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Abstract
In this paper, we address the challenges of automatic metadata annotation in the domain
of Galleries, Libraries, Archives, and Museums (GLAMs) by introducing a novel dataset,
EUFCC-340K, collected from the Europeana portal. Comprising over 340,000 images, the
EUFCC-340K dataset is organized across multiple facets – Materials, Object Types, Dis-
ciplines, and Subjects – following a hierarchical structure based on the Art & Architecture
Thesaurus (AAT). We developed several baseline models, incorporating multiple heads on
a ConvNeXT backbone for multi-label image tagging on these facets, and fine-tuning a
CLIP model with our image-text pairs. Our experiments to evaluate model robustness and
generalization capabilities in two different test scenarios demonstrate the dataset’s utility in
improving multi-label classification tools that have the potential to alleviate cataloging tasks
in the cultural heritage sector. The EUFCC-340K dataset is publicly available at https://
github.com/cesc47/EUFCC-340K.
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1 Introduction

GLAMs (Galleries, Libraries, Archives, and Museums) are institutions that compile and
maintain collections of diverse cultural heritage assets in the public interest. Their main
functions are to preserve assets with cultural and historical value and make them available
to researchers and the broader public alike. However, the traditional framework for asset
cataloging within GLAMs relies heavily on manual metadata annotation, a complex and
labor-intensive process undertaken by expert professionals adhering to stringent standards.
This method, while effective, presents challenges to scalability and efficiency.

The motivation behind our work lies in the recognition of these challenges and the need
for innovative solutions. We aim to develop advanced tools that streamline the cataloging
workflowandmake a step forward in the use of artificial intelligence to helpGLAMcataloging
experts in the inventory process for cultural heritage collections.

To this end we take an image tagging perspective. Image tagging consists of automatically
assigning a list of tags (or category labels) to a given cultural asset’s image, referring to words
that describe its visual content and/or cultural context. This is a multi-label classification task
in which an image usually belongs to more than one class (i.e. class labels are not mutually
exclusive).

However, using state-of-the-art neural networks for automatic metadata annotation in the
GLAM domain comes with its own set of challenges. First, the number of categories we need
to consider can be very large – for example, theGetty Research Institute’s “Art&Architecture
Thesaurus”1 has more than 165, 000 terms – and the number of training examples for most
of them can be very small (long tail) [1, 2]. On the other hand, the problem of incomplete
annotations or missing labels is caused by the fact that two human annotators may consider
different subsets of labels relevant for the same image even though both annotations may be
equally valid [3].

To address these challenges, we have created a novel dataset specifically tailored for image
tagging in theGLAMdomain. Our dataset, namedEUFCC-340K (Europeana Facets Creative
Commons), was collected from the Europeana portal,2 which aggregates a diverse range of
GLAM European institutions, encompassing galleries, libraries, archives, and museums.
EUFCC-340K comprises a total of 383, 695 images of a rich variety of cultural heritage
assets, including artworks, sculptures, numismatics artifacts, textiles and costumes, andmore,
reflecting the diverse nature of collections within GLAM institutions. As illustrated in Fig. 1
each image in the dataset is accompanied bymanual annotations provided by domain experts,
capturing a wide spectrum of descriptive tags.

In addition to the rich visual content of the images, the annotations provided for each
image follow a structured framework consisting of several key facets. These facets include
Materials, Object Types, Disciplines, and Subjects, each representing distinct aspects of the
cultural heritage assets depicted in the images. Importantly, the terms used for annotation
within each facet adhere to a hierarchical organization provided by the “Art & Architecture
Thesaurus” (AAT). The Art & Architecture Thesaurus (AAT) [4] is a multilingual thesaurus
widely recognized for its broad coverage of terminology relevant to the GLAM domain,
particularly for describing Object Types, Materials, and other domain-specific attributes. In
the context of Europeana and the LinkedOpenData community, AAThas long been one of the
reference vocabularies for enriching cultural heritage metadata.3 In this way, we leverage the

1 https://www.getty.edu/research/tools/vocabularies/aat/
2 http://www.europeana.eu
3 Europeana enriches its data with the Art and Architecture Thesaurus
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Fig. 1 Sample records from the EUFCC-340K dataset. Each image in the dataset is annotated across different
facets of the Getty “Art & Architecture Thesaurus” (Some nodes are omitted for visualization purposes in this
figure)

domain knowledge encapsulated within the thesaurus, thereby enhancing the interpretability
and utility of our dataset.

The hierarchical structure of the dataset annotations provides inherent advantages in mit-
igating challenges associated with sparse training data for certain categories in the long-tail,
particularly those situated at the leaf nodes of the hierarchy. Thanks to the hierarchical orga-
nization, the dataset facilitates more robust predictions for broader categories at higher levels
of the hierarchy, even when training data for specific subcategories may be limited. This
characteristic not only enhances the applicability of the dataset in real-world use cases but
also contributes to the effectiveness of machine learning models in handling the long tail
distribution of metadata annotations within the GLAM domain.

To evaluate the effectiveness of our dataset and to benchmark the performance of multi-
label classification models in the GLAM domain, we also have developed a set of baselines
tailored to address themultifaceted nature of this task. Our approach extends a state-of-the-art
image classification architecture by augmenting them with multiple heads, each dedicated to
classifying images based on a distinct facet within our annotation framework. Specifically,
we append separate multi-label heads to the end of the model, with each head corresponding
to one of the facets:Materials, Object Types, Disciplines, and Subjects. This design allows the
model to simultaneously predict multiple labels across different facets, capturing the diverse
visual and contextual characteristics of cultural heritage assets represented in our dataset.
By evaluating these baselines, we aim to establish a basis for assessing the performance of
image tagging algorithms in the GLAM domain and to provide insights into the challenges
and opportunities inherent in automatic metadata annotation within this domain.

The rest of this paper is organized as follows. Section 2 provides an overview of
related work, particularly focusing on research related to hierarchical image classification. In
Section 3, we present a detailed description of the EUFCC-340K dataset, including its collec-
tion process, annotation framework, and characteristics.We discuss the design of the baseline
models in Section 4, and also describe our architecture and implementation. In Section 5 we
report on our experimental setup and results, evaluating the performance of the proposed
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baselines on our dataset, and proposing an assistant tool for GLAM cataloguers. We con-
clude in Section 6 with a summary of our findings and discussion of possible future research.

2 Related work

TinyImages [5] was one of the earliest attempts to create a vast and varied hierarchical
dataset for computer vision, containing 80 million 32x32 low-resolution images collected
from the internet by querying every word in the WordNet [6] hierarchy. However, the dataset
was limited by its low resolution and the noise inherent in its uncurated collection process.
Following TinyImages, the ImageNet [7, 8] dataset was also organized according to the
WordNet hierarchy, offering over 14 million manually verified and high-resolution images
categorized into more than 20,000 synsets (WordNet nodes). The dataset provides image-
level annotation of a binary label indicating the presence or absence of an object class in
the image. A smaller dataset for benchmarking computer vision hierarchical classification
models was proposed by Seo et al. [9], by restructuring the Fashion-MNIST dataset [10] into
a simple three-level balanced hierarchy to classify fashion items.

The large-scale Open Images [11] dataset for object detection provides 15M bounding
box annotations that are created according to a semantic hierarchy of classes. The evaluation
protocol measures Average Precision (AP) for leaf classes in the hierarchy as normally, while
the AP for non-leaf classes AP is computed involving all its ground-truth object instances
and all instances of its subclasses.

Hierarchical data also emerges inherently in more specific domains, such as animal or
plant classification. The iNaturalist dataset [12, 13] for large-scale species classification
also offers a hierarchical organization, albeit with a simpler two-level hierarchy consisting
of superclasses (“Insects”, “Fungi”, “Plants”, etc.) and finer classes. On the other hand,
the Herbarium 2021 Half-Earth Challenge Dataset [14] for species recognition features a
challenging real-world image classification task. The dataset includes more than 2.5 million
images of vascular plant specimens representing 64,500 taxonomic labels. In addition to
labels for species-level and below, labels at higher levels in the taxonomic hierarchy are also
included (family and order).

Diverging from prior works, our EUFCC-340K dataset is specifically designed tomeet the
unique challenges of Galleries, Libraries, Archives, and Museums (GLAMs) in cataloging
cultural heritage assets. The hierarchical structure of the “Art & Architecture Thesaurus”
(AAT) offers a domain-specific framework far beyond the capabilities of general-purpose
datasets like ImageNet. Moreover, its multi-faceted hierarchy – spanning Materials, Object
Types, Disciplines, and Subjects – goes beyond object recognition and includes annotations
formaterials fromwhich objects aremade. This not only involves recognizing the object itself
but also understanding the materials, which presents a considerably more complex challenge.

3 The EUFCC-340K dataset

The EUFCC-340K dataset was compiled using the REST API provided by the Europeana
portal,4 a central repository for cultural heritage collections across Europe. Europeana aggre-
gates a diverse array of cultural artifacts, multimedia content, and traditional records from
numerous European institutions, offering a rich bed of resources for academic and research
purposes. The platform’s comprehensive metadata for each item, detailing various attributes

4 https://pro.europeana.eu/page/apis
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and historical contexts, provides a unique opportunity for in-depth analysis and application
in computer vision.

The hierarchical labeling structure of theEUFCC-340Kdataset is derived fromand aligned
with the Getty “Art & Architecture Thesaurus (AAT)” with the help of domain experts.
The Getty AAT is a continually evolving vocabulary, designed to support the cataloging,
research, and documentation of art, architecture, and other cultural material. Its structured
hierarchy enables the detailed classification of concepts and objects and reflects the complex
relationships and attributes inherent in the cultural heritage domain. Figure 2 illustrates the
description and hierarchical position of the AAT term “Numismatics” according to the AAT
Online search tool.

Keyword searches and filtering Initial data collection involved performing keyword
searches for the broad “Collections” categories, such as “Furniture”, “Tool”, “Costume”,
among others. Results were filtered to include only entries with available thumbnails and
tagged with “Reusability: Open,” ensuring that the dataset comprises images suitable for
open research and application. We intentionally excluded categories such as “Photography”
and “Painting” from the primary dataset to avoid the complexities introduced by the over-
lap of content and form descriptions in artistic representations. Such items were considered
separately to maintain the dataset’s focus.

Mapping Europeana concepts to Getty AAT In the context of the Europeana portal, the
vocabulary terms used in metadata descriptions are represented with URIs referencing exact
terms in other public controlled vocabularies such as AAT, Wikidata,5 or the Library of
Congress Subject Headings.6 For each record retrieved, we extracted all the “concepts” with
URIs referencing terms from theAAT thesaurus.We also collected the concepts automatically
assigned by Europeana, provided they already had a declared or explicit alignment with
AAT terms. For instance, the Europeana concept http://api.europeana.eu/entity/concept/46.
json (Musical Instrument) explicitly aligns with the AAT term http://vocab.getty.edu/aat/
300041620, as indicated by the “exactMatch” field in the metadata shown below:

Listing 1 Excerpt from Europeana Concept “Musical Instrument” JSON data. This example illustrates how
Europeana concepts are explicitly aligned with AAT terms using the “exactMatch” field.

{
"id": "http :// data.europeana.eu/concept /46",
"type": "Concept",
"prefLabel": {

"en": "Musical instrument"
},
"exactMatch": [

"http :// vocab.getty.edu/aat /300041620",
"http :// www.wikidata.org/entity/Q34379",
"http ://id.loc.gov/ontologies/bibframe/MusicInstrument

"
],
"note": {

"en": "Device created or adapted to make musical
sounds"

}
}

5 https://www.wikidata.org
6 https://id.loc.gov/authorities/subjects.html
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Fig. 2 Description and hierarchical position of the AAT term “Numismatics” according to the AAT Online
search tool

All collected concepts were assigned to one of our four attributes—Materials, Object
Types, Disciplines, and Subjects—based on their hierarchical inheritance in the Getty AAT
thesaurus. Specifically:

• Concepts under the “Materials Facet” were assigned to the Materials attribute.
• Concepts under the “Objects Facet” were assigned to the Object Types attribute.
• Concepts under the branch <visual works by subject type> were assigned
to the Subjects attribute.

• Concepts under the “Disciplines (hierarchy name)” were assigned to the Disciplines
attribute.

Terms that did not belong to any of these branches were excluded from the dataset. This
mapping process relied heavily on the hierarchical structure of Getty AAT, which provides
clear semantic relationships for organizing terms. To simplify the structure, guide terms
(enclosed in angled brackets) have been omitted from the hierarchy. In the AAT, guide terms
are non-indexing descriptors used solely to group narrower terms for organizational purposes.
They function as structural nodes that ensure logical grouping within the hierarchy, such as
<styles, periods, and cultures by region>, but do not represent standalone concepts.

Linking all records to the same hierarchical structure following uniform rules provided a
framework for organizing the dataset’s labels, which facilitated the representation of complex
relationships and attributes inherent in cultural heritage objects, andwas critical for translating
Europeana’s diverse and rich metadata into a structured format aligned with Getty AAT’s
vocabulary.

Manual curation and quality assurance Despite the automated processes involved in data
collection and mapping, manual curation plays an important role in ensuring the dataset’s
quality. The collected data was uploaded into a content management system with filtering
and visualization capabilities, which facilitated a systematic review by domain experts. These
experts checked for minimal coherence in concept usage across different data providers and
identified terms that did not accurately describe the object represented in the image but
rather referred to contextual features related to the object’s provenance. Ambiguously used
concepts were flagged for review, and in some cases, removed. Additionally, subsets of
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the dataset containing inconsistencies or significant noise were removed to improve overall
dataset reliability.

This manual intervention, though challenging, was crucial for maintaining the dataset’s
integrity and relevance to the GLAM domain. While the curation process was not exhaustive
at the individual record level, the corrections and refinements significantly reduced noise and
ensured a higher degree of consistency in the dataset’s metadata. Still, we acknowledge that
noisy annotations might still exist in specific categories.

Data provider information Each record was also annotated with information about the data
provider, which, while not always directly corresponding to a single museum, offers insights
into the source institution.

In total, our dataset consists of 346, 324 annotated images gathered from a total of 358 data
providers. The contribution from these providers varies significantly, with some contributing
as few as a single item, while others offer extensive inventories, including up to 40, 000
items. Figure 3, shows the items’ distribution for the 30 most frequent data providers within
the dataset.

Figure 4 illustrates the number of tags (class labels) per image and the overall frequency
distribution of tags. Based on insights from this analysis, we introduced an additional filter
to ensure a minimum of 10 images per tag. Furthermore, we excluded a specific museum,
“Mobilier National,” from the dataset due to an excessive number of tags per image, some
of which were inaccurately labeled.

The number of unique tags for each facet is 33, 910, 8, and 276 for the “Classifications”,
“Object Types”, “Subjects”, and “Materials” respectively. It is worth noting the dataset items’
are sometimes partially annotated, i.e., not all images contain labels for all facets. Concretely,
we have 78, 948 image annotations with one facet, 215, 196 with two facets, 51, 734 with
three facets, and 446 with four facets. Moreover, in some instances, tag labels are assigned
only up to a specific node in the hierarchy without necessarily reaching a leaf node. This
reflects a practical and realistic use case,where not every imageneeds to be labeled down to the
finest level of detail. Figures 1 and 5 illustrate several examples of the EUFCC-340K dataset.

To further illustrate the complex structure of our dataset, Fig. 6 provides a sunburst
chart diagram visualizing the “Materials” facet hierarchy. This representation highlights
the semantic richness and the multi-level nature of some hierarchies within our dataset. The
diagram clearly shows the relationship between different levels of the hierarchy, from the

Fig. 3 Items’ distribution for the 30 most frequent data providers within the EUFCC-340K dataset
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Fig. 4 EUFCC-340K statistics: tag count and tag length variation per image

central root node outwards to the child nodes, underscoring how data is distributed across
various levels. This visualization not only aids in understanding the hierarchical relationships
but also showcases the depth and breadth of possible annotations within the dataset.

Dataset splits Within the dataset, we have designated two distinct subsets to serve as the
test data, collectively representing approximately 10% of the EUFCC-340K dataset. One
subset is identified as theOutter test set, and the other as the Inner test set. The Outer test set
aims to challenge the model with data that may differ significantly from the majority of the
training dataset. To measure the divergence between image subsets’ distributions, we utilized
the Frechet Inception Distance (FID) [15], a widely used metric for assessing the similarity
between two distributions of images. FID calculates this similarity by comparing the mean
and covariance of features extracted from a pre-trained Inception v3 CNN model [16]. The
features correspond to high-level representations of the images, capturing semantic content
rather than pixel-level differences. The FID score is computed as:

dF (N (μ,�),N (μ′, �′))2 = ‖μ − μ′‖22 + tr

(
� + �′ − 2

(
��′) 1

2

)
(1)

where μ and � are the mean and covariance of the feature embeddings from one image
distribution, and μ′ and �′ are those from another. Intuitively, FID quantifies how close the
distributions of features are in a high-dimensional space. Lower FID scores indicate greater
similarity between the two distributions, while higher scores suggest greater dissimilarity.

In ourwork, FID serves as a tool for identifying subsets of data that deviate from the overall
dataset distribution. This allows us to detect potential subsets that challenge the model by
exposing it to data distributions that differ from the training data. The metric’s sensitivity to
both mean shifts and covariance differences makes it especially effective for this purpose.

Therefore, we have carefully selected two data providers that account for 2% to 5% of
the total data for the outer set. The first data provider in the Outer Test Set is chosen based
on maximizing the FID with the entire dataset, ensuring that the image types are diverse and
not exclusively from a single category (e.g., stamps). The second data provider in the Outer
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Fig. 5 Sample records from the EUFCC-340K dataset. Each image in the dataset is annotated across different
facets’ hierarchies of the Getty “Art & Architecture Thesaurus”. Some nodes were omitted for visualization
purposes
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Fig. 6 Sunburst chart diagram visualization of the “Materials” facet hierarchy. The circle in the centre rep-
resents the root node, with the hierarchy expanding outwards from the center. It shows how the outer rings
(child nodes) relate to the inner rings (parent nodes in the hierarchy), and how data is distributed across nodes

test set was selected as the one with FID to the first. The data providers conforming to the
Outer test set are: “The Portable Antiquities Scheme” and “PMR Maeyaert”.

For the Inner Test Set, we adhered to a balanced selection criterion, aiming for a 33%
allocation of images for testing, with minimum thresholds set for each tag category (at least
5 images for classifications, object types, and materials, and 20 for subjects). This strategy
ensures a diverse and representative sample of the dataset’s breadth. Figure 7 illustrates the
split of the training and the Inner Test Set, highlighting themethodological constraints applied
to achieve balance and diversity. Although our dataset features tags with varying frequencies,
our split strategy occasionally results in minor data distribution peaks, as depicted in the
figure. The validation set, constituting another 10% of the dataset, is derived using similar
criteria, with the remainder allocated for training. The whole dataset and official splits are
made publicly available.7

7 https://github.com/cesc47/EUFCC-340K.
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Fig. 7 EUFC-340K dataset split for the training set and Inner test set

4 Baselinemethods

In this section, we introduce the baseline models that we use to benchmark performance on
the proposed EUFCC-340K dataset for image tagging in the GLAM domain.We employ two
distinct types of baseline models: vision-only models that leverage a state-of-the-art CNN
architecture for image classification, and a state-of-the-art multi-modal model that projects
visual and textual modalities into a shared common feature space. For each model, we detail
their architecture and training strategies in the following subsections.

4.1 CNN-based visionmodels

Our vision-only baselines extend a state-of-the-art image classification CNN backbone, the
ConvNeXTbase model [17], by incorporating multiple classification heads. Each head is ded-
icated to one of the EUFCC-340K facets: Materials, Object Types, Disciplines, and Subjects.
This multi-head setup enables the model to perform multi-label classification across various
facets simultaneously. During training, we compute a separate loss for each classification
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head, which allows specialized tuning of the model’s ability to distinguish between class
labels within each facet. This section details the various approaches and loss calculation
methods used for each baseline within the vision-only architecture.

4.1.1 Multi-label classification

In this baseline, each output neuron in each of the heads has an individual sigmoid activation
function (σ(x) = 1

1+e−x ) that can be independently activated, allowing the model to predict
the presence or absence of each tag individually. In other words, each output is a binary
classifier that predicts whether each tag is activated (present) or not for the input image.
Figure 8 illustrates the outputs of a multi-label head with 19 outputs, each output corresponds
to a node in a given tag hierarchy with three levels, such as the node labeled as “0” is the
parent of nodes {“00”, “01”, “02”}, and so on. The network is trained with Binary Cross
Entropy (BCE) loss: l(y, ŷ) = y · log(ŷ) + (1 − y) · log(1 − ŷ).

4.1.2 Softmax classification

In this baseline, we follow prior works [18, 19] that suggest that softmax classification can
be very effective in multi-label settings with large numbers of classes. Softmax classification
heads, as illustrated in Fig. 9, are the default choice for multi-class classification problems
(where a given input belongs only to one single class), as the softmax output can be interpreted
as a probability distribution over classes. In our context, the use of a softmax head in a
multi-label setting involves the random selection of one tag from each attribute during the
training phase and applying the cross-entropy loss function: H(Y , Ŷ ) = −∑N

i=1 Yi log(Ŷi ).
At inference time, the predicted tags are sorted in descending order of probability.

4.1.3 Hierarchical softmax

The baseline models described thus far do not account for the hierarchy among class labels.
They simplify (flatten) the class hierarchy, treating each output neuron either as an indepen-
dent classifier in amulti-label setup or as part of amulti-classmodel that predicts a probability
distribution over classes using a softmax output. In contrast, the Hierarchical Softmax base-
line incorporates the class hierarchy into the labeling process. This approach provides context
and structure, enabling the model to label images with multiple levels of granularity. We fol-
low prior works [20] with the difference that we have several tagging heads instead of one.
To perform classification with one of the hierarchical facets of the EUFCC-340K dataset
we predict conditional probabilities at every node for the probability of each child node of

Fig. 8 An illustrative example depicting a multi-label classification head. Each output neuron behaves as a
binary classifier for one label within a given hierarchy where the node labeled as “0” is the parent of nodes
{“00”, “01”, “02”}, and so on
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Fig. 9 Softmax classification head. The softmax output can be interpreted as a probability distribution over
classes

a parent node given that parent node. As illustrated in Fig. 10 training this model involves
computing a cross-entropy loss at every node that is relevant for a given input. For example,
if a given input has the term “122” in its ground truth annotations the losses CERoot , CE1,
and CE12 must be calculated and backpropagated, as depicted in Fig. 11.

Our hierarchical softmax models make use of weighted cross-entropy losses (assigning
higherweights tominority classes and lowerweights tomajority classes) to facilitate unbiased
training. Furthermore, in the experimental section, we also evaluate a modified version of
the hierarchical softmax loss, where the loss is calculated per level instead of at individual
tree nodes. This approach is adopted to prevent an emphasis on predictions that consistently
follow a single-label path and to encourage a more diverse set of predictions.

4.2 Multi-modal baselines

Our multi-modal baselines involve fine-tuning a pre-trained CLIP model [21] using image-
text pairs. The CLIP (Contrastive Language-Image Pre-training) model is designed to
understand and generate representations that link textual and visual information, making
it ideal for tasks that involve correlating images with descriptive texts. In our context, the text
modality comprises all labels of a given image for a given facet, posing the challenge of effec-
tively integrating them into a single text prompt. To address this, we explore diverse strategies
for constructing text prompts, including: (1) using all raw tags separated by commas, (2) using
a randomly selected single tag per prompt (similar to our approach in the softmax baseline),
and (3) experimenting with template prompts tailored to distinct attributes by integrating

Fig. 10 An illustrative tree representation featuring a hierarchical softmax head, highlighting the specific
nodes where cross-entropy (CE) losses might be computed
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Fig. 11 An illustrative tree diagram demonstrating the computation of the loss function of a given input that
is annotated with the term “122” in its ground-truth

relevant tags for each image. For enhanced clarity, consider the “Materials” facet, where
the ground truth annotations for a given image might be “metal”, “non-ferrous metal”, and
“bronze”. The paired text for this image, depending on the chosen strategy, could be: (1)
“metal, non-ferrous metal, bronze”, (2) one of “metal”, “non-ferrous
metal”, or “bronze”, or (3) “an image of an object made of<TAG>”where
<TAG> is a placeholder that can be substituted by any of the tags in the ground-truth. In the
next section, we will compare the results of several CLIP baselines fine-tuned using all these
prompt engineering strategies.

4.3 Ensemble classifier

Ensemble methods are learning algorithms designed to improve predictive performance by
combining the outputs of multiple models. Instead of relying on a single model, ensembles
leverage the diversity among multiple models to reduce errors and enhance robustness [22].
Ensembles often outperform individual models because the various errors of the ensemble
constituents “average out,” leading to improved generalization. This process is particularly
useful for reducing the impact of overfitting by any single model.

Ensemble averaging is one of themost common techniques used in this context. It involves
creating multiple models and averaging their outputs (e.g., class probabilities) to produce the
final prediction. For an ensemble of E models and C classes, the predicted probability p̂c for
class c is calculated as: p̂c = 1

E

∑E
i=1 p

(i)
c , where p(i)

c is the predicted probability for class
c from the i-th model in the ensemble.

In our experiments, we employed an ensemble strategy that integrates outputs from mul-
tiple models with complementary strengths. Specifically, we combine predictions from: the
multi-label classification model (using sigmoid activations), the softmax-based classifica-
tion model – which provides a probability distribution across mutually exclusive classes, and
(optionally) the CLIPmodel, which aligns image-text embeddings and produces a probability
distribution over the class set.

During inference, the ensemble integrates these outputs by normalizing the sigmoid prob-
abilities to ensure compatibility with the sotmax-based model. The overall prediction is then
computed by aggregating the contributions from these models. When the CLIP model is
included, its softmax probability distribution is also integrated into the ensemble.
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5 Experiments

In this section, we first present the proposed evaluation framework for the EUFCC-340K
dataset, then we give the implementation details for training all baseline models discussed
in Section 4. Finally, we present and discuss the results obtained with all evaluated models,
and present a tool designed to assist human expert annotators.

5.1 Evaluationmetrics

Image tagging models are evaluated based on their ability to predict, for a given image, the
relevance of each tag in the vocabulary, akin to creating a list of tags sorted by their predicted
relevance. Then the model performance is measured using information retrieval metrics such
asmeanAverage Precision (mAP).WhilemAP iswidely used due to its ability to capture both
precision and recall, it becomes less effective in datasets like EUFCC-430K where there is a
high variability in the number of relevant tags across different images (see Fig. 4). Such vari-
ability can lead to inconsistent evaluations, asmAPmay disproportionately favor querieswith
fewer relevant items or penalize those with more, due to its integrated recall component. To
provide a more stable and meaningful evaluation, we have selected alternative metrics better
suited to our dataset. We use R-Precision, Accuracy@K, and Average Rank Position, which
focus on the precise assessment of how accurately tags are assigned without being affected
by the variable number of tags per image. These metrics provide clear insights into both the
precision of the tag assignments and the overall ranking quality of the model’s outputs.

R-Precision assesses image tagging effectiveness by considering the precision of the top R
tags, where R is the number of relevant tags known for a specific image. Formally:

R-Precision = 1

N

N∑
i=1

ri
Ri

, (2)

where N is the total number of images in the test set, Ri is the number of relevant tags for
the i-th image according to the ground-truth, and ri is the number of correct tags among the
top Ri tags returned by the system. Note that this measure is equivalent to both precision
and recall at the Rth

i position. In practical terms, if there are R tags relevant to an image,
R-Precision looks at the top R tags returned by the system, counts how many of them are
relevant (r ), and calculates the ratio.

Accuracy@k assesses the performance of the model by measuring how often at least one of
the ground- truth tags appears in the k highest-ranked predictions:

Acc@k = 1

N

N∑
i=1

1[GTi ∩ top-Ki ], (3)

where 1[GTi ∩ top-Ki ] takes the value 1 or 0 depending if at least one of the ground-truth
tags (GT) is present in the top-K model predictions or not. In our experiments, we evaluate
accuracy at k = 1 and k = 10.

Average rank position determines the average position of the ground truth labels in the
output list, providing a quantitative measure of how well the model’s predictions align
with the true ranking. A lower AvgRankPos value indicates better performance. Formally,
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AvgRankPos is defined as follows:

AvgRankPos = 1

N

N∑
i=1

Ri∑
j=1

Posi, j
Ri

, (4)

where Ri is the number of relevant tags for the i-th image according to the ground-truth, and
Posi, j is the ranking position of j-th tag for the i-th image.

5.2 Implementation details

Vision models All baselines were trained using the default pre-trained weights (from Ima-
geNet) with four NVIDIA A40 GPUs, with a batch size of 128, and optimized using the
AdamW optimizer, weight decay was set to 0.05, and a learning rate of 1e-4 during 25
epochs. The learning rate was scheduled using the cosine annealing strategy. The training
process incorporated simple data augmentations: a random resized crop of 224 and a random
horizontal flip. In addition, repeated augmentation sampling8 (RA-Sampler) was used. Each
training lasted 12 hours approximately.

Multi-modalmodels All baselines were trained with four NVIDIAA40 GPUs, with a batch
size of 64, during 100 epochs, and utilizing a learning rate of 3 × 10−5. Beta1 and beta2
parameters of Adam optimizer were configured at 0.9 and 0.99, respectively, accompanied by
an epsilon value of 10−8 and a weight decay of 0.1. Other specifications included a warm-up
period of 500 steps, gradient clipping with a norm of 1, and the adoption of the ViT-B-16
model architecture pre-trained on the WIT dataset [21]. The duration of fine-tuning varied
based on the model’s design-ranging from 3 to 7 days approximately-depending on whether
it divided tags (resulting in a slower training process with more instances) or worked with
all tags from an image collectively.

5.3 Automatic metadata annotation results

Tables 1 and 2 present the results of all baseline models for the Inner and Outer test sets
respectively. We provide results for all baselines defined in Section 4 –Multi-label, Softmax,
Hierarchical Softmax (H-Softmax), and CLIPmodels with different prompting strategies (all
tags, one tag, and one tag with template prompt) – using all metrics described in Section 5.1.
For the Multi-label baselines, we provide also results for a multi-label model trained with
a single head (“Materials” facet). For the Softmax baselines, we provide two variants: one
trained with cross-entropy loss (Softmax), and another with weighted cross-entropy loss
(WCE). For the hierarchical softmax models, we provide results of two variants in which
losses are calculated at the node level and the tree depth level respectively. For the CLIP
model, we also provide results in a zero-shot setting, without any fine-tuning. Finally, we
provide results for two ensembles that combine the outputs of themulti-modal (ML), softmax
(S), and CLIP models.

In Table 1 we appreciate several key insights. First, the multi-label baseline with a single
head –Multi-label (M) – performs almost equally as themulti-head (Multi-label)model on the
“Materials” facet. This validates our approach of extending the CNN backbone with multiple
heads. Second, the Softmax baseline outperforms all other individual vision models, with

8 https://github.com/facebookresearch/deit/blob/main/samplers.py
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the Multi-label baseline performing competitively. Third, all fine-tuned multi-modal CLIP
models outperform the zero-shot CLIP model. Among them, the CLIP model trained with
template prompts has an overall better performance but is below the Softmax baseline in
most cases. Finally, we appreciate that the ensemble methods provide an overall extra boost
in all facets and metrics as expected.

In Table 2 we appreciate that the results on the Outer test set are lower in general than in
the Inner set. This was expected, as the Outer test set is designed to challenge the model with
data that differs from the training set (see Section 3 for details). In this setting, we appreciate
that the results of CLIPmodels slightly outperform those of the visual models, demonstrating
superior generalization. It is worth noting that in certain cases a tag label may be present
in the Outer test set even though it was not included during the model’s training phase,
simply because it did not appear in our training dataset. In such cases, we choose to ignore
this tag when calculating the evaluation metrics, as it falls outside the model’s scope. The
ensemble method performs poorly on the Outer test set because it averages the predictions of
the multi-label and softmax methods, both of which exhibit significantly worse performance
than the CLIP model in this scenario. Since averaging treats all contributing models equally,
the ensemble’s predictions are negatively influenced by the weaker baselines, introducing
errors that the CLIP model alone would not make.

Finally, Table 3 summarizes the results of Tables 1 and 2 by showing the mean value of
each metric across all facets. The key insights we extract from this summary are as follows:
(1) vision-only models perform better in the Inner test set, while CLIP-based models perform
better in the Outer test set; and (2) model ensembles that combine the outputs of both visual-
only and multi-modal baselines provide a balanced performance across both test scenarios,
at the cost of an increased computation cost.

Overall, while our models are far from achieving perfect annotation capabilities – espe-
cially on challenging edge cases– they provide significant value in assisting expert catalogers.
By guiding them towards broader categories within the class hierarchy, these models enable
experts to concentrate on manual annotation of the finer details, thereby alleviating the need
for exhaustive scrutiny of the entire hierarchy. We further explore this idea with the design
of the annotation assistant tool presented in Section 5.5.

5.4 Qualitative results

In Fig. 12, we present the qualitative outcomes for two selected images obtained using
our top-performing model, which is an ensemble of the methods (ML+S+CLIP) explained
earlier. Correct predictions are highlighted in green, predictions that, while not annotated in
the ground truth but reasonable, are highlighted in orange, and irrelevant tags are highlighted
in red. It is worth noting that the model exhibits consistency in its predictions, although
ambiguities occur more often than not at the annotation level. For instance, in the right
image, the prediction of the “portrait” tag for the “Subject” facet is reasonable, but not part of
the ground-truth annotations of this image. This illustrates the difficulty in evaluating image
tagging models for real-world applications.

5.5 An annotation assistant tool for GLAM cataloguers

To further explore the practical application of our models in real-world settings, we have
developed an annotation assistant tool specifically designed for GLAM cataloguers. This
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Fig. 12 Qualitative outcomes of the top-performing baseline on two sample images. Top-K model predictions
are colored to indicate correct, incorrect, and plausible tags

tool is engineered to leverage the strengths of the ensemble model (ML+S+CLIP), providing
an intuitive and interactive interface for image annotation tasks.

The core functionality of the tool is to present the hierarchical tag structure for each facet
involved in the cataloguing process. Upon uploading an image, the tool dynamically updates
the tree hierarchies based on the predictions from the ensemble model. Notably, it highlights
the nodes within the top 10 predictions for each facet, guiding cataloguers to the most likely
categories at various granularity levels. This feature is crucial, as it allows users to visually
explore different branches of the class hierarchy efficiently, thereby facilitating a focused
review of the relevant categories.

Figure 13 shows a screenshot of the tool in action. The image depicts how the tree hierar-
chies are displayed alongside the uploaded image, with the top predictions highlighted. This
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Fig. 13 Annotation Assistant Tool Interface. This screenshot displays the tool’s functionality where the hier-
archical class structure for each facet is shown alongside an uploaded image. The top 10 predictions are
highlighted (based on their relevance score) within the hierarchies, enabling GLAM catalogers to explore
various classification branches and focus on detailed annotations. Notice that branches without a highlighted
relevant child can still be explored by expanding them with a mouse click on the + symbol. Note: tag labels
are shown in Catalan because it is the language of the catalogers that have been testing the tool

visualization not only aids in quick navigation through the class hierarchy but also helps in
understanding the model’s reasoning process, making it a valuable resource for cataloguers.

The tool addresses specific pain points in themuseum cataloguing process, where the sheer
volume of images and the complexity of hierarchical classification can be overwhelming. By
streamlining the initial stages of annotation, the tool allows cataloguers to bypass exhaustive
manual review of every possible category, instead focusing on refining predictions made by
the ensemble model. This approach significantly reduces the time and effort required for
cataloguing, enabling museum professionals to allocate more time to contextual analysis and
domain-specific expertise.

Furthermore, the tool’s hierarchical visualizations provide cataloguers with a clear under-
standing of the relationships between predicted tags, aiding decision-making and ensuring
consistency across annotations. For example, in multi-label scenarios, the tool helps to iden-
tify related categories that might otherwise be missed, such as linking an object’s material
and object type. These features make the tool particularly valuable for large-scale annotation
projects, where efficiency is critical in order to reduce the annotation costs.

The utility of the tool has been validated by domain experts, who noted its potential to
enhance productivity and support consistent metadata generation in museum workflows. By
aligning advanced machine learning methods with the practical needs of GLAM profession-
als, this tool demonstrates the real-world applicability of our approach.

6 Conclusion

Our study into automatic metadata annotation for GLAM institutions reveals the significant
potential of the EUFCC-340K dataset to enhance cataloging efficiency. By leveraging a
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hierarchical annotation system, our approach addresses the long-tail distribution challenge
and incomplete annotations common in cultural heritage assets. Experimental results confirm
the efficacy of our baseline models, particularly when using an ensemble method. Although
the performance on the Outer test set indicates challenges in generalization, our study lays a
foundational framework for future research aimed at further improving annotation aid tools
in the GLAM domain. In hopes of fostering further research within the community, we have
made the EUFCC-340K dataset publicly available at https://github.com/cesc47/EUFCC-
340K.9 10
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