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ABSTRACT

Machine learning models have significantly enriched the toolbox in the field of
neuroimaging analysis. Among them, Support Vector Machines (SVM) have been
one of the most popular models for supervised learning, but their use primarily re-
lies on linear SVM models due to their explainability. Kernel SVM models are
capable classifiers but more opaque. Recent advances in eXplainable AI (XAI)
have developed several feature importance methods to address the explainability
problem. However, noise variables can affect these explanations, making irrele-
vant variables regarded as important variables. This problem also appears in ex-
plaining linear models, which the linear pattern can address. This paper proposes
a fast method to explain RBF kernel SVM globally by adopting the notion of lin-
ear pattern in kernel space. Our method can generate global explanations with
low computational cost and is less affected by noise variables. We successfully
evaluate our method on simulated and real MEG/EEG datasets.

1 INTRODUCTION

In neuroimaging data analysis, obtaining a high machine learning model performance is not the only
objective. The ultimate goal of neuroscience is to gain insights into how information is passed and
processed in the brain. Analyzing, interpreting, and visualizing the information that a model uses is
crucial to this task. Enabling the explainability of a model’s predictions is critical to fulfil this need.

The Support Vector Machine (SVM) is a widely used model in neuroimaging data analysis due to
its simplicity, ability to handle outliers, and exceptional performance. Although linear SVM models
are most commonly deployed, kernel-based SVM models can be utilized in nonlinear scenarios
and extract more extensive information from the data. Compared with linear SVM models, with
sufficient data, these models perform better in some neuroimaging analysis tasks (Sekkal et al.,
2022). However, the use of these models is limited, one reason being their explainability issues.
Due to the recent development of the XAI technique, a typical way to understand these models
is using feature importance score (Carvalho et al., 2019). It should be noted that both linear and
nonlinear model explanations may be influenced by class-irrelevant variables, such as suppressor
variables (Krus & Wilkinson, 1986), which can inflate the importance scores of features that are, in
actuality, irrelevant to the classification task at hand (Wilming et al., 2022).

In order to address this issue, Haufe et al. (2014) proposed a method which relies on covariance
patterns. Assuming the observations can be generated from a generative model, the classifier weights
can be transformed into an activation pattern that reflect the class-related features. However, this
method is only applicable to linear models.

This notion can also be adopted when using RBF-SVM models. These models assume kernel func-
tions can take data into higher dimensional space where data can be linearly separated. We show
that the activation pattern can be constructed in kernel space, and the feature importance can be
measured by mapping this high-dimensional pattern back into input space. This feature importance
measure is less affected by noise variables like suppressor variables.

This paper proposes a novel explanation method for RBF-kernel SVM focusing on neuroimaging
data analysis. The contributions are summarised as follows:
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1. We propose a novel activation pattern based method for explaining RBF-kernel SVM in
neuroimaging analysis tasks. We called this method Estimated Activation Pattern (EAP).

2. This method generates a global feature importance explanation and is more robust to noise
variables than comparable approaches.

3. We show the empirical times of different methods. This method requires less computational
cost.

This paper proceeds as follows. Section 2 introduces background information and related works.
Section 3 presents our proposed method. Section 4 details the experiment evaluation and results.
Section 5 concludes the paper with a discussion of further work.

2 BACKGROUND AND RELATED WORKS

Neuroimaging analysis usually serves two purposes: to successfully decode the signal, like brain-
computer interface, or to infer knowledge of brain function by explaining the trained models. Mass
univariate analysis (Groppe et al., 2011) is a common method that can help gain knowledge from
neuroimaging data. These methods concentrate on single variables. Multivariate pattern analysis
(MVPA) (Haxby, 2012), based on machine learning techniques, has become a popular alternative
because of its ability to obtain multivariate patterns that consider multiple variables simultaneously.

To gain insight from trained models, one way is directly using the model performance as informa-
tion, such as searchlight (Kriegeskorte et al., 2006), quantifying how much information a group of
channels contains through model performance changes. Another way involves extracting knowl-
edge from model structures, as demonstrated by the study on linear patterns (Haufe et al., 2014).
The evolution of eXplainable Artificial Intelligence (XAI) has significantly enhanced the toolkit for
comprehending learned information, particularly in dealing with complex models (Shi et al., 2020;
Selvaraju et al., 2017; Kim et al., 2016; Goodfellow et al., 2014). As one of the most popular
methods in neuroimaging analysis, efforts have been made to explain the non-linear SVM model.
Barakat & Bradley (2010) have shown using rules as explanations. The problem with this method
is that explanations may be hard to understand as the number of rules increases. Recently, several
feature importance methods have been introduced in this field (Valentin et al., 2020; Bennett et al.,
2021). However, some studies (Budding et al., 2021) report these methods would also be affected
by noise variables even in linear models (Haufe et al., 2014).

3 METHODS

3.1 LINEAR ACTIVATION PATTERN

Explanation using model weights is of limited value because class-uncorrelated variables can have
large weights. For example, large weights may be assigned to class-uncorrelated variables for better
accuracy, like to fulfil the model structure need. In (Haufe et al., 2014), they addressed this problem
and proposed a method to solve it in neuroimaging analysis tasks. In their work, the n d-dimension
observations X ∈ Rn×d are assumed to be generated by k latent factors L ∈ Rn×k using specific
patterns Wgenerative ∈ Rd×k, which is: X = LWT

generative + ϵ , where the ϵ represents the noise
variables. The latent variables could be a certain brain process or the different classes interested
in the analysis task. It can be seen as an encoding process using pattern Wgenerative. While the
classier is a decoding process which is L = XWlinear, where the Wlinear ∈ Rd×k is the weights
of the linear model.

By assuming the latent variables are independent, they conclude that with any classifier L =
XWlinear, the corresponding pattern can be constructed as Wgenerative = ΣXWlinearΣ

−1
L ,

where ΣX represent the covariance matrix of observations X and ΣL is the covariance matrix of
latent factors L. Specifically for binary classification cases, i.e. k = 1, since there is only one non-
zero constant element in ΣL, the above pattern can be simplified as Wgenerative ∝ ΣXWlinear.
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3.2 CONSTRUCT ACTIVATION PATTERN IN KERNEL SPACE

We can extend this idea and construct the pattern in kernel space. The SVM model, both linear and
non-linear, aims to obtain a hyperplane between two classes. For the kernel-based SVM model, this
hyperplane is represented by part of the data after mapped (assuming the unknown dimension is m),
the support vectors S ∈ Rs×m with associated coefficients α ∈ Rs, where the number of support
vectors is s. This model assumes that the mapping function ϕ(.) can map non-linearly separable data
from input space into high-dimensional space where data can be separated with a hyperplane. This
high-dimensional hyperplane can be represented as: Wkernel = Σs

i αi ϕ(xi), where ϕ(xi) ∈ Rm

represent the vector in kernel space. To make it clear for the calculation shown below, we rewrite
this into matrix format:

Wkernel = STα (1)

The mapped data covariance can also be represented in kernel space. There is no guarantee that
the mapped data have zero means. For calculation convenience, we introduce the centering matrix
H = In − 1

n1n, where H ∈ Rn×n and the In ∈ Rn×n is n dimensional identity matrix and 1n

is the n-by-n matrix of all 1. FH can be seen as the sample minus mean step while calculating
variance/covariance. The centering matrix has the useful property that HHT = H, which can
reduce calculation steps. The mapped covariance matrix is as follows:

Σϕ(x) =
1

n
FTH(FTH)T

=
1

n
FTHF (2)

where F ∈ Rn×m and F = [ϕ(x1), ϕ(x2), ..., ϕ(xn)] represent the mapped data matrix.

Combining equation 1 and 2, the pattern Wϕ−generative ∈ Rm can be constructed in kernel space
as:

Wϕ−generative =
1

n
Σϕ(x)Wkernel

=
1

n
FTHFSTα (3)

We should note that the current pattern Wϕ−generative is in high-dimensional space, which we do
not know specifically. However, this is still a combination of mapped data F. We can easily calculate
the combination coefficient P ∈ Rm as follows:

Kernel Pattern Coefficient : P =
1

n
HFSTα (4)

3.3 MAPPING METHOD: FIXED POINT ITERATION

After constructing the pattern in kernel space, the next step is to map this result back to the input
space. To address this problem, we can apply pre-image techniques(Honeine & Richard, 2011;
Kwok & Tsang, 2004). Those methods have previously been used for kernel PCA denoising (Mika
et al., 1998; Takahashi & Kurita, 2002).

The idea is to search the associated result x∗ ∈ Rd in input space by minimizing the mean squared
error (MSE) between x∗ and the target Wϕ−generative in kernel space. The mean squared distance
is as follows:

MSE(x∗) = ||Wϕ−generative − ϕ(x∗)||2

= PTFTFP − ϕ(x∗)TFP − PTFTϕ(x∗) + ϕ(x∗)Tϕ(x∗)

3



Under review as a conference paper at ICLR 2024

Figure 1: Example of EEG simulation dataset. Panel A shows the channel position of the simula-
tion. Panel B shows the signal pattern of an example simulation dataset in experiment 1, and Panel
C shows 2 example channels in this dataset. The light-colored area represents the class-related chan-
nel. These class-related channels are randomly selected. Panel D shows the rank correlation score
between absolute explanation results and absolute generation weights.

where ϕ(x∗) ∈ Rm represents the mapped result x∗ in kernel space. It is obvious that PTFTFP is
a fixed constant. And ϕ(x∗)T FP = PTFTϕ(x∗) = Σn

i pik(x
∗,xi), where k(x∗,xi) is the kernel

function. After introducing the RBF kernel k(x1,x2) = exp ||x1−x2||2
γ , the minimizing function can

be simplified as: argminx∗ MSE(x∗) = k(x∗,x∗)− 2Σn
i pik(x

∗,xi) = 1− 2Σn
i pi exp

||xi−x∗||2
γ

Here, we use the fixed-point iteration method to search the results. The fixed-point iteration method
limited the search space, which decreased the computation cost. Furthermore, the result of this
method will have the same scale as the input vectors have (Honeine & Richard, 2011), which makes
the results more straightforward when using the pattern to explain the model. By setting the deriva-
tive for x∗ to zero, the fixed-point iteration format is shown below:

x∗
t+1 =

Σn
i pik(xi,x

∗
t )xi

Σn
i pik(xi,x∗

t )
(5)

The fixed-point iteration method needs an initial vector for iteration. In our setting, all data should
be scaled before training classifiers. So, we initialize the initial vector by sampling from a normal
distribution with 0 mean and standard deviation of 10, i.e., using the same mean and larger variance
than the scaled data. Some studies report that the fixed-point iteration method may suffer from
instability and local minima problems (Abrahamsen & Hansen, 2009). Instead of directly using the
final results, we log three solutions with the most minor loss score during the iteration to improve
the stability. Then, calculate the normalization of the absolute values of these three solutions. The
final solution will take the mean of these normalized results. Running multiple times with different
initial vectors is recommended.

4 EXPERIMENTS AND RESULTS

This section conducts a series of experiments to evaluate our proposed method. The first two ex-
periments use simulated electroencephalography (EEG) datasets. Experiment 3 uses a real visual
task EEG and MEG dataset to evaluate how our proposed method performs in real-setting practice.
The classifier implemented here is the RBF kernel SVM model. Three existing model explanation
methods are implemented as comparisons.

4.1 DATASETS

4.1.1 SIMULATION DATASET

Experiments 1 and 2 use ten simulated datasets each, all generated using the MVPA-Light MAT-
LAB toolbox (Treder, 2020). These simulated EEG signals are structured as epoched Event-Related
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Potential (ERP) settings, uniformly comprising 1000 samples categorized into two classes. Each
sample is characterized by 30 channels and 200 time points, with a singular simulated peak signal.

Algorithm 1: Algorithm for EAP
Input:

N: Number of iterations
α, γ: Model coefficients of the trained SVM
[x1,x2, ...,xs]: Support vectors of the trained SVM
[x1,x2, ...,xn]: Training data
cth: The minimum changes

Output:
x∗: Explanation vector

// Estimate pattern in kernel space
1 Calculate centre matrix H = In − 1

n1n ;
2 for i = 1: n do
3 for j = 1: s do
4 Calculate the element FST = k(xi,xj) at row i and column j using the kernel function

with γ used by the model.;
5 j++ ;
6 end
7 i++ ;
8 end
9 Calculate the coefficient of estimated pattern P = 1

nHFSTα. The estimated pattern in kernel
space is

∑n
i=1 piϕ(xi).

// Mapping the estimated pattern into kernel space
10 t← 0 ;
11 x∗

0 ← initialised from standard normal distribution;
12 diff ← 1;
13 while (t ≤ N) AND (|diff | < cth) do
14 numerator ← 0;
15 denominator ← 0;
16 for i = 1: n do
17 numerator = numerator + pik(xi,x

∗
t−1)xi ;

18 denominator = denominator + pik(xi,x
∗
t−1) ;

19 i++;
20 end
21 x∗

t = numerator
denominator ;

22 Lt = MSE(x∗
t );

23 if t > 1 then
24 diff =

MSE (x∗
t−1)−MSE (x∗

t )

MSE (x∗
t−1)

25 end
26 t++;

// Log 3 different solutions with the smallest loss
27 x∗

l1,x
∗
l2,x

∗
l3 ← log three solutions with the most minor loss score during the iteration. ;

28 end
29 x∗

l1,x
∗
l2,x

∗
l3 ← calculate the absolute value and normalised. ;

30 x∗ = (x∗
l1 + x∗

l2 + x∗
l3)/3

The generation process involves creating a base signal through a normal probability density function,
subsequently normalized with fixed mean and standard deviation across all samples. To introduce
variability akin to real-world scenarios, each base signal is modulated by a random number drawn
from the standard normal distribution. The signal matrix of each sample is generated by multi-
plying this modulated base signal with a pattern vector, representing signal strength across chan-
nels/features. Moreover, smoothed Gaussian noise is added to each channel. signal, distractor
and noise are generated using the same strategy shown above while the pattern vectors differ. The
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pattern vectors for signal and distractor are pre-defined and for noise are all zeros, i.e., pure
noise. Figure 1-A shows the channel topography and data samples.

Figure 2: The patterns for the simulation dataset in experiment 2 and results. The upper plot of
panel A shows the simulation generation weights of the signal pattern. The lower plot of panel A
shows the simulation generation weights of the class-irrelevant distractor pattern. These distracting
signals are irrelevant to the different classes but may affect the explanation results. Panel B shows
the explanation results of different methods. Panel C shows the rank correlation score between the
absolute weights of the signal pattern and absolute explanation results.

Experiment 1 These datasets consist of two parts: signal and noise. For signal, the pattern
vector is zero except for 6 randomly selected channels which assigned positive weights. The sig-
nal pattern can be seen as the ground truth. To introduce nonlinearity, this signal pattern under-
goes multiplication by varying coefficients, producing two classes: positive ({1,−1}) and negative
({0.5,−0.5}). The composition of the simulation data is X = 0.25× signal+ 0.75× noise.

Experiment 2 These datasets consist of three parts: signal, distractor and noise. The pat-
tern vectors for signal, distractor are pre-defined which are shown in figure 2-A. Similar to
Experiment 1, the signal pattern undergoes multiplication by distinct coefficients for positive and
negative classes, while the distractor pattern is modulated by random numbers drawn from the
standard normal distribution to mimic signal changes. The composition of the simulation data is
X = 0.25× signal+ 0.25× distractor+ 0.5× noise.

4.1.2 EXPERIMENT 3: REAL DATASET

We used a visual task neuroimaging dataset (Wakeman & Henson, 2015). The EEG and MEG
signals are measured using Elekta Neuromag Vectorview 306 system. All sixteen participants are
asked to see pictures of faces and scrambled faces. For each participant, around 290 samples are
logged for each class.

Preprossessing Those irrelevant channels, such as ECG and EOG, are first removed. Then apply-
ing bandpass filter between 1Hz to 40 Hz with windowed sinc Finite Impulse Response (FIR) filters.
For EEG data, signals are re-referenced using the average reference method. After referencing, the
data is downsampled to 220HZ to save computation costs. Then trials/samples are segmented based
on the event file provided by the dataset. This step can ensure the event-related signal will appear
at a similar time point for all trials. Each trial contains 0.5s before seeing the picture, and 1s after.
Baseline correlation is applied based on a time window from 0.5s to 0s before the stimulus, which
can highlight the signal differences. Finally, 70 EEG and 102 MEG channels (magnetometer) are
selected for classification. All preprocessing tasks are carried out using Fieldtrip and MVPA-light
toolbox on MATLAB.

Unlike the simulations in which the number and time of peak are fixed, the interested signal of real
MEG/EEG data should be picked out first. Two interest time intervals are detected based on local
minima in the Global Field Power (Skrandies, 1990). The two time intervals are 70 – 145 ms and
145 – 220 ms.
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Figure 3: The results of experiment 3. Figure A shows the explanation results of EEG data. Figure
B shows the explanation results of MEG data.

4.2 CLASSIFIER

In all three experiments, we use the statistical feature of the signal (Blankertz et al., 2011), i.e., the
mean channel value among selected time intervals, as the classification feature. All classifiers are
built in Python using Sci-kit learn toolbox. Hyperparameters are tunning based on 5-fold cross-
validation. Before building models, data are first scaled using the standard scaler as default.

4.3 COMPARISON METHODS

Several state-of-the-art explanation methods are selected for comparison, including permutation im-
portance (PI) (Fisher et al., 2019; Breiman, 2001), local interpretable model-agnostic explanation
(LIME) (Ribeiro et al., 2016), and Shapley additive explanations (SHAP) (Lundberg & Lee, 2017).

These methods will generate results in different scales. The explanations may not have the same
scale. For the convenience of comparison, all results use their absolute values and then normalized
between 0 to 1.

4.4 RESULTS

4.4.1 EXPERMENT 1

Figure 1 shows the results of experiment 1. As mentioned in the previous section, the randomly
assigned signal pattern can be seen as the ground truth of experiment 1. The rank correlation score
is calculated to show how the explanation results performed. As shown in figure 1, all methods can
obtain good results in experiment 1. The correlation score of EAP outperformed other methods and
showed a low variance compared to other methods. The permutation importance shows the worst
results.

4.4.2 EXPERMENT 2

The results shown in figure 2-B are the averaged results of simulation datasets. All simulation
datasets have the same ground truth. Under the view of averaged results, all methods have roughly
picked up the true area shown in the signal pattern. While the EAP result shows less affected by
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Table 1: Average run time (in seconds) of all Methods.
PI LIME SHAP EAP

Experiment 1 4.03 554.44 18414.00 2.24
Experiment 2 4.43 573.18 18730.36 2.45
EEG 1st interval 10.93 752.26 11763.12 2.30
EEG 2nd interval 9.18 8984.92 9060.15 1.88
MEG 1st interval 9.55 717.92 10401.64 1.83
MEG 2nd interval 13.15 12531.63 9828.30 1.53
Iris-versicolor-vs-virginica 0.02 3.33 42.95 0.07

the distractor signal, the other three methods are, to some extent, affected by the distractor factors.
Figure 2 Panel C shows the rank correlation score between the absolute signal pattern and the ex-
planation results. Like the results shown in experiment 1, the EAP methods outperformed the other
three methods with lower variance. The results have indicated that the EAP method can generate
robust explanation results under the effect of distractor factors.

4.4.3 EXPERMENT3

Figure 3 shows the results of experiment 3. All explanation results are taken in absolute value,
rescaled to 0 to 1, and averaged over the 16 participants. Unlike simulation datasets, we do not have
the exact ground truth of real-world MEG/EEG data. But we can compare our results with previous
studies.

The selected time intervals are consistent with the two components of the visual tasks brain cognitive
process, which are P100 and N170. These two components have been reported in many previous
studies (Boutros et al., 1997; Kropotov, 2016).

As shown in the figure, all methods in EEG experiments in the first time interval (70-145ms) high-
light the bottom back area, which reflects the occipital area. PI, LIME, and SHAP also highlight
the two side areas of both hemispheres, which reflect the temporal area of the brain. In the sec-
ond time interval (145-220ms), the EAP method mainly focuses on channels located at the occipital
and occipital-temporal areas on the right hemisphere. While the other 3 methods focus mainly on
channels located in the middle occipital area. The first time interval reflects the P100 component in
visual-related studies. Channels located in the middle occipital area are reported in previous studies
(Negrini et al., 2017; Rossion & Jacques, 2008). These channels show signal differences related
to face vs. non-face stimulus around 100ms after the stimulus. The second time interval reflects
the N170 component. Signal differences are reported at channels located at the occipital-temporal
area on both hemispheres Negrini et al. (2017); Rossion & Jacques (2008). In contrast, channels
located in the right occipital-temporal area detect significantly stronger signals than the left coun-
terpart (Wang et al., 2019; Henson et al., 2009). In summary, compared with all methods, the EAP
method better reflects the previous study.

For results of MEG data, in the first time interval, the EAP method highlights the channels located in
the anterior area of the right hemisphere, which is the temporal area. While other methods highlight
channels located in occipital and occipital-temporal areas. In the second time interval, the EAP
result highlights the left occipital-temporal area. The other 3 methods highlight the middle occipital
area and right occipital-temporal areas. In previous studies, in the early stage ( around 100 ms
after stimulus), some report almost no channel level difference between face vs. non-face stimulus
(Liu et al., 2002). In contrast, channel level differences are found at channels located at the right
temporal area, left frontal-temporal area, and right occipital-temporal area at around 150 ms(Tadel
et al., 2019). For the second time interval, channel level differences are reported at the occipital-
temporal area of both hemispheres Liu et al. (2002); Xu et al. (2005). However, channel level
differences are reported at the left occipital-temporal area and the right temporal area at around 200
ms. In summary, all methods partly reflect the previous studies.
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Table 2: Normalised feature importance score (iris-versicolor vs iris-virginica)
Sepal length Sepal width Petal length Petal width

PI 0.0376 0 0.9037 1
LIME 0.0785 0 0.6554 1
SHAP 0.0666 0 0.6189 1
EAP 0.5028 0 1 0.9775
P-value(T-test) 1.72E-07 0.0018 3.18E-22 2.23E-26

4.4.4 EMPIRICAL COMPUTATION COST

This subsection provides an empirical comparison of computational cost between the proposed
method and other benchmark methods. The experiment is carried out on a desktop with i7 9700k
CPU with 32 GB ram. The operating system is Ubuntu 20.04. Table 1 summarizes the run time,
which shows our EAP method is multiple order faster than LIME and SHAP and a few times faster
than PI.

4.4.5 ADDITIONAL EXPERIMENT ON NON-NEUROIMAGING DATA

The proposed method primarily focuses on analyzing neuroimaging data. However, we are also
interested in exploring the applicability of our methodology to handle general tabular data. To
this end, we evaluate the proposed method using the iris dataset with the Versicolor class and the
Virginia class. Figure 4 shows the feature distribution between iris-versicolor and iris-virginica.
We also perform t-test between the two classes for each feature as listed in table 2. Based on
visual observation of Figure 4 and the t-test results in table 2, petal length and petal width are
the most useful features and sepal width is the least useful, while sepal length is medially useful.
The experimental results in table 2 indicate that all methods correctly highly rate the two most
important features of petal length and petal width and dismiss the least important feature of sepal
width. However, the EAP method can better identify the usefulness of sepal length while other
explanation methods underestimated the importance score of this feature as shown in table 2.

Figure 4: The feature distribution of the features in the iris dataset between iris-versicolor and
iris-virginica. From the plot, the Sepal length can provide some information to distinguish the two
classes, while the sepal width cannot.

5 CONCLUSION AND FURTHER WORK

In summary, this paper proposes a novel explanation method EAP for the RBF kernel SVM model.
We implement our method and three other state-of-art explanation methods to the EEG simulation
dataset and real MEG/EEG dataset of visual tasks. The experimental results show that the EAP can
obtain the global explanation results with relatively low computation costs. Furthermore, the EAP
method can generate robust explanation results and is less affected by distractor factors.

This method may also have potential for other kinds of kernel types, which is one of our future
directions. A limitation of our method is that the EAP method currently can only generate global
explanations. A fruitful direction would be to extend our method to generate local explanations.
Another future direction is applying our method to other kinds of kernel methods. These future
directions would greatly enlarge the flexibility of our proposed method.
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A APPENDIX

You may include other additional sections here.
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