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Abstract
Modern advancements in large-scale machine learning would be impossible without the paradigm of
data-parallel distributed computing. Since distributed computing with large-scale models imparts
excessive pressure on communication channels, significant recent research has been directed toward
co-designing communication compression strategies and training algorithms with the goal of reduc-
ing communication costs. While pure data parallelism allows better data scaling, it suffers from
poor model scaling properties. Indeed, compute nodes are severely limited by memory constraints,
preventing further increases in model size. For this reason, the latest achievements in training
giant neural network models also rely on some form of model parallelism. In this work, we take
a closer theoretical look at Independent Subnetwork Training (IST), which is a recently proposed
and highly effective technique for solving the aforementioned problems. We identify fundamental
differences between IST and alternative approaches, such as distributed methods with compressed
communication, and provide a precise analysis of its optimization performance on a quadratic model.

1. Introduction

A huge part of today’s machine learning success is driven by the possibility of building more and
more complex models and training them on increasingly larger datasets. This rapid progress has
become feasible due to advancements in distributed optimization, which is necessary for proper
scaling when the size of the training data grows [52]. In a typical scenario, data parallelism is used
for efficiency and implies sharding the dataset across computing devices. This allowed very efficient
scaling and acceleration of training moderately sized models by using additional hardware [19].
However, this data parallel approach can suffer from communication bottleneck, which has sparked
extensive research on distributed optimization with compressed communication of the parameters
between nodes [3, 27, 39].

The need for model parallelism. Despite its efficiency, data parallelism has some fundamental
limitations when it comes to scaling up the model size. As the dimensions of a model increase,
the amount of memory required to store and update the parameters also increases, which becomes
problematic due to resource constraints on individual devices. This has led to the development
of model parallelism [11, 37], which splits a large model across multiple nodes, with each node
responsible for computations of parts of the model [15, 49]. However, naive model parallelism also
poses challenges because each node can only update its portion of the model based on the data it
has access to. This creates a need for very careful management of communication between devices.
Thus, a combination of both data and model parallelism is often necessary to achieve efficient and
scalable training of huge models.
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Independent Subnetwork Training (IST) is a technique that suggests dividing a neural network
into smaller subparts, training them in a distributed parallel fashion, and then aggregating the results
to update the weights of the whole model. In IST, every subnetwork can operate independently and
has fewer parameters than the full model, which not only reduces the load on computing nodes but
also results in faster synchronization. Described method is formalized in Algorithm 1. This paradigm
was pioneered by Yuan et al. [47] for networks with fully connected layers and was later extended
to ResNets [13] and Graph architectures [45]. Previous experimental studies have shown that IST
is a very promising approach for various applications as it allows to effectively combine data and
model parallelism and train larger models with limited compute. In addition, Liao and Kyrillidis [28]
performed theoretical analysis of IST for overparameterized single hidden layer neural networks with
ReLU activations. The idea of IST was also extended to the federated setting via an asynchronous
distributed dropout technique [14].

Federated Learning [22, 27, 31] is another important setting when the data is distributed (due
to privacy reasons). In this scenario, computing devices are often heterogeneous and more resource-
constrained [5] (e.g. mobile phones) in comparison to data-center settings. Such challenges have
prompted extensive research efforts into selecting smaller and more efficient submodels for local
on-device training [2, 6, 8, 12, 20, 21, 29, 35, 44, 46]. Many of these works propose approaches to
adapt submodels, often tailored to specific neural network architectures, based on the capabilities
of individual clients for various machine learning tasks. However, there is a lack of comprehension
regarding the theoretical properties of these methods.

Summary of contributions. After reviewing the literature, we identified a glaring gap in the
rigorous understanding of IST convergence, directly motivating our research. The main contributions
of this paper include: • A novel approach to analyzing distributed methods that combine data and
model parallelism by operating with sparse submodels for a quadratic model. • The first analysis of
independent subnetwork training in homogeneous and heterogeneous scenarios without restrictive
assumptions on gradient estimators. • Identification of the settings when IST can optimize very
efficiently or not converge to the optimal solution but only to an irreducible neighborhood that is also
tightly characterized. • Experimental validation of the proposed theory through carefully designed
illustrative experiments. The results, together with all the proofs, are given in the Appendix.

2. Formalism and setup

We consider the standard optimization formulation of a distributed/federated learning problem [43]

min
x∈Rd

[
f(x) := 1

n

∑n
i=1 fi(x)

]
, (1)

where n is the number of clients/workers, and each fi : Rd → R represents the loss of the model
parameterized by vector x ∈ Rd on the data of client i. A typical Stochastic Gradient Descent
(SGD)-type method for solving this problem has the form

xk+1 = xk − γgk, gk = 1
n

∑n
i=1 g

k
i , (2)

where γ > 0 is the stepsize and gki is a suitably constructed estimator of ∇fi(x
k). In the distributed

setting, computation of gradient estimators gki is typically performed by clients, and the results
are sent to the server, which subsequently performs aggregation via averaging gk = 1

n

∑n
i=1 g

k
i .

The average is then used to update the model xk+1 via a gradient-type method (2), and at the next
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iteration, the model is broadcasted back to the clients. The process is repeated iteratively until a
suitable model is found.

One of the main techniques used to accelerate distributed training is lossy communication com-
pression [3, 27, 39], which suggests applying a (possibly randomized) lossy compression mapping C
to a vector/matrix/tensor x before broadcasting. This reduces the bits sent per communication round
at the cost of transmitting a less accurate estimate C(x) of x. Described technique can be formalized
in the following definition.

Definition 1 (Unbiased compressor) A randomized mapping C : Rd → Rd is an unbiased com-
pression operator (C ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd

E [C(x)] = x, E
[
∥C(x)− x∥2

]
≤ ω∥x∥2. (3)

A notable example of a mapping from this class is the random sparsification (Rand-q for q ∈ [d] :=
{1, . . . , d}) operator defined by

CRand-q(x) := Cqx = d
q

∑
i∈S eie

⊤
i x, (4)

where e1, . . . , ed ∈ Rd are standard unit basis vectors, and S is a random subset of [d] sampled from
the uniform distribution on the all subsets of [d] with cardinality q. Rand-q belongs to U (d/q − 1),
which means that the more elements are “dropped” (lower q), the higher the variance ω of the
compressor.

In this work, we are mainly interested in a somewhat more general class of operators than mere
sparsifiers. In particular, we are interested in compressing via the application of random matrices, i.e.,
via sketching. A sketch Ck

i ∈ Rd×d can be used to represent submodel computations in the following
way: gki := Ck

i∇fi(C
k
i x

k), where we require Ck
i to be a symmetric positive semi-definite matrix.

Such gradient estimates correspond to computing the local gradient with respect to a sparse submodel
Ck

i x
k, and additionally sketching the resulting gradient with the same matrix Ck

i to guarantee that
the resulting update lies in the lower-dimensional subspace. Using this notion, IST algorithm (with
one local gradient step) can be represented in the following form:

xk+1 = 1
n

∑n
i=1

[
Ck

i x
k − γCk

i∇fi(C
k
i x

k)
]
, (5)

which is equivalent to the SGD-type update (2) when the perfect reconstruction property holds
Ck := 1

n

∑n
i=1C

k
i = I (with probability one), where I is the identity matrix. This property is

inherent for a specific class of compressors that are particularly useful for capturing the concept of
an independent subnetwork partition.

Definition 2 (Permutation sketch) Assume that d ≥ n and d = qn, where q ≥ 1 is an integer1.
Let π = (π1, . . . , πd) be a random permutation of [d]. Then for all i ∈ [n], we define Perm-q

Ci := n ·
∑qi

j=q(i−1)+1 eπje
⊤
πj
. (6)

Perm-q is unbiased and can be conveniently used for representing a structured decomposition of
the model, such that every client i is responsible for computations over a submodel Cix

k.
Our convergence analysis relies on the assumption that was previously used for coordinate

descent-type methods.

1. While this condition may look restrictive, it naturally holds for distributed learning in a data-center setting. Permutation
sparsifiers were introduced by [41] and generalized to other scenarios (like n ≥ d).
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Assumption 1 (Matrix smoothness) A differentiable function f : Rd → R is L-smooth, if there
exists a positive semi-definite matrix L ∈ Rd×d such that ∀x, h ∈ Rd

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1
2 ⟨Lh, h⟩ . (7)

A standard L-smoothness condition is obtained as a special case of (7) for L = L · I. Matrix
smoothness was previously used for designing data-dependent gradient sparsification to accelerate
optimization in communication-constrained settings [38, 42].

Issues with existing approaches. Consider the simplest gradient descent method with a compressed
model in the single-node setting:

xk+1 = xk − γ∇f(C(xk)). (8)

Algorithms belonging to this family require a different analysis in comparison to SGD [16, 18],
Distributed Compressed Gradient Descent [3, 26], and Randomized Coordinate Descent [34, 36]-type
methods because the gradient estimator is no longer unbiased

E [∇f(C(x))] ̸= ∇f(x) = E [C(∇f(x))] . (9)

This is why such kind of algorithms (8) are harder to analyze. So, prior results for unbiased SGD
[24] cannot be directly reused. Furthermore, the nature of the bias in this type of gradient estimator
does not exhibit additive noise, thereby preventing the application of previous analyses for biased
SGD [1].

An assumption like the bounded stochastic gradient norm extensively used in previous works
[30, 50] hinders an accurate understanding of such methods. This assumption hides the fundamental
difficulty of analyzing a biased gradient estimator:

E
[
∥∇f(C(x))∥2

]
≤ G (10)

and may not hold, even for quadratic functions f(x) = x⊤Ax. In addition, in the distributed setting,
such a condition can result in vacuous bounds [25] as it does not capture heterogeneity accurately.

Simplifications taken. To conduct a thorough theoretical analysis of methods that combine data
with model parallelism, we simplify the algorithm and problem setting to isolate the unique effects
of this approach. The following considerations are made:

(1) We assume that every node i computes the true gradient at the submodel Ci∇fi(Cix
k).

(2) A notable difference compared to the original IST is that workers perform a single gradient
descent step (or just gradient computation).

(3) Finally, we consider a special case of a quadratic model (11) as a loss function (1).
Condition (1) is mainly for the sake of simplicity and clarity of exposition and can be potentially
generalized to stochastic gradient computations. Condition (2) is imposed because local steps did
not bring any theoretical efficiency improvements for heterogeneous settings until very recently
[32], and even then, only with the introduction of additional control variables, which goes against
the requirements of resource-constrained device settings. The reason behind (3) is that despite its
apparent simplicity, the quadratic problem has been used extensively to study properties of neural
networks [48, 51]. Moreover, it is a non-trivial model, which makes it possible to understand

4



TOWARDS A BETTER THEORETICAL UNDERSTANDING OF INDEPENDENT SUBNETWORK TRAINING

complex optimization algorithms [4, 10, 17]. The quadratic problem is suitable for observing
complex phenomena and providing theoretical insights, which can also be observed in practical
scenarios. Having said that, we consider a special case of problem (1) for symmetric matrices Li

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi . (11)

In this case, f(x) is L-smooth, and ∇f(x) = Lx− b, where L = 1
n

∑n
i=1 Li and b := 1

n

∑n
i=1 bi.

3. Main result

The gradient estimator (2) for problem (11) takes the form

gk = 1
n

n∑
i=1

Ck
i∇fi(C

k
i x

k) = 1
n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk −Cb, (12)

where Bk
:= 1

n

∑n
i=1C

k
iLiC

k
i and Cb = 1

n

∑n
i=1C

k
i bi. Assume2 n = d and the use of a modified

Perm-1 sketch, which scales the output according to the diagonal elements of the local matrix Li

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi

(13)

In this case, E
[
B

k
]
= I and E

[
Cb

]
= D̃ b/

√
n, where D̃b := 1

n

∑n
i=1D

−1/2
i bi. Furthermore,

the expected gradient estimator (12) results in E
[
gk
]
= xk − 1√

n
D̃b and can be transformed in the

following manner:

E
[
gk
]
= L

−1
Lxk ± L

−1
b− 1√

n
D̃b = L

−1∇f(xk) + h, (14)

where h := L
−1

b−D̃b/
√
n. Obtained formula reflects the decomposition of the estimator into the

optimally preconditioned true gradient and a bias, depending on terms bi. Estimator (14) can be
directly plugged (with proper conditioning) into the general SGD update (2)

E
[
xk+1

]
= (1− γ)k+1 x0 +

γ√
n
D̃b

k∑
j=0

(1− γ)j . (15)

The resulting recursion (15) is exact, and its asymptotic limit can be analyzed. Thus, for constant
γ < 1, by using the formula for the sum of the first k terms of a geometric series, one gets

E
[
xk

]
= (1− γ)k x0 +

1− (1− γ)k√
n

D̃b −→
k→∞

1√
n
D̃b,

which shows that in the limit, the first initialization term (with x0) vanishes while the second
converges to 1√

n
D̃b. This reasoning shows that the method does not converge to the exact solution

E
[
xk

]
→ x∞ ̸= x⋆ ∈ argmin

x∈Rd

{
1/2 · x⊤ Lx− x⊤ b

}
,

which for the positive-definite L can be defined as x⋆ = L
−1

b, while x∞ = 1
n
√
n

∑n
i=1D

− 1
2

i bi. So,
in general, there is an unavoidable bias. However, in the limit case: n = d → ∞, the bias diminishes.

2. This is mainly done to simplify the presentation. Generalization of the results can be found in the Appendix.
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Theorem 3 Consider the method (2) with the estimator (12) for the quadratic problem (11) with the
positive-definite matrix L ≻ 0. Assume that for every Di := Diag(Li) matrices D−1/2

i exist, scaled

permutation sketches (13) are used, and heterogeneity is bounded as E
[∥∥gk − E

[
gk
]∥∥2

L

]
≤ σ2.

Then, for the step size chosen as follows:

0 < γ ≤ γc,β := 1/2−β
β+1/2 , (16)

where γc,β ∈ (0, 1] for β ∈ (0, 1/2), the iterates satisfy

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L
−1

]
≤ 2(f(x0)−E[f(xK)])

γK +
(
2β−1 (1− γ) + γ

)
∥h∥2

L
+ γσ2, (17)

where h = L
−1

b− 1
n3/2

∑n
i=1D

− 1
2

i bi.

Note that the derived convergence upper bound has a neighborhood proportional to the bias of
the gradient estimator h and level of heterogeneity σ2. Some of these terms with factor γ can
be eliminated by decreasing the learning rate (e.g., ∼ 1/

√
k). However, such a strategy does not

diminish the term with a multiplier 2β−1 (1− γ), making the neighborhood irreducible. Moreover,
this term can be eliminated for γ = 1, which also minimizes the first term that decreases as 1/K.
However, this step size choice maximizes the terms with factor γ. Thus, there exists an inherent
trade-off between convergence speed and the size of the neighborhood.

In addition, convergence to the stationary point is measured by the weighted L
−1 squared norm

of the gradient. At the same time, the neighborhood term depends on the weighted by L norm of
h. This fine-grained decoupling is achieved by carefully applying the Fenchel-Young inequality
and provides a tighter characterization of the convergence compared to using standard Euclidean
distances.

Let us contrast the obtained result (17) with the non-convex rate of SGD [24] with constant step
size γ for L-smooth and lower-bounded f

min
0≤k≤K−1

∥∥∇f(xk)
∥∥2 ≤ 6(f(x0)−inf f)

γK + γLC, (18)

where constant C depends, for example, on the variance of the stochastic gradient estimator. Observe
that the first term in the compared upper bounds (18) and (17) is almost identical and decreases
with speed 1/K. However, unlike (17), the neighborhood for SGD can be completely eliminated by
reducing the step size γ. This highlights a fundamental difference between our results and unbiased
methods. The intuition behind this issue is that for SGD-type methods like compressed gradient
descent

xk+1 = xk − C(∇f(xk)) (19)

the gradient estimate is unbiased and enjoys the property that variance

E
[
∥C(∇f(xk))−∇f(xk)∥2

]
≤ ω∥∇f(xk)∥2 (20)

goes down to zero as the method progresses because ∇f(xk) → ∇f(x⋆) = 0 in the unconstrained
case. In addition, any stationary point x⋆ ceases to be a fixed point of the iterative procedure as

x⋆ ̸= x⋆ −∇f(C(x⋆)), (21)

in the general case, unlike for compressed gradient descent with both biased and unbiased compressors
C. Thus, even if the method—computing the gradient with a sparse model—is initialized from the
solution after one gradient step, the method may get away from the optimum.
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[27] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. NIPS
Private Multi-Party Machine Learning Workshop, 2016. (Cited on page 1, 2, and 3)

[28] Fangshuo Liao and Anastasios Kyrillidis. On the convergence of shallow neural network
training with randomly masked neurons. Transactions on Machine Learning Research, 2022.
URL https://openreview.net/forum?id=e7mYYMSyZH. (Cited on page 2 and 28)

[29] Rongmei Lin, Yonghui Xiao, Tien-Ju Yang, Ding Zhao, Li Xiong, Giovanni Motta, and
Françoise Beaufays. Federated pruning: Improving neural network efficiency with federated
learning. arXiv preprint arXiv:2209.06359, 2022. (Cited on page 2)

[30] Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model
pruning with feedback. In International Conference on Learning Representations, 2019. (Cited

on page 4)

[31] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017. (Cited on page 2)

[32] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Prox-
Skip: Yes! Local gradient steps provably lead to communication acceleration! Finally! In
International Conference on Machine Learning, pages 15750–15769. PMLR, 2022. (Cited on

page 4)

[33] Amirkeivan Mohtashami, Martin Jaggi, and Sebastian Stich. Masked training of neural networks
with partial gradients. In International Conference on Artificial Intelligence and Statistics,
pages 5876–5890. PMLR, 2022. (Cited on page 27)

[34] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012. (Cited on page 4)

9

https://doi.org/10.1561/2200000083
https://openreview.net/forum?id=AU4qHN2VkS
https://openreview.net/forum?id=AU4qHN2VkS
https://openreview.net/forum?id=e7mYYMSyZH


TOWARDS A BETTER THEORETICAL UNDERSTANDING OF INDEPENDENT SUBNETWORK TRAINING

[35] Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and
Nicholas Donald Lane. ZeroFL: Efficient on-device training for federated learning with local
sparsity. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=2sDQwC_hmnM. (Cited on page 2)
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Appendix A. Basic and auxiliary facts

L-matrix smoothness:

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩ , ∀x, h ∈ Rd. (22)

Basic Inequalities. For all vectors a, b ∈ Rd and random vector X ∈ Rd:

2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, (23)

E ∥X − a∥2 = E ∥X −EX∥2 + ∥EX − a∥2. (24)

Lemma 4 (Fenchel–Young inequality) For any function f and its convex conjugate f∗, Fenchel’s
inequality (also known as the Fenchel–Young inequality) holds for every x, y ∈ Rd

⟨x, y⟩ ≤ f(x) + f∗(y).

The proof follows from the definition of conjugate: f∗(y) := supx′ {⟨y, x′⟩ − f(x′)} ≥ ⟨y, x⟩−f(x).

In the case of a quadratic function f(x) = β∥x∥2L, we can compute f∗(y) = 1
4β

−1∥y∥2L−1 . Thus

⟨x, y⟩ ≤ β∥x∥2L +
1

4
β−1∥y∥2L−1 . (25)

Appendix B. Results in the interpolation case

A generalized analog of IST is formalized as an iterative procedure in Algorithm 1.

Algorithm 1: Distributed Submodel (Stochastic) Gradient Descent

Parameters: learning rate γ > 0; sketches C1, . . . ,Cn; initial model x0 ∈ Rd

for k = 0, 1, 2 . . . do
Select submodels wk

i = Ck
i x

k for i ∈ [n] and broadcast to all computing nodes
for i = 1, . . . , n in parallel do

Compute local (stochastic) gradient w.r.t. submodel: Ck
i∇fi(w

k
i )

Take (maybe multiple) gradient descent step z+i = wk
i − γCk

i∇fi(w
k
i )

Send z+i to the server
end
Aggregate/merge received submodels: xk+1 = 1

n

∑n
i=1 z

+
i

end

First, let us examine the case of bi ≡ 0, which we call interpolation for quadratics, and perform
the analysis for general sketches Ck

i . In this case, the gradient estimator (2) takes the form

gk = 1
n

n∑
i=1

Ck
i∇fi(C

k
i x

k) = 1
n

n∑
i=1

Ck
iLiC

k
i x

k = B
k
xk (26)

where B
k
:= 1

n

∑n
i=1C

k
iLiC

k
i . We prove the following result for a method with such an estimator.
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Theorem 5 Consider the method (2) with estimator (26) for a quadratic problem (11) with L ≻ 0

and bi ≡ 0. Then if W := 1
2E

[
LB

k
+B

k
L
]
⪰ 0 and there exists a constant θ > 0:

E
[
B

k
LB

k
]
⪯ θW, (27)

and the step size is chosen as 0 < γ ≤ 1
θ , the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L
−1

WL
−1

]
≤

2
(
f(x0)− E

[
f(xK)

])
γK

, (28)

and

E
[
∥xk − x⋆∥2

L

]
≤

(
1− γλmin

(
L
− 1

2 WL
− 1

2

))k

∥x0 − x⋆∥2
L
. (29)

This theorem establishes an O(1/K) convergence rate with a constant step size up to a stationary
point and linear convergence for the expected distance to the optimum x⋆ := argmin f(x). Note
that we employ weighted norms in our analysis, as the considered class of loss functions satisfies
the matrix L-smoothness Assumption 1. The use of standard Euclidean distance may result in loose
bounds that do not recover correct rates for special cases like gradient descent.

It is important to highlight that the inequality (27) may not hold (for any θ > 0) in the general
case as the matrix W is not guaranteed to be positive (semi-)definite in the case of general sampling.
The intuition behind this issue is that arbitrary sketches Ck

i can result in the gradient estimator gk,
which is misaligned with the true gradient ∇f(xk). Specifically, the inner product

〈
∇f(xk), gk

〉
can be negative, and there is no expected descent after one step.

Next, we give examples of samplings for which the inequality (27) can be satisfied.
1. Identity. Consider Ci ≡ I. Then B

k
= L, Bk

LB
k
= L

3
,W = L

2 ≻ 0 and hence (27) is
satisfied for θ = λmax(L). So, (28) says that if we choose γ = 1/θ, then

1

K

K−1∑
k=0

∥∥∥∇f(xk)
∥∥∥2
I
≤

2λmax(L)
(
f(x0)− f(xK)

)
K

,

which exactly matches the rate of gradient descent in the non-convex setting. As for convergence
of the iterates, the rate in (29) is λmax(L)/λmin(L) which corresponds to the precise gradient descent
result for strongly convex functions.

2. Permutation. Assume n = d and the use of Perm-1 (special case of Definition 2) sketch
Ck

i = neπk
i
e⊤
πk
i
, where πk = (πk

1 , . . . , π
k
n) is a random permutation of [n]. Then

E
[
B

k
]
=

1

n

n∑
i=1

E
[
Ck

iLiC
k
i

]
=

1

n

n∑
i=1

nDiag(Li) =

n∑
i=1

Di = nD,

where D := 1
n

∑n
i=1Di,Di := Diag(Li). Then inequality (27) leads to

nDLD ⪯ θ

2

(
LD+DL

)
, (30)

which may not always hold as LD+DL is not guaranteed to be positive-definite—even in the case
of L ≻ 0. However, such a condition can be enforced via a slight modification of the permutation
sketches, which is done in Section B.2. The limitation of such an approach is that the resulting
compressors are no longer unbiased.
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Remark 6 Matrix W in the case of permutation sketches may not be positive-definite. Consider the
following example of a homogeneous (Li ≡ L) two-dimensional problem:

L =

[
a c
c b

]
. (31)

Then

W =
1

2

[
LD+DL

]
=

[
a2 c(a+ b)/2

c(a+ b)/2 b2

]
, (32)

which for c > 2ab
a+b has det(W) < 0, and thus W ⊁ 0 according to Sylvester’s criterion.

Next, we focus on the particular case of permutation sketches, which are the most suitable for
model partitioning according to Independent Subnetwork Training (IST). In the rest of this section,
we discuss how the condition (27) can be enforced via a specially designed preconditioning of the
problem (11) or modification of the sketch mechanism (6).

B.1. Homogeneous problem preconditioning

To start, consider a homogeneous setting fi(x) =
1
2x

⊤Lx, so Li ≡ L. Now define D = Diag(L) –
a diagonal matrix with elements equal to the diagonal of L. Then, the problem can be converted to

fi(D
− 1

2x) =
1

2

(
D− 1

2x
)⊤

L
(
D− 1

2x
)
=

1

2
x⊤

(
D− 1

2LD− 1
2

)
︸ ︷︷ ︸

L̃

x, (33)

which is equivalent to the original problem after changing the variables x̃ := D− 1
2x. Note that

D = Diag(L) is positive-definite as L ≻ 0, and therefore L̃ ≻ 0. Moreover, the preconditioned
matrix L̃ has all ones on the diagonal: Diag(L̃) = I. If we now combine (33) with Perm-1 sketches

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci L̃Ci

]
= nDiag(L̃) = nI.

Therefore, inequality (27) takes the form W̃ = n L̃ ⪰ 1
θn

2 L̃, which holds for θ ≥ n, and the
left-hand side of (28) can be transformed (for an accurate comparison to standard methods) in the
following way:∥∥∥∇f(xk)

∥∥∥2
L̃
−1

W̃ L̃
−1 ≥ nλmin

(
L̃
−1

)∥∥∥∇f(xk)
∥∥∥2
I
= nλmax(L̃)

∥∥∥∇f(xk)
∥∥∥2
I

(34)

The resulting convergence guarantee is

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
I

]
≤

2λmax(L̃)
(
f(x0)− E

[
f(xK)

])
K

, (35)

which matches classical gradient descent.
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B.2. Heterogeneous sketch preconditioning

In contrast to the homogeneous case, the heterogeneous problem fi(x) = 1
2x

⊤Lix cannot be so
easily preconditioned by a simple change of variables x̃ := D− 1

2x, as every client i has its own
matrix Li. However, this problem can be fixed via the following modification of Perm-1, which
scales the output according to the diagonal elements of the local smoothness matrix Li:

C̃i :=
√
n/ [Li]πi,πi

eπie
⊤
πi
. (36)

In this case, E
[
C̃iLiC̃i

]
= I, E

[
B

k
]
= I, and W = L. Then inequality (27) is satisfied for θ ≥ 1.

If one inputs these results into (28), such convergence guarantee can be obtained

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
I

]
≤

2λmax(L)
(
f(x0)− E

[
f(xK)

])
K

, (37)

which matches the gradient descent result as well. Thus, we can conclude that heterogeneity does
not bring such a fundamental challenge in this scenario. In addition, the method with Perm-1
is significantly better in terms of computational and communication complexity, as it requires
calculation of the local gradients with respect to much smaller submodels and transmits only sparse
updates.

This construction also shows that for γ = 1/θ = 1

γλmin

(
L
− 1

2 WL
− 1

2

)
= λmin

(
L
− 1

2 LL
− 1

2

)
= 1, (38)

which, after plugging into the bound for the iterates (29), shows that the method basically converges
in one iteration. This observation indicates that sketch preconditioning can be extremely efficient,
although it uses only the diagonal elements of matrices Li.

Appendix C. Proofs

C.1. Permutation sketch computations

All derivations in this section are performed for the n = d case.

Classical Permutation Sketching. Perm-1: Ci = neπie
⊤
πi

, where π = (π1, . . . , πn) is a random
permutation of [n]. For the homogeneous problem Li ≡ L:

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci LCi

]
= nDiag(L) (39)

Then
2W = E

[
LB

k
+B

k
L
]
= n (LDiag(L) + Diag(L)L) (40)

and
E
[
B

k
LB

k
]
= n2Diag(L)LDiag(L). (41)
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By repeating basically the same calculations for C′
i =

√
neπie

⊤
πi

we have that

E
[
B

k
]
= E

[
1

n

n∑
i=1

C′
iLC

′
i

]
= Diag(L), (42)

and E
[
B

k
LB

k
]
= Diag(L)LDiag(L), 2W = E

[
LB

k
+B

k
L
]
= LDiag(L) + Diag(L)L.

C.1.1. HETEROGENEOUS SKETCH PRECONDITIONING.

We recall the following modification of Perm-1:

C̃i :=
√
n/ [Li]πi,πi

eπie
⊤
πi
. (43)

Then

E
[
C̃iLiC̃i

]
= E

[
n[Li]

−1
πi,πi

eπie
⊤
πi
Lieπie

⊤
πi

]
=

1

n

n∑
j=1

nejIj,je
⊤
j = I. (44)

and

E
[
B

k
]

= E

[
1

n

n∑
i=1

C̃iLiC̃i

]

=
1

n

n∑
i=1

E
[
n[Li]

−1
πi,πi

eπie
⊤
πi
Lieπie

⊤
πi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

n[Li]
−1
j,j ej [Li]j,je

⊤
j

=
1

n

n∑
i=1

n∑
j=1

eje
⊤
j

= I.

Thus W = 1
2E

[
LB

k
+B

k
L
]
= L. On the left hand side of inequality (27), we have

E
[
B

k
LB

k
]

= E

 1

n

n∑
i=1

C̃iLiC̃i L
1

n

n∑
i=j

C̃jLjC̃j


=

1

n2

n∑
i,j=1

E
[
C̃iLiC̃i L C̃jLjC̃j

]
=

n∑
i,j=1

eie
⊤
i L eje

⊤
j

= IL I

= L .
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C.2. Interpolation case: proof of Theorem 5

Proof First, we prove the stationary point convergence result (28).
Using the L-smoothness of function f , we get

f(xk+1)
(2)
= f(xk − γgk)

(7)
≤ f(xk)−

〈
∇f(xk), γgk

〉
+

γ2

2

∥∥∥gk∥∥∥2
L

(26)
= f(xk)− γ

〈
Lxk,B

k
xk

〉
+

γ2

2

∥∥∥Bk
xk

∥∥∥2
L

= f(xk)− γ(xk)⊤ LB
k
xk +

γ2

2
(xk)⊤B

k
LB

k
xk.

After applying conditional expectation, using its linearity, and the fact that

x⊤Ax =
1

2
x⊤

(
A+A⊤

)
x

we get

E
[
f(xk+1) | xk

]
≤ f(xk)− γ(xk)⊤E

[
LB

k
]
xk +

γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(xk)⊤W xk +
γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(∇f(xk))⊤ L
−1

WL
−1∇f(xk)

+
γ2

2
(∇f(xk))⊤ L

−1 E
[
B

k
LB

k
]
L
−1∇f(xk)

(27)
≤ f(xk)− γ∥∇f(xk)∥2

L
−1

WL
−1 +

θγ2

2
∥∇f(xk)∥2

L
−1

WL
−1

= f(xk)− γ (1− θγ/2) ∥∇f(xk)∥2
L
−1

WL
−1

≤ f(xk)− γ

2
∥∇f(xk)∥2

L
−1

WL
−1 ,

where the last inequality holds for the stepsize γ ≤ 1
θ .

Rearranging gives ∥∥∥∇f(xk)
∥∥∥2
L
−1

WL
−1 ≤ 2

γ

(
f(xk)− E

[
f(xk+1) | xk

])
,

which after averaging gives the desired result

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L
−1

WL
−1

]
≤ 2

γK

K−1∑
k=0

(f(xk)− E
[
f(xk+1)

]
) =

2
(
f(x0)− E

[
f(xK)

])
γK

.

(45)
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C.3. Non-zero solution

As a reminder, in the most general case, the problem has the form

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi .

with the gradient estimator

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi

)
= B

k
xk − 1

n

n∑
i=1

Ck
i bi . (46)

General calculations for estimator (12). In the heterogeneous case, the following sketch precon-
ditioner is used

C̃i :=
√
n/ [Li]πi,πi

eπie
⊤
πi
.

Then E
[
B

k
]
= I (calculation was done as in Section C.1.1) and

E
[
Cb

]
=

1

n

n∑
i=1

E
[
C̃k

i bi

]
=

1

n

n∑
i=1

E
[√

n[Li]
− 1

2
πi,πieπie

⊤
πi
bi

]

=
1

n

n∑
i=1

1

n

n∑
j=1

√
n[Li]

− 1
2

j,j ej [bi]j

=
1

n

n∑
i=1

1

n

√
nD

− 1
2

i bi

=
1√
n

1

n

n∑
i=1

D
− 1

2
i bi

=
1√
n
D- 1

2 b︸ ︷︷ ︸
D̃ b

C.3.1. CONVERGENCE ANALYSIS FOR HETEROGENEOUS CASE: PROOF OF THEOREM 3.

Here we formulate and further prove a more general version of Theorem 3, which is obtained as a
special case of the next result for c = 1/2.

Theorem 7 Consider the method (2) with estimator (12) for a quadratic problem (11) with positive-

definite matrix L ≻ 0. Then, if for every Di := Diag(Li) matrices D
− 1

2
i exist, scaled permutation

sketches C̃i :=
√
n/ [Li]πi,πi

eπie
⊤
πi

are used and heterogeneity is bounded as E
[∥∥gk − E

[
gk
]∥∥2

L

]
≤

σ2. Then, the step size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (47)
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where γc,β ∈ (0, 1] for β + c < 1, the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L
−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L
+

γ

2c
σ2. (48)

where L = 1
n

∑n
i=1 Li, h = L

−1
b− 1√

n
1
n

∑n
i=1D

− 1
2

i bi and b = 1
n

∑n
i=1 bi.

Proof By using L-smoothness

E
[
f(xk+1) | xk

] (7)
≤ f(xk)− γ

〈
∇f(xk),E

[
gk
]〉

+
γ2

2
E
[
∥gk∥2

L

]
(14),(24)
= f(xk)− γ

〈
∇f(xk),L

−1∇f(xk) + h
〉

+
γ2

2

(∥∥∥E [
gk
]∥∥∥2

L
+ E

[∥∥∥gk − E
[
gk
]∥∥∥2

L

])
(14)
= f(xk)− γ

(〈
∇f(xk),L

−1∇f(xk)
〉
+
〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∥L−1∇f(xk) + h
∥∥∥2
L
+ E

[∥∥∥gk − E
[
gk
]∥∥∥2

L

])
(23)
= f(xk)− γ

(∥∥∥∇f(xk)
∥∥∥2
L
−1 +

〈
∇f(xk), h

〉)
+

γ2

2
E
[∥∥∥gk − E

[
gk
]∥∥∥2

L

]
+
γ2

2

(∥∥∥∇f(xk)
∥∥∥2
L
−1 + 2

〈
∇f(xk), h

〉
+ ∥h∥2

L

)
≤ f(xk)− γ (1− γ/2)

∥∥∥∇f(xk)
∥∥∥2
L
−1 +

γ2

2
σ2

−γ (1− γ)
〈
∇f(xk), h

〉
+

γ2

2
∥h∥2

L
,

where the last inequality follows from the grouping of similar terms and bounded heterogeneity

E
[∥∥∥gk − E

[
gk
]∥∥∥2

L

]
= E

[∥∥∥gk − (
L
−1∇f(xk) + h

)∥∥∥2
L

]
(49)

= E

[∥∥∥∥Bk
xk −Cb−

(
xk − 1√

n
D̃b

)∥∥∥∥2
L

]
≤ σ2. (50)

Next, using a Fenchel-Young inequality (25) for
〈
∇f(xk),−h

〉
and 1− γ ≥ 0

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∥∇f(xk)
∥∥∥2
L
−1 +

γ2

2

(
∥h∥2

L
+ σ2

)
+γ (1− γ)

[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
≤ f(xk)− γ (1− γ/2 − β (1− γ))

∥∥∥∇f(xk)
∥∥∥2
L
−1

+γ
{(

β−1 (1− γ) +
γ

2

)
∥h∥2

L
+

γ

2
σ2

}
, (51)
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where in the last inequality we grouped similar terms and used the fact that 0.25 < 1.
Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0, we choose the step size using

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (52)

where γc,β > 0 for β + c < 1. This means that β can not arbitrarily grow to diminish β−1.
Then, after standard manipulations and unrolling the recursion

γc
∥∥∥∇f(xk)

∥∥∥2
L
−1 ≤ f(xk)− E

[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ2

2
σ2 (53)

we obtain

c

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L
−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ

2
σ2. (54)

C.3.2. HOMOGENEOUS CASE

In this scenario, every worker has access to all data fi(x) ≡ 1
2x

⊤Lx − x⊤ b. Then diagonal
preconditioning of the problem can be used, as in Section B.1. This results in a gradient ∇f(x) =

L̃x − b̃ for L̃ = D− 1
2LD− 1

2 and b̃ = D− 1
2 b. If this expression is further combined with a

permutation sketch (scaled by 1/
√
n): C′

i :=
√
neπie

⊤
πi

, the resulting gradient estimator is:

gk = xk − 1√
n
b̃ = L̃

−1∇f(xk) + h̃, (55)

for h̃ = L̃
−1

b̃− 1√
n
b̃. In this case, the heterogeneity term σ2 from the upper bound (17) disappears

as E
[∥∥gk − E

[
gk
]∥∥2

L

]
= 0, which can decrease the neighborhood size. However, the bias term

depending on h̃ still remains, as the method does not converge to the exact solution xk → x∞ ̸=
x⋆ = L̃

−1
b̃ for positive-definite L̃. Nevertheless the method’s fixed point x∞ = b̃ /

√
n and solution

x⋆ can coincide when L̃
−1

b̃ = 1√
n
b̃, which means that b̃ is the right eigenvector of matrix L̃

−1

with eigenvalue 1√
n

.

Theorem 8 Consider the method (2) with estimator (55) for a homogeneous quadratic problem (11)
with positive-definite matrix Li ≡ L ≻ 0. Then if exists D− 1

2 for D := Diag(L), scaled permutation
sketch C′

i =
√
neπie

⊤
πi

is used and the step size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (56)

where γc,β > 0 for β + c < 1. Then the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L̃
−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L̃
, (57)

where L̃ = D− 1
2LD− 1

2 , h = L̃
−1

b̃− 1√
n
b̃ and b̃ = D− 1

2 b.
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The main difference compared to the result in the previous subsection is that the gradient
estimator expression (55) holds deterministically (without expectation E). That is why gk = E

[
gk
]

and heterogeneity term σ2 equals to 0.
Proof By using L-smoothness

E
[
f(xk − γgk) | xk

] (7)
≤ f(xk)−

〈
∇f(xk), γE

[
gk
]〉

+
γ2

2
E
[∥∥∥gk∥∥∥2

L̃

]
≤ f(xk)− γ

〈
∇f(xk), L̃

−1∇f(xk) + h
〉
+

γ2

2

∥∥∥L̃−1∇f(xk) + h
∥∥∥2
L̃

(23)
= f(xk)− γ

(〈
∇f(xk), L̃

−1∇f(xk)
〉
+
〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∥∇f(xk)
∥∥∥2
L̃
−1 + 2

〈
∇f(xk), h

〉
+ ∥h∥2

L̃

)
= f(xk)− γ (1− γ/2)

∥∥∥∇f(xk)
∥∥∥2
L̃
−1 +

γ2

2
∥h∥2

L̃
− γ (1− γ)

〈
∇f(xk), h

〉
Next by using a Fenchel-Young inequality (25) for

〈
∇f(xk),−h

〉
and 1− γ ≥ 0

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∥∇f(xk)
∥∥∥2
L̃
−1 +

γ2

2
∥h∥2

L̃

+γ (1− γ)
[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
= f(xk)− γ (1− γ/2 − β(1− γ))

∥∥∥∇f(xk)
∥∥∥2
L̃
−1

+γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0 we choose the step size as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (58)

where γc,β ≥ 0 for β + c < 1.
Then after standard manipulations and unrolling the recursion

γc
∥∥∥∇f(xk)

∥∥∥2
L̃
−1 ≤ f(xk)− E

[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
(59)

we obtain the formulated result

c

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L̃
−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
. (60)

Remark 9 1) The first term in the convergence upper bound (57) is minimized by maximizing product
c · γ, which motivates to choose c > 0 and γ ≤ 1 as large as possible. Although due to the constraint
on the step size (and β > 0)

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (61)
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constant c ∈ (0, 1). So, by maximizing c the value γc,β becomes smaller, thus there is a trade-off.
2) The second term or the neighborhood size (multiplier in front of ∥h∥2

L̃
)

Ψ(β, γ) :=
β−1 (1− γ) + γ/2

c
=

β−1 (1− γ) + γ/2

1− γ/2− β(1− γ)
(62)

can be numerically minimized (e.g. by using WolframAlpha) with constraints γ ∈ (0, 1] and β > 0.
The solution of such optimization problem is γ⋆ ≈ 1 and β⋆ ≈ ξ ∈ {3.992, 2.606, 2.613}. In fact,
Ψ(β⋆, γ⋆) ≈ 0.5.

Functional gap convergence. Note that for the quadratic optimization problem (11)∥∥∥∇f(xk)
∥∥∥2
L̃
−1 =

〈
L̃xk − b̃, L̃

−1
(
L̃xk − b̃

)〉
= 2

(
f(xk)− f(x⋆)

)
. (63)

Then by rearranging and subtracting f⋆ := f(x⋆) from both sides of inequality (59) we obtain

E
[
f(xk+1) | xk

]
− f⋆ ≤ f(xk)− f⋆ − γc

∥∥∥∇f(xk)
∥∥∥2
L̃
−1 + γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

(63)
=

(
f(xk)− f⋆

)
− γc · 2

(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

= (1− 2γc)
(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

After unrolling the recursion

E
[
f(xk+1) | xk

]
− f⋆ ≤ (1− 2γc)k

(
f(x0)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

k∑
i=0

(1− 2γc)i

≤ (1− 2γc)k
(
f(x0)− f⋆

)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

This result is formalized in the following Theorem.

Theorem 10 Consider the method (2) with estimator (55) for a homogeneous quadratic problem
(11) with positive-definite matrix Li ≡ L ≻ 0. Then if exists D− 1

2 for D := Diag(L), scaled
permutation sketch C′

i =
√
neπie

⊤
πi

is used and the step size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (64)

where γc,β > 0 for β + c < 1. Then the iterates satisfy

E
[
f(xk)

]
− f⋆ ≤ (1− 2γc)k

(
f(x0)− f⋆

)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
, (65)

where h = L̃
−1

b̃− 1√
n
b̃ and L̃ = D− 1

2LD− 1
2 , b̃ = D− 1

2 b.

This result shows that for a proper choice of the step size γ = 1 and constant c = 1/2, the
functional gap can converge in basically one iteration to the neighborhood of size

∥h∥2
L̃
=

〈
L̃

(
L̃
−1

b̃− 1√
n
b̃

)
, L̃

−1
b̃− 1√

n
b̃

〉
,

which equals zero if L̃
−1

b̃ = 1√
n
b̃. This condition is the same as the condition we obtained in

Section 3 with asymptotic analysis of the iterates in the homogeneous case.
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Discussion of the trace. Consider a positive-definite L ≻ 0 such that ∃D− 1
2 . Thus L̃ =

D− 1
2LD− 1

2 has only ones on the diagonal and tr(L̃) = n. Then

n · tr(L̃−1
) = tr(L̃)tr(L̃

−1
) = (λ1 + · · ·+ λn)

(
1

λ1
+ · · ·+ 1

λn

)
≥ n2,

where the last inequality is due to the relation between harmonic and arithmetic means. Therefore
tr(L̃

−1
) = λ−1

1 + · · ·+ λ−1
n ≥ n and sum of L̃

−1
eigenvalues has to be greater than n.

C.4. Generalization to n ̸= d case.

Our results can be generalized in a similar way as in [41].
1) d = qn, for integer q ≥ 1. Let π = (π1, . . . , πd) be a random permutation of {1, . . . , d}.

Then for each i ∈ {1, . . . , n} define

C′
i :=

√
n ·

qi∑
j=q(i−1)+1

eπje
⊤
πj
. (66)

Matrix E
[
B

k
]

for the homogeneous preconditioned case can be computed as follows:

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]

=
1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

neπje
⊤
πj

L̃ eπje
⊤
πj


=

n∑
i=1

qi∑
j=q(i−1)+1

E
[
eπje

⊤
πj

L̃ eπje
⊤
πj

]

=
n∑

i=1

qi∑
j=q(i−1)+1

1

d

d∑
l=1

ele
⊤
l L̃ ele

⊤
l

=
n∑

i=1

qi∑
j=q(i−1)+1

1

d
Diag(L̃)

= n
q

d
Diag(L̃)

= Diag(L̃)

= I.

As for the linear term

E
[
C′ b

]
= E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

√
neπje

⊤
πj

b̃


=

1√
n

n∑
i=1

qi∑
j=q(i−1)+1

1

d
I b̃ =

√
nq

d
I b̃ =

1√
n
b̃ .
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2) n = qd, for integer q ≥ 1. Define the multiset S := {1, . . . , 1, 2, . . . , 2, . . . , d, . . . , d}, where
each number occurs precisely q times. Let π = (π1, . . . , πn) be a random permutation of S. Then
for each i ∈ {1, . . . , n} define

C′
i :=

√
d · eπie

⊤
πi
. (67)

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]
=

1

n

n∑
i=1

E
[
deπie

⊤
πi
L̃ eπie

⊤
πi

]
=

1

n

n∑
i=1

1

d

d∑
j=1

deje
⊤
j L̃ eje

⊤
j =

1

n

n∑
i=1

Diag(L̃) = I.

The linear term

E
[
C′ b

]
= E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E
[√

deπie
⊤
πi
b̃
]
=

√
d

n

n∑
i=1

1

d
I b̃ =

1√
d
b̃ .

To sum up both cases, in a homogeneous preconditioned setting E
[
B

k
]
= I and

E
[
C′ b

]
= E

[
1

n

n∑
i=1

C′
i b

]
= b̃ /

√
min(n, d).

Similar modifications and calculations can be performed for heterogeneous scenarios. The case
when n does not divide d and vice versa is generalized using constructions from [41].

Appendix D. Comparison to related works

FL with Model Pruning. In a recent work Zhou et al. [50] made an attempt to analyze a variant
of the FedAvg algorithm with sparse local initialization and compressed gradient training (pruned
local models). They considered a case of L-smooth loss and sparsification operator satisfying a
similar condition to (1). However, they also assumed that the squared norm of stochastic gradient is
uniformly bounded (10), which is “pathological” [25] especially in the case of local methods as it
does not allow to capture the very important effect of heterogeneity and can result in vacuous bounds.

Overview of theory provided in the original IST work [47]. The authors consider the following
method

xk+1 = C(xk)− γ∇fik(C(x
k)), (68)

where [C(x)]i = xi · Be(p)3 is a Bernoulli sparsifier and ik is sampled uniformly at random from [n].
The analysis in [47] relies on the assumptions

1. Li-smoothness of individual losses fi;

2. Q-Lipschitz continuity of f : |f(x)− f(y)| ≤ Q∥x− y∥;

3. Bp(x) :=

{
x/p with probability p
0 with probability 1− p
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3. Error bound (or PŁ-condition): ∥∇f(x)∥ ≥ µ∥x⋆ − x∥, where x⋆ is the global optimum;

4. Stochastic gradient variance: E
[
∥∇fik(x)∥

2
]
≤ M +Mf ∥∇f(x)∥2;

5. E
[
∇fik(C(xk)) |xk

]
= ∇f(xk) + ε, ∥ε∥ ≤ B.

Convergence result from Theorem 1 [47] for step size γ = 1/(2Lmax):

min
k∈{1,...,K}

E
[∥∥∥∇f(xk)

∥∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(

BQ

2Lmax
+

5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (69)

where α := 1
2Lmax

(
1− Mf

2

)
− 5ωLmax

2µ2 , ω := 1
p − 1 < µ2

10L2
max

, and Lmax := maxi Li.
If Lipschitzness and Assumption 5 are replaced with norm condition:∥∥∥E [

∇fik(C(x
k)) |xk

]
−∇f(xk)

∥∥∥ ≤ θ∥∇f(xk)∥ (70)

they obtain the following (for step size γ = 1/2Lmax)

min
k∈{1,...,K}

E
[∥∥∥∇f(xk)

∥∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(
5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (71)

where α = 1
2Lmax

(
1
2 − θ − Mf

2

)
− 5ωLmax

2µ2 and ω = 1
p − 1 < µ2

5L2
max

(
1
2
−θ−

Mf
2

) .

Remark 11 The original method (68) does not incorporate gradient sparsification, which can create
a significant disparity between theory and practice. This is because the gradient computed at the
compressed model, denoted as ∇f(C(x)), is not guaranteed to be sparse and representative of the
submodel computations. Such modification of the method also significantly simplifies theoretical
analysis, as using a single sketch (instead of CLC) allows for an unbiased gradient estimator.

Through our analysis of the IST gradient estimator in Equation (55), we discover that conditions—
such as Assumption 5 and Inequality (70)—are not satisfied, even in the homogeneous setting for
a simple quadratic problem. Furthermore, it is evident that such conditions are also not met for
logistic loss. At the same time, in general, it is expected that insightful theory for general (non-
)convex functions should yield appropriate results for quadratic problems. Additionally, it remains
unclear whether the norm condition (70) is satisfied in practical scenarios. The situation is not
straightforward—even for quadratic problems—as we show in the expression for σ2 in Equation
(49).

Improvements the work of Yuan et al. [47]. The first difference is that our results allow for an
almost arbitrary level of model sparsification, i.e., work for any ω ≥ 0 as permutation sketches can
be viewed as a special case of compression operators (1). This improves significantly over the work
of [47], which demands4 ω ≲ µ2/L2. Such a requirement is very restrictive as the condition number
L/µ of the loss function f is typically very large for any non-trivial optimization problem. Thus, the
sparsifier’s (4) variance ω = d/q − 1 has to be very close to 0 and q ≈ d. So, the previous theory

4. µ refers to constant from Polyak-Łojasiewicz (or strong convexity) condition. In case of a quadratic problem with
positive-definite matrix A: µ = λmin(A)
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allows almost no compression (sparsification) because it is based on the analysis of Gradient Descent
with Compressed Iterates [23].

The second distinction is that the original IST work [47] considered a single node setting and
thus their convergence bounds did not capture the effect of heterogeneity, which we believe is of
crucial importance for distributed setting [9, 40]. Besides, they consider Lipschitz continuity of the
loss function f , which is not satisfied for a simple quadratic model.

Masked training [33]. The authors consider the following “Partial SGD” method

x̂k = xk + δxk = xk − (1− p)⊙ xk

xk+1 = xk − γp⊙∇f(x̂k, ξk),
(72)

where ∇f(x, ξ) is an unbiased stochastic gradient estimator of a L-smooth loss function f , ⊙ is
an element-wise product, and p is a binary sparsification mask.

Mohtashami et al. [33] make the following “bounded perturbation” assumption

max
k

∥δxk∥
max {∥pk ⊙∇f(xk)∥, ∥pk ⊙∇f(x̂k)∥}

≤ 1

2L
. (73)

This inequality may not hold for a simple convex case. Consider a function f(x) = 1
2x

⊤Ax, for

A =

(
a 0
0 c

)
, x0 =

(
x1
x2

)
, p0 =

(
0
1

)
. (74)

Then condition (73) (at iteration k = 0) will be equivalent to

x1
cx2

≤ 1

2a
⇔ 2 ≤ 2a

c
≤ x2

x1
,

which clearly does not hold for an arbitrary initialization x0.
In addition, convergence bound in Theorem 1 of [33] suggests choosing the step size as γ0αk,

where

αk = min

{
1,

〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
∥pk ⊙∇f(x̂k)∥2

}
(75)

is not guaranteed to be positive to the inner product
〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
, which may lead

to non-convergence of the method.

Optimization with access to auxiliary information framework [7] suggests modeling train-
ing with compressed models via performing gradient steps with respect to function h(x) :=
EM [f(1M ⊙ x)]. This function allows access to a sparse/low-rank version of the original model
f(x). They impose the following bounded Hessian dissimilarity assumption on h and f∥∥∇2f(x)− EM

[
DM∇2f(1M ⊙ x)DM

]∥∥
2
≤ δ, (76)

where 1M and DM = Diag(1M) refer to a binary vector and matrix sparsification masks.
This approach relies on variance-reduction and requires gradient computations on the full model

x, and thus it is not suitable for our problem setting.
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Differences to analysis of Liao and Kyrillidis [28]. Next, we try our best to briefly and accurately
represent some of the previous work’s findings and comment on the distinctions.

The authors provide a high probability convergence analysis of a “Single Hidden-Layer Neural
Network with ReLU activations” based on the Neural Tangent Kernel (NTK) framework. The
network’s first layer weights are initialized based on N (0, κ2I) and the weight vector of the second
layer is initialized uniformly at random from {−1, 1}. In contrast, we do not make any assumptions
on the initialized parameters x (in our notation).

The second differentiation is assumptions on the data. Liao and Kyrillidis [28] assume that
for every data point (aj , yj), it holds that ||aj ||2 = 1 and |yj | ≤ C − 1 for some constant C ≥ 1.
Moreover, for any j ̸= l, it holds that the points ai, al are not co-aligned, i.e., ai ̸= ξal for any ξ ∈ R.
In contrast, we do not make any assumptions about the data apart from the ones on matrices Li. In
addition, analysis by Liao and Kyrillidis [28] assumes that the number of hidden nodes is greater
than a certain quantity and that NN’s weights distance from initialization is uniformly bounded.

Finally, Liao and Kyrillidis [28] consider a regression (MSE) loss function, a special case of
quadratic loss and full gradients computation. They provide guarantees for IST under a “simplified
assumption that every worker has full data access”, which corresponds to the homogeneous setting in
our terminology.

Appendix E. Experiments

To empirically validate our theoretical framework and its implications, we focus on carefully con-
trolled settings that satisfy the assumptions of our work. Specifically, we consider a quadratic
problem defined in (11). As a reminder, the local loss function is defined as

fi(x) =
1

2
x⊤Lix− x⊤ bi,

where Li = B⊤
i Bi. Entries of the matrices Bi ∈ Rd×d, vectors bi ∈ Rd, and initialization x0 ∈ Rd

are generated from a standard Gaussian distribution N (0, 1).

Heterogeneous setting. In Figure 1(a)subfigure, we present the performance of the simplified
Independent Subnetwork Training (IST) algorithm (update (2) with estimator (12)) for a heteroge-
neous problem. We fix the dimension d to 1000 and the number of computing nodes n to 10. We
evaluate the logarithm of a relative functional error log(f(xk) − f(x⋆))/(f(x0) − f(x⋆)), while
the horizontal axis denotes the number of communication rounds required to achieve a certain error
tolerance. According to our theory (65), the method converges to a neighborhood of the solution,
which depends on the chosen step size. Specifically, a larger step size allows for faster convergence
but results in a larger neighborhood.

Homogeneous setting. In Figure 1(b)subfigure, we demonstrate the convergence of the iterates
xk for a homogeneous problem with d = n = 50. The results are in close agreement with our
theoretical predictions for the estimator (55). We observe that the distance to the method’s expected
fixed point x∞ = b̃ /

√
n decreases linearly for different step size values. This confirms that IST

may not converge to the optimal solution x⋆ = L̃
−1

b̃ of the original problem (11) in general (no
interpolation) cases. In addition, there are no visible oscillations in comparison to the heterogeneous
case.
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(a) Function convergence for heterogeneous case.
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(b) Iterates convergence for homogeneous case.

Figure 1: Performance of simplified IST on quadratic problem for varying step size values.

Simulations were performed on a machine with Intel(R) Xeon(R) Gold 6146 CPU @3.20GHz.

Appendix F. Conclusions and future work

In this study, we introduced a novel approach to understanding training with combined model
and data parallelism for a quadratic model. Our framework sheds light on distributed submodel
optimization, which reveals the advantages and limitations of Independent Subnetwork Training (IST).
Moreover, we accurately characterized the behavior of the considered method in both homogeneous
and heterogeneous scenarios without imposing restrictive assumptions on the gradient estimators.

In future research, it would be valuable to explore extensions of our findings to settings that are
closer to scenarios, such as cross-device federated learning. This could involve investigating partial
participation support, leveraging local training benefits, and ensuring robustness against stragglers.
Additionally, it would be interesting to generalize our results to non-quadratic scenarios without
relying on pathological assumptions. Another potential promising research direction is algorithmic
modifications of the original IST to solve the fundamental problems highlighted in this work and
acceleration of training.
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