
Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Phillip Lippe 1 * Bastiaan S. Veeling 2 Paris Perdikaris 2 Richard E. Turner 2 Johannes Brandstetter 2

Abstract
Time-dependent partial differential equations
(PDEs) are ubiquitous in science and engineer-
ing. Recently, mostly due to the high computa-
tional cost of traditional solution techniques, deep
neural network based surrogates have gained in-
creased interest. The practical utility of such neu-
ral PDE solvers relies on their ability to provide
accurate, stable predictions over long time hori-
zons, which is a notoriously hard problem. In this
work, we present a large-scale analysis of com-
mon temporal rollout strategies, identifying the
neglect of non-dominant spatial frequency infor-
mation, often associated with high frequencies
in PDE solutions, as the primary pitfall limiting
stable, accurate rollout performance. Based on
these insights, we draw inspiration from recent
advances in diffusion models to introduce PDE-
Refiner; a novel model class that enables more ac-
curate modeling of all frequency components via
a multi-step refinement process. We validate PDE-
Refiner on challenging benchmarks of complex
fluid dynamics, demonstrating stable and accu-
rate rollouts that consistently outperform state-of-
the-art models, including neural, numerical, and
hybrid neural-numerical architectures. Finally,
PDE-Refiner’s connection to diffusion models en-
ables an accurate and efficient assessment of the
model’s predictive uncertainty, allowing us to es-
timate when the surrogate becomes inaccurate.

1. Introduction
In recent years, mostly due to a rapidly growing interest in
modeling partial differential equations (PDEs), deep neu-
ral network based PDE surrogates have gained significant

*Work done during internship at Microsoft Research.
1University of Amsterdam 2Microsoft Research AI4Science. Cor-
respondence to: Phillip Lippe <phillip.lippe@googlemail.com>,
Johannes Brandstetter <johannesb@microsoft.com>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

momentum as a more computationally efficient solution
methodology (Thuerey et al., 2021; Brunton & Nathan Kutz,
2023). Recent approaches can be broadly classified into
three categories: (i) neural approaches that approximate the
solution function of the underlying PDE (Raissi et al., 2019;
Han et al., 2018); (ii) hybrid approaches, where neural net-
works either augment numerical solvers or replace parts of
them (Bar-Sinai et al., 2019; Kochkov et al., 2021; Green-
feld et al., 2019; Hsieh et al., 2019; Sun et al., 2023; Ar-
comano et al., 2022); (iii) neural approaches in which the
learned evolution operator maps the current state to a future
state of the system (Guo et al., 2016; Bhatnagar et al., 2019;
Li et al., 2021; Lu et al., 2021; Wang et al., 2021; Brandstet-
ter et al., 2022b; 2023).

Approaches (i) have had great success in modeling inverse
and high-dimensional problems (Karniadakis et al., 2021),
whereas approaches (ii) and (iii) have started to advance
fluid and weather modeling in two and three dimensions
(Guo et al., 2016; Kochkov et al., 2021; Rasp & Thuerey,
2021; Keisler, 2022; Weyn et al., 2020; Sønderby et al.,
2020; Pathak et al., 2022; Lam et al., 2022; Nguyen et al.,
2023). These problems are usually described by complex
time-dependent PDEs. Solving this class of PDEs over long
time horizons presents fundamental challenges. Conven-
tional numerical methods suffer accumulating approxima-
tion effects, which in the temporal solution step can be coun-
teracted by implicit methods (Hairer & Wanner, 1996; Iser-
les, 2009). Neural PDE solvers similarly struggle with the
effects of accumulating noise, an inevitable consequence
of autoregressively propagating the solutions of the under-
lying PDEs over time (Kochkov et al., 2021; Brandstetter
et al., 2022b; Sun et al., 2023; Mikhaeil et al., 2022). An-
other critique of neural PDE solvers is that – besides very
few exceptions, e.g., (Hsieh et al., 2019) – they lack conver-
gence guarantees and predictive uncertainty modeling, i.e.,
estimates of how much to trust the predictions. Whereas
the former is in general notoriously difficult to establish in
the context of deep learning, the latter links to recent ad-
vances in probabilistic neural modeling (Kingma & Welling,
2014; Sohl-Dickstein et al., 2015; Gordon et al., 2019; Ho
et al., 2020; Hennig et al., 2022; Tomczak, 2022; Seidman
et al., 2023), and, thus, opens the door for new families of
uncertainty-aware neural PDE solvers. In summary, to the
best of our understanding, the most important desiderata for

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

current time-dependent neural PDE solvers comprise long-
term accuracy, long-term stability, and the ability to quan-
tify predictive uncertainty.

In this work, we analyze common temporal rollout strate-
gies, including simple autoregressive unrolling with vary-
ing history input, the pushforward trick (Brandstetter et al.,
2022b), invariance preservation (McGreivy & Hakim, 2023),
and the Markov Neural Operator (Li et al., 2022). We test
temporal modeling by state-of-the-art neural operators such
as modern U-Nets (Gupta & Brandstetter, 2022) and Fourier
Neural Operators (FNOs) (Li et al., 2021), and identify a
shared pitfall in all these unrolling schemes: neural solvers
consistently neglect components of the spatial frequency
spectrum that have low amplitude. Although these frequen-
cies have minimal immediate impact, they still impact long-
term dynamics, ultimately resulting in a noticeable decline
in rollout performance.

Based on these insights, we draw inspiration from recent
advances in diffusion models (Ho et al., 2020; Nichol &
Dhariwal, 2021; Salimans & Ho, 2022) to introduce PDE-
Refiner. PDE-Refiner is a novel model class that uses an
iterative refinement process to obtain accurate predictions
over the whole frequency spectrum. This is achieved by
an adapted Gaussian denoising step that forces the network
to focus on information from all frequency components
equally at different amplitude levels. We demonstrate the
effectiveness of PDE-Refiner on solving the 1D Kuramoto-
Sivashinsky equation and the 2D Kolmogorov flow, a variant
of the incompressible Navier-Stokes flow. On both PDEs,
PDE-Refiner models the frequency spectrum much more
accurately than the baselines, leading to a significant gain
in accurate rollout time.

2. Challenges of Accurate Long Rollouts
Partial Differential Equations. In this work, we focus
on time-dependent PDEs in one temporal dimension, i.e.,
t ∈ [0, T], and possibly multiple spatial dimensions, i.e.,
x = [x1, x2, . . . , xm] ∈ X . Time-dependent PDEs relate
solutions u(t,x) : [0, T]×X → Rn and respective deriva-
tives for all points in the domain, where u0(x) are initial
conditions at time t = 0 and B[u](t,x) = 0 are boundary
conditions with boundary operator B when x lies on the
boundary ∂X of the domain. Such PDEs can be written in
the form (Brandstetter et al., 2022b):

ut = F (t,x,u,ux,uxx, ...) , (1)

where the notation ut is shorthand for the partial deriva-
tive ∂u/∂t, while ux,uxx, ... denote the partial derivatives
∂u/∂x, ∂2u/∂x2 and so on1.

1∂u/∂x represents a m× n dimensional Jacobian matrix J
with entries Jij = ∂ui/∂xj .

Operator learning (Lu et al., 2019; 2021; Li et al., 2020;
2021; Lu et al., 2022) relates solutions u : X → Rn, u′ :
X ′ → Rn′

defined on different domains X ∈ Rm, X ′ ∈
Rm′

via operators G: G : (u ∈ U) → (u′ ∈ U ′), where
U and U ′ are the spaces of u and u′, respectively. For
time-dependent PDEs, an evolution operator computes the
solution at time t+∆t from time t as

u(t+∆t) = Gt(∆t,u(t)) , (2)

where Gt : R>0 × Rn → Rn is the temporal update. To ob-
tain predictions over long time horizons, a temporal operator
could either be directly trained for large ∆t or recursively
applied with smaller time intervals. In practice, the predic-
tions of learned operators deteriorate for large ∆t, while au-
toregressive approaches are found to perform substantially
better (Gupta & Brandstetter, 2022; Li et al., 2022; Wang &
Perdikaris, 2023).

Long Rollouts for Time-Dependent PDEs. We start with
showcasing the challenges of obtaining long, accurate roll-
outs for autoregressive neural PDE solvers on the working
example of the 1D Kuramoto-Sivashinsky (KS) equation
(Kuramoto, 1978; Sivashinsky, 1977). The KS equation is a
fourth-order nonlinear PDE, known for its rich dynamical
characteristics and chaotic behavior (Hyman & Nicolaenko,
1986; Kevrekidis et al., 1990). Its dynamics are described
by the following equation:

ut + uux + uxx + νuxxxx = 0 , 2 (3)

where ν is a viscosity parameter, which we commonly set
to ν = 1. The nonlinear term uux and the fourth-order
derivative uxxxx make the PDE a challenging objective for
traditional solvers. We aim to solve this equation for all x
and t on a domain [0, L] with periodic boundary conditions
u(0, t) = u(L, t) and an initial condition u(x, 0) = u0(x).
The input space is discretized uniformly on a grid of Nx spa-
tial points and Nt time steps. To solve this equation, a neu-
ral operator, denoted by NO, is then trained to predict a solu-
tion u(x, t) = u(t) given one or multiple previous solutions
u(t−∆t) with time step ∆t, e.g. û(t) = NO(u(t−∆t)).
Longer trajectory predictions are obtained by feeding the
predictions back into the solver, i.e., predicting u(t+∆t)
from the previous prediction û(t) via û(t+∆t) = NO(û(t)).
We refer to this process as unrolling the model or rollout.
The goal is to obtain a neural PDE solver that maintains pre-
dictions close to the ground truth for as long as possible.

The MSE Training Objective. The most common
objective used for training neural solvers is the one-step
Mean-Squared Error (MSE) loss: LMSE = ∥u(t) −
NO(u(t−∆t))∥2. By minimizing this one-step MSE, the
model learns to replicate the PDE’s dynamics, accurately

2We omit the bold notation for 1D cases where the field u(x, t)
is scalar valued.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 25 50 75 100

Time (in seconds)

0

32

0

32

0

32

64

S
p

at
ia

l
d

im
en

si
on

MSE Training

PDE-Refiner (Ours)

Ground Truth

−2

0

2

(a) Rollout examples

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li

tu
d

e

Spectrum of the One-Step Prediction

Ground Truth

PDE-Refiner (Ours)

MSE Training

(b) Frequency spectrum

0 25 50 75 100 125
10−6

10−4

10−2

A
m

p
li

tu
d

e

Absolute error

0 25 50 75 100 125
Wavenumber

10−4

10−2

100

R
el

at
iv

e
am

p
li

tu
d

e Error relative to GT Amplitude

PDE-Refiner (Ours)

MSE Training

(c) One-step error

Figure 1: Challenges in achieving accurate long rollouts on the KS equation, comparing PDE-Refiner and an MSE-trained
model. (a) Example trajectory with predicted rollouts. The yellow line indicates the time when the Pearson correlation
between ground truth and prediction drops below 0.9. PDE-Refiner maintains an accurate rollout for longer than the MSE
model. (b) Frequency spectrum over the spatial dimension of the ground truth data and one-step predictions. (c) The spectra
of the corresponding errors. The MSE model is only accurate for a small, high-amplitude frequency band, while PDE-
Refiner supports a much larger frequency band, leading to longer accurate rollouts as in (a).

predicting the next step. However, as we roll out the model
for long trajectories, the error propagates over time until the
predictions start to differ significantly from the ground truth.
In Figure 1a, the solver is already accurate for 70 seconds,
so one might argue that minimizing the one-step MSE is suf-
ficient for achieving long stable rollouts. Yet, the limitations
of this approach become apparent when examining the fre-
quency spectrum across the spatial dimension of the ground
truth data and resulting predictions. Figure 1b shows that
the main dynamics of the KS equation are modeled within
a frequency band of low wavenumbers (1 to 25). As a re-
sult, the primary errors in predicting a one-step solution
arise from inaccuracies in modeling the dynamics of these
low frequencies. This is evident in Figure 1c, where the er-
ror of the MSE-trained model is smallest for this frequency
band relative to the ground truth amplitude. Nonetheless,
over a long time horizon, the non-linear term uux in the KS
equation causes all frequencies to interact, leading to the
propagation of high-frequency errors into lower frequencies.
Hence, the accurate modeling of frequencies with lower am-
plitude becomes increasingly important for longer rollout
lengths. In the KS equation, this primarily pertains to high
frequencies, which the MSE objective significantly neglects.

Based on this analysis, we deduce that in order to obtain
long stable rollouts, we need a neural solver that models all
spatial frequencies across the spectrum as accurately as pos-
sible. Essentially, our objective should give high amplitude
frequencies a higher priority, since these are responsible for
the main dynamics of the PDE. However, at the same time,
the neural solver should not neglect the non-dominant, low
amplitude frequency contributions due to their long-term
impact on the dynamics.

3. PDE-Refiner
In this section, we present PDE-Refiner, a model that allows
for accurate modeling of the solution across all frequencies.
The main idea of PDE-Refiner is that we allow the model to
look multiple times at its prediction, and, in an iterative man-
ner, improve the prediction. For this, we use a model NO
with three inputs: the previous time step(s) u(t−∆t), the
refinement step index k ∈ [0, ...,K], and the model’s cur-
rent prediction ûk(t). At the first step k = 0, we mimic the
common MSE objective by setting û0(t) = 0 and predict-
ing u(t): L0(u, t) = ∥u(t) − NO

(
û0(t), u(t−∆t), 0

)
∥2.

As discussed in Section 2, this prediction will focus on only
the dominating frequencies. To improve this prediction, a
simple approach would be to train the model to take its own
predictions as inputs and output its (normalized) error to the
ground truth. However, such a training process has several
drawbacks. Firstly, as seen in Figure 1, the dominating fre-
quencies in the data also dominate in the error, thus forcing
the model to focus on the same frequencies again. As we
empirically verify in Section 4.1, this leads to considerable
overfitting and the model does not generalize.

Instead, we propose to implement the refinement process as
a denoising objective. At each refinement step k ≥ 1, we
remove low-amplitude information of an earlier prediction
by applying noise, e.g. adding Gaussian noise, to the in-
put ûk(t) at refinement step k: ũk(t) = ûk(t) + σkϵ

k, ϵk ∼
N (0, 1). The objective of the model is to predict this noise
ϵk and use the prediction ϵ̂k to denoise its input: ûk+1(t) =
ũk(t)− σk ϵ̂

k. By decreasing the noise standard deviation
σk over refinement steps, the model focuses on varying
amplitude levels. With the first steps ensuring that high-
amplitude information is captured accurately, the later steps
focus on low-amplitude information, typically correspond-

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Initial Prediction

N
eu

ra
lO

pe
ra

to
r

k = 0

⊕
Noise ϵ ∼ N (0, σ2

k)

N
eu

ra
lO

pe
ra

to
r

k

⊖

u(t−∆t)

û0(t)

û1(t)

u(t−∆t)

ũk(t)

ûk+1(t)ϵ̂k

Refined
prediction

Input
ûk(t)

Refinement process

Repeat for k = 1, ...,K

Figure 2: Refinement process of PDE-Refiner during inference. Starting from an initial prediction û1(t), PDE-Refiner uses
an iterative refinement process to improve its prediction. Each step is implemented as a denoising process, where the model
takes as input the previous step’s prediction uk(t) and tries to reconstruct added noise. By decreasing the noise variance σ2

k

over the K refinement steps, PDE-Refiner focuses on all frequencies equally, including low-amplitude information.

ing to the non-dominant frequencies. Generally, we find
that an exponential decrease, i.e. σk = σ

k/K
min with σmin be-

ing the minimum noise standard deviation, works well. The
value of σmin is chosen based on the frequency spectrum of
the given data. For example, for the KS equation, we use
σ2

min = 2 · 10−7. We train the model by denoising ground
truth data at different refinement steps:

Lk(u, t) = Eϵk
[
∥ϵk − NO(u(t) + σkϵk, u(t−∆t), k)∥2

]
, (4)

with ϵk ∼ N (0, 1). Crucially, by using ground truth sam-
ples in the refinement process during training, the model
learns to focus on only predicting information with a magni-
tude below the noise level σk and ignore potentially larger
errors that, during inference, could have occurred in previ-
ous steps. This way, PDE-Refiner learns to capture the spa-
tial frequency spectrum of the PDE. To train all refinement
steps equally well, we uniformly sample k for each training
example: L(u, t) = Ek∼U(0,K)

[
Lk(u, t)

]
.

At inference time, we predict a solution u(t) from u(t−∆t)
by performing the K refinement steps, where we sequen-
tially use the prediction of a refinement step as the input to
the next step. While the process allows for any noise distri-
bution, independent Gaussian noise has the preferable prop-
erty that it is uniform across frequencies. Thus, it removes
information equally for all frequencies, while also creating
a prediction target that focuses on all frequencies equally.
We empirically verify in Section 4.1 that PDE-Refiner even
improves on low frequencies with small amplitudes.

3.1. Formulating PDE-Refiner as a Diffusion Model

Denoising processes have been most famously used in dif-
fusion models as well (Ho et al., 2020; Nichol & Dhariwal,

2021; Ho et al., 2022a;b; Saharia et al., 2022; Dhariwal &
Nichol, 2021; Song et al., 2021). Denoising diffusion prob-
abilistic models (DDPM) randomly sample a noise variable
x0 ∼ N (0, I) and sequentially denoise it until the final pre-
diction, xK , is distributed according to the data:

pθ(x0:K) := p(x0)

K−1∏
k=0

pθ(xk+1|xk) , (5)

pθ(xk+1|xk) = N (xk+1;µθ(xk, k),Σθ(xk, k)) , (6)

where K is the number of diffusion steps. For neural PDE
solving, one would want pθ(xK) to model the distribution
over solutions, xK = u(t), while being conditioned on the
previous time step u(t−∆t), i.e., pθ(u(t)|u(t−∆t)). De-
spite the similar use of a denoising process, PDE-Refiner
sets itself apart from standard DDPMs in several key as-
pects. First, diffusion models typically aim to model diverse,
multi-modal distributions like in image generation, while
the PDE solutions we consider here are deterministic. This
necessitates extremely accurate predictions with only minus-
cule errors. PDE-Refiner accommodates this by employing
an exponentially decreasing noise scheduler with a very low
minimum noise variance σ2

min, decreasing much faster and
further than common diffusion schedulers. Second, our goal
with PDE-Refiner is not only to model a realistic-looking
solution, but also achieve high accuracy across the entire
frequency spectrum. Third, we apply PDE-Refiner autore-
gressively to generate long trajectories. Since neural PDE
solvers need to be fast to be an attractive surrogate for clas-
sical solvers in applications, PDE-Refiner uses far fewer
denoising steps in both training and inferences than typi-
cal DDPMs. Lastly, PDE-Refiner directly predicts the sig-
nal u(t) at the initial step, while DDPMs usually predict

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

the noise residual throughout the entire process. Interest-
ingly, a similar objective to PDE-Refiner is achieved by the
v-prediction (Salimans & Ho, 2022), which smoothly transi-
tions from predicting the sample u(t) to the additive noise ϵ:
vk =

√
1− σ2

kϵ−σku(t). Here, the first step k = 0, yields
the common MSE prediction objective by setting σ0 = 1.
With an exponential noise scheduler, the noise variance is
commonly much smaller than 1 for k ≥ 1. In these cases,
the weight of the noise is almost 1 in the v-prediction, giv-
ing a diffusion process that closely resembles PDE-Refiner.

Still, the similarities between PDE-Refiner and DDPMs
indicate that PDE-Refiner has a potential interpretation as
a probabilistic latent variable model. Thus, by sampling
different noises during the refinement process, PDE-Refiner
may provide well-calibrated uncertainties which faithfully
indicate when the model might be making errors. We return
to this intriguing possibility later in Section 4.1. Further,
we find empirically that implementing PDE-Refiner as a
diffusion model with our outlined changes in the previous
paragraph, versus implementing it as an explicit denoising
process, obtains similar results. The benefit of implementing
PDE-Refiner as a diffusion model is the large literature on
architecture and hyperparameter studies, as well as available
software for diffusion models. Hence, we use a diffusion-
based implementation of PDE-Refiner in our experiments.

4. Experiments
We demonstrate the effectiveness of PDE-Refiner on a di-
verse set of common PDE benchmarks. In 1D, we study
the Kuramoto-Sivashinsky equation and compare to several
common temporal rollout methods. Further, we study the ro-
bustness of PDE-Refiner to different spatial frequency spec-
tra by varying the visocisity parameter in the KS equation.
In 2D, we compare PDE-Refiner to hybrid PDE solvers on
a Kolmogorov flow, and perform a speed comparison.

4.1. 1D Kuramoto-Sivashinsky Equation

Experimental Setup. We evaluate PDE-Refiner and var-
ious baselines on the Kuramoto-Sivashinsky 1D equation.
We follow the data generation setup of Brandstetter et al.
(2022a) by using a mesh of length L discretized uniformly
for 256 points with periodic boundaries. For each trajectory,
we randomly sample the length L between [0.9 · 64, 1.1 ·
64] and the time step ∆t ∼ U(0.18, 0.22). The initial
conditions are sampled from a distribution over truncated
Fourier series with random coefficients {Am, ℓm, ϕm}m as
u0(x) =

∑10
m=1 Am sin(2πℓmx/L + ϕm). We generate

a training dataset with 2048 trajectories of rollout length
140∆t, and test on 128 trajectories with a duration of 640∆t.
As the network architecture, we use the modern U-Net of
Gupta & Brandstetter (2022) with hidden size 64 and 3
downsampling layers. U-Nets have demonstrated strong per-

formance in both neural PDE solving (Gupta & Brandstetter,
2022; Ma et al., 2021; Takamoto et al., 2022) and diffusion
modeling (Ho et al., 2020; 2022a; Nichol & Dhariwal, 2021),
making it an ideal candidate for PDE-Refiner. A common
alternative is the Fourier Neural Operator (FNO) (Li et al.,
2021). Since FNO layers cut away high frequencies, we
find them to perform suboptimally on predicting the resid-
ual noise in PDE-Refiner and DDPMs, leading to a smaller
gain in performance over the baseline than with U-Nets. We
include a detailed study with FNOs in Appendix C.1. Since
neural surrogates can operate on larger time steps, we di-
rectly predict the solution at every 4th time step. In other
words, to predict u(t), each model takes as input the previ-
ous time step u(t− 4∆t) and the trajectory parameters L
and ∆t. We provide an ablation study on the predicted time
step size in Appendix C.2, in which time steps larger than
4∆t obtain worse rollout performance across models due to
poor generalization, while smaller time steps lead to higher
computational cost during the rollout for negligible perfor-
mance gains. For the chosen time step, the models predict
the residual between time steps ∆u(t) = u(t)−u(t− 4∆t)
instead of u(t) directly, which has shown superior perfor-
mance at this timescale (Li et al., 2022). As evaluation cri-
teria, we report the model rollouts’ high-correlation time
(Sun et al., 2023; Kochkov et al., 2021). For this, we autore-
gressively rollout the models on the test set and measure the
Pearson correlation between the ground truth and the predic-
tion. We then report the time when the average correlation
drops below 0.8 and 0.9, respectively, to quantify the time
horizon for which the predicted rollouts remain accurate.

MSE Training. We compare PDE-Refiner to three groups
of baselines in Figure 3. The first group are models trained
with the one-step MSE error, i.e., predicting ∆u(t) from
u(t− 4∆t). The baseline U-Net obtains a high-correlation
rollout time of 75 seconds, which corresponds to 94 au-
toregressive steps. To improve this baseline, we discover
that incorporating more history information as input, i.e.
u(t− 4∆t) and u(t− 8∆t), improves the one-step predic-
tion but worsens rollout performance. The problem aris-
ing is that the difference between the inputs u(t− 4∆t)−
u(t− 8∆t) is highly correlated with the model’s target
∆u(t), the residual of the next time step. This leads the neu-
ral operator to focus on modeling the second-order differ-
ence ∆u(t)−∆u(t−4∆t). As observed in classical solvers
(Iserles, 2009), using higher-order differences within an ex-
plicit autoregressive scheme is known to deteriorate the roll-
out stability and introduce exponentially increasing errors
over time. We include further analysis of this behavior in
Appendix C.3. Finally, we verify that PDE-Refiner’s benefit
is not just because of having an increased model complexity
by training a model with 4 times the parameter count and
observe a performance increase performance by only 5%.
Similarly, when we use an ensemble of 5 MSE-trained mod-

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Basel
ine

Hist
ory

2

4x paramete
rs

Ensem
ble

Pushforw
ard

Sobolev
k =

0

Sobolev
k =

1
MNO

Erro
r Corre

cti
on

Erro
r Pred

ict
ion

1 ste
p

2 ste
ps

3 ste
ps

4 ste
ps

8 ste
ps

3 ste
ps - Mean

Cosin
e Schedule

Our Schedule
50

60

70

80

90

100

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

High-Correlation Rollout Times on the Kuramoto-Sivashinsky equation

MSE Training

Alternative Losses

PDE-Refiner (Ours)

Diffusion Ablations

75.4s

61.7s

79.7s 79.7s
75.4s

71.4s
66.9s 66.6s

74.8s 75.7s

89.8s
94.2s

97.5s 98.3s 98.3s 98.5s

75.2s

88.9s

Figure 3: Experimental results on the Kuramoto-Sivashinsky equation. Dark and light colors indicate time for average
correlation to drop below 0.9 and 0.8, respectively. Error bars represent standard deviation for 5 seeds. We consider four
model groups: models trained with the common one-step MSE (left), alternative losses considered in previous work (center
left), our proposed PDE-Refiner (center right), and denoising diffusion (center right). All models use a modern U-Net neural
operator (Gupta & Brandstetter, 2022). PDE-Refiner surpasses all baselines with accurate rollouts up to nearly 100 seconds.

els by averaging their predictions at each rollout step, the
ensemble cannot exceed 80 seconds of accurate rollouts.

Alternative Losses. The second baseline group includes
alternative losses and post-processing steps proposed by
previous work to improve rollout stability. The pushfor-
ward trick (Brandstetter et al., 2022b) rolls out the model
during training and randomly replaces ground truth inputs
with model predictions. This trick does not improve perfor-
mance in our setting, confirming previous results (Brand-
stetter et al., 2022a). While addressing potential input distri-
bution shift, the pushforward trick cannot learn to include
the low-amplitude information for accurate long-term pre-
dictions, as no gradients are backpropagated through the
predicted input for stability reasons. Focusing more on high-
frequency information, the Sobolev norm loss (Li et al.,
2022) maps the prediction error into the frequency domain
and weighs all frequencies equally for k = 0 and higher
frequencies more for k = 1. However, focusing on high-
frequency information leads to a decreased one-step pre-
diction accuracy for the high-amplitude frequencies, such
that the rollout time shortens. The Markov Neural Operator
(MNO) (Li et al., 2022) additionally encourages dissipativ-
ity via regularization, but does not improve over the com-
mon Sobolev norm losses. Inspired by McGreivy & Hakim
(2023), we report the rollout time when we correct the pre-
dictions of the MSE models for known invariances in the
equation. We ensure mass conservation by zeroing the mean
and set any frequency above 60 to 0, as their amplitude is
below float32 precision (see Appendix B.1). This does
not improve over the original MSE baselines, showing that
the problem is not just an overestimate of the high frequen-
cies, but the accurate modeling of a broader spectrum of
frequencies. Finally, to highlight the advantages of the de-

noising process in PDE-Refiner, we train a second model
to predict another MSE-trained model’s errors (Error Pre-
diction). This model quickly overfits on the training dataset
and cannot provide gains for unseen trajectories, since it
again focuses on the same high-amplitude frequencies.

PDE-Refiner - Number of Refinement Steps. Figure 3
shows that PDE-Refiner significantly outperforms the base-
lines and reaches almost 100 seconds of stable rollout.
Thereby, we have a trade-off between number of refinement
steps and performance. When training PDE-Refiner with 1
to 8 refinement steps, we see that the performance improves
with more refinement steps, but more steps require more
model calls and thus slows down the solver. However, al-
ready using a single refinement step improves the rollout
performance by 20% over the best baseline, and the gains
start to flatten at 3 to 4 steps. Thus, for the remainder of the
analysis, we will focus on using 3 refinement steps.

Diffusion Ablations. In an ablation study of PDE-
Refiner, we evaluate a standard denoising diffusion model
(Ho et al., 2020) that we condition on the previous time step
u(t− 4∆t). When using a common cosine noise schedule
(Nichol & Dhariwal, 2021), the model performs similar to
the MSE baselines. However, with our exponential noise
decrease and lower minimum noise level, the diffusion mod-
els improve by more than 10 seconds. Using the prediction
objective of PDE-Refiner gains yet another performance im-
provement while reducing the number of sampling steps
significantly. Furthermore, to investigate the probabilistic
nature of PDE-Refiner, we check whether it samples single
modes under potentially multi-modal uncertainty. For this,
we average 16 samples at each rollout time step (3 steps
- Mean in Figure 3) and find slight performance improve-
ments, indicating the prediction of single modes.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li

tu
d

e

Spectrum of the One-Step Prediction

Ground truth

Initial prediction

Refinement step 1

Refinement step 2

Refinement step 3

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li

tu
d

e

Spectrum of the Difference to GT

MSE Training

Initial prediction

Refinement step 1

Refinement step 2

Refinement step 3

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li

tu
d

e

Spectrum of the Noise level

Noise at refinement step 1

Noise at refinement step 2

Noise at refinement step 3

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li

tu
d

e

Spectrum of the Prediction at 100s

Ground Truth

PDE-Refiner

MSE Training

Figure 4: Analyzing the prediction errors of PDE-Refiner and the MSE training in frequency space over the spatial
dimension. Left: the spectrum of intermediate predictions û0(t), û1(t), û2(t), û3(t) of PDE-Refiner’s refinement process
compared to the Ground Truth. Center: the spectrum of the difference between ground truth and intermediate predictions,
i.e. |FFT(u(t)− ûk(t))|. Right: the spectrum of the noise σkϵ

k added at different steps of the refinement process.

32 64 128 256
Spatial Resolution

75

80

85

90

95

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s) KS rollout stability over input resolution

PDE-Refiner

MSE Training

Figure 5: Stable rollout time over input resolution. PDE-
Refiner models the high frequencies to improve its rollout
on higher resolutions.

Modeling the Frequency Spectrum. We analyse the per-
formance difference between the MSE training and PDE-
Refiner by comparing their one-step prediction in the fre-
quency domain in Figure 4. Similar to the MSE training,
the initial prediction of PDE-Refiner has a close-to uniform
error pattern across frequencies. While the first refinement
step shows an improvement across all frequencies, refine-
ment steps 2 and 3 focus on the low-amplitude frequencies
and ignore higher amplitude errors. This can be seen by the
error for wavenumber 7, i.e., the frequency with the highest
input amplitude, not improving beyond the first refinement
step. Moreover, the MSE training obtains almost the iden-
tical error rate for this frequency, emphasizing the impor-
tance of low-amplitude information. For all other frequen-
cies, PDE-Refiner obtains a much lower loss, showing its
improved accuracy on low-amplitude information over the
MSE training. We highlight that PDE-Refiner does not only
improve the high frequencies, but also the lowest frequen-
cies (wavenumber 1-6) with low amplitude.

Input Resolution. We demonstrate that capturing high-
frequency information is crucial for PDE-Refiner’s perfor-

60 80 100 120 140

Cross-correlation time (in seconds)

60

80

100

120

140

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

Linear fit

Trajectories

Figure 6: Uncertainty estimate of PDE-Refiner. Each point
represents the estimated correlation time (x-axis) and the
ground truth time (y-axis) for a test trajectory.

mance gains over the MSE baselines by training both mod-
els on datasets of subsampled spatial resolution. With lower
resolution, fewer frequencies are present in the data and
can be modeled. As seen in Figure 5, MSE models achieve
similar rollout times for resolutions between 32 and 256,
emphasizing its inability to model high-frequency informa-
tion. At a resolution of 32, PDE-Refiner achieves similar
performance to the MSE baseline due to the missing high-
frequency information. However, as resolution increases,
PDE-Refiner significantly outperforms the baseline, show-
casing its utilization of high-frequency information.

Uncertainty Estimation. When applying neural PDE
solvers in practice, knowing how long the predicted trajec-
tories remain accurate is crucial. To estimate PDE-Refiner’s
predictive uncertainty, we sample 32 rollouts for each test
trajectory by generating different Gaussian noise during the
refinement process. We compute the time when the sam-
ples diverge from one another, i.e. their cross-correlation
goes below 0.8, and investigate whether this can be used to

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 25 50 75 100 125

Wavenumber

10−7

10−4

10−1

102

A
ve
ra
ge

am
p
li
tu
d
e

Frequency spectrum of KS equation

0.50

0.75

1.00

1.25

1.50

V
is
co
si
ty

1

0.6 0.8 1.0 1.2 1.4
Viscosity

40

60

80

100

120

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s) Rollout over viscosity

PDE-Refiner

MSE Training

Figure 7: Visualizing the parameter-dependent KS equation. Left: Frequency spectrum of ground truth trajectories over
viscosities. Right: Accurate rollout time over viscosities (error bars neglected if smaller than marker size). PDE-Refiner
obtains improvements across all viscosities.

accurately estimate how long the model’s rollouts remain
close to the ground truth. Figure 6 shows that the cross-
correlation time between samples closely aligns with the
time over which the rollout remains accurate, leading to a
R2 coefficient of 0.86 between the two times. Furthermore,
the prediction for how long the rollout remains accurate de-
pends strongly on the individual trajectory – PDE-Refiner
reliably identifies trajectories that are easy or challenging to
roll out from. In Appendix C.4, we compare PDE-Refiner’s
uncertainty estimate to two other common approaches. PDE-
Refiner provides more accurate estimates than input modu-
lation (Bowler, 2006; Scher & Messori, 2021), while only
requiring one trained model compared to a model ensemble
(Lakshminarayanan et al., 2017; Scher & Messori, 2021).

4.2. Parameter-dependent KS equation

So far, we have focused on the KS equation with a viscosity
term of ν = 1. Under varying values of ν, the Kuramoto-
Sivashinsky equation has been shown to develop diverse
behaviors and fixed points (Hyman & Nicolaenko, 1986;
Kevrekidis et al., 1990; Smyrlis & Papageorgiou, 1991).
This offers an ideal benchmark for evaluating neural surro-
gate methods on a diverse set of frequency spectra. We gen-
erate 4096 training and 512 test trajectories with the same
data generation process as before, except that for each tra-
jectory, we sample ν uniformly between 0.5 and 1.5. This
results in the spatial frequency spectrum of Figure 7, where
high frequencies are damped for larger viscosities but am-
plified for lower viscosities. Thus, an optimal neural PDE
solver for this dataset needs to work well across a variety
of frequency spectra. We keep the remaining experimental
setup identical to Section 4.1, and add the viscosity ν to the
conditioning set of the neural operators.

We compare PDE-Refiner to an MSE-trained model by plot-
ting the stable rollout time over viscosities in Figure 7. Each
marker represents between for trajectories in [ν − 0.1, ν +
0.1]. PDE-Refiner is able to get a consistent significant im-

provement over the MSE model across viscosities, verifying
that PDE-Refiner works across various frequency spectra
and adapts to the given underlying data. Furthermore, both
models achieve similar performance to their unconditional
counterpart for ν = 1.0. This again highlights the strength
of the U-Net architecture and baselines we consider here.

4.3. 2D Kolmogorov Flow

Simulated Data. As another common fluid-dynamics
benchmark, we apply PDE-Refiner to the 2D Kolmogorov
flow, a variant of the incompressible Navier-Stokes flow.
The PDE is defined as:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f , (7)

where u : [0, T] × X → R2 is the solution, ⊗ the tensor
product, ν the kinematic viscosity, ρ the fluid density, p the
pressure field, and, finally, f the external forcing. Follow-
ing previous work (Kochkov et al., 2021; Sun et al., 2023),
we set the forcing to f = sin(4y)x̂ − 0.1u, the density
ρ = 1, and viscosity ν = 0.001, which corresponds to a
Reynolds number of 1000. The ground truth data is gener-
ated using a finite volume-based direct numerical simulation
(DNS) method (McDonough, 2007; Kochkov et al., 2021)
with a time step of ∆t = 7.0125× 10−3 and resolution of
2048× 2048, and then downscaled to 64× 64. To align our
experiments with previous results, we use the same dataset
of 128 trajectories for training and 16 trajectories for testing
as Sun et al. (2023).

Experimental Setup. We employ a modern U-Net (Gupta
& Brandstetter, 2022) as the neural operator backbone. Due
to the lower input resolution, we set σ2

min = 10−3 and use
3 refinement steps in PDE-Refiner. For efficiency, we pre-
dict 16 steps (16∆t) into the future and use the difference
∆u = u(t) − u(t − 16∆t) as the output target. Besides
the MSE objective, we compare PDE-Refiner with FNOs
(Li et al., 2022), classical PDE solvers (i.e., DNS) on differ-
ent resolutions, and state-of-the-art hybrid machine learning

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 1: Duration of high correlation (> 0.8) on the 2D
Kolmogorov flow. Results for classical PDE solvers and
hybrid methods taken from Sun et al. (2023).

Method Corr. > 0.8 time

Classical PDE Solvers
DNS - 64× 64 2.805
DNS - 128× 128 3.983
DNS - 256× 256 5.386
DNS - 512× 512 6.788
DNS - 1024× 1024 8.752

Hybrid Methods
LC (Kochkov et al., 2021) - CNN 6.900
LC (Kochkov et al., 2021) - FNO 7.630
LI (Kochkov et al., 2021) - CNN 7.910
TSM (Sun et al., 2023) - FNO 7.798
TSM (Sun et al., 2023) - CNN 8.359
TSM (Sun et al., 2023) - HiPPO 9.481

ML Surrogates
MSE training - FNO 6.451 ± 0.105
MSE training - U-Net 9.663 ± 0.117
PDE-Refiner - U-Net 10.659 ± 0.092

solvers (Kochkov et al., 2021; Sun et al., 2023), which esti-
mate the convective flux u⊗u via neural networks. Learned
Interpolation (LI) (Kochkov et al., 2021) takes the previous
solution u(t−∆t) as input to predict u(t), similar to PDE-
Refiner. In contrast, the Temporal Stencil Method (TSM)
Sun et al. (2023) combines information from multiple pre-
vious time steps using HiPPO features (Gu et al., 2020;
2022). We also compare PDE-Refiner to a Learned Correc-
tion model (LC) (Kochkov et al., 2021; Um et al., 2020),
which corrects the outputs of a classical solver with neu-
ral networks. For evaluation, we roll out the models on the
16 test trajectories and determine the Pearson correlation
with the ground truth in terms of the scalar vorticity field
ω = ∂xuy − ∂yux. Following previous work (Sun et al.,
2023), we report in Table 1 the time until which the average
correlation across trajectories falls below 0.8.

Results. Similar to previous work (Gupta & Brandstetter,
2022; Lu et al., 2022), we find that modern U-Nets outper-
form FNOs on the 2D domain for long rollouts. Our MSE-
trained U-Net already surpasses all classical and hybrid PDE
solvers. This result highlights the strength of our baselines,
and improving upon those poses a significant challenge.
Nonetheless, PDE-Refiner manages to provide a substantial
gain in performance, remaining accurate 32% longer than
the best single-input hybrid method and 10% longer than
the best multi-input hybrid methods and MSE model. We
reproduce the frequency plots of Figure 4 for this dataset in
Appendix C.5. The plots exhibit a similar behavior of both
models. Compared to the KS equation, the Kolmogorov
flow has a shorter (due to the resolution) and flatter spatial
frequency spectrum. This accounts for the smaller relative
gain of PDE-Refiner on the MSE baseline here.

Speed Comparison. We evaluate the speed of the rollout
generation for the test set (16 trajectories of 20 seconds) of
three best solvers on an NVIDIA A100 GPU. The MSE U-
Net generates the trajectories in 4.04 seconds (±0.01), with
PDE-Refiner taking 4 times longer (16.53± 0.04 seconds)
due to four model calls per step. With that, PDE-Refiner is
still faster than the best hybrid solver, TSM, which needs
20.25 seconds (±0.05). In comparison to the ground truth
solver at resolution 2048× 2048 with 31 minute generation
time on GPU, all surrogates provide a significant speedup.

5. Conclusion
In this paper, we conduct a large-scale analysis of tempo-
ral rollout strategies for neural PDE solvers, identifying that
the neglect of low-amplitude information often limits accu-
rate rollout times. To address this issue, we introduce PDE-
Refiner, a novel model-class that employs an iterative refine-
ment process to accurately model all frequency components.
This approach remains considerably longer accurate during
rollouts on two fluid dynamic datasets, effectively overcom-
ing the common pitfall.

Limitations. The primary limitation of PDE-Refiner is its
increased computation time per prediction. Although still
faster than hybrid and classical solvers, future work could
investigate reducing compute for early refinement steps, or
applying distillation and enhanced samplers to accelerate
refinement, as seen in diffusion models (Salimans & Ho,
2022; Berthelot et al., 2023; Karras et al., 2022; Watson
et al., 2022). Another challenge is the lower performance
gain of PDE-Refiner with FNOs due to the modeling of
high-frequency noise, which thus presents an interesting av-
enue for future work. Further architectures like Transform-
ers (Vaswani et al., 2017; Dosovitskiy et al., 2021) can be
explored too, having been shown to also suffer from spatial
frequency biases for PDEs (Chattopadhyay & Hassanzadeh,
2023). Lastly, we have only investigated additive Gaussian
noise. Recent blurring diffusion models (Hoogeboom &
Salimans, 2023; Lee et al., 2022) focus on different spatial
frequencies over the sampling process, making them a po-
tentially suitable option for PDE solving as well.

References
Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt,

B. R., and Ott, E. A Hybrid Approach to Atmospheric
Modeling That Combines Machine Learning With a
Physics-Based Numerical Model. Journal of Advances in
Modeling Earth Systems, 14(3):e2021MS002712, 2022.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P.
Learning data-driven discretizations for partial differen-
tial equations. Proceedings of the National Academy of
Sciences, 116(31):15344–15349, 2019.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Berthelot, D., Autef, A., Lin, J., Yap, D. A., Zhai, S., Hu, S.,
Zheng, D., Talbot, W., and Gu, E. TRACT: Denoising Dif-
fusion Models with Transitive Closure Time-Distillation.
arXiv preprint arXiv:2303.04248, 2023.

Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and
Kaushik, S. Prediction of aerodynamic flow fields using
convolutional neural networks. Computational Mechan-
ics, 64(2):525–545, 2019.

Bowler, N. E. Comparison of error breeding, singular vec-
tors, random perturbations and ensemble Kalman filter
perturbation strategies on a simple model. Tellus A: Dy-
namic Meteorology and Oceanography, 58(5):538–548,
2006.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas,
J., Wanderman-Milne, S., and Zhang, Q. JAX: compos-
able transformations of Python+NumPy programs, 2018.
Software URL: http://github.com/google/jax.

Brandstetter, J., Welling, M., and Worrall, D. E. Lie Point
Symmetry Data Augmentation for Neural PDE Solvers.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
2241–2256. PMLR, 17–23 Jul 2022a.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
Passing Neural PDE Solvers. In International Conference
on Learning Representations, 2022b.

Brandstetter, J., van den Berg, R., Welling, M., and Gupta,
J. K. Clifford Neural Layers for PDE Modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Brunton, S. L. and Nathan Kutz, J. Machine Learn-
ing for Partial Differential Equations. arXiv preprint
arXiv:2303.17078, March 2023.

Chattopadhyay, A. and Hassanzadeh, P. Long-term insta-
bilities of deep learning-based digital twins of the cli-
mate system: The cause and a solution. arXiv preprint
arXiv:2304.07029, 2023.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. In International Conference
on Learning Representations, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative Adversarial Nets. In Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N., and Weinberger, K. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. In International Conference on Learn-
ing Representations, 2019.

Greenfeld, D., Galun, M., Basri, R., Yavneh, I., and Kimmel,
R. Learning to Optimize Multigrid PDE Solvers. In
International Conference on Machine Learning (ICML),
pp. 2415–2423, 2019.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
Advances in neural information processing systems, 33:
1474–1487, 2020.

Gu, A., Goel, K., and Re, C. Efficiently Modeling Long
Sequences with Structured State Spaces. In International
Conference on Learning Representations, 2022.

Guo, X., Li, W., and Iorio, F. Convolutional neural networks
for steady flow approximation. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 481–490, 2016.

Gupta, J. K. and Brandstetter, J. Towards Multi-
spatiotemporal-scale Generalized PDE Modeling. arXiv
preprint arXiv:2209.15616, 2022.

Hairer, E. and Wanner, G. Solving ordinary differential
equations. II, volume 14 of Springer Series in Computa-
tional Mathematics, 1996.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity Mappings
in Deep Residual Networks. In Leibe, B., Matas, J., Sebe,
N., and Welling, M. (eds.), Computer Vision – ECCV
2016, pp. 630–645, Cham, 2016b. Springer International
Publishing. ISBN 978-3-319-46493-0.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Hennig, P., Osborne, M. A., and Kersting, H. P. Probabilis-
tic Numerics: Computation as Machine Learning. Cam-
bridge University Press, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising Diffusion Proba-
bilistic Models. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 6840–
6851. Curran Associates, Inc., 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022a.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded Diffusion Models for High
Fidelity Image Generation. J. Mach. Learn. Res., 23(47):
1–33, 2022b.

Hoogeboom, E. and Salimans, T. Blurring Diffusion Models.
In The Eleventh International Conference on Learning
Representations, 2023.

Hsieh, J., Zhao, S., Eismann, S., Mirabella, L., and Ermon,
S. Learning Neural PDE Solvers with Convergence Guar-
antees. arXiv preprint arXiv:1906.01200, 2019.

Hyman, J. M. and Nicolaenko, B. The Kuramoto-
Sivashinsky equation: A bridge between PDE’S and dy-
namical systems. Physica D: Nonlinear Phenomena, 18
(1):113–126, 1986. ISSN 0167-2789.

Iserles, A. A first course in the numerical analysis of dif-
ferential equations. Number 44 in Cambridge Texts in
Applied Mathematics. Cambridge university press, 2009.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the Design Space of Diffusion-Based Generative Mod-
els. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022.

Keisler, R. Forecasting Global Weather with Graph Neural
Networks. arXiv preprint arXiv:2202.07575, 2022.

Kevrekidis, I. G., Nicolaenko, B., and Scovel, J. C. Back
in the Saddle Again: A Computer Assisted Study of
the Kuramoto–Sivashinsky Equation. SIAM Journal on
Applied Mathematics, 50(3):760–790, 1990.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In Bengio, Y. and LeCun, Y. (eds.), 3rd

International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Kuramoto, Y. Diffusion-induced chaos in reaction systems.
Progress of Theoretical Physics Supplement, 64:346–367,
1978.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and Scalable Predictive Uncertainty Estimation Using
Deep Ensembles. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6405–6416, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Pritzel, A., Ravuri, S., Ewalds, T., Alet,
F., Eaton-Rosen, Z., et al. GraphCast: Learning skillful
medium-range global weather forecasting. arXiv preprint
arXiv:2212.12794, 2022.

Lee, S., Chung, H., Kim, J., and Ye, J. C. Progressive
deblurring of diffusion models for coarse-to-fine image
synthesis. arXiv preprint arXiv:2207.11192, 2022.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural op-
erator: Graph kernel network for partial differential equa-
tions. arXiv preprint arXiv:2003.03485, 2020.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
Neural Operator for Parametric Partial Differential Equa-
tions. In International Conference on Learning Represen-
tations, 2021.

Li, Z., Liu-Schiaffini, M., Kovachki, N. B., Azizzadenesheli,
K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. Learning Chaotic Dynamics in Dissipative Sys-
tems. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization. In International Conference on Learning
Representations, 2019.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Lu, L., Jin, P., and Karniadakis, G. E. DeepONet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z.,
and Karniadakis, G. E. A comprehensive and fair compar-
ison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Me-
chanics and Engineering, 393:114778, 2022.

Ma, H., Zhang, Y., Thuerey, N., Hu, X., and Haidn, O. J.
Physics-driven learning of the steady Navier-Stokes equa-
tions using deep convolutional neural networks. arXiv
preprint arXiv:2106.09301, 2021.

McDonough, J. M. Lectures in Computational Fluid Dynam-
ics of Incompressible Flow: Mathematics, Algorithms
and Implementations. 4. Mechanical Engineering Text-
book Gallery, 2007.

McGreivy, N. and Hakim, A. Invariant preservation in
machine learned PDE solvers via error correction. arXiv
preprint arXiv:2303.16110, 2023.

Mikhaeil, J., Monfared, Z., and Durstewitz, D. On the diffi-
culty of learning chaotic dynamics with RNNs. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 11297–11312. Curran
Associates, Inc., 2022.

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., and
Grover, A. ClimaX: A foundation model for weather and
climate. arXiv preprint arXiv:2301.10343, 2023.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In International Conference on
Machine Learning, pp. 8162–8171. PMLR, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. PyTorch: An
Imperative Style, High-Performance Deep Learning Li-
brary. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. Software URL:
https://github.com/pytorch/pytorch.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-
topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z.,
Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and
Anandkumar, A. FourCastNet: A Global Data-driven
High-resolution Weather Model using Adaptive Fourier
Neural Operators. arXiv preprint arXiv:2202.11214,
2022.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. FiLM: Visual Reasoning with a Gen-
eral Conditioning Layer. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence and Thirtieth Innovative Applications of Artifi-
cial Intelligence Conference and Eighth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN
978-1-57735-800-8.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rasp, S. and Thuerey, N. Data-driven medium-range
weather prediction with a resnet pretrained on climate
simulations: A new model for weatherbench. Jour-
nal of Advances in Modeling Earth Systems, 13(2):
e2020MS002405, 2021.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022.

Salimans, T. and Ho, J. Progressive Distillation for Fast
Sampling of Diffusion Models. In International Confer-
ence on Learning Representations, 2022.

Scher, S. and Messori, G. Ensemble Methods for Neural
Network-Based Weather Forecasts. Journal of Advances
in Modeling Earth Systems, 13(2), 2021.

Seidman, J. H., Kissas, G., Pappas, G. J., and Perdikaris,
P. Variational Autoencoding Neural Operators. arXiv
preprint arXiv:2302.10351, 2023.

Sivashinsky, G. Nonlinear analysis of hydrodynamic insta-
bility in laminar flames—I. Derivation of basic equations.
Acta Astronautica, 4(11):1177–1206, 1977. ISSN 0094-
5765.

Smyrlis, Y. S. and Papageorgiou, D. T. Predicting Chaos for
Infinite Dimensional Dynamical Systems: The Kuramoto-
Sivashinsky Equation, A Case Study. Proceedings of the

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

National Academy of Sciences of the United States of
America, 88(24):11129–11132, 1991.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M.,
Oliver, A., Salimans, T., Agrawal, S., Hickey, J., and
Kalchbrenner, N. Metnet: A neural weather model for pre-
cipitation forecasting. arXiv preprint arXiv:2003.12140,
2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-Based Generative Model-
ing through Stochastic Differential Equations. In Interna-
tional Conference on Learning Representations, 2021.

Sun, Z., Yang, Y., and Yoo, S. A Neural PDE Solver
with Temporal Stencil Modeling. arXiv preprint
arXiv:2302.08105, 2023.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. PDEBench: An
Extensive Benchmark for Scientific Machine Learning.
In 36th Conference on Neural Information Processing
Systems (NeurIPS 2022) Track on Datasets and Bench-
marks, 2022.

Thuerey, N., Holl, P., Mueller, M., Schnell, P., Trost, F., and
Um, K. Physics-based Deep Learning. arXiv preprint
arXiv:2109.05237, 2021.

Tomczak, J. M. Deep generative modeling. Springer, 2022.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey,
N. Solver-in-the-Loop: Learning from Differentiable
Physics to Interact with Iterative PDE-Solvers. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems, volume 33, pp. 6111–6122. Curran Asso-
ciates, Inc., 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is All you Need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert,
N., Rasul, K., Davaadorj, M., and Wolf, T. Diffusers:
State-of-the-art diffusion models, 2022. Software URL:
https://github.com/huggingface/diffusers.

Wang, S. and Perdikaris, P. Long-time integration of para-
metric evolution equations with physics-informed deep-
onets. Journal of Computational Physics, 475:111855,
2023.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed DeepONets. Science advances, 7(40):
eabi8605, 2021.

Watson, D., Chan, W., Ho, J., and Norouzi, M. Learning
Fast Samplers for Diffusion Models by Differentiating
Through Sample Quality. In International Conference on
Learning Representations, 2022.

Weyn, J. A., Durran, D. R., and Caruana, R. Improving
data-driven global weather prediction using deep con-
volutional neural networks on a cubed sphere. Jour-
nal of Advances in Modeling Earth Systems, 12(9):
e2020MS002109, 2020.

Wu, Y. and He, K. Group Normalization. In Proceedings of
the European Conference on Computer Vision (ECCV),
September 2018.

Yazıcı, Y., Foo, C.-S., Winkler, S., Yap, K.-H., Piliouras,
G., and Chandrasekhar, V. The Unusual Effectiveness of
Averaging in GAN Training. In International Conference
on Learning Representations, 2019.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

A. PDE-Refiner - Pseudocode
In this section, we provide pseudocode to implement PDE-Refiner in Python with common deep learning frameworks
like PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018). The hyperparameters to PDE-Refiner are the number
of refinement steps K, called num_steps in the pseudocode, and the minimum noise standard deviation σmin, called
min_noise_std. Further, the neural operator NO can be an arbitrary network architecture, such as a U-Net as in our
experiments, and is represented by MyNetwork / self.neural_operator in the code.

The dynamics of PDE-Refiner can be implemented via three short functions. The train_step function takes as input
a training example of solution u(t) (named u_t) and the previous solution u(t −∆t) (named u_prev). We uniformly
sample the refinement step we want to train, and use the classical MSE objective if k = 0. Otherwise, we train the model
to denoise u(t). The loss can be used to calculate gradients and update the parameters with common optimizers. The
operation randn_like samples Gaussian noise of the same shape as u_t. Further, for batch-wise inputs, we sample k for
each batch element independently. For inference, we implement the function predict_next_solution, which iterates
through the refinement process of PDE-Refiner. Lastly, to generate a trajectory from an initial condition u_initial, the
function rollout autoregressively predicts the next solutions. This gives us the following pseudocode:

class PDERefiner:
def __init__(self, num_steps, min_noise_std):

self.num_steps = num_steps
self.min_noise_std = min_noise_std
self.neural_operator = MyNetwork(...)

def train_step(self, u_t, u_prev):
k = randint(0, self.num_steps + 1)
if k == 0:

pred = self.neural_operator(zeros_like(u_t), u_prev, k)
target = u_t

else:
noise_std = self.min_noise_std ** (k / self.num_steps)
noise = randn_like(u_t)
u_t_noised = u_t + noise * noise_std
pred = self.neural_operator(u_t_noised, u_prev, k)
target = noise

loss = mse(pred, target)
return loss

def predict_next_solution(self, u_prev):
u_hat_t = self.neural_operator(zeros_like(u_prev), u_prev, 0)
for k in range(1, self.num_steps + 1):

noise_std = self.min_noise_std ** (k / self.num_steps)
noise = randn_like(u_t)
u_hat_t_noised = u_hat_t + noise * noise_std
pred = self.neural_operator(u_hat_t_noised, u_prev, k)
u_hat_t = u_hat_t_noised - pred * noise_std

return u_hat_t

def rollout(self, u_initial, timesteps):
trajectory = [u_initial]
for t in range(timesteps):

u_hat_t = self.predict_next_solution(trajectory[-1])
trajectory.append(u_hat_t)

return trajectory

As discussed in Section 3.1, PDE-Refiner can be alternatively implemented as a diffusion model. To demonstrate this
implementation, we use the Python library diffusers (von Platen et al., 2022) (version 0.15) in the pseudocode below. We
create a DDPM scheduler where we set the number of diffusion steps to the number of refinement steps and the prediction
type to v_prediction (Salimans & Ho, 2022). Further, for simplicity, we set the betas to the noise variances of PDE-

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Refiner. We note that in diffusion models and in diffusers, the noise variance σ2
k at diffusion step k is calculated as:

σ2
k = 1− ᾱk = 1−

K∏
κ=k

(1− βκ) = 1−
K∏

κ=k

(1− σ
2κ/K
min)

Since we generally use few diffusion steps such that the noise variance falls quickly, i.e. σ2k/K
min ≫ σ

2(k+1)/K
min , the product

in above’s equation is dominated by the last term 1−σ
2k/K
min . Thus, the noise variances in diffusion are σ2

k ≈ σ
2k/K
min . Further,

for k = 0 and k = K, the two variances are always the same since the product is 0 or a single element, respectively. If
needed, one could correct for the product terms in the intermediate variances. However, as we show in Appendix C.6, PDE-
Refiner is robust to small changes in the noise variance and no performance difference was notable. With this in mind,
PDE-Refiner can be implemented as follows:

from diffusers.schedulers import DDPMScheduler

class PDERefinerDiffusion:
def __init__(self, num_steps, min_noise_std):

betas = [min_noise_std ** (k / num_steps)
for k in reversed(range(num_steps + 1))]

self.scheduler = DDPMScheduler(num_train_timesteps=num_steps,
trained_betas=betas,
prediction_type='v_prediction')

self.num_steps = num_steps
self.neural_operator = MyNetwork(...)

def train_step(self, u_t, u_prev):
k = randint(0, self.num_steps + 1)
noise_factor = self.scheduler.alphas_cumprod[k]
signal_factor = 1 - noise_factor
noise = randn_like(u_t)
u_t_noised = self.scheduler.add_noise(u_t, noise, k)
pred = self.neural_operator(u_t_noised, u_prev, k)
target = (noise_factor ** 0.5) * noise - (signal_factor ** 0.5) * u_t
loss = mse(pred, target)
return loss

def predict_next_solution(self, u_prev):
u_hat_t_noised = randn_like(u_prev)
for k in range(self.num_steps + 1):

pred = self.neural_operator(u_hat_t_noised, u_prev, k)
u_hat_t_noised = self.scheduler.step(pred, k, u_hat_t_noised)

u_hat_t = u_hat_t_noised
return u_hat_t

def rollout(self, u_initial, timesteps):
trajectory = [u_initial]
for t in range(timesteps):

u_hat_t = self.predict_next_solution(trajectory[-1])
trajectory.append(u_hat_t)

return trajectory

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Training examples

0.0 14.5 29.1

Time (in seconds)

58.6

44.0

29.3

14.7

0.0

S
p
at
ia
l
d
im

en
si
on

0.0 14.7 29.3

Time (in seconds)

62.3

46.7

31.1

15.6

0.0

S
p
at
ia
l
d
im

en
si
on

0.0 13.7 27.3

Time (in seconds)

60.5

45.4

30.2

15.1

0.0

S
p
at
ia
l
d
im

en
si
on

0.0 14.0 28.1

Time (in seconds)

57.5

43.1

28.7

14.4

0.0

S
p
at
ia
l
d
im

en
si
on

0.0 12.7 25.3

Time (in seconds)

67.9

50.9

33.9

17.0

0.0

S
p
at
ia
l
d
im

en
si
on

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

1Test examples

0.0 60.2 120.4

Time (in seconds)

65.7

49.3

32.8

16.4

0.0

S
p
at
ia
l
d
im

en
si
on

0.0 62.0 124.0

Time (in seconds)

65.5

49.2

32.8

16.4

0.0

S
p
at
ia
l
d
im

en
si
on

0.0 61.0 121.9

Time (in seconds)

69.0

51.7

34.5

17.2

0.0

S
p
at
ia
l
d
im

en
si
on

−2

0

2

−2

0

2

−2

0

2

1

Figure 8: Dataset examples of the Kuramoto-Sivashinsky dataset. The training trajectories are generated with 140 time steps,
while the test trajectories consist of 640 time steps. The spatial dimension is uniformly sampled from [0.9 · 64, 1.1 · 64], and
the time step in seconds from [0.18, 0.22].

B. Experimental Details
In this section, we provide a detailed description of the data generation, model architecture, and hyperparameters used in
our three datasets: Kuramoto-Sivashinsky (KS) equation, parameter-dependent KS equation, and the 2D Kolmogorov flow.
Additionally, we provide an overview of all results with corresponding error bars in numerical table form. Lastly, we show
example trajectories for each dataset.

B.1. 1D Kuramoto-Sivashinsky Dataset

Data Generation. We follow the data generation setup of Brandstetter et al. (2022a), which uses the method of lines with
the spatial derivatives computed using the pseudo-spectral method. For each trajectory in our dataset, the first 360 solution
steps are truncated and considered as a warmup for the solver. For further details on the data generation setup, we refer to
Brandstetter et al. (2022a).

Our dataset can be reproduced with the public code3 of Brandstetter et al. (2022a). To obtain the training data, the data
generation command in the repository needs to be adjusted by setting the number of training samples to 2048, and 0 for
both validation and testing. For validation and testing, we increase the rollout time by adding the arguments --nt=1000
--nt_effective=640 --end_time=200, and setting the number of samples to 128 each. We provide training and
test examples in Figure 8.

The data is generated with float64 precision, and afterward converted to float32 precision for storing and training of
the neural surrogates. Since we convert the precision in spatial domain, it causes minor artifacts in the frequency spectrum
as seen in Figure 9. Specifically, frequencies with wavenumber higher than 60 cannot be adequately represented. Quantizing
the solution values in spatial domain introduce high-frequency noise which is greater than the original amplitudes. Training
the neural surrogates with float64 precision did not show any performance improvement, besides being significantly
more computationally expensive.

Model Architecture. For all models in Section 4.1, we use the modern U-Net architecture from Gupta & Brandstetter
(2022), which we detail in Table 2. The U-Net consists of an encoder and decoder, which are implemented via several pre-
activation ResNet blocks (He et al., 2016a;b) with skip connections between encoder and decoder blocks. The ResNet block
is visualized in Figure 10 and consists of Group Normalization (Wu & He, 2018), GELU activations (Hendrycks & Gimpel,
2016), and convolutions with kernel size 3. The conditioning parameters ∆t and ∆x are embedded into feature vector space

3https://github.com/brandstetter-johannes/LPSDA#produce-datasets-for-kuramoto-
shivashinsky-ks-equation

https://github.com/brandstetter-johannes/LPSDA#produce-datasets-for-kuramoto-shivashinsky-ks-equation
https://github.com/brandstetter-johannes/LPSDA#produce-datasets-for-kuramoto-shivashinsky-ks-equation

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 25 50 75 100 125

Wavenumber

10−12

10−9

10−6

10−3

100
A
ve
ra
ge

am
p
li
tu
d
e

Float32 Precision

0 25 50 75 100 125

Wavenumber

10−12

10−9

10−6

10−3

100

A
ve
ra
ge

am
p
li
tu
d
e

Float64 Precision

Frequency spectrum of Kuramoto-Sivashinsky trajectories

1Figure 9: Frequency spectrum of the Kuramoto-Sivashinsky dataset under different precisions. Casting the input data to
float32 precision removes the high frequency information due to adding noise with higher amplitude. Neural surrogates
trained on float64 did not improve over float32, showing that it does not affect models in practice.

Fe
at

ur
e

m
ap

x
ℓ

G
ro

up
N

or
m

G
E

L
U

C
on

vo
lu

tio
n

G
ro

up
N

or
m

Sc
al

e-
an

d-
Sh

if
t

G
E

L
U

C
on

vo
lu

tio
n

⊕

Fe
at

ur
e

m
ap

x
ℓ+

1

Conditioning features

Figure 10: ResNet block of the modern U-Net (Gupta & Brandstetter, 2022). Each block consists of two convolutions with
GroupNorm and GELU activations. The conditioning features, which are ∆t, ∆x for the KS dataset and additionally ν for
the parameter-dependent KS dataset, influence the features via a scale-and-shift layer. Residual blocks with different input
and output channels use a convolution with kernel size 1 on the residual connection.

via sinusoidal embeddings, as for example used in Transformers (Vaswani et al., 2017). We combine the feature vectors
via linear layers and integrate them in the U-Net via AdaGN (Nichol & Dhariwal, 2021; Perez et al., 2018) layers, which
predicts a scale and shift parameter for each channel applied after the second Group Normalization in each residual block.
We represent it as a ’scale-and-shift’ layer in Figure 10. We also experimented with adding attention layers in the residual
blocks, which, however, did not improve performance noticeably. The implementation of the U-Net architecture can be
found in the public code of Gupta & Brandstetter (2022).4

Hyperparameters. We detail the used hyperparameters for all models in Table 3. We train the models for 400 epochs on a
batch size of 128 with an AdamW optimizer (Loshchilov & Hutter, 2019). One epoch corresponds to iterating through all
training sequences and picking 100 random initial conditions each. The learning rate is initialized with 1e-4, and follows a
cosine annealing strategy to end with a final learning rate of 1e-6. We did not find learning rate warmup to be needed for our
models. For regularization, we use a weight decay of 1e-5. As mentioned in Section 4.1, we train the neural operators to
predict 4 time steps ahead via predicting the residual ∆u = u(t)− u(t− 4∆t). For better output coverage of the neural
network, we normalize the residual to a standard deviation of about 1 by dividing it with 0.3. Thus, the neural operators
predict the next time step via û(t) = u(t− 4∆t) + 0.3 · NO(u(t− 4∆t)). We provide an ablation study on the step size in

4https://github.com/microsoft/pdearena/blob/main/pdearena/modules/conditioned/twod_unet.
py

https://github.com/microsoft/pdearena/blob/main/pdearena/modules/conditioned/twod_unet.py
https://github.com/microsoft/pdearena/blob/main/pdearena/modules/conditioned/twod_unet.py

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 2: Detailed list of layers in the deployed modern U-Net. The parameter channels next to a layer represents the
number of feature channels of the layer’s output. The U-Net uses the four different channel sizes c1, c2, c3, c4, which are
hyperparameters. The skip connection from earlier layers in a residual block is implemented by concatenating the features
before the first GroupNorm. For the specifics of the residual blocks, see Figure 10.

Index Layer

Encoder
1 Conv(kernel size=3, channels=c1, stride=1)
2 ResidualBlock(channels=c1)
3 ResidualBlock(channels=c1)
4 Conv(kernel size=3, channels=c1, stride=2)
5 ResidualBlock(channels=c2)
6 ResidualBlock(channels=c2)
7 Conv(kernel size=3, channels=c2, stride=2)
8 ResidualBlock(channels=c3)
9 ResidualBlock(channels=c3)

10 Conv(kernel size=3, channels=c3, stride=2)
11 ResidualBlock(channels=c4)
12 ResidualBlock(channels=c4)

Middle block
13 ResidualBlock(channels=c4)
14 ResidualBlock(channels=c4)

Decoder
15 ResidualBlock(channels=c4, skip connection from Layer 12)
16 ResidualBlock(channels=c4, skip connection from Layer 11)
17 ResidualBlock(channels=c3, skip connection from Layer 10)
18 TransposeConvolution(kernel size=4, channels=c3, stride=2)
19 ResidualBlock(channels=c3, skip connection from Layer 9)
20 ResidualBlock(channels=c3, skip connection from Layer 8)
21 ResidualBlock(channels=c2, skip connection from Layer 7)
22 TransposeConvolution(kernel size=4, channels=c3, stride=2)
19 ResidualBlock(channels=c2, skip connection from Layer 6)
20 ResidualBlock(channels=c2, skip connection from Layer 5)
21 ResidualBlock(channels=c1, skip connection from Layer 4)
22 TransposeConvolution(kernel size=4, channels=c3, stride=2)
23 ResidualBlock(channels=c1, skip connection from Layer 3)
24 ResidualBlock(channels=c1, skip connection from Layer 2)
25 ResidualBlock(channels=c1, skip connection from Layer 1)
26 GroupNorm(channels=c1, groups=8)
27 GELU activation
28 Convolution(kernel size=3, channels=1, stride=1)

Appendix C.2. For the modern U-Net, we set the hidden sizes to 64, 128, 256, and 1024 on the different levels, following
Gupta & Brandstetter (2022). This gives the model a parameter count of about 55 million. Crucially, all convolutions use
circular padding in the U-Net to account for the periodic domain. Finally, we found that using an exponential moving
average (EMA) (Kingma & Ba, 2015) of the model parameters during validation and testing, as commonly used in diffusion
models (Ho et al., 2020; Karras et al., 2022) and generative adversarial networks (Yazıcı et al., 2019; Goodfellow et al.,
2014), improves performance and stabilizes the validation performance progress over training iterations across all models.
We set the decay rate of the moving average to 0.995, although it did not appear to be a sensitive hyperparameter.

Next, we discuss extra hyperparameters for each method in Figure 3 individually. The history 2 model includes earlier
time steps by concatenating u(t− 8∆t) with u(t− 4∆t) over the channel dimension. We implement the model with 4×

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 3: Hyperparameter overview for the experiments on the KS equation. Hyerparameters have been optimized for the
baseline MSE-trained model on the validation dataset, which generally worked well across all models.

Hyperparameter Value

Input Resolution 256
Number of Epochs 400
Batch size 128
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate CosineScheduler(1e-4 → 1e-6)
Weight Decay 1e-5
Time step 0.8s / 4∆t
Output factor 0.3
Network Modern U-Net (Gupta & Brandstetter, 2022)
Hidden size c1 = 64, c2 = 128, c3 = 256, c4 = 1024
Padding circular
EMA Decay 0.995

parameters by multiplying the hidden size by 2, i.e. use 128, 256, 512, and 2048. This increases the weight matrices by a
factor of 4. For the pushforward trick, we follow the public implementation of Brandstetter et al. (2022b)5 and increase the
probability of replacing the ground truth with a prediction over the first 10 epochs. Additionally, we found it beneficial
to use the EMA model weights for creating the predictions, and rolled out the model up to 3 steps. We implemented
the Markov Neural Operator following the public code6 of Li et al. (2022). We performed a hyperparameter search over
λ ∈ {0.2, 0.5, 0.8}, α ∈ {0.001, 0.01, 0.1}, k ∈ {0, 1}, for which we found λ = 0.5, α = 0.01, k = 0 to work best. The
error correction during rollout is implemented by performing an FFT on each prediction, setting the amplitude and phase for
wavenumber 0 and above 60 to zero, and mapping back to spatial domain via an inverse FFT. For the error prediction, in
which one neural operator tries to predict the error of the second operator, we scale the error back to an average standard
deviation of 1 to allow for a better output scale of the second U-Net. The DDPM Diffusion model is implemented using
the diffusers library (von Platen et al., 2022). We use a DDPM scheduler with squaredcos_cap_v2 scheduling, a beta
range of 1e-4 to 1e-1, and 1000 train time steps. During inference, we set the number of sampling steps to 16 (equally spaced
between 0 and 1000) which we found to obtain best results while being more efficient than 1000 steps. For our schedule,
we set the betas the same way as shown in the pseudocode of Appendix A. Lastly, we implement PDE-Refiner using the
diffusers library (von Platen et al., 2022) as shown in Appendix A. We choose the minimum noise variance σ2

min = 2e-7
based on a hyperparameter search on the validation, and provide an ablation study on it in Appendix C.6.

Results. We provide an overview of the results in Figure 3 as table in Table 4. Besides the high-correction time with
thresholds 0.8 and 0.9, we also report the one-step MSE error between the prediction û(t) and the ground truth solution u(t).
A general observation is that the one-step MSE is not a strong indication of the rollout performance. For example, the MSE
loss of the history 2 model is twice as low as the baseline’s loss, but performs significantly worse in rollout. Similarly, the
Ensemble has a lower one-step error than PDE-Refiner with more than 3 refinement steps, but is almost 20 seconds behind
in rollout.

As an additional metric, we visualize in Figure 11 the mean-squared error loss between predictions and ground truth during
rollout. In other words, we replace the correlation we usually measure during rollout with the MSE. While PDE-Refiner
starts out with similar losses as the baselines for the first 20 seconds, it has a significantly smaller increase in loss afterward.
This matches our frequency analysis, where only in later time steps, the non-dominant, high frequencies start to impact the
main dynamics. Since PDE-Refiner can model these frequencies in contrast to the baselines, it maintains a smaller error
accumulation.

Speed Comparison. We provide a speed comparison of an MSE-trained baseline with PDE-Refiner on the KS equation.
We time the models on generating the test trajectories (batch size 128, rollout length 640∆t) on an NVIDIA A100 GPU with
a 24 core AMD EPYC CPU. We compile the models in PyTorch 2.0 (Paszke et al., 2019), and exclude compilation and data

5https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers/
6https://github.com/neuraloperator/markov_neural_operator/

https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers/
https://github.com/neuraloperator/markov_neural_operator/

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 4: Results of Figure 3 in table form. All standard deviations are reported over 5 seeds excluding Ensemble, which
used all 5 baseline model seeds and has thus no standard deviation. Further, we include the average one-step MSE error of
each method on the test set. Notably, lower one-step MSE does not necessarily imply longer stable rollouts (e.g. History 2
versus baseline).

Method Corr. > 0.8 time Corr. > 0.9 time One-step MSE

MSE Training
Baseline 75.4 ± 1.1 66.5 ± 0.8 2.70e-08 ± 8.52e-09
History 2 61.7 ± 1.1 54.3 ± 1.8 1.50e-08 ± 1.67e-09
4× parameters 79.7 ± 0.7 71.7 ± 0.7 1.02e-08 ± 4.91e-10
Ensemble 79.7 ± 0.0 72.5 ± 0.0 5.56e-09 ± 0.00e+00

Alternative Losses
Pushforward (Brandstetter et al., 2022b) 75.4 ± 1.1 67.3 ± 1.7 2.76e-08 ± 5.68e-09
Sobolev norm k = 0 (Li et al., 2022) 71.4 ± 2.9 62.2 ± 3.9 1.33e-07 ± 8.70e-08
Sobolev norm k = 1 (Li et al., 2022) 66.9 ± 1.8 59.3 ± 1.5 1.04e-07 ± 3.28e-08
Sobolev norm k = 2 (Li et al., 2022) 8.7 ± 0.9 7.3 ± 0.5 7.84e-04 ± 9.30e-05
Markov Neural Operator (Li et al., 2022) 66.6 ± 1.0 58.5 ± 2.1 2.66e-07 ± 1.08e-07
Error correction (McGreivy & Hakim, 2023) 74.8 ± 1.1 66.2 ± 0.9 1.46e-08 ± 1.99e-09
Error Prediction 75.7 ± 0.5 67.3 ± 0.6 2.96e-08 ± 2.36e-10

Diffusion Ablations
Diffusion - Standard Scheduler (Ho et al., 2020) 75.2 ± 1.0 66.9 ± 0.7 3.06e-08 ± 5.24e-10
Diffusion - Our Scheduler 88.9 ± 1.0 79.7 ± 1.1 2.85e-09 ± 1.65e-10

PDE-Refiner
PDE-Refiner - 1 step (ours) 89.8 ± 0.4 80.6 ± 0.2 3.14e-09 ± 2.85e-10
PDE-Refiner - 2 steps (ours) 94.2 ± 0.8 84.2 ± 0.4 5.24e-09 ± 1.54e-10
PDE-Refiner - 3 steps (ours) 97.5 ± 0.5 87.0 ± 0.9 5.80e-09 ± 1.65e-09
PDE-Refiner - 4 steps (ours) 98.3 ± 0.8 87.8 ± 1.6 5.95e-09 ± 1.95e-09
PDE-Refiner - 8 steps (ours) 98.3 ± 0.1 89.0 ± 0.4 6.16e-09 ± 1.48e-09
PDE-Refiner - 3 steps mean (ours) 98.5 ± 0.8 88.6 ± 1.1 1.28e-09 ± 6.27e-11

0 20 40 60 80 100 120
Rollout Time Step in seconds

10−8

10−6

10−4

10−2

100

M
S

E
L

os
s

to
G

ro
u

n
d

T
ru

th

KS Rollout Loss

Baseline

Pushforward

Diffusion

PDE-Refiner (ours)

Figure 11: Visualizing the average MSE error over rollouts on the test set for four methods: the baseline MSE-trained model
(blue), the pushforward trick (green), the diffusion model with standard cosine scheduling (orange), and PDE-Refiner with 8
refinement steps. The markers indicate the time when the method’s average rollout correlation falls below 0.8. The y-axis
shows the logarithmic scale of the MSE error. While all models have a similar loss for the first 20 seconds, PDE-Refiner has
a much smaller increase of loss afterwards.

loading time from the runtime. The MSE model requires 2.04 seconds (±0.01), while PDE-Refiner with 3 refinement steps
takes 8.67 seconds (±0.01). In contrast, the classical solver used for data generation requires on average 47.21 seconds

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Training trajectories

0.0 13.2 26.3

Time (in seconds)

60.1

45.1

30.1

15.0

0.0

S
p
at
ia
l
d
im

en
si
on

ν=0.55

0.0 13.9 27.9

Time (in seconds)

70.1

52.6

35.0

17.5

0.0

S
p
at
ia
l
d
im

en
si
on

ν=0.84

0.0 13.1 26.2

Time (in seconds)

62.0

46.5

31.0

15.5

0.0

S
p
at
ia
l
d
im

en
si
on

ν=1.08

0.0 12.9 25.8

Time (in seconds)

69.9

52.4

34.9

17.5

0.0

S
p
at
ia
l
d
im

en
si
on

ν=1.20

0.0 14.1 28.2

Time (in seconds)

57.4

43.1

28.7

14.4

0.0

S
p
at
ia
l
d
im

en
si
on

ν=1.44

−4

−2

0

2

4

−2

0

2

−2

0

2

−2

0

2

−2

−1

0

1

2

1Test trajectories

0.0 125.3 250.7

Time (in seconds)

64.0

48.0

32.0

16.0

0.0

S
p
at
ia
l
d
im

en
si
on

ν=0.73

0.0 116.2 232.4

Time (in seconds)

68.8

51.6

34.4

17.2

0.0

S
p
at
ia
l
d
im

en
si
on

ν=1.16

−2.5

0.0

2.5

−2.5

0.0

2.5

1

Figure 12: Dataset examples of the parameter-dependent Kuramoto-Sivashinsky dataset. The viscosity is noted above each
trajectory. The training trajectories are 140 time steps, while the test trajectories are rolled out for 1140 time steps. Lower
viscosities generally create more complex, difficult trajectories.

Table 5: Results of Figure 7 in table form. All standard deviations are reported over 5 seeds.

Method Viscosity Corr. > 0.8 time Corr. > 0.9 time

MSE Training

[0.5, 0.7) 41.8± 0.4 35.6± 0.6
[0.7, 0.9) 57.7± 0.6 50.7± 1.3
[0.9, 1.1) 73.3± 2.3 66.0± 2.5
[1.1, 1.3) 88.0± 1.5 76.7± 2.2
[1.3, 1.5] 97.0± 2.7 85.5± 2.2

PDE-Refiner

[0.5, 0.7) 53.1± 0.4 46.7± 0.4
[0.7, 0.9) 71.4± 0.3 64.3± 0.6
[0.9, 1.1) 94.5± 0.6 84.9± 0.6
[1.1, 1.3) 112.2± 0.9 98.5± 1.5
[1.3, 1.5] 130.2± 1.5 116.6± 0.7

per trajectory, showing the significant speed-up of the neural surrogates. However, it should be noted that the solver is
implemented on CPU and there may exist faster solvers for the 1D Kuramoto-Sivashinsky equation.

B.2. Parameter-dependent KS dataset

Data generation. We follow the same data generation as in Appendix B.1. To integrate the viscosity ν, we multiply the
fourth derivative estimate uxxxx by ν. For each training and test trajectory, we uniformly sample ν between 0.5 and 1.5. We
show the effect of different viscosity terms in Figure 12.

Model architecture. We use the same modern U-Net as in Appendix B.1. The conditioning features consist of ∆t, ∆x,
and ν. For better representation in the sinusoidal embedding, we scale ν to the range [0, 100] before embedding it.

Hyperparameters. We reuse the same hyperparameters of Appendix B.1 except reducing the number of epochs to 250.
This is since the training dataset is twice as large as the original KS dataset, and the models converge after fewer epochs.

Results. We provide the results of Figure 7 in table form in Table 5. Overall, PDE-Refiner outperforms the MSE-trained
baseline by 25-35% across viscosities.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 6: Hyperparameter overview for the experiments on the Kolmogorov 2D flow.

Hyperparameter Value

Input Resolution 64×64
Number of Epochs 100
Batch size 32
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate CosineScheduler(1e-4 → 1e-6)
Weight Decay 1e-5
Time step 0.112s / 16∆t
Output factor 0.16
Network Modern U-Net (Gupta & Brandstetter, 2022)
Hidden size [128, 128, 256, 1024]
Padding circular
EMA Decay 0.995

B.3. 2D Kolmogorov Flow

Data Generation. We followed the data generation of Sun et al. (2023) as detailed in the publicly released code7. For
hyperparameter tuning, we additionally generate a validation set of the same size as the test data with initial seed 123.
Afterward, we remove trajectories where the ground truth solver had NaN outputs, and split the trajectories into sub-
sequences of 50 frames for efficient training. An epoch consists of iterating over all sub-sequences and sampling 5 random
initial conditions from each. All data are stored in float32 precision.

Model Architecture. We again use the modern U-Net (Gupta & Brandstetter, 2022) for PDE-Refiner and an MSE-trained
baseline, where, in comparison to the model for the KS equation, we replace 1D convolutions with 2D convolutions. Due
to the low input resolution, we experienced that the model lacked complexity on the highest feature resolution. Thus, we
increased the initial hidden size to 128, and use 4 ResNet blocks instead of 2 on this level. All other levels remain the same
as for the KS equation. This model has 157 million parameters.

The Fourier Neural Operator (Li et al., 2021) consists of 8 layers, where each layer consists of a spectral convolution with a
skip connection of a 1× 1 convolution and GELU activation (Hendrycks & Gimpel, 2016). We performed a hyperparameter
search over the number of modes and hidden size, for which we found 32 modes with hidden size 64 to perform best. This
models has 134 million parameters, roughly matching the parameter count of a U-Net. Models with larger parameter count,
e.g. hidden size 128 with 32 modes, did not show any improvements.

Hyperparameters. We summarize the chosen hyperparameters in Table 6, which were selected based on the performance
on the validation dataset. We train the models for 100 epochs with a batch size of 32. Due to the increased memory usage, we
parallelize the model over 4 GPUs with batch size 8 each. We predict every 16th time step, which showed similar performance
to models with a time step of 1, 2, 4, and 8 while being faster to roll out. All models use as objective the residual ∆u = u(t)−
u(t− 16∆t), which we normalize by dividing with its training standard deviation of 0.16. Thus, we predict the next solution
via û(t) = u(t− 16∆t) + 0.16 · NO(...). Each model is trained for 3 seeds, and the standard deviation is reported in Table 1.

Results. We include example trajectories and corresponding predictions by PDE-Refiner in Figure 13. PDE-Refiner is able
to maintain accurate predictions for more than 11 seconds for many trajectories.

Speed Comparison. All models are run on the same hardware, namely an NVIDIA A100 GPU with 80GB memory and an
24 core AMD EPYC CPU. For the hybrid solvers, we use the public implementation in JAX (Bradbury et al., 2018) by Sun
et al. (2023); Kochkov et al. (2021). For the U-Nets, we use PyTorch 2.0 (Paszke et al., 2019). All models are compiled in
their respective frameworks, and we exclude the compilation and time to load the data from the runtime. We measure the
speed of each model 5 times, and report the mean and standard deviation in Section 4.3.

7https://github.com/Edward-Sun/TSM-PDE/blob/main/data_generation.md

https://github.com/Edward-Sun/TSM-PDE/blob/main/data_generation.md

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Ground Truth
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

−10

0

10

−10

0

10

−10

0

10

−10

0

10

−10

0

10

1
PDE-Refiner

t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

−10

0

10

−10

0

10

−10

0

10

−10

0

10

−10

0

10

1

Ground Truth
t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

−10

0

10

−10

0

10

−10

0

10

−10

0

10

−10

0

10

1
PDE-Refiner

t = 0.00s t = 3.48s t = 7.07s t = 10.66s t = 14.25s

−10

0

10

−10

0

10

−10

0

10

−10

0

10

−10

0

10

1Figure 13: Visualizing the vorticity of three example test trajectories of the 2D Kolmogorov flow, with corresponding
predictions of PDE-Refiner. PDE-Refiner remains stable for more than 10 seconds, making on minor errors at 10.66 seconds.
Moreover, many structures at 14 seconds are still similar to the ground truth.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Basel
ine

Hist
ory

2

4x paramete
rs

Ensem
ble

Pushforw
ard

Sobolev
k =

0

Sobolev
k =

1
MNO

Erro
r Corre

cti
on

Erro
r Pred

ict
ion

1 ste
p

2 ste
ps

3 ste
ps

4 ste
ps

8 ste
ps

3 ste
ps - Mean

Cosin
e Schedule

Our Schedule
50

60

70

80

90

100

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

High-Correlation Rollout Times of FNOs on the Kuramoto-Sivashinsky equation

MSE Training

Alternative Losses

PDE-Refiner (Ours)

Diffusion Ablations

73.6s

67.3s

73.5s

80.6s

72.3s 70.6s 69.0s

75.9s
73.9s 73.6s

80.9s
83.7s 85.4s 85.3s 85.3s 85.4s

71.9s

80.6s

Figure 14: Experimental results of Fourier Neural Operators on the Kuramoto-Sivashinsky equation. All methods from
Figure 3 are included here. FNOs achieve similar results as the U-Nets for the baselines. For PDE-Refiner and Diffusion,
FNOs still outperforms the baselines, but with a smaller gain than the U-Nets due to the noise objective.

C. Supplementary Experimental Results
In this section, we provide additional experimental results on the Kuramoto-Sivashinsky equation and the 2D Kolmogorov
flow. Specifically, we experiment with Fourier Neural Operators as an alternative to our deployed U-Nets. We provide
ablation studies on the predicted step size, the history information, and the minimum noise variance in PDE-Refiner on the
KS equation. For the Kolmogorov flow, we provide the same frequency analysis as done for the KS equation in the main
paper. Finally, we investigate the stability of the neural surrogates for very long rollouts of 800 seconds.

C.1. Fourier Neural Operator

Fourier Neural Operators (FNOs) (Li et al., 2021) are a popular alternative to U-Nets for neural operator architectures. To
show that the general trend of our results in Section 4.1 are architecture-invariant, we repeat all experiments of Figure 3 with
FNOs. The FNO consists of 8 layers, where each layer consists of a spectral convolution with a skip connection of a 1× 1
convolution and a GELU activation (Hendrycks & Gimpel, 2016). Each spectral convolution uses the first 32 modes, and
we provide closer discussion on the impact of modes in Figure 15. We use a hidden size of 256, which leads to the model
having about 40 million parameters, roughly matching the parameter count of the used U-Nets.

MSE Training. We show the results for all methods in Figure 14. The MSE-trained FNO baseline achieves with 73.6s a
similar rollout time as the U-Net (75.4s). Again, using more history information decreases rollout performance. Giving the
model more complexity by increasing the parameter count to 160 million did not show any improvement. Still, the ensemble
of 5 MSE-trained models obtains a 7-second gain over the individual models, slightly outperforming the U-Nets for this case.

Alternative Losses. The pushforward trick, the error correction and the error predictions again cannot improve over the
baseline. While using the Sobolev norm losses decrease performance also for FNOs, using the regularizers of the Markov
Neural Operator is able to provide small gains. This is in line with the experiments of Li et al. (2022), in which the MNO
was originally proposed for Fourier Neural Operators. Still, the gain is limited to 3%.

PDE-Refiner. With FNOs, PDE-Refiner again outperforms all baselines when using more than 1 refinement step. The
gains again flatten for more than 3 steps. However, in comparisons to the U-Nets with up to 98.5s accurate rollout time, the
performance increase is significantly smaller. In general, we find that FNOs obtain higher training losses for smaller noise
values than U-Nets, indicating the modeling of high-frequent noise in PDE-Refiner’s refinement objective to be the main
issue. U-Nets are more flexible in that regard, since they use spatial convolutions. Still, the results show that PDE-Refiner is
applicable to a multitude of neural operator architectures.

Diffusion Ablations. Confirming the issue of the noise objective for FNOs, the diffusion models with standard cosine
scheduling obtain slightly worse results than the baseline. Using our exponential noise scheduler again improves performance
to the level of the one-step PDE-Refiner.

Number of Fourier Modes. A hyperparameter in Fourier Neural Operators is the number of Fourier modes that are

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

8 16 32 64 128 32 64
Number of Modes in FNO

40

60

80

100

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

High-Correlation Rollout Times over Number of Fourier Modes

MSE Training PDE-Refiner (Ours)

44.0s

71.4s 73.6s 74.4s 73.5s

85.4s 84.4s

Figure 15: Investigating the impact of the choosing the number of modes in FNOs. Similar to our analysis on the resolution
in the U-Nets (Figure 3), we only see minor improvements of using higher frequencies above 16 in the MSE training.
Removing dominant frequencies above 8 significantly decreases performance. Similarly, increasing the modes of FNOs in
PDE-Refiner has minor impact.

0.2s 0.4s 0.8s 1.6s 3.2s 6.4s 12.8s 0.2s 0.4s 0.8s 1.6s
Predicted Time Step N∆t

40

60

80

100

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

High-Correlation Rollout Times over Predicted Step Size

MSE Training PDE-Refiner (Ours)

77.5s 77.2s 75.4s
71.4s

66.1s
61.2s

38.7s

99.2s 99.2s 97.5s 95.6s

Figure 16: Comparing the accurate rollout times over the step size at which the neural operator predicts. This is a multiple
of the time step ∆t used for data generation (for KS on average 0.2s). For both the MSE Training and PDE-Refiner, lower
step size provides longer stable rollouts, where very large time steps show a significant loss in accuracy. This motivates the
need for autoregressive neural PDE solvers over direct, long-horizon predictions.

considered in the spectral convolutions. Any higher frequency is ignored and must be modeled via the residual 1 × 1
convolutions. To investigate the impact of the number of Fourier modes, we repeat the baseline experiments of MSE-trained
FNOs with 8, 16, 32, 64, and 128 modes in Figure 15. To ensure a fair comparison, we adjust the hidden size to maintain
equal number of parameters across models. In general, we find that the high-correlation time is relatively stable for 32 to
128 modes. Using 16 modes slightly decreases performance, while limiting the layers to 8 modes results in significantly
worse rollouts. Similarly, we also apply a 64 mode FNOs for PDE-Refiner. Again, the performance does not increase for
higher number of modes.

C.2. Step Size Comparison

A key advantage of Neural PDE solvers is their flexibility to be applied to various step sizes of the PDEs. The larger the step
size is, the faster the solver will be. At the same time, larger step sizes may be harder to predict. To compare the effect of error
propagation in an autoregressive solver with training a model to predict large time steps, we repeat the baseline experiments
of the U-Net neural operator on the KS equation with different step sizes. The default step size that was used in Figure 3 is 4-
times the original solver step, being on average 0.8s. For any step size below 2s, we model the residual objective ∆u = u(t)−
u(t−∆t), which we found to generally work better in this range. For any step size above, we directly predict the solution u(t).

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 2 4 6 8 10 12 14
Rollout Time Step in seconds

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

M
S

E
L

os
s

to
G

ro
u

n
d

T
ru

th

KS Rollout Loss over Predicted Step Size

1∆t = 0.2s

2∆t = 0.4s

4∆t = 0.8s

8∆t = 1.6s

16∆t = 3.2s

32∆t = 6.4s

64∆t = 12.8s

Figure 17: Visualizing the MSE error of MSE-trained models with varying step sizes over the rollout. The models with a step
size of 1∆t, 2∆t, and 4∆t all obtain similar performance. For 8∆t, the one-step MSE loss is already considerably higher
than, e.g. rolling out the step size 1∆t model 8 times. For larger time steps, this gap increases further, again highlighting the
strengths of autoregressive solvers.

High-Correlation Time. We plot the results step sizes between 0.2s and 12.8s in Figure 16. We find that the smaller the
step size, the longer the model remains accurate. The performance also decreases faster for very large time steps. This
is because the models start to overfit on the training data and have difficulties learning the actual dynamics of the PDE.
Meanwhile, very small time steps do not suffer from autoregressive error propagation any more than slightly larger time
steps, while generalizing well. This highlights again the strength of autoregressive neural PDE solvers. We confirm this
trend by training PDE-Refiner with different step sizes while using 3 refinement steps. We again find that smaller time steps
achieve higher performance, and we obtain worse rollout times for larger time steps.

MSE Loss over Rollout. To further gain insights of the impact of different step sizes, we plot in Figure 17 the MSE
loss to the ground truth when rolling out the MSE-trained models over time. Models with larger time steps require fewer
autoregressive steps to predict long-term into the future, preventing any autoregressive error accumulation for the first step.
Intuitively, the error increases over time for all models, since the errors accumulate over time and cause the model to diverge.
The models with step sizes 0.2s, 0.4s and 0.8s all achieve very similar losses across the whole time horizon. This motivates
our choice for 0.8s as default time step, since it provides a 4 times speedup in comparison to the 0.2s model. Meanwhile,
already a model trained with step size 1.6s performs considerable worse in its one-step prediction than a model with step
size 0.2s rolled out 8 times. The gap increases further the larger the time step becomes. Therefore, directly predicting large
time steps in neural PDE solvers is not practical and autoregressive solvers provide significant advantages.

C.3. History Information

In our experiments on the KS equation, we have observed that using more history information as input decreases the
rollout performance. Specifically, we have used a neural operator that took as input the past two time steps, u(t−∆t) and
u(t− 2∆t). To confirm this trend, we repeat the experiments with a longer history of 4 past time steps and for models with a
smaller step size of 0.2s in Figure 18. Again, we find that the more history information we use as input, the worse the rollouts
become. Furthermore, the impact becomes larger for small time steps, indicating that the autoregressive error propagation
becomes a larger issue when using history information. The problem arising is that the difference between the inputs
u(t−∆t)− u(t− 2∆t) is highly correlated with the model’s target ∆u(t), the residual of the next time step. The smaller
the time step, the larger the correlation. This leads the neural operator to focus on modeling the second-order difference
∆u(t)−∆u(t− 2∆t). As observed in classical solvers (Iserles, 2009), using higher-order differences within an explicit
autoregressive scheme is known to deteriorate the rollout stability and introduce exponentially increasing errors over time.

We also confirm this exponential increase of error by plotting the MSE error over rollouts in Figure 19. While the history
information improves the one-step prediction by a factor of 10, the error of the history 2 and 4 models quickly surpasses the

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

History 1 History 2 History 4 History 1 History 2 History 4

Number of conditioning time steps / history

40

50

60

70

80

90

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

High-Correlation Rollout Times over Input History

Time step 4∆t = 0.8s Time step ∆t = 0.2s

75.4s

61.7s

56.7s

77.5s

52.5s

47.9s

Figure 18: Investigating the impact of using more history / past time steps in the neural operators, i.e., û(t) = NO(u(t−
∆t), u(t− 2∆t), ...), for ∆t = 0.8 and ∆t = 0.2. Longer histories decrease the model’s accurate rollout time. This drop in
performance is even more significant for smaller time steps.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Rollout Time Step in seconds

10−11

10−10

10−9

10−8

10−7

10−6

10−5

M
S

E
L

os
s

to
G

ro
u

n
d

T
ru

th

KS Rollout Loss over Input History

History 1

History 2

History 4

0 20 40 60 80 100
Rollout Time Step in seconds

10−9

10−7

10−5

10−3

10−1
M

S
E

L
os

s
to

G
ro

u
n

d
T

ru
th

KS Rollout Loss over Input History

History 1

History 2

History 4

Figure 19: Comparing models conditioned on different number of past time steps on their MSE loss over rollouts. Note the
log-scale on the y-axis. The markers indicate the time when the average correlation of the respective model drops below 0.8.
The left plot shows a zoomed-in version of the first 4 seconds of the whole 100 second rollout on the right. While using
more history information gives an advantage for the first ∼5 steps, the error propagates significantly faster through the
models. This leads to a significantly higher loss over rollout.

error of the history 1 model. After that, the error of the models continue to increase quickly, leading to an earlier divergence.

C.4. Uncertainty Estimation

We extend our discussion on the uncertainty estimation of Section 4.1 by comparing PDE-Refiner to two common baselines
for uncertainty estimation of temporal forecasting: Input Modulation (Bowler, 2006; Scher & Messori, 2021) and Model
Ensemble (Lakshminarayanan et al., 2017; Scher & Messori, 2021). Input Modulation adds small random Gaussian noise
to the initial condition u(0), and rolls out the model on several samples. Similar to PDE-Refiner, one can determine the
uncertainty by measuring the cross-correlation between the rollouts. A Model Ensemble compares the predicted trajectories
of several independently trained models. For the case here, we use 4 trained models. For both baselines, we estimate the
uncertainty of MSE-trained models as usually applied.

We evaluate the R2 coefficient of determination and the Pearson correlation between the estimated stable rollout times and
the ground truth rollout times in Table 7. We additionally show qualitative results in Figure 20. PDE-Refiner’s uncertainty
estimate outperforms the Input Modulation approach, showing that Gaussian noise does not fully capture the uncertainty
distribution. While performing slightly worse than using a full Model Ensemble, PDE-Refiner has the major advantage that

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 7: Comparing the uncertainty estimate of PDE-Refiner to Input Modulation (Bowler, 2006; Scher & Messori, 2021)
and Model Ensemble (Lakshminarayanan et al., 2017; Scher & Messori, 2021) on the MSE-trained models. The metrics
show the correlation between the estimated and actual accurate rollout time in terms of the R2 coefficient of determination
and the Pearson correlation. PDE-Refiner provides more accurate uncertainty estimates than Input Modulation while being
more efficient than an Model Ensemble.

Method R2 coefficient Pearson correlation

PDE-Refiner 0.857 ± 0.027 0.934 ± 0.014
Input Modulation (Bowler, 2006; Scher & Messori, 2021) 0.820 ± 0.081 0.912 ± 0.021
Model Ensemble (Lakshminarayanan et al., 2017; Scher & Messori, 2021) 0.887 ± 0.012 0.965 ± 0.007

60 80 100 120 140

Cross-correlation time (in seconds)

60

80

100

120

140

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

Linear fit

Trajectories

(a) PDE-Refiner (Ours)

40 60 80 100 120 140
Cross-correlation time (in seconds)

40

60

80

100

120

140
Co

rre
la

tio
n

tim
e

(in
 se

co
nd

s)
Linear fit
Trajectories

(b) Input Modulation

40 60 80 100 120
Cross-correlation time (in seconds)

40

60

80

100

120

Co
rre

la
tio

n
tim

e
(in

 se
co

nd
s)

Linear fit
Trajectories

(c) Model Ensemble

Figure 20: Qualitative comparison between the uncertainty estimates of PDE-Refiner, Input Modulation, and the Model
Ensemble. Both PDE-Refiner and the Model Ensemble achieve an accurate match between the estimated and ground truth
rollout times.

0 25 50 75 100 125
Wavenumber

10−7

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Samples

0 25 50 75 100 125
Wavenumber

10−7

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Differences

Std between samples

Difference to ground truth

Figure 21: Investigating the spread of samples of PDE-Refiner. The left plot shows the frequency spectrum of 16 samples
(each line represents a different sample), with the right plot showing the average difference to the ground truth and to the
mean of the samples. The deviation of the samples closely matches the average error, showing that PDE-Refiner adapts its
samples to the learned error over frequencies.

it only needs to be trained, which is particularly relevant in large-scale experiments like weather modeling where training a
model can be very costly.

To investigate the improvement of PDE-Refiner over Input Modulation, we plot the standard deviation over samples in
PDE-Refiner in Figure 21. The samples of PDE-Refiner closely differs in the same distribution as the actual loss to the
ground truth, showing that PDE-Refiner accurately models its predictive uncertainty.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 10 20 30
Wavenumber

10−4

10−3

10−2

10−1

100

101

102

A
m

p
li

tu
d

e

Channel 0

0 10 20 30
Wavenumber

10−4

10−3

10−2

10−1

100

101

102

A
m

p
li

tu
d

e

Channel 1
Ground Truth

PDE-Refiner - Samples

PDE-Refiner - Errors

MSE Training - Samples

MSE Training - Errors

Frequency Spectrum on the Kolmogorov Flow

Figure 22: Frequency spectrum on the Kolmogorov Flow. The two plots show the two channels of the Kolmogorov flow.
Since the data has a much more uniform support over frequencies than the KS equation, both the MSE-trained model and
PDE-Refiner model the ground truth very accurately. Thus, the Ground Truth (blue), PDE-Refiner’s prediction (orange) and
the MSE-trained prediction (red) overlap in both plots. Plotting the error reveals that PDE-Refiner provides small gains
across all frequencies.

0 10 20 30
Wavenumber

10−4

10−3

10−2

10−1

100

101

102

A
m

p
li

tu
d

e

Channel 0

0 10 20 30
Wavenumber

10−4

10−3

10−2

10−1

100

101

102

A
m

p
li

tu
d

e

Channel 1
Ground Truth

Initial Prediction

Refinement step 1

Refinement step 2

Refinement step 3

MSE Training - Errors

Frequency Spectrum of Intermediate Samples on the Kolmogorov Flow

Figure 23: Frequency spectrum of intermediate samples in the refinement process of PDE-Refiner, similar to Figure 4 for
the KS equation. The refinement process improves the prediction of the model step-by-step. For the last refinement step, we
actually see minor improvements for the lowest frequencies of channel 0. However, due to flatter frequency spectrum, the
high frequencies do not improve as much as on the KS equation.

C.5. Frequency Analysis for 2D Kolmogorov Flow

We repeat the frequency analysis that we have performed on the KS equation in the main paper, e.g. Figure 4, on the
Kolmogorov dataset here. Note that we apply a 2D Discrete Fourier Transform and show the average frequency spectrum.
We perform this over the two channels of u(t) independently. Figure 22 shows the frequency spectrum for the ground truth
data, as well as the predictions of PDE-Refiner and the MSE-trained U-Net. In contrast to the KS equation, the spectrum
is much flatter, having an amplitude of still almost 1 at wavenumber 32. In comparison, the KS equation has a more than
10 times as small amplitude for this wavenumber. Further, since the resolution is only 64× 64, higher modes cannot be
modeled, which, as seen on the KS equation, would increase the benefit of PDE-Refiner. This leads to both PDE-Refiner and
the MSE-trained baseline to model all frequencies accurately. The slightly higher loss for higher frequencies on channel 0 is
likely due to missing high-frequency information, i.e., larger resolution, that would be needed to estimate the frequencies
more accurately. Still, we find that PDE-Refiner improves upon the MSE-trained model on all frequencies.

In Figure 23, we additionally plot the predictions of PDE-Refiner at different refinement steps. Similar to the KS equation,
PDE-Refiner improves its prediction step by step. However, it is apparent that no clear bias towards the high frequencies

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

1e-7 2e-7 4e-7 1e-6 4e-6 1e-5 4e-5 1e-4

Minimum Noise Variance σ2
min

50

60

70

80

90

100

110

120

H
ig

h
-c

or
re

la
ti

on
ti

m
e

(i
n

se
co

n
d

s)

High-Correlation Rollout Times over Minimum Noise Variance

PDE-Refiner (Ours)

98.0s 97.5s 98.0s 98.5s
93.2s

88.9s 88.3s 87.5s

Figure 24: Plotting performance of PDE-Refiner over different values of the minimum noise variance σ2
min. Each PDE-

Refiner is robust to small changes of σ2
min, showing an equal performance in the range of

[
10−7, 10−6

]
. Higher standard

deviations start to decrease the performance, confirming our analysis of later refinement steps focusing on low-amplitude
information. For the experiments in Section 4.1, we have selected σ2

min =2e-7 based on the validation dataset.

occur in the last time step, since the error is rather uniform across all frequencies. Finally, the last refinement step only
provides minor gains, indicating that PDE-Refiner with 2 refinement steps would have likely been sufficient.

C.6. Minimum Noise Variance in PDE-Refiner

Besides the number of refinement step, PDE-Refiner has as a second hyperparameter the minimum noise variance σ2
min, i.e.,

the variance of the added noise in the last refinement step. The noise variance determines the different amplitude levels at
which PDE-Refiner improves the prediction. To show how sensitive PDE-Refiner is to different values of σ2

min, we repeat the
experiments of PDE-Refiner on the KS equation while varying σ2

min. The results in Figure 24 show that PDE-Refiner is
robust to small changes of σ2

min and there exist a larger band of values where it performs equally well. When increasing the
variance further, the performance starts to decrease since the noise is too high to model the lowest amplitude information.
Note that the results on Figure 24 show the performance on the test set, while the hyperparameter selection, in which we
selected σ2

min = 2e-7, was done on the validation set.

In combination with the hyperparameter of the number of refinement steps, to which PDE-Refiner showed to also be robust
if more than 3 steps is chosen, PDE-Refiner is not very sensitive to the newly introduced hyperparameters and values in a
larger range can be considered.

C.7. Stability of Very Long Rollouts

Besides accurate rollouts, another important aspect of neural PDE solvers is their stability. This refers to the solvers staying in
the solution domain and not generating physically unrealistic results. To evaluate whether our solvers remain stable for a long
time, we roll out an MSE-trained baseline and PDE-Refiner for 1000 autoregressive prediction steps, which corresponds to
800 seconds simulation time. We then perform a frequency analysis and plot the spectra in Figure 25. We compare the spectra
to the ground truth initial condition, to have a reference point of common frequency spectra of solutions on the KS equation.

For the MSE-trained baseline, we find that the high frequencies, that are generally overestimated by the model, accumulate
over time. Still, the model maintains a frequency spectrum close to the ground truth for wavenumbers below 40. PDE-
Refiner maintains an accurate frequency spectrum for more than 500 steps, but suffers from overestimating the very high
frequencies in very long rollouts. This is likely due to the iterative adding of Gaussian noise, that accumulates high-frequency
errors. Further, the U-Net has a limited receptive field such that the model cannot estimate the highest frequencies properly.
With larger architectures, this may be preventable.

However, a simpler alternative is to correct the predictions for known invariances, as done in McGreivy & Hakim (2023).
We use the same setup as for Figure 3 by setting the highest frequencies to zero. This stabilizes PDE-Refiner, maintaining
a very accurate estimation of the frequency spectrum even at 800 seconds. The MSE-trained model yet suffers from an
overestimation of the high-frequencies.

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 0.80s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 100.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 400.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 800.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

(a) 1 step (b) 125 steps (c) 500 steps (d) 1000 steps

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 0.80s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101
A

m
p

li
tu

d
e

Spectrum of Predictions at 100.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 400.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

0 25 50 75 100 125
Wavenumber

10−5

10−3

10−1

101

A
m

p
li
tu

d
e

Spectrum of Predictions at 800.00s

Ground Truth

PDE-Refiner (Ours)

MSE Training

(e) 1 step (f) 125 steps (g) 500 steps (h) 1000 steps

Figure 25: Evaluating PDE solver stability over very long rollouts (800 seconds, corresponding to 1000 autoregressive
prediction steps). (a-d) The frequency spectrum of predictions of an MSE-trained model and PDE-Refiner. Over time, the
MSE baseline’s overestimation of the high frequencies accumulates. In comparison, PDE-Refiner shows to have an increase
of extremely high frequencies, which is likely caused by the continuous adding of Gaussian noise. (e-h) When we apply
the error correction (McGreivy & Hakim, 2023) on our models by setting all frequencies above 60 to zero, PDE-Refiner
remains stable even for 1000 steps and does not diverge from the ground truth frequency spectrum.

In summary, the models we consider here are stable for much longer than they remain accurate to the ground truth. Further,
with a simple error correction, PDE-Refiner can keep up stable predictions for more than 1000 autoregressive rollout steps.

