimental results, the code with comments on how to reproduce the
results is released, the experimental settings are described in the main paper (Section 6) and the
hyperparameters required for reproducing the results are recorded in Appendix G. For the theoretical
results, all the detailed proofs can be found in the appendix.
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A BACKGROUNDS

Deep Deterministic Policy Gradient Incorporating a parameterized actor function µθ(s), Deep
Deterministic Policy Gradient uses the following actor and critic and loss to train the agent:

Jπ(θ) = Êst∼D[−Qϕ(st, at)|at=µθ(st)],

JQ(ϕ) = Êst∼D[(Qϕ(st, at)− Q̂(st, at))
2|at=µθ(st)],

(16)

where Q̂(st, at) = rt + γQϕ̄(st+1, µθ̄(st+1)), which is the target Q-value defined from a target
network, θ and ϕ represents the parameters of the actor and the critic respectively, θ̄ and ϕ̄ represents
the parameters of the target actor and the target critic respectively, and D represents the replay
buffer. The weights of a target network are the exponentially moving average of the online network’s
weights.

Soft Actor-Critic Maximum entropy RL tackles an RL problem with an alternative objective func-
tion, which favors more random policies: J = Êπ[

∑∞
t=0 γ

trt + αH(π(· | st))], where γ is the dis-
count factor, α is a trainable coefficient of the entropy term and H(π(· | st)) is the entropy of action
distribution π(· | st). The Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) optimizes it by
training the actor πθ and critic Qϕ with the following respective losses:

Jπ(θ) = Êst∼D,a∼π[α log πθ(a | st)−Qϕ(st, a)],

JQ(ϕ) = Êst,at∼D[(Qϕ(st, at)− Q̂(st, at))
2],

(17)

where Q̂(st, at) = rt+γQϕ̄(st+1, at+1)−α log πθ(at+1|st+1), which is the target Q-value defined
from a target network and at+1 ∼ πθ(· | st+1), θ ,ϕ and ϕ̄ represents the parameters of the actor, the
critic and the target critic respectively, and D represents the replay buffer. The weights of a target
network are the exponentially moving average of the online network’s weights.

Reinforcement Learning with Augmented Data Reinforcement Learning with Augmented Data
(RAD) (Laskin et al., 2020) applies data augmentation in SAC by replacing the original observation
with augmented observations in the training of the actor and critic. Given image transformation fν ,
the actor and critic losses are

Jπ(θ) = Êst∼D,a∼π[α log πθ(a | fν(st))−Qϕ(fν(st), a)],

JQ(ϕ) = Êst,at∼D[(Qϕ(fν(st), at)− Q̂(fν(st), at))
2],

(18)

Data-Regularized Q Data-regularized Q (DrQ) (Kostrikov et al., 2020) extends RAD by using
data augmentation in the training of the critic in two new ways. Given a type of image transformation
f parameterized by ν, data augmentation is first applied in the calculation of the target Q-value for
every transition (s, a, r, s′):

y = r + γ
1

K

K∑
k=1

Qϕ̄(fτk(s
′), a′), where a′ ∼ π(· | fτk(s′)). (19)

Qϕ̄ is the slowly updated target network. Then the critic is updated with different augmented s and
this averaged target:

ℓQ(ϕ) =
1

NM

N∑
i=1

M∑
m=1

(
Qϕ(fτm(s), a)− y

)2

. (20)

Note that DrQ recovers RAD when M = 1 and K = 1.

SVEA In order to avoid non-deterministic Q-target and over-regularization, Hansen et al. (2021)
propose using state without complex augmentation for calculating the target. Let T1 and T2 be a set
of random shift and a set of random shift plus one of the data augmentation mentioned in the paper
such as random convolution (Lee et al., 2019). The critic loss used for training is

LQ(ϕ) =
1

N

N∑
i=1

αsvea(Qϕ(fτ1,i(s), a)− yi)
2 + βsvea(Qϕ(fτ2,i(s), a)− yi)

2, (21)
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where αsvea and βsvea are constant coefficients for naively and complexly augmented data respec-
tively, τ1,i ∈ T1 and τ2,i ∈ T2, yi = r + γQϕ̄(τ1,i(s

′), a′) + α log π(a′ | fτ1,i(s′)), where
a′ ∼ π(· | τ1,i(s′)).

DrAC Instead of directly replacing the original samples with augmented samples in the training,
Raileanu et al. (2021) use two regularization terms in the training of the actor and critic to explicitly
enforce the invariance. When applying it in the PPO algorithm (Schulman et al., 2017) to learn a
state-value estimator Vϕ(s) and a policy πθ(s), the regularization terms are

GV = (V̂ (s)− Vϕ(fν(s)))
2,

Gπ = DKL[πθ(a | s) | πθ(a | fν(s)].
(22)

where V̂ (s) is the sum of rewards collected by the agent after state s and ν is the random variable
for parameterizing the image transformation.

Tangent Prop Regularization Tangent prop (Simard et al., 1991) is a regularization term used for
learning invariance for a function G(s) with respect to a small image transformation parameterized
by α on s: ∑∥∥∥∥∂G(s, α)

∂α

∥∥∥∥2 = 0 (23)

B EXPECTED LOSS UNDER DATA AUGMENTATION

B.1 ACTOR LOSS

SAC as base algorithm For image-based control tasks, a data augmentation f parameterized by
µ over T is applied on the observations. The actor loss with implicit regularization for the state s in
a transition is

ℓIθ(s, µ) = Êµ

[
α log πθ(â | fµ(s))−Qϕ(fµ(s), â) |â∼πθ(·|fµ(s))

]
= Êµ

[
DKL

(
πθ(·|fµ(s))|| exp(

1

α
Qϕ(fµ(s), ·)− logZ(fµ(s)))

)] (24)

Let g(fµ(s), ·) = exp( 1
αQϕ(fµ(s), ·)− logZ(fµ(s))).

ℓIθ(s, µ)

= Êµ

[
DKL

(
πθ(·|fµ(s))||g(fµ(s), ·)

)]
= Êµ

[
DKL

(
πθ(·|fµ(s))||g(fµ(s), ·))

)
−DKL

(
πθ(·|fµ(s))||g(s, ·)

)
+DKL

(
πθ(·|fµ(s))||g(s, ·)

)]
= Êµ

[ ∫
a

πθ(a|fµ(s)) log
πθ(a|fµ(s))
g(a|fµ(s))

−
∫
a

πθ(a|fµ(s)) log
πθ(a|fµ(s))

g(a|s)

]
+ Êµ

[
DKL

(
πθ(·|fµ(s))||g(s, ·)

)]
= Êµ

[ ∫
a

πθ(a|fµ(s)) log
g(a|s)

g(a|fµ(s))

]
+ Êµ

[
DKL

(
πθ(·|fµ(s))||g(s, ·)

)]
= Êµ

[ ∫
a

πθ(a|fµ(s)) log
g(a|s)

g(a|fµ(s))

]
+ Êµ

[
DKL

(
πθ(·|fµ(s))||g(s, ·)

)
−DKL

(
πθ(·|fµ(s))||πθ,sg(·|s)

)
+DKL

(
πθ(·|fµ(s))||πθ,sg(·|s)

)]
= Êµ

[ ∫
a

πθ(a|fµ(s)) log
g(a|s)

g(a|fµ(s))

]
+ Êµ

[ ∫
a

πθ(a|fµ(s)) log
πθ,sg(a|s)
g(a|s)

]
+ Êµ

[
DKL

(
πθ(·|fµ(s))||πθ,sg(·|s)

)]
.

(25)
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If the invariance in the critic has been learned:

Q(fµ(s), a) = Q(s, a) for all a ∈ A, (26)

the actor loss with implicit regularization becomes

ℓIθ(s, µ) = Êµ

[ ∫
a

πθ(a|fµ(s)) log
πθ,sg(a|s)
g(a|s)

]
+ Êµ

[
DKL

(
πθ(·|fµ(s))||πθ,sg(·|s)

)]
, (27)

because
g(a|fµ(s)) = g(a|s) for all a ∈ A. (28)

If the actor is well learned for state s, this actor loss become

ℓIθ(s, µ) = Êµ

[
DKL

(
πθ(·|fµ(s))||πθ,sg(·|s)

)]
, (29)

because
g(a|s) = πθ,sg(a|s) for all a ∈ A. (30)

DDPG as base algorithm For image-based control tasks, a data augmentation f parameterized
by µ over T is applied on the observations. Considering that the Q-invariant transformation is
also π∗-invariant, training all policies of the transformed states to get close to the same optimal
policy is equivalent to training the policy of original state and enforce the invariance in the policy.
Considering actor loss with implicit regularization, we can apply a Taylor expansion with respect to
the optimal action π∗(fµ(s)) = π∗(s) = argmaxa Qϕ(s, a):

ℓIθ(s, µ)

= Êµ

[
−Qϕ(fµ(s), â) |â=πθ(fµ(s))

]
= −Êµ

[
Qϕ(fµ(s), π

∗(fµ(s)) + J(â− π∗(fµ(s)))

+
1

2
(â− π∗(fµ(s)))

TH(â− π∗(fµ(s))) + o(∥â− π∗(fµ(s))∥2)|â=πθ(fµ(s))

]
≈ −1

2
Êµ

[
(â− π∗(fµ(s)))

TH(â− π∗(fµ(s)))|â=πθ(fµ(s))

]
= −1

2
Êµ

[
(â− πθ,sg(s) + πθ,sg(s)− π∗(fµ(s)))

TH

(â− πθ,sg(s) + πθ,sg(s)− π∗(fµ(s)))|â=πθ(fµ(s))

]
= −1

2
Êµ

[
(â− πθ,sg(s))

TH(â− πθ,sg(s))

+ (πθ,sg(s)− π∗(fµ(s)))
TH(πθ,sg(s)− π∗(fµ(s)))

+ 2(â− πθ,sg(s))
TH(πθ,sg(s)− π∗(fµ(s)))|â=πθ(fµ(s))

]
.

(31)

The first term above is enforcing the invariance of the actor with respect to the transformation.

B.2 CRITIC LOSS

B.2.1 LINEAR MODEL

According to the analysis by Balestriero et al. (2022), the expected Mean Squared Error (MSE)
under data augmentation for a linear regression model can be expressed by the expectation and
variance of the transformed images. Now we want to derive a similar regularization term from the
critic loss.

If we use linear model for the critic and actor:

Q(s, a) = Ws ∗ s+Wa ∗ a+ b0 (32)

Q̄(s, a) = W̄s ∗ s+ W̄a ∗ a+ b̄0 (33)
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π(s) = Wτ ∗ s+ ϵWσ ∗ s+ b1, ϵ ∼ N (0, 1) (34)
in which Ws ∈ R1∗|S|, Wa ∈ R1∗|A|, Wτ ∈ R1∗|S|, Wσ ∈ R1∗|S| and b0, b1 are parameters for
the model. Q̄ is the exponential moving average of Q.

The critic loss for a transition (s, a, r, s′) under data augmentation ν ∼ P and µ ∼ P ′ for state s
and next state s′ is

ℓϕ = Eν

[(
Q(fν(s), a)− Êµ[y]

)2]
= Eν

[
Q(fν(s), a)

2
]
− 2Eν

[
Q(fν(s), a)

]
Êµ[y] + Êµ[y]

2)

(35)

in which

y = r + γQ̄(fµ(s
′), a′)− α log π(a′|fµ(s′))|a′∼π(·|fµ(s′)). (36)

Considering the last term is not used to update Q, we only need to focus on the first two terms.

Expectation
Eν

[
Q(fν(s), a)

]
= Eν [Wsfν(s) +Waa+ b0]

= WsEν [fν(s)] +Waa+ b0

= Q(Eν [fν(s)], a)

(37)

Variance
Eν

[
Q(fν(s), a)

2
]

= Eν

[
(Wsfν(s) +Waa+ b0)

2
]

= Eν

[
fT (s, ν)WT

s Wsfν(s) + (Waa+ b0)
2 + 2(Waa+ b0)

(
Wsfν(s)

)]
= Eν

[
Tr

(
WT

s Wsfν(s)f
T (s, ν)

)]
+ (Waa+ b0)

2 + 2(Waa+ b0)
(
WsEν [fν(s)]

)
= Tr

(
WT

s WsEν

[
fν(s)f

T (s, ν)
])

+ (Waa+ b0)
2 + 2(Waa+ b0)

(
WsEν [fν(s)]

)
= Tr

(
WT

s Ws

(
Eν

[
fν(s)f

T (s, ν)
]
− Eν

[
fν(s)

]
Eν

[
fT (s, ν)

]))
+ Tr

(
WT

s WsEν

[
fν(s)

]
Eν

[
fT (s, ν)

])
+ (Waa+ b0)

2 + 2(Waa+ b0)
(
WsEν [fν(s)]

)
= Tr

(
WT

s WsVν [fν(s)]
)
+Q(Eν [fν(s)], a)

2

(38)

Whole loss

ℓϕ =

N∑
i=1

Eν

[
Q(fν(s), a)

2
]
− 2Eν

[
Q(fν(s), a)

]
Êµ[y] + Êµ[y]

2

=

N∑
i=1

Tr
(
WT

s WsVν [fν(s)]
)
+Q(Eν [fν(s)], a)

2 − 2Êµ[y]Q(Eν [Tν(s)], a) + Êµ[y]
2

=

N∑
i=1

(
Q
(
Eν [fν(s)], a

)
− Êµ[y]

)2

+ Tr
(
WT

a WaVν [fν(s)]
)

(39)

B.2.2 NON-LINEAR MODEL

According to the analysis by Balestriero et al. (2022), the expected loss of transformed state has an
upper bound related to the variance of the transformed state:

E[(ℓ ◦Q)(f(x))] ≤ (ℓ ◦Q)(E[f(x)]) + κ(x)∥JQ(E[f(x)])H(x)Λ(x)
1
2 ∥2F , (40)

in which variance of the transformed image can be decomposed into

V[f(x)] = H(x)Λ(x)H(x)T . (41)

The second term in the RHS of Equation 40 recovers tangent prop regularization.
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C EXPLICIT VS IMPLICIT REGULARIZATION

C.1 CRITIC LOSS IN EXPLICIT REGULARIZATION

For τ = (s, a, s′, r) sampled from the replay buffer D, given current estimation Qϕ and true estima-
tion Q∗ without error, the bias of the target Ea′∼π(s′)y(s

′, a′) is smaller than the target Qϕ,sg(s, a):

Eτ∼D

[
(Ea′∼π(·|s′)[y(s

′, a′)]−Q∗(s, a))2
]

=Eτ∼D

[(
Ea′∼π(·|s′)[r + γQϕ̄(s

′, a′)− α log π(a′|s′)]

− (r + γEa′∼π(·|s′)[Q
∗(s′, a′)− α log π(a′|s′)]

)2]
=Eτ∼D

[(
γEa′∼π(·|s′)[Qϕ̄(s

′, a′)−Q∗(s′, a′)]
)2]

≈γ2Eτ∼D

[(
Ea′∼π(·|s′)[Qϕ,sg(s

′, a′)−Q∗(s′, a′)]
)]

<Eτ∼D

[(
Ea′∼π(·|s′)[Qϕ,sg(s

′, a′)−Q∗(s′, a′)]
)2]

<Eτ∼D,a′∼π(·|s′)

[(
Qϕ,sg(s

′, a′)−Q∗(s′, a′)
)2]

=Eτ∼D

[(
Qϕ,sg(s, a)−Q∗(s, a)

)2]

(42)

The bias of using a target ȳ in the explicit regularization is

ϵ(ȳ) =Eτ

[((
Qϕ(fν(s), a)− ȳ

)2

−
(
Qϕ(fν(s), a)−Q∗(s, a)

)2)2]
=Eτ

[(
2Qϕ(fν(s), a)(Q

∗(s, a)− ȳ) + ȳ2 −Q∗(s, a)2
)2]

.

(43)

We only need to consider the first term 2Qϕ(fν(s), a)(Q
∗ − ȳ), considering that other terms is

constant with respect to ϕ. So the bias of using different targets in the regularization term is decided
by the bias of the target compared to the true estimation. The bias of using Ea′∼π(s′)[y(s

′, a′)] in
the explicit regularization term is smaller than using Qϕ,sg(s, a) according to the equations above:

ϵ(ȳ = Ea′∼π(·|s′)[y(s
′, a′)]) < ϵ(ȳ = Qϕ,sg(s, a)), (44)

In practice, we use the sampled value y(s′, a′) as the target, which leads to a smaller bias and
relatively larger variance.

C.2 CRITIC LOSS CONNECTION

Assume given ℓEϕ (s, a, r, s
′, ν), by appropriately setting the random variables in Equations 5, it

recovers the critic loss in explicit regularization (Equation 7), as shown below. If the distributions
of ν̂ and µ̂ are defined as follows:

P(ν̂ = τ) =

{ P(ν=τ)αQ+1
αQ+1 , if τ = τ0

P(ν=τ)αQ

αQ+1 , if τ ̸= τ0
P(µ̂) =

{
1, if µ̂ = τ0
0, if µ̂ ̸= τ0

, (45)

then we have for any sample (s, a, r, s′):

(αQ + 1)ℓIϕ(s, a, r, s
′, ν̂, µ̂) = ℓEϕ (s, a, r, s

′, ν)

C.3 ACTOR LOSS

Considering that the policy is parameterized as normal distribution in SAC, we first define:

πθ,sg(· | fη(s)) = N (λη, σ
2
η), πθ(· | fµ(s)) = N (λµ, σ

2
µ) (46)
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For simplicity, we consider µ and η are defined over discrete set T with probability P (µ = τi) =
P (η = τi) = Pi, τi ∈ T . The derivation can be easily extended to using a continuous set.

πavg(· | s) = Êη[πθ,sg(· | fη(s))] = N (λavg, σ
2
avg) = N (

∑
i

Piλτi ,
∑
i

P 2
i σ

2
τi) (47)

Êη

[
DKL(πθ,sg(· |fη(s)) ∥πθ(· |fµ(s))

]
=Êη

[
log

σµ

ση
+

σ2
η

2σ2
µ

+
(λη − λµ)

2

2σ2
µ

− 1

2

]
= log σµ −

∑
i

Pi log στi +

∑
i Piσ

2
τi

2σ2
µ

+

∑
i Pi(λτi − λµ)

2

2σ2
µ

− 1

2

(48)

DKL(πavg(· |s) ∥πθ(· |fµ(s))

= log
σµ

σavg
+

σ2
avg

2σ2
µ

+
(λavg − λµ)

2

2σ2
µ

− 1

2

= log σµ − 1

2
log

∑
i

P 2
i σ

2
τi +

∑
i P

2
i σ

2
τi

2σ2
µ

+
(
∑

i Piλτi − λµ)
2

2σ2
µ

− 1

2

(49)

Comparing the two equations above, the first term and the last term are the same, and the second
term is a constant with respect to the parameter θ of the actor. For the third term, it is obvious that∑

i Piσ
2
τi

2σ2
µ

≥
∑

i P
2
i σ

2
τi

2σ2
µ

because Pi ≥ P 2
i , for any i. For the forth term, we have:∑

i Pi(λτi − λµ)
2

2σ2
µ

−
(
∑

i Piλτi − λµ)
2

2σ2
µ

=

∑
i Pi(λ

2
τi + λ2

µ − 2λτiλµ)

2σ2
µ

−
λ2
µ + (

∑
i Piλτi)

2 − 2λµ

∑
i Piλτi

2σ2
µ

=
λ2
µ +

∑
i Piλ

2
τi − 2λµ

∑
i Piλτi

2σ2
µ

−
λ2
µ + (

∑
i Piλτi)

2 − 2λµ

∑
i Piλτi

2σ2
µ

=

∑
i Piλ

2
τi − (

∑
i Piλτi)

2

2σ2
µ

=
V[λη]

2σ2
µ

≥ 0

(50)

So the loss of using the policy of a transformed state as the target is an upper bound of using the
average policy as the target:

Êη

[
DKL(πθ,sg(· |fη(s)) ∥πθ(· |fµ(s))

]
≥ DKL(πavg(· |s) ∥πθ(· |fµ(s)) (51)

D KL DIVERGENCE

Given a transformation fν(s) on state s, considering that the KL divergence is not symmetric, we
discuss the differences between two kinds of KL regularization here:

DKL

(
πθ,sg(s))||πθ(fν(s))

)
and DKL

(
πθ(fν(s))||πθ,sg(s)

)
, (52)

Detach First

DKL

(
πθ,sg(s))||πθ(fν(s))

)
=

∫
a

πθ,sg(a|s) log
πθ,sg(a|s)
πθ(a|fν(s))

=

∫
a

(
πθ,sg(a|s) log πθ,sg(a|s)− πθ,sg(a|s) log πθ(a|fν(s))

)
= −H(πθ,sg(s))−

∫
a

πθ,sg(a|s) log πθ(a|fν(s))

(53)
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Detach Second

DKL

(
πθ(fν(s))||πθ,sg(s)

)
=

∫
a

πθ(a|fν(s)) log
πθ(a|fν(s))
πθ,sg(a|s)

,

=

∫
a

(
πθ(a|fν(s)) log πθ(a|fν(s))− πθ(a|fν(s)) log πθ,sg(a|s)

)
= −H(πθ(fν(s)))−

∫
a

πθ(a|fν(s)) log πθ,sg(a|s),

(54)

in which H represent the entropy for a distribution.

”Detach second” introduces an entropy term for the policy of the transformed state. This regulariza-
tion not only makes the policy of the augmented state and the original state close, but also maximizes
the entropy of the policy of the transformed state. However, in ”detach first”, the entropy term with
the sign sg is not used to update the policy.

E VARIANCE UNDER DATA AUGMENTATION

E.1 MORE AUGMENTED SAMPLES REDUCE THE VARIANCE OF THE CRITIC LOSS

Considering one transition (s, a, r, s′) and M transformations {fτm | m = 1, ...,M}, K transfor-
mation {(fτ ′

k
| k = 1, ...,K} respectively on s and s′, the Q-values and target Q-values for the

transformed samples are

Qm = Q(fτm(s), a),

yk = r + γQϕ̄(fτ ′
k
(s′), a′)− α log π(a′|fτ ′

k
(s′))|a′∼π(·|fτ′

k
(s′)),

(55)

where m ∈ {1, ...,M}, k ∈ {1, ...,K}.

RAD+ loss becomes

ℓRAD+ =
1

M
·

M∑
m=1

(Qm − yk)
2 (56)

DrQ loss becomes

ℓDrQ =
1

M
·

M∑
m=1

(Qm − 1

K

K∑
k=1

yk)
2

=
1

M
·

M∑
m=1

(
Q2

m + (
1

K

K∑
k=1

yk)
2 − 2Qm · 1

K

K∑
k=1

yk

)
=

1

M
·

M∑
m=1

Q2
m +

1

M
·

M∑
m=1

(
1

K

K∑
k=1

yk)
2 − 1

M
·

M∑
m=1

2Qm · 1

K

K∑
k=1

yk

=
1

M
·

M∑
m=1

Q2
m +

1

K2
(

K∑
k=1

yj)
2 − 2

M ·K
·

M∑
m=1

K∑
k=1

Qm · yk

(57)
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If all the combinations of above Q and y values are used for estimation, the loss becomes:

ℓall =
1

M ·K
·

M∑
m=1

K∑
k=1

(Qm − yk)
2

=
1

M ·K
· (

M∑
m=1

K ·Q2
m +

K∑
k=1

M · y2k − 2

M∑
m=1

K∑
k=1

Qm · yk)

=
1

M
·

M∑
m=1

Q2
m +

1

K
(

K∑
k=1

yk)
2 − 2

M ·K
·

M∑
m=1

K∑
k=1

Qm · yk

(58)

The second terms in both Equation 57 and 58 can be ignored because the gradients of target values
yj with respect to critic parameters are stopped.

Obviously, ℓall and ℓDrQ have same gradients with respect to trainable parameters of the critic. The
comparison between ℓDrQ and ℓRAD+ is exactly the comparison between ℓall and ℓRAD+. For one
transition in one gradient step, M ·K pairs of Qm and yk are used to formulate ℓall while only M
pairs of Qm and yk are used to formulate ℓRAD+. Therefore, we can find out that DrQ outperforms
RAD by leveraging more augmented samples and the averaged target. These operations indeed
reduce the variance of the estimated critic loss.

E.2 KL REDUCES THE VARIANCE OF ACTOR LOSS

SAC actor loss Given data augmentation fν |ν ∼ P on state s, if Q(fν(s), a) is invariant with
respect to ν for all a ∈ A, the variance of the actor loss Vν [ℓ

I
θ(s, ν)] is bounded by a term that

depends on the KL divergence Dη,ν = DKL(π(· | fη(s))∥π(· | fν(s))) for ν, η ∼ P:

Vν [ℓ
I
θ(s, ν)] ≤

1

n
Eν

[(
Eη[Dη,ν + c(fν(s))

√
2Dη,ν ]

)2]
, (59)

where c(fν(s)) > 0, n is the number of samples to estimate the empirical mean ℓIθ(s, ν).

Proof. For image-based control tasks, a data augmentation f parameterized by ν ∼ P is applied on
the observations. The actor loss of SAC becomes

ℓIθ(s, ν) = Êν

[
DKL

(
πθ(·|fν(s))|| exp(

1

α
Qϕ(fν(s), ·)− logZ(fν(s)))

)]
(60)

Let g(fν(s), ·) = exp( 1
αQϕ(fν(s), ·)− logZ(fν(s))).

The variance of empirical mean can be derived as the true variance divided by the number of samples
n.

V[Ê[x]] = E[(Ê(x)− E[x])2]

= E[(
1

n
(x1 − E[x] + x2 − E[x] + ...+ xn − E[x]))2]

=
1

n2
n · V[x]

=
1

n
V[x]

(61)

The variance of ℓIθ(s, ν) with respect to ν for a given number of samples n is
Vν [ℓ

I
θ(s, ν)]

=
1

n
Vν [DKL(πθ(·|fν(s))||g(fν(s), ·))]

=
1

n
Eν

[(
DKL(πθ(·|fν(s))||g(fν(s), ·))− Eη[DKL(πθ(·|fη(s))||g(fη(s), ·))]

)2]
=

1

n
Eν

[(
DKL(πθ(·|fν(s))||g(fν(s), ·))−

∑
η

P(η)DKL(πθ(·|fη(s))||g(fη(s), ·))
)2]

=
1

n
Eν

[(∑
η

P(η)(DKL(πθ(·|fη(s))||g(fη(s), ·))−DKL(πθ(·|fν(s))||g(fν(s), ·)))
)2]

(62)
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For the term inside the above equation, we can further derive:

DKL(πθ(·|fη(s))||g(fη(s), ·))−DKL(πθ(·|fν(s))||g(fν(s), ·))

=

∫
a

πθ(·|fη(s)) log
πθ(·|fη(s))
g(fη(s), ·)

− πθ(·|fν(s)) log
πθ(·|fν(s))
g(fν(s), ·)

=

∫
a

πθ(·|fη(s)) log πθ(·|fη(s))− πθ(·|fη(s)) log g(fη(s), ·)

− πθ(·|fν(s)) log πθ(·|fν(s)) + πθ(·|fν(s)) log g(fν(s), ·)

=

∫
a

πθ(·|fη(s)) log
πθ(·|fη(s))
πθ(·|fν(s))

− πθ(·|fη(s)) log g(fη(s), ·)

− (πθ(·|fν(s))− πθ(·|fη(s))) log πθ(·|fν(s)) + πθ(·|fν(s)) log g(fν(s), ·)

=

∫
a

πθ(·|fη(s)) log
πθ(·|fη(s))
πθ(·|fν(s))

− πθ(·|fη(s)) log g(fν(s), ·) + πθ(·|fη(s)) log
g(fν(s), ·)
g(fη(s), ·)

− (πθ(·|fν(s))− πθ(·|fη(s))) log πθ(·|fν(s)) + πθ(·|fν(s)) log g(fν(s), ·)
= DKL(πθ(·|fη(s))||πθ(·|fν(s)))

+

∫
a

(
πθ(·|fη(s))− πθ(·|fν(s))

)
·
(
log πθ(·|fν(s))− log g(fν(s), ·)

)
+

∫
a

πθ(·|fη(s)) log
g(fν(s), ·)
g(fη(s), ·)

(63)

Then plug the above results into the equation of Vν [ℓ
I
θ(s, ν)].

Vν [ℓ
I
θ(s, ν)]

=
1

n
Eν

[(∑
η

P(η)(DKL(πθ(·|fη(s))||g(fη(s), ·))−DKL(πθ(·|fν(s))||g(fν(s), ·)))
)2]

=
1

n
Eν

[(∑
η

P(η)DKL(πθ(·|fη(s))||πθ(·|fν(s)))

+
∑
η

P (η)

∫
a

(πθ(·|fη(s))− πθ(·|fν(s)))(log πθ(·|fν(s))− log g(fν(s), ·))

+
∑
η

P (η)

∫
a

πθ(·|fη(s)) log
g(fν(s), ·)
g(fη(s), ·)

)2]
=

1

n
Eν

[(∑
η

P(η)DKL(πθ(·|fη(s))||πθ(·|fν(s)))

+
∑
η

P (η)

∫
a

(πθ(·|fη(s))− πθ(·|fν(s))) · (log πθ(·|fν(s))− log g(fν(s), ·))

+
1

α

∑
η

P (η)

∫
a

πθ(·|fη(s))(Qϕ(fν(s), a)−Qϕ(fη(s), a))

+
∑
η

P (η)

∫
a

πθ(·|fη(s)) log
Z(fν(s))

Z(fη(s))

)2]

(64)
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For the second term on the right hand side of Equation 64, by applying Pinsker’s inequality, we get

∑
η

P (η)

∫
a

(πθ(·|fη(s))− πθ(·|fν(s))) · (log πθ(·|fν(s))− log g(fν(s), ·))

≤
∑
η

P(η)

∫
a

|πθ(a|fη(s))− πθ(a|fν(s))| ·max
a

| log πθ(a|fν(s))− log g(fν(s), a)|

≤
∑
η

P(η)

√
2DKL

(
πθ(·|fη(s))||πθ(·|fν(s))

)
·max

a
| log πθ(a|fν(s))− log g(fν(s), a)|

(65)

For the third and fourth terms of Equation 64, given data augmentation fν |ν ∼ P on state s, if
Q(fν(s), a) is invariant with respect to ν for all a ∈ A, both the third and the fourth terms of
V̂ν [ℓ

I
θ(s, ν)] are zero.

Therefore, if Q(fν(s), a) is invariant with respect to ν for all a ∈ A, the variance of the augmented
actor loss Vν [ℓ

I
θ(s, ν)] is bounded by the KL divergence Dη,ν = DKL(π(· | fη(s)) | π(· | fν(s)))

for ν, η ∼ P:

Vν [ℓ
I
θ(s, ν)] ≤

1

n
Eν

[(
Eη[Dη,ν + c(fν(s))

√
2Dη,ν ]

)2]
(66)

where c(fν(s)) = maxa | log πθ(a|fν(s)) − log g(fν(s), a)| > 0, n is the number of samples to
estimate the empirical mean.

DDPG actor loss Based on Equation 31, the DDPG actor loss ℓIθ(s, µ) becomes,

ℓIθ(s, µ) ≈ −1

2
Êµ

[
(πθ(fµ(s))− π∗(fµ(s)))

THµ(πθ(fµ(s))− π∗(fµ(s)))
]
. (67)

The variance of the actor loss is reduced if we minimize the mean squared error between two deter-
ministic actions ||πθ(fη(s

′))− πθ(fν(s
′))||2, where η, ν ∼ P.

Proof. Let Mµ = πθ(fµ(s)) − π∗(fµ(s)). Assuming that the Hessian matrix Hµ have a a lower
bound and upper bound:

lµI ⪯ Hµ ⪯ LµI, (68)

we have

lµ∥Mµ∥2 ≤ ℓIθ(s, µ) ≤ Lµ∥Mµ∥2. (69)
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Vν [ℓ
I
θ(s, ν)]

=
1

n
Eν [(ℓ

I
θ(s, ν)− Eη[ℓ

I
θ(s, η)])

2] =
1

n
Eν [(

∑
η

P(η)ℓIθ(s, ν)−
∑
η

P(η)ℓIθ(s, η))
2]

=
1

n
Eν [(

∑
η

P(η)(ℓIθ(s, ν)− ℓIθ(s, η)))
2] ≤ 1

n
Eν [(

∑
η

P(η)(ℓIθ(s, ν)− ℓIθ(s, η))
2)]

=
1

n
Eν,η[(ℓ

I
θ(s, ν)− ℓIθ(s, η))

2] ≤ 1

n
· (max

ν
ℓIθ(s, ν)−min

η
ℓIθ(s, η))

2

≤ 1

n
· (max

ν
Lν∥Mν∥2 −min

η
lη∥Mη∥2)2 =

1

n
· (Lνmax

∥Mνmax
∥2 − lηmin

∥Mηmin
∥2)2

Let νmax = argmax
ν

ℓIθ(s, ν), ηmin = argmin
η

ℓIθ(s, η).

Vν [ℓ
I
θ(s, ν)]

≤ 1

n
· ((Lνmax

− lηmin
)∥Mνmax

∥2 + lηmin
(∥Mνmax

∥2 − ∥Mηmin
∥2))2

=
1

n
· ((Lνmax

− lηmin
)∥Mνmax

∥2

+ lηmin
(∥πθ(fνmax

(s))− π∗(s)∥2 − ∥πθ(fηmin
(s))− π∗(s)∥2)2

=
1

n
· ((Lνmax − lηmin)∥Mνmax∥2

+ lηmin(
∑
i

(πθ(fνmax(s))i − π∗(s)i)
2 −

∑
i

(πθ(fηmin(s))i − π∗(s)i)
2)2

=
1

n
· ((Lνmax − lηmin)∥Mνmax∥2

+ lηmin(
∑
i

(
(πθ(fνmax(s))i − π∗(s)i)

2 − (πθ(fηmin(s))i − π∗(s)i)
2
)
)2

≤ 1

n
· ((Lνmax − lηmin)∥Mνmax∥2

+ lηmin

∑
i

(
(πθ(fνmax

(s))i − π∗(s)i)
2 − (πθ(fηmin

(s))i − π∗(s)i)
2
)2

=
1

n
· ((Lνmax

− lηmin
)∥Mνmax

∥2

+ lηmin

∑
i

(
πθ(fνmax

(s))i + πθ(fηmin
(s))i − 2π∗(s)i

)2(
πθ(fνmax

(s))i − πθ(fηmin
(s))i

)2

=
1

n
· ((Lνmax

− lηmin
)∥Mνmax

∥2

+ lηmin

∑
i

(
πθ(fνmax(s))i + πθ(fηmin(s))i − 2π∗(s)i

)2(
πθ(fνmax(s))i − πθ(fηmin(s))i

)2

=
1

n
· ((Lνmax

− lηmin
)∥Mνmax

∥2

+ lηmin

∑
i

(
πθ(fνmax

(s))i + πθ(fηmin
(s))i − 2π∗(s)i

)2(
πθ(fνmax

(s))i − πθ(fηmin
(s))i

)2

(70)
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Since
(a− b)2(a+ b− 2c)2

≤ (a− b)4 + (a+ b− 2c)4

2

=
(a− b)4 + ((a− c+ b− c)2)2

2

≤ (a− b)4 + (2(a− c)2 + 2(b− c)2)2

2

=
(a− b)4 + 4((a− c)2 + (b− c)2)2

2

≤ (a− b)4 + 8(a− c)4 + 8(b− c)4

2

(71)

we have
Vν [ℓ

I
θ(s, ν)]

≤ 1

n
· (Lνmax − lηmin)∥Mνmax∥2

+ lηmin

∑
i

(
πθ(fνmax

(s))i + πθ(fηmin
(s))i − 2π∗(s)i

)2(
πθ(fνmax

(s))i − πθ(fηmin
(s))i

)2

≤ 1

n
· (Lνmax

− lηmin
)∥Mνmax

∥2

+
1

2
lηmin

∥πθ(fνmax
(s))− πθ(fηmin

(s))∥4

+ 4lηmin
∥πθ(fνmax

(s))− π∗(s))∥4

+ 4lηmin∥πθ(fηmin(s))− π∗(s))∥4
(72)

In Equation 72, the third and fourth terms are minimized by the actor loss. If we minimize the
second term of Equation 72 by minimizing the mean squared error between two deterministic actions
||πθ(fη(s

′))− πθ(fν(s
′))||2 in the case of DDPG, the variance of the actor loss is reduced.

E.3 KL REDUCES THE VARIANCE OF THE TARGET Q-VALUE

DDPG target values For DDPG, when we compute target values, we add Ornstein-Uhlenbeck
noise to deterministic actions for exploration. Then the policy can be regarded as a probability
distribution π.

For image-based control tasks, a data augmentation f parameterized by µ ∼ P is applied on the
observations. Then the target value y for a given transition (s, a, r, s′) is

y(fµ(s
′), a′) = r + γQϕ̄(fµ(s

′), a′),where a′ ∼ π(·|fµ(s′)). (73)

The expectation of y(fµ(s′), a′) with respect to a′ ∼ π(·|fµ(s′)) is

Ea′ [y(fµ(s
′), a′)] = r + γEa′ [Qϕ̄(fµ(s

′), a′)]

= r + γ
∑
a′

π(a′|fµ(s′))Qϕ̄(fµ(s
′), a′) (74)

The expectation of y(fµ(s′), a′) with respect to µ ∼ P and a′ ∼ π(·|fµ(s′)) is

Eµ,a′ [y(fµ(s
′), a′)]

= r + γEµ,a′ [Qϕ̄(fµ(s
′), a′)]

= r + γ
∑
µ

P(µ)
∑
a′

π(a′|fµ(s′))Qϕ̄(fµ(s
′), a′)

(75)
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We create two tables to better illustrate the meanings of Ea′ [y(fµ(s
′), a′)] and Eµ,a′ [y(fµ(s

′), a′)].

a′
µ ... fτm(s′)

with P(µ = τm)
...

a′
1 ...

y(fτm(s′), a′
1)

with
P(µ = τm) · πθ(a

′
1|fτm(s′))

...

a′
2 ...

y(fτm(s′), a′
2)

with
P(µ = τm) · πθ(a

′
2|fτm(s′))

...

... ... ... ...

a′n ...
y(fτm(s′), a′

n)
with

P(µ = τm) · πθ(a
′
n|fτm(s′))

...

... ... ... ...
E[y] wrt. a′ ... Ea′ [y(fτm(s′), a′)] ...

fτ1(s
′)

with P(µ = τ1)
... E[y] wrt. a and µ

Ea′ [y(fτ1(s
′), a′)] ... Eµ,a′ [y(fµ(s

′), a′)]

The variance of y(fµ(s′), a′) with respect to µ and a′ is
Vµ,a′ [y(fµ(s

′), a′)]

=
∑
µ

P(µ)
∑
a′

π(a′|fµ(s′))
[
(y(fµ(s

′), a′)− Eµ,a′ [y(fµ(s
′), a′)])2

]
=

∑
µ

P(µ)
∑
a′

π(a′|fµ(s′))[
(y(fµ(s

′), a′)− Ea′ [y(fµ(s
′), a′)] + Ea′ [y(fµ(s

′), a′)]− Eµ,a′ [y(fµ(s
′), a′)])2

]
=

∑
µ

P(µ)
∑
a′

π(a′|fµ(s′))
[
(y(fµ(s

′), a′)− Ea′ [y(fµ(s
′), a′)])2

+ 2(y(fµ(s
′), a′)− Ea′ [y(fµ(s

′), a′)]) · (Êa′ [y(fµ(s
′), a′)]− Eµ,a′ [y(fµ(s

′), a′)])

+ (Ea′ [y(fµ(s
′), a′)]− Eµ,a′ [y(fµ(s

′), a′)])2
]

(76)

The first term of Equation 76 is the expectation of squared advantage.

The second term of Equation 76 is 0 because∑
µ

P(µ)
∑
a′

π(a′|fµ(s′))
[
2(y(fµ(s

′), a′)− Ea′ [y(fµ(s
′), a′)])

· (Ea′ [y(fµ(s
′), a′)]− Eµ,a′ [y(fµ(s

′), a′)])
]

= 2
∑
µ

[
P(µ) · (Ea′ [y(fµ(s

′), a′)]− Eµ,a′ [y(fµ(s
′), a′)])

·
(∑

a′

π(a′|fµ(s′))(y(fµ(s′), a′)− Ea′ [y(fµ(s
′), a′)])

)]
= 2

∑
µ

[
P(µ) · (Ea′ [y(fµ(s

′), a′)]− Eµ,a′ [y(fµ(s
′), a′)])

·
(
Ea′ [y(fµ(s

′), a′)]− Ea′ [y(fµ(s
′), a′)])

)]
= 0

(77)

The third term of Equation 76 is the variance of Ea′∼π(·|fµ(s′))[y(fµ(s
′), a′)] with respect to

µ. Both the variance Vµ[Ea′∼π(·|fµ(s′))[y(fµ(s
′), a′)]] and the variance of the empirical mean
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Vµ[Êµ[Ea′∼πθ(·|fµ(s′))[y(fµ(s
′), a′)]]] are bounded by the KL divergence Dη,µ = DKL(π(· |

fη(s
′)) | π(· | fµ(s′))) for µ, η ∼ P if Qϕ̄(fµ(s

′), a′) is invariant with respect to µ for all a′ ∈ A.

Proof.

Vµ[Ea′∼π(·|fµ(s′))[y(fµ(s
′), a′)]] = Eµ

[
(Ea′ [y(fµ(s

′), a′)]− Eη,a′ [y(fη(s
′), a′)])2

]
(78)

Ea′ [y(fµ(s
′), a′)]− Eη,a′ [y(fη(s

′), a′)]

= γ
(
(
∑
a′

π(a′|fµ(s′))Qϕ̄(fµ(s
′), a′))− (

∑
η

P(η)

∫
a′
π(a′|fη(s′))Qϕ̄(fη(s

′), a′))
)

= γ
(
((
∑
η

P(η)
∑
a′

π(a′|fµ(s′))Qϕ̄(fµ(s
′), a′))− (

∑
η

P(η)
∑
a′

π(a′|fη(s′))Qϕ̄(fη(s
′), a′))

)
= γ

(∑
η

P(η)
∑
a′

π(a′|fµ(s′))Qϕ̄(fµ(s
′), a′)− π(a′|fη(s′))Qϕ̄(fη(s

′), a′)
)

= γ
(∑

η

P(η)
∑
a′

π(a′|fµ(s′))Qϕ̄(fµ(s
′), a′)− π(a′|fη(s′))Qϕ̄(fµ(s

′), a′)

+ π(a′|fη(s′))Qϕ̄(fµ(s
′), a′)− π(a′|fη(s′))Qϕ̄(fη(s

′), a′)
)

= γ
(∑

η

P(η)
∑
a′

(π(a′|fµ(s′))− π(a′|fη(s′)))Qϕ̄(fµ(s
′), a′)

+ π(a′|fη(s′))(Qϕ̄(fµ(s
′), a′)−Qϕ̄(fη(s

′), a′))
)

(79)

The second term of Equation 79 γ
∑

η P(η)
∑

a′ π(a′|fη(s′))(Qϕ̄(fµ(s
′), a′) − Qϕ̄(fη(s

′), a′)) is
related to the difference of Qϕ̄(fη(s

′), a′) and Qϕ̄(fµ(s
′), a′), which is governed by the critic loss.

When Qϕ̄(fµ(s
′), a′) is invariant with respect to µ for all a′ ∈ A, this term is zero.

For the first term of Equation 79,∑
η

P(η)
∑
a′

(π(a′|fµ(s′))− π(a′|fη(s′)))Qϕ̄(fµ(s
′), a′)

≤
∑
η

P(η)
∑
a′

|π(a′|fµ(s′))− π(a′|fη(s′))|Qϕ̄(fµ(s
′), a′)

≤ max
a′

Qϕ̄(fµ(s
′), a′) ·

∑
η

P(η)
∑
a′

|π(a′|fµ(s′))− π(a′|fη(s′))|

≤ max
a′

Qϕ̄(fµ(s
′), a′) ·

∑
η

P(η)
√
2DKL(π(·|fη(s′))||π(·|fµ(s′)))

(80)

where in the first inequality absolute values |π(a′|fµ(s′))− π(a′|fη(s′))| are applied, in the second
inequality Qϕ̄(fµ(s

′), a′) is replaced with maxa′ Qϕ̄(fµ(s
′), a′) and Pinsker‘s inequality is applied

in the third inequality.

Similarly, a lower bound can be derived.∑
η

P(η)
∑
a′

(π(a′|fµ(s′))− π(a′|fη(s′)))Qϕ̄(fµ(s
′), a′)

≥ −max
a′

Qϕ̄(fµ(s
′), a′) ·

∑
η

P(η)
√

2DKL(π(·|fη(s′))||π(·|fµ(s′)))
(81)

Therfore,

Vµ[Ea′∼π(·|fµ(s′))[y(fµ(s
′), a′)]] ≤ Eµ

[
γ2

(
max
a′

Qϕ̄(fµ(s
′), a′)Eη

[√
2Dη,µ

])2]
(82)
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Let Ŷ (s′, µ) = Êµ[Ea′∼πθ(·|fµ(s′))[y(fµ(s
′), a′)]].

From Equation 61,

Vµ[Ŷ (s′, µ)] =
1

n
Vµ[Ea′∼πθ(·|fµ(s′))[y(fµ(s

′), a′)]],

where n is the number of samples to estimate the empirical mean Ŷ (s′, µ).

(83)

Therefore, if Qϕ̄(fµ(s), a
′) is invariant with respect to µ for all a′ ∈ A, the variance of Ŷ (s′, µ)

with respect to µ is bounded by the KL divergence Dη,µ = DKL(π(· | fη(s′)) | π(· | fµ(s′))) for
µ, η ∼ P .

Vµ[Ŷ (s′, µ)] ≤ 1

n
Eµ

[
γ2

(
max
a′

Qϕ̄(fµ(s
′), a′)Eη

[√
2Dη,µ

])2]
(84)

For DDPG, minimizing the KL divergence between policy distributions of two augmented states
DKL(π(· | fη(s′)) | π(· | fµ(s′))) is equivalent to minimizing the mean squared error between two
deterministic actions ||π̄(fη(s′))− π̄(fµ(s

′))||2.

SAC target value with the entropy term If the entropy term is added to the target value, the
variance of the empirical mean Vµ[Êµ[Ea′∼πθ(·|fµ(s′))[y(fµ(s

′), a′)]]] is still bounded by the KL
divergence Dη,µ = DKL(π(· | fη(s′)) | π(· | fµ(s′))) for µ, η ∼ P if Qϕ̄(fµ(s

′), a′) is invariant
with respect to µ for all a′ ∈ A.

Vµ[Êµ[Ea′∼πθ(·|fµ(s′))[y(fµ(s
′), a′)]]] ≤ 1

n
Eµ

[(
Eη

[
max
a′

(y(fµ(s
′), a′)− r)

√
2Dη,µ + α ·Dη,µ

])2]
(85)

where n is the number of samples to estimate the empirical mean, r is the reward of this transition
and α is the entropy coefficient.

Proof. After we add the entropy term, the target value becomes

y(fµ(s
′), a′) = r + γQϕ̄(fµ(s

′), a′)− α log π(a′|fµ(s′)), (86)

where a′ ∼ π(·|fµ(s′)) and α is the entropy coefficient.

Let

y1(fµ(s
′), a′) = y(fµ(s

′), a′)− r = γQϕ̄(fµ(s
′), a′)− α log π(a′|fµ(s′)) (87)

Since r is a constant value, we can drop r when calculating the variance.

Vµ[Ea′∼π(·|fµ(s′))[y(fµ(s
′), a′)]]

= Vµ[Ea′∼π(·|fµ(s′))[y1(fµ(s
′), a′)]]

= Eµ

[
(Ea′ [γQϕ̄(fµ(s

′), a′)− α log π(a′|fµ(s′))]− Eη,a′ [γQϕ̄(fη(s
′), a′)− α log π(a′|fη(s′))])2

]
(88)

26



Published as a conference paper at ICLR 2024

Ea′ [y1(fµ(s
′), a′)]− Eη,a′ [y1(fη(s

′), a′)]

=
∑
a′

π(a′|fµ(s′))y1(fµ(s′), a′)−
∑
η

P(η)

∫
a′
π(a′|fη(s′))y1(fη(s′), a′)

=
∑
η

P(η)
∑
a′

π(a′|fµ(s′))y1(fµ(s′), a′)−
∑
η

P(η)
∑
a′

π(a′|fη(s′))y1(fη(s′), a′)

=
∑
η

P(η)
∑
a′

π(a′|fµ(s′))y1(fµ(s′), a′)− π(a′|fη(s′))y1(fη(s′), a′)

=
∑
η

P(η)
∑
a′

π(a′|fµ(s′))y1(fµ(s′), a′)− π(a′|fη(s′))y1(fµ(s′), a′)

+ π(a′|fη(s′))y1(fµ(s′), a′)− π(a′|fη(s′))y1(fη(s′), a′)

=
∑
η

P(η)
∑
a′

y1(fµ(s
′), a′)(π(a′|fµ(s′))− π(a′|fη(s′)))

+ π(a′|fη(s′))(y1(fµ(s′), a′)− y1(fη(s
′), a′))

=
∑
η

P(η)
∑
a′

y1(fµ(s
′), a′)(π(a′|fµ(s′))− π(a′|fη(s′)))

+ π(a′|fη(s′))(γQϕ̄(fµ(s
′), a′)− γQϕ̄(fη(s

′), a′))

+ π(a′|fη(s′))(α log π(a′|fη(s′))− α log π(a′|fµ(s′)))

=
∑
η

P(η)
∑
a′

y1(fµ(s
′), a′)(π(a′|fµ(s′))− π(a′|fη(s′)))

+ π(a′|fη(s′))(γQϕ̄(fµ(s
′), a′)− γQϕ̄(fη(s

′), a′))

+
∑
η

P(η)
∑
a′

π(a′|fη(s′))(α log π(a′|fη(s′))− α log π(a′|fµ(s′)))

=
∑
η

P(η)
∑
a′

y1(fµ(s
′), a′)(π(a′|fµ(s′))− π(a′|fη(s′)))

+ γ
∑
η

P(η)
∑
a′

π(a′|fη(s′))(Qϕ̄(fµ(s
′), a′)−Qϕ̄(fη(s

′), a′))

+
∑
η

P(η)α ·DKL(π(a
′|fη(s′))|π(a′|fµ(s′)))

(89)

Similar to Equation 80 and Equation 81, we apply Pinsker’s inequality and obtain the lower and the
upper bounds for the first term of Equation 89.

−max
a′

y1(fµ(s
′), a′) ·

∑
η

P(η)
√
2DKL(π(·|fη(s′))||π(·|fµ(s′)))

≤
∑
η

P(η)
∑
a′

(π(a′|fµ(s′))− π(a′|fη(s′)))y(fµ(s′), a′)

≤ max
a′

y1(fµ(s
′), a′) ·

∑
η

P(η)
√
2DKL(π(·|fη(s′))||π(·|fµ(s′)))

(90)

The second term of Equation 89 γ
∑

η P(η)
∑

a′ π(a′|fη(s′))(Qϕ̄(fµ(s
′), a′) − Qϕ̄(fη(s

′), a′)) is
related to the difference of Qϕ̄(fη(s

′), a′) and Qϕ̄(fµ(s
′), a′), which is governed by the critic loss.

When Qϕ̄(fµ(s
′), a′) is invariant with respect to µ for all a′ ∈ A, this term is zero.
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Therefore,∑
η

P(η) ·
(
−max

a′
y1(fµ(s

′), a′) ·
√

2DKL(π(·|fη(s′))||π(·|fµ(s′))) + α ·DKL(π(a
′|fη(s′))|π(a′|fµ(s′)))

)
≤ Ea′ [y(fµ(s

′), a′)]− Eη,a′ [y(fη(s
′), a′)]

≤
∑
η

P(η) ·
(
max
a′

y1(fµ(s
′), a′) ·

√
2DKL(π(·|fη(s′))||π(·|fµ(s′))) + α ·DKL(π(a

′|fη(s′))|π(a′|fµ(s′)))
)

(91)

Plug the above inequalities into Equation 88, we obtain

Vµ[Ea′∼π(·|fµ(s′))[y(fµ(s
′), a′)]] ≤ Eµ

[(
Eη

[
max
a′

y1(fµ(s
′), a′)

√
2Dη,µ + α ·Dη,µ

])2]
(92)

If Qϕ̄(fµ(s), a
′) is invariant with respect to µ for all a′ ∈ A, the variance of Ŷ (s′, µ) with respect

to µ is bounded by the KL divergence Dη,µ = DKL(π(· | fη(s′)) | π(· | fµ(s′))) for µ, η ∼ P .

Vµ[Ŷ (s′, µ)] ≤ 1

n
Eµ

[(
Eη

[
max
a′

(y(fµ(s
′), a′)− r)

√
2Dη,µ + α ·Dη,µ

])2]
(93)

F CALCULATING TARGET WITH COMPLEX DATA AUGMENTATION

In this section, we experimentally analyze using complex image transformations in calculating the
target and show that cosine similarity of the augmented features at the early training stage can be
used as a criteria for judging if an image transformation is complex or not. Sufficient updates is the
key condition for good performance when using complex image transformations in calculating the
target.

In contrast to the analysis in SVEA (Hansen et al., 2021), we observe that even using complex
image transformation such as random conv in the target does not induce a large variance in the
target. Instead, a much larger bias is observed for the trained agent, as shown in the Table 5. This
can be solved by increasing the number of updates, as shown in Figure 4.

Furthermore, we test with other image transformations which are regarded as complex image trans-
formations in SVEA (Hansen et al., 2021). In order to show whether it’s easy to enforce the in-
variance of a image transformation, we record the cosine similarities of encoder outputs for two
augmented images transformed by this image transformation, as shown in Table 4. For image trans-
formations such as random overlay or gaussian blur, the invariance is easy to enforce and the cosine
similarities are large. When using this kind of image transformation in calculating the target values,
it won’t hurt the performance. Otherwise, for image transformations such as random convolution or
random rotation, the invariance is relatively harder to enforce during training and the cosine similar-
ities are small. Then directly applying this kind of image transformations in calculating the target
values will decrease the learning efficiency. To resolve this issue, we need more updates for each
training step. The evaluation results for SVEA with random overlay, random convolution, random
rotation and gaussian blur are shown in Figure 5.

G HYPERPARAMETERS

Hyperparameters used in experiments on DMControl (drq), DMControl (drqv2) and DMGB can
be found in Table 6, Table 7 and 8. For experiments in DMControl(drqv2) and DMGB, when
applicable, we adopt hyperparameters from the official implementation of drqv2 by Yarats et al.
(2021) and SVEA by Hansen et al. (2021) respectively.

H ADDITIONAL RESULTS

H.1 ABLATION STUDY

The performance profile is shown in Figure 6 and the training curves in different environments are
shown in Figure 7.
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Statistics svea(DA=blur) svea(DA=overlay) svea(DA=conv) svea(DA=rotation)

actor sim (shift) 0.919±0.007 0.911±0.005 0.910±0.011 0.936±0.006

actor sim (DA) 0.998±0.001 0.906±0.006 0.854±0.019 0.536±0.069

critic sim (shift) 0.938±0.010 0.942±0.003 0.922±0.010 0.962±0.005

critic sim (DA) 0.998±0.001 0.939±0.003 0.883±0.014 0.660±0.057

Table 4: Recorded cosine similarity for latent features at 100k steps in walker walk environment
for SVEA trained with different complex image transformations. Here, each column corresponds to
SVEA with different image transformations and each row corresponds to a cosine similarity recorded
at 100k steps. For example, the first number is calculated by the cosine similarity between the latent
features Eπ(fshift(s)), in which Eπ is the encoder of the actor in SVEA trained with gaussian
blur and fshift is the random shift. Considering that random shift is always applied in SVEA, the
cosine similarity with respect to it is recorded as the baseline for comparisons. For gaussian blur
and random overlay (second and third column), the cosine similarities of latent features are higher
or similar to the cosine similarities between the latent features from two randomly shifted images
which means they are not complex image transformations. In contrast, random conv and random
rotation (last two columns) leads to smaller cosine similarities of latent features which indicates that
they are relatively complex image transformations in this environment.

Statistics Step 100k Step 200k Step 300k Step 400k Step 500k

Mean (w/ conv) 64.05 112.44 140.78 166.42 185.92
Mean (w/o conv) 84.96 148.46 197.10 221.67 239.35

Variance (w/ conv) 1.228 1.109 1.148 1.323 1.306
Variance (w/o conv) 0.882 0.812 0.885 0.757 0.795

Bias (w/ conv) 52.88 67.44 54.20 63.89 55.36
Bias (w/o conv) 77.40 60.48 50.40 43.22 28.75

Table 5: Mean, variance and bias of the target Q-values for the agent trained with/without using
random conv in calculating the target. Here, the mean and variance are calculated by the mean and
variance of a set of sampled target Q values and the bias is calculated by the mean-squared error
between the targets used in the training and the true targets estimated by the sum of discounted
rewards from sampled trajectories. At the end of the training, the increase in the variance when
using random conv is not significant compared to the mean of the target. However, the bias is much
larger at the end.
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Figure 4: Performance of increasing the number of updates with/without using random conv in
calculating the targets.

Figure 5: Performance of increasing the number of updates in walker walk environment when using
complex image transformation in calculating the targets. For random convolution and random rota-
tion, ”update more” stands for doing 4 updates for each training step.

Figure 6: Performance profile of different methods.
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Table 6: Hyperparameters used in experiments on DMControl (drq)

Hyperparameter Value on DMControl

frame rendering 84 × 84 × 3
stacked frames 3
action repeat 2

replay buffer capacity 100,000
seed steps 1000

environment steps

250,000 in reacher easy
250,000 in finger spin

250,000 in ball
500,000 in others

batch size N 256
discount γ 0.99

optimizer (ϕ, θ) Adam
(β1 = 0.9, β2 = 0.999)

optimizer (α of SAC) Adam
(β1 = 0.9, β2 = 0.999)

learning rate (ϕ,θ) 1e-3
learning rate (α of SAC) 1e-3

target network update frequency 2
target network soft-update rate 0.01

actor update frequency κ 2
actor log stddev bounds [-10,2]

init temperature α 0.1
tangent prop weight αtp 0.1
actor KL weight αKL 0.1

Table 7: Hyperparameters used in experiments on DMControl (drqv2)

Hyperparameter Value on DMC

frame rendering 84 × 84 × 3
stacked frames 3
action repeat 2

replay buffer capacity 106

seed frames 4000
exploration steps 2000

n-step returns 3
batch size N 256
discount γ 0.99

optimizer (ϕ, θ) Adam
learning rate (ϕ,θ) 1e-4

agent update frequency 2
target network soft-update rate 0.01

exploration stddev clip 0.3
exploration stddev schedule linear(1.0, 0.1, 500000)

tangent prop weight αtp 0.1
actor KL weight αKL 0.1

H.2 CASE STUDY

The measures for invariance in the latent space are shown in Figure 8.
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Figure 7: Full results of validating our propositions.

Figure 8: The figure shows the learned invariance in the feature space of the actor and critic. Two
measures of the invariance are provided in this figure: the distances between projected points of the
augmented features by t-SNE and the cosine similarities between augmented features.
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Table 8: Hyperparameters used in experiments on DMControl Generalization Benchmark (DMGB)

Hyperparameter Value on DMGB

frame rendering 84 × 84 × 3
stacked frames 3

action repeat
2(finger)

8(cartpole)
4(otherwise)

replay buffer capacity 500,000 / action repeat
seed steps 1000

environment steps 500,000
batch size N 128
discount γ 0.99

optimizer (ϕ, θ) Adam
(β1 = 0.9, β2 = 0.999)

optimizer (α of SAC) Adam
(β1 = 0.5, β2 = 0.999)

learning rate (ϕ,θ) 1e-3
learning rate (α of SAC) 1e-4

target network update frequency 2

target network soft-update rate 0.01(critic)
0.05(encoder)

actor update frequency κ 2
actor log stddev bounds [-10,2]

init temperature α 0.1
tangent prop weight αtp 0.5
actor KL weight αKL 0.1

H.3 MORE EVALUATIONS

Here, we include more evaluations of our proposition. The results of comparing our proposition
with DrQ are shown in Figure 9. The results of comparing our proposition with DrQv2 are shown
in Figure 10.

H.4 RESULTS OF GENERALIZATION ABILITY IN DMCONTROL GENERALIZATION
BENCHMARK (DMGB)

The comparison of generalization performance in DMGB between SVEA and our method using
random overlay as data augmentation is shown in Figure 11.

H.5 RESULTS OF RECORDED STATISTICS

The curves for the recorded statistics, including standard deviation of the empirical critic loss, stan-
dard deviation of the target Q-values, and empirical mean of KL divergence between policies for
two augmented samples along the training are shown in Figure 12 and Figure 13.

I LIMITATIONS

We try to provide some recommendations on how to apply theoretically-sound data augmentation
method in DRL. However, the analysis can still be further refined to be more comprehensive such
as including the theoretical analysis of using different distributions for the image transformation
and providing a thorough analysis on tangent prop regularization. Moreover, our method naturally
requires the knowledge of some effective image transformations for a given task. Without such
knowledge, the invariant transformations for a problem would need to be learned, which is currently
an active research direction. Finally, image transformation may rely on some implicit assumptions,
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Figure 9: Comparison between different methods in DMControl with normal background.

Figure 10: Results of running experiments with DDPG as base algorithm.
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Figure 11: Comparison between SVEA and our method in DMControl with normal and video-
hard backgrounds. Both methods use random overlay as image transformation. We can see the
improvement in generalization ability especially in environments such as ball in cup catch, finger
spin and walker walk. Since the evaluation curves are not stable even at the end of training, the
recorded score in Table 2 is the average over the last 15 evaluation scores.
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Figure 12: Some important statistics recorded along the training. The variance of critic loss and
target values decreased after using more augmented samples in the training of the critic. Adding the
KL divergence term to the loss can quickly enforce the invariance of the actor even at the beginning
of the training.

which may lead to lower/bad performance if they are not satisfied in the real application domain. For
instance, random shift/crop, which has been shown to be very effective in DMControl tasks, may
yield worse performance if the agent is not well-centered in the image, according to the empirical
results from Tomar et al. (2022). A better understanding of why a data augmentation transformation
works in DRL is needed.
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Figure 13: Some important statistics recorded along the training of SVEA and our method. With
the help of KL loss and tangent prop loss, the variance of critic loss and target values are lower.
Applying KL loss can quickly enforce the invariance of the actor.
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