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Abstract

Predicting future events is an important activ-001
ity with applications across multiple fields and002
domains. For example, the capacity to foresee003
stock market trends, natural disasters, business004
developments, or political events can facilitate005
early preventive measures and uncover new006
opportunities. Multiple diverse computational007
methods for attempting future predictions, in-008
cluding predictive analysis, time series fore-009
casting, and simulations have been proposed.010
This study evaluates the performance of several011
large language models (LLMs) in supporting012
future prediction tasks, an under-explored do-013
main. We assess the models across three sce-014
narios: Affirmative vs. Likelihood questioning,015
Reasoning, and Counterfactual analysis. For016
this, we create a dataset1 by finding and cat-017
egorizing news articles based on entity type018
and its popularity. We gather news articles be-019
fore and after the LLMs training cutoff date020
in order to thoroughly test and compare model021
performance. Our research highlights LLMs’022
potential and limitations in predictive model-023
ing, providing a foundation for future improve-024
ments.025

1 Introduction026

Artificial Intelligence (AI) has made significant027

progress in recent years, particularly with the devel-028

opment of large language models (LLMs). Their029

use is however still underexplored across many030

complex tasks. One of them is supporting future031

prediction. Accurately predicting the future is cru-032

cial for anticipating and preparing for likely out-033

comes. This capability enables individuals to take034

essential actions, and allows authorities to develop035

necessary policies and make well-informed deci-036

sions. For instance, a company’s business strat-037

egy and profitability heavily rely on their ability to038

forecast future trends effectively. Similarly, large039

1The dataset and all the code will be released after paper
publication.

organizations and governments continuously seek 040

precise predictive tools and investors want to know 041

most likely courses of actions before deciding to 042

invest their money. In general, future forecasting 043

is actually a quite common human activity, and 044

LLMs deserve a closer investigation in this regard 045

as a widely-used and disrupting technology. 046

Our research aims to understand the capability of 047

LLMs in future forecasting and test diverse kinds 048

of prompts to elucidate future-related content from 049

parametric knowledge. For this, we first need to 050

create a corresponding dataset. Prior investigations 051

(Kanhabua et al., 2011; Jatowt and Au Yeung, 2011; 052

Jatowt et al., 2013) found that future-related infor- 053

mation is relatively abundant in the Web, in par- 054

ticular, in news articles. This lead to the recent 055

creation of relevant datasets. The FORECASTQA 056

dataset, as described in (Jin et al., 2020), involves 057

collecting news articles from LexisNexis, filtering 058

out non-English texts from 2015 to 2019, and con- 059

verting them into <Question, Answer, Timestamp> 060

triples to address binary and multiple-choice fore- 061

casting questions. However, FORECASTQA faces 062

issues of ambiguity and the lack of context due 063

to its crowdsourced nature. To overcome these 064

challenges, Zou et al. (2022) introduced the Auto- 065

cast and IntervalQA datasets. Autocast includes 066

True/False, Multiple-Choice, or Numerical fore- 067

casting questions, while IntervalQA comprises a 068

large set of questions that only require numerical 069

answers. 070

The problems with the above-mentioned datasets 071

are that they are not anchored in time and the anal- 072

yses made by their authors do not respect time 073

overlap. In consequence, it is unclear if the mod- 074

els tested on these datasets have not already seen 075

the events to be forecasted. Hence, to assure trust- 076

worthy analysis, we create a dataset that clearly 077

indicates the time of each question as well as the 078

occurrence time of forecasted events, and we se- 079

lect LLMs whose training cut-off days are before 080
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the time when the events to be predicted occurred.081

We collect and categorize news articles by entity082

type and popularity, and then generate forecasting083

questions based on those events. This dataset helps084

evaluate underlying biases in the models and their085

forecast accuracy. We also split the news in our086

dataset into articles published before and after the087

LLMs’ training dates to compare performance on088

probably "familiar" versus new information. Addi-089

tionally, we generate negative instances to test the090

models’ ability to distinguish real from fabricated091

events that did not occur.092

We then proceed to analyze LLM’s capabilities093

in supporting forecasting of events. Our analysis in-094

volves three main scenarios: Affirmative vs. Like-095

lihood questioning, Reasoning, and Counterfac-096

tual analysis. The Affirmative vs. Likelihood sce-097

nario compares the effectiveness of direct questions098

with likelihood-based questions. The Reasoning099

scenario examines whether incorporating logical100

reasoning into the prediction process can improve101

the models’ performance. The Counterfactual anal-102

ysis studies how sensitive the models are to slight103

changes in article details, testing LLMs’ efficiency104

and adaptability.105

Our findings reveal that the Likelihood approach106

generally outperforms the Affirmative approach,107

suggesting that probabilistic questioning provides108

a more nuanced understanding. Incorporating rea-109

soning improves recall rates but increases false110

positives, highlighting a trade-off between preci-111

sion and recall. The Counterfactual analysis shows112

that models are sensitive to minor changes, which113

significantly impact their performance. In general,114

our analysis enhances the understanding of LLMs115

in predictive modeling and lays the groundwork for116

future improvements.117

2 Related Work118

Artificial intelligence has advanced significantly119

with the introduction of Large Language Models120

(LLMs), bringing us closer to machines that under-121

stand and communicate like humans. As these mod-122

els develop, their potential goes beyond text gener-123

ation to include temporal reasoning, future extrac-124

tion, and future prediction. The field started with125

early foundational works such as McCarthy and126

Hayes’ situation calculus (McCarthy and Hayes,127

1981) that concentrated on representing and reason-128

ing about change over time, and Allen’s Interval129

Algebra (Allen, 1983) which offered a framework130

for understanding relationships between time inter- 131

vals, such as before, after, and during. Then, later 132

developments, including the TimeML framework 133

(Pustejovsky et al., 2003a) and datasets like Time- 134

Bank (Pustejovsky et al., 2003b) integrated tem- 135

poral reasoning into natural language processing 136

(NLP). Evaluations using TIMEDIAL (Qin et al., 137

2021) and TimeQA (Chen et al., 2021) revealed 138

the limitations of LLMs in capturing the subtle de- 139

tails of everyday events. The TempEval challenges 140

Verhagen et al. (2007), Verhagen et al. (2010) and 141

UzZaman et al. (2013) further facilitated develop- 142

ments in temporal reasoning by providing bench- 143

marks for evaluating temporal information extrac- 144

tion systems. The recent overview of temporal 145

commonsense reasoning including also the use of 146

LLM approaches is available in (Wenzel and Ja- 147

towt, 2023). 148

An important challenge for large language mod- 149

els (LLMs) is extracting future-related informa- 150

tion from large amounts of textual data. Regev 151

et al. (2024) create an automated system for sifting 152

through news articles to extract future-related con- 153

tent. Jatowt and Au Yeung (2011) propose a text- 154

clustering algorithm to extract collective future ex- 155

pectations from large text collections. Jatowt et al. 156

(2013) further the range to analyze future-related 157

content in different languages, identifying cultural 158

differences in future perception. Kawai et al. (2010) 159

proposed a search engine for both future and past 160

events that expands a user query by some typical ex- 161

pressions related to event information such as year 162

expressions, temporal modifiers and context terms, 163

and filters out noisy events. Other works include 164

Dias et al. (2014), who explored the task of future 165

retrieval (retrieving documents containing future- 166

related information pertinent to user queries), and 167

Kanazawa et al. (2011), who focused on improv- 168

ing information extraction for effective judgment 169

of future outcomes. Additionally, Radinsky et al. 170

(2008) utilized web search patterns for predicting 171

news occurrences, and Nakajima et al. (2020) ex- 172

plored morphosemantic patterns for future predic- 173

tions. Recent studies by Zou et al. (2022) and 174

Kvamme et al. (2019) demonstrated also the poten- 175

tial of neural networks in future prediction, while 176

Hu et al. (2017) introduced a context-aware model 177

for generating short text predictions. 178

There has been few works on predicting future 179

using LLMs (Li and Flanigan, 2024; Gwak et al., 180

2024; Jin et al., 2021; Yuan et al., 2023; Zou et al., 181

2022). Jin et al. (2021) introduced FORECASTQA, 182

2



which redefines event forecasting as a question-183

answering task. Yuan et al. (2023) presented the184

ExpTime dataset in their "Back to the Future" study.185

According to the authors, the dataset improved186

LLMs’ complex temporal reasoning and explain-187

ability capabilities.188

The existing studies involving LLMs are how-189

ever still scarce while the available datasets are190

subject to contamination issue due to the temporal191

overlap, i.e., the lack of alignment of LLMs’ cut-192

off dates and the dates of event occurrences. In this193

work, we attempt to overcome those challenges.194

We provide a temporally anchored dataset along195

with the set of LLMs with known cut-off dates196

that do not interfere with the dataset temporality.197

We also conduct an indepth analysis of different198

prompt formats to improve LLMs forecasting.199

3 Dataset200

We developed a specialized dataset to assess how201

well large language models performed in the fore-202

casting tasks. Our approach involved several me-203

thodical steps, each created to ensure the dataset’s204

relevance and comprehensiveness. Figure 1 shows205

the pipeline of our dataset creation process, which206

we explain in detail in the following sections.207

3.1 Entity Gathering208

The initial phase involved utilizing the Wikigold209

dataset (Balasuriya et al., 2009), a common re-210

source for Named Entity Recognition (NER) tasks.211

Unlike conventional entity extraction processes, we212

did not extract entities directly from texts. Instead,213

we utilized the existing entity annotations provided214

in the Wikigold dataset, which includes a rich col-215

lection of pre-identified organizations, locations,216

and persons. These entities were then further ad-217

justed and filtered to fit the specific requirements218

of our project, such as ensuring coverage within219

the context of predictive tasks. This approach elim-220

inated the need for additional extraction models221

and focused on leveraging established resources222

for consistency. Wikigold dataset, which includes223

Wikipedia text, was chosen due to its representa-224

tiveness of online content and the correspondence225

to Wikipedia page view analytics scores which we226

will use later. We collected available entities sepa-227

rating them into organizations, locations, and per-228

sons. The initial dataset included 898 organiza-229

tions, 1,014 locations, and 934 persons. After data230

filtering based on assuring the availability of corre-231

sponding news articles, these numbers were further 232

reduced to 652 organizations, 504 locations, and 233

478 persons. 234

3.2 Determining Entity Popularity 235

To evaluate how LLMs perform with entities of 236

differing popularity, we measured the popularity 237

of our entities using Wikipedia page view ana- 238

lytics (Wikimedia Foundation). By aggregating 239

monthly page views from January 2020 to Decem- 240

ber 2023, we assigned a popularity score to each 241

entity. This step was taken to make it possible to an- 242

alyze whether LLMs perform differently on "popu- 243

lar" vs. "unpopular" entities. For instance, promi- 244

nent entities with consistently high page views may 245

benefit from more extensive representation in train- 246

ing datasets, while lesser-known entities might ex- 247

pose gaps in LLM generalization capabilities. In 248

addition to calculating popularity scores, these an- 249

alytics provided insights into broader trends, such 250

as the relative visibility of different categories (e.g., 251

organizations vs. persons). These patterns were 252

critical in assessing potential biases in LLM pre- 253

dictions and their alignment with real-world promi- 254

nence. 255

To create a balanced dataset, we categorized en- 256

tities into popular and unpopular based on their 257

popularity scores. Given the skewed distribution 258

of popularity scores, we utilized the Interquartile 259

Range (IQR) method to define the threshold score 260

for this split. This approach ensured a reliable divi- 261

sion by focusing on the middle 50% of data, thus 262

providing a reliable threshold for categorization. 263

3.3 Event Collection 264

One of the difficult parts of the dataset creation 265

was gathering news articles about the events that 266

were to be forecasted. Our search criteria were that 267

the entity name should be mentioned in the news 268

article’s title. Articles that did not clearly reference 269

the entities were excluded, ensuring that only rel- 270

evant articles were included in the dataset. This 271

filtering process helped eliminate noise and main- 272

tain the dataset’s focus on meaningful relationships 273

between entities and events. We collected articles 274

published both before and after the LLMs’ train- 275

ing cutoff dates to compare model performance on 276

probably "familiar" versus novel events. Using free 277

News API Providers like GDELT (GDELT Project), 278

Guardian News API (The Guardian), NewsAPIAI 279

(News Api AI), NewsAPIORG (News Api) and 280

others, we collected articles about events related 281
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Figure 1: The pipeline of our dataset creation.

to the entities from our dataset. To manage the282

large volume of news articles collected during the283

dataset creation, we employed the Summarizer li-284

brary which belongs to Transformers package and285

utilizes BERT (Devlin et al., 2019) for producing286

short extractive summaries. The model was not287

fine-tuned specifically for the future prediction task288

and only relied on its pre-trained capabilities for289

contextual understanding and creating summaries.290

A random sample of the summaries was later man-291

ually reviewed to ensure they accurately captured292

the essence of events related to the selected entities.293

The final dataset consists of over 5,000 future event294

summaries about 657 entities (194 organizations,295

288 locations, and 175 persons) evenly split be-296

tween true and fake events. The creation of fake297

future events is explained in the next subsection.298

Figure 2 provides a graphical overview of news299

article distribution by popularity and news article300

dates according to the LLMs’ training cut-off date.301

3.4 Negative Instances302

To be able to test the models’ ability to distin-303

guish between real and fabricated events, we gen-304

erated negative instances (fake news articles) us-305

ing the Llama2 7b-chat-hf model (Meta, 2023).306

These articles were designed to mimic real news307

in style and content, creating a robust challenge308

for the models. The generation process involved309

task-oriented prompts such as: "Generate three310

fake news articles related to [ENTITY], each311

with a short summary (max three sentences) and 312

a randomly chosen date in early 2023 (format: 313

DD.MM.YYYY)." 314

Hyperparameters included a temperature of 0.5 315

to balance creativity and coherence. Iterative runs 316

ensured diversity in the generated articles. To ver- 317

ify non-authenticity, generated content was man- 318

ually reviewed and cross-checked against news 319

databases to confirm that no real-world counter- 320

parts existed. This rigorous process ensured that 321

fabricated articles were indistinguishable from real 322

news in style while remaining fictional. 323

3.5 Question Generation 324

The final step involved formulating questions based 325

on the event descriptions provided in the collected 326

news articles. This was important for evaluating 327

the models’ predictive and reasoning capabilities 328

using QA inputs. We first asked LLM (GPT 3.5) 329

to generate a short (sentence-long) description (de- 330

noted as [EVENT]) of an event based on its sum- 331

mary. Based on those we then developed specific 332

templates for different types of questioning: 333

1. Affirmative vs. Likelihood Question Tem- 334

plates 335

• Affirmative Question Template: "Will 336

the following event [EVENT] happen on 337

[DATE (news’ published date written as 338

Month, YYYY)]? Please only answer with 339

yes or no." 340
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• Likelihood Question Template: "Is it341

likely that the following event [EVENT]342

will occur in [DATE (news’ published343

date written as Month, YYYY)]? Please344

only answer with yes or no."345

2. Reasoning Question Template346

This template asks the models not only to347

predict the occurrence of an event but also348

to provide a rationale for their prediction.349

The prompt was structured as: "Is it likely350

that the following event [EVENT] will occur351

in [DATE (news’ published date written as352

Month, YYYY)]? Please answer first only with353

yes or no. Then please explain shortly and354

concisely what made you decide on that an-355

swer."356

3. Counterfactual Question Template357

For counterfactual analysis, we introduced358

two types of minor alterations to the event359

data:360

• Temporal Adjustments: The year as-361

sociated with an event was shifted by362

adding or subtracting 2–3 years. For ex-363

ample, an event originally occurring in364

2021 might be altered to 2019 or 2023.365

This adjustment tested whether the mod-366

els would maintain consistent predictions367

despite slight changes in timing.368

• Factual Alterations: Certain details,369

such as financial figures or project scales,370

were modified in a controlled or ran-371

dom manner. For instance, "Company372

X reported a 20% increase in profits"373

was altered to "Company X reported a374

15% decrease in profits." These changes375

were minimal enough to preserve the376

event’s overall context but significant377

enough to test the models’ sensitivity378

to factual variations. Importantly, such379

modifications were applied only to true380

events, while fabricated events (negative381

instances) were left unaltered to maintain382

their character.383

Prompts were primarily run once; however, in384

cases where models did not respond appropriately385

or failed to generate any answer, the questions were386

rerun until a valid response was obtained. Once a387

response was generated, we did not rerun the same388

question except for a small manual sample of the389

Figure 2: News article distribution before and after cut-
off training date.

dataset. In these cases, the models consistently 390

provided the same answers, indicating robustness 391

for those specific instances. These templates were 392

created to get different and detailed responses from 393

the models, allowing us to comprehensively eval- 394

uate their ability to predict and reason. By using 395

different types of questions, we aimed to see how 396

well the models could make straightforward predic- 397

tions, explain their reasoning, and respond to small 398

changes in event details. 399

4 LLM Forecasting Analysis 400

4.1 Large Language Models 401

We examine the question-answering capabilities of 402

LLMs using a variety of chosen models, each with 403

distinct advantages based on their architectural dif- 404

ferences and the training cut-off dates. Understand- 405

ing the specifications and historical training context 406

of these models is important for interpreting their 407

performance and the relevance of their outputs to 408

our dataset of news events, mostly dating after June 409

2023. 410

Llama2 7b and 70b (Meta, 2023): Llama2 mod- 411

els, developed by Meta, are among the most ad- 412

vanced LLMs. With parameters varying from 7 413

billion to 70 billion, they are specifically tuned for 414

dialogue-based tasks. Their training cut-off date is 415

July 2023. 416

GPT-3.5 Turbo (Radford et al., 2018): Ope- 417

nAI’s (OpenAI) GPT-3.5 Turbo is a generative pre- 418

trained transformer model optimized for speed and 419

coherence in conversation tasks. Utilizing diverse 420

training data until September 2021, it is highly 421

adaptable and capable of generating accurate re- 422

sponses across various topics and scenarios. 423

Mistral 7b (MistralAI Team, 2023): Mistral 7b 424

instruct is a high-performance model with 7 bil- 425

lion parameters, excelling in reasoning and code 426
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generation. It uses advanced techniques for faster427

interference and cost-effective sequence manage-428

ment. Its training cut-off date is September 2023.429

Mixtral 8x7b (MistralAI Team, 2024): The Mix-430

tral 8x7b model uses a Sparse Mixture of Experts431

(SMoE) architecture, with 8 feed-forward blocks432

per layer, allowing token interaction with differ-433

ent experts, optimizing performance and efficiency,434

and having the same training cut-off date as Mis-435

tral.436

Gemma 7b (Gemma Team, 2024): Gemma 7b437

is part of Google’s effort to create accessible yet438

powerful models that can be used in environments439

with limited computational resources. Despite its440

smaller size compared to some of the other models441

used in this study, Gemma 7b does not compromise442

performance. Launched in February 2024, this443

model serves as a crucial benchmark within our444

research to assess how models trained with slightly445

earlier data compare with those trained later in446

terms of understanding and predicting newer events447

4.2 LLMs Question-Answering448

To evaluate the predictive capabilities of the cho-449

sen LLMs, we designed three different question-450

answering approaches. Each approach was created451

to test different aspects of the models’ performance,452

from straightforward predictions to more complex453

reasoning and adaptability to changes.454

Affirmative vs Likelihood Questioning: This455

approach serves as the basic questioning strategy.456

It involves comparing direct affirmative questions457

with likelihood-based questions. The purpose is to458

determine which method generates more accurate459

predictions by assessing the models’ ability to han-460

dle straightforward predictions versus probability-461

based evaluations.462

Reasoning Analysis: In this approach, models463

are asked not only to predict the occurrence of an464

event but also to provide an explanation for their465

prediction. This helps assess the models’ ability to466

reason and articulate their thought process giving467

insight into the models’ deeper understanding of468

the events and their ability to generate coherent469

explanations.470

Counterfactual Analysis: This method tests471

the models’ sensitivity to minor changes in event472

details by presenting them with slightly altered473

versions of the original events. The purpose is to474

evaluate how well the models can adapt to these475

variations and maintain accurate predictions. This476

approach is important for understanding the mod-477

els’ flexibility and robustness in dynamic scenarios. 478

4.3 Data Analysis Techniques 479

This section discusses the methodologies used to 480

analyze data from large language model experi- 481

ments, evaluating model accuracy and reliability, 482

and understanding underlying patterns. Several sta- 483

tistical techniques and visualizations are used to 484

provide a comprehensive view of both quantitative 485

and qualitative aspects. 486

Descriptive Statistics: This method summarizes 487

and organizes the dataset to give a clear overview of 488

the models’ responses. By categorizing responses 489

by entity type (organizations, locations, persons) 490

and popularity (popular, unpopular), we can an- 491

alyze how the models perform across different 492

groups. This helps identify patterns and trends 493

in the data. 494

Evaluation Metrics: We utilize Precision, Re- 495

call, F1-Score, and Accuracy for determining the 496

accuracy and reliability of the models in contextual 497

processing and responding to our uniquely struc- 498

tured question templates. 499

5 Findings and Discussion 500

5.1 Findings 501

In this section, we present the primary outcomes de- 502

rived from utilizing large language models (LLMs) 503

to tackle a set of designed question templates that 504

test their predictive and reasoning capabilities. The 505

analysis is structured around three principal scenar- 506

ios: Affirmative vs. Likelihood Questions, Reason- 507

ing Analysis, and Counterfactual Analysis. 508

5.1.1 Affirmative vs Likelihood Analysis 509

We evaluated model responses to both affirmative 510

and likelihood questioning styles across various 511

metrics to establish a baseline understanding of 512

model performance. This analysis includes results 513

both before (shown in Table 1) and after (shown in 514

Table 2) the training cut-off date, examining how 515

well the models could predict actual future events 516

and their performance on events they may have 517

"encountered" during training. 518

Model Affirmative Likelihood

Prec Rec F1 Acc Prec Rec F1 Acc

Llama2 7b 0.651 0.749 0.693 0.633 0.671 0.721 0.694 0.647
Llama2 70b 0.964 0.069 0.128 0.478 0.968 0.099 0.179 0.494
Gemma 7b 0.758 0.614 0.677 0.673 0.796 0.517 0.623 0.655
GPT 3.5 Turbo 0.97 0.125 0.219 0.509 0.991 0.122 0.214 0.509
Mistral 7b 0.947 0.129 0.226 0.509 0.983 0.121 0.215 0.508
Mixtral 8x7b 0.538 0.024 0.046 0.437 0.592 0.06 0.108 0.445

Table 1: Performance comparison of Affirmative vs.
Likelihood metrics for the before cut-off events.
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We use the "before" scenario to assess baseline519

performance and test the hypothesis that models520

would perform better on events they might have521

been exposed to during training. In the "before cut-522

off" events, the likelihood questioning approach523

generally resulted in higher Precision across most524

models. This suggests that the likelihood format525

leads to more accurate predictions. For exam-526

ple, the Llama2 7b model showed a Precision of527

0.671 in the likelihood scenario, indicating its effec-528

tiveness in making accurate likelihood predictions.529

However, Recall rates were often higher for the530

affirmative approach, indicating that while the like-531

lihood format is more precise, it is less inclusive532

in identifying positive events. The Llama2 70b533

model, although it showed a lower Recall, demon-534

strated great Precision of 0.968, emphasizing its535

accuracy in predictions when it does classify an536

event as likely.537

Model Affirmative Likelihood

Prec Rec F1 Acc Prec Rec F1 Acc

Llama2 7b 0.660 0.718 0.682 0.617 0.687 0.711 0.696 0.642
Llama2 70b 0.932 0.046 0.087 0.446 0.954 0.061 0.113 0.454
Gemma 7b 0.723 0.470 0.561 0.584 0.782 0.438 0.554 0.600
GPT 3.5 Turbo 0.952 0.059 0.109 0.452 0.977 0.044 0.083 0.445
Mistral 7b 0.862 0.033 0.063 0.436 0.958 0.041 0.077 0.0443
Mixtral 8x7b 0.733 0.044 0.082 0.433 0.689 0.084 0.148 0.442

Table 2: Performance comparison of Affirmative vs.
Likelihood metrics for the after cut-off events.

In the "after cut-off" scenario, intended to eval-538

uate the true predictive capacity of the models,539

the preference for likelihood questioning was re-540

inforced. For instance, Llama2 7b maintained its541

lead with the highest Accuracy of 0.642, under-542

scoring its efficiency in handling real predictive543

tasks. The model not only held its ground in Pre-544

cision and Recall but also saw an increase in its545

F1-Score, indicating an even more balanced per-546

formance when facing true predictions of future547

events. Across both scenarios, the likelihood ap-548

proach consistently resulted in higher Precision,549

highlighting its effectiveness in making correct pre-550

dictions and reinforcing its suitability for predictive551

tasks where minimizing false positives is essential.552

5.1.2 Reasoning Analysis553

Following the analysis of model performance554

across the Affirmative vs. Likelihood scenarios, we555

turn our attention to the added dimension of reason-556

ing within the likelihood questioning framework,557

focusing on the "after cut-off" events. Recognizing558

the overall dominance of the Likelihood approach559

in initial assessments, all subsequent evaluations560

incorporate this format further to probe the models’561

analytical depth and predictive accuracy. The com- 562

parative analysis, presented in Table 3, examines 563

how reasoning influences model responses. A no- 564

table aspect of this table is the presence of extreme 565

values such as 0 and 1, in some metrics. These val- 566

ues arise from the models’ definitive responses to 567

the reasoning prompts. The integration of reason- 568

ing capabilities into the likelihood approach results 569

in a trade-off between Precision and Recall. For ex- 570

ample, Llama2 7b improves Recall but decreases 571

Precision, leading to a marginal increase in false 572

positives. Despite some instabilities in precision 573

and recall, the addition of reasoning generally ben- 574

efited the F1-Score, which balances these two met- 575

rics. For instance, Llama2 7b’s F1-Score increased 576

to 0.790, demonstrating a more effective balance 577

between identifying true events and minimizing 578

false positives. 579

Model Likelihood Likelihood + Reasoning

Prec Rec F1 Acc Prec Rec F1 Acc

Llama2 7b 0.727 0.723 0.720 0.654 0.695 0.921 0.790 0.695
Llama2 70b 0.976 0.055 0.102 0.413 0.000 0.000 0.000 0.381
Gemma 7b 0.835 0.454 0.578 0.601 0.754 0.403 0.521 0.546
GPT 3.5 Turbo 0.979 0.044 0.082 0.406 0.932 0.114 0.199 0.444
Mistral 7b 1.000 0.030 0.057 0.399 0.885 0.159 0.266 0.467
Mixtral 8x7b 0.588 0.075 0.132 0.397 1.000 0.025 0.049 0.397

Table 3: Performance comparison of Likelihood
Approach and Reasoning Approach metrics for the

after cut-off events.

5.1.3 Counterfactual Analysis 580

Lastly, we explore how slight factual modifications 581

influence model predictions through counterfactual 582

analysis (shown in Table 4). This analysis focuses 583

on how minor changes, such as altering dates or mi- 584

nor facts in true events, impact model predictions. 585

The results show a general decline in performance 586

metrics for counterfactual instances compared to 587

standard positive instances, suggesting that models 588

struggle to adapt to slight changes. For instance, 589

the Llama2 7b model showed a significant drop in 590

performance when faced with counterfactual sce- 591

narios, highlighting potential difficulties in adapt- 592

ing to deviations from their training data. 593

Model Positive instances Counterfactual instance

Prec Rec F1 Acc Prec Rec F1 Acc

Llama2 7b 0.709 0.700 0.699 0.636 0.333 0.013 0.026 0.379
Gemma 7b 0.817 0.478 0.574 0.590 0.7884 0.185 0.288 0.448
GPT 3.5 Turbo 0.750 0.041 0.077 0.400 0.000 0.000 0.000 0.379

Table 4: Performance comparison between Positive
instances and Counterfactual instances metrics.

This raises the question of whether being highly 594

sensitive to small changes is an advantage or a 595

disadvantage. This question is important for under- 596

standing whether being highly affected by small 597
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changes is an advantage, making the models more598

robust and flexible, or a disadvantage, meaning the599

models cannot handle slight variations well. Iden-600

tifying whether this sensitivity is a strength or a601

weakness requires further research, highlighting602

an important area for future research to ensure the603

models can be effectively tuned for real-world ap-604

plication.605

5.2 Interpretation of Results606

Following the findings from the last section, we607

dive deeper into the different aspects of the models’608

performance.609

5.2.1 Before vs. After Categorization610

The comparison between the before and after sce-611

narios reveals some interesting trends. Figure 3612

in Appendix shows the confusion matrices based613

on Llama2 70b, Gemma 7b, and GPT 3.5 turbo614

models. The models’ performance metrics show615

a general decrease in the after categorization sce-616

nario, albeit a slight one. This indicates that the617

models’ ability to predict future events is not signif-618

icantly worse than their performance on potential619

training data events. However, the expected better620

results in the before scenario are notably absent,621

which is a somewhat surprising discrepancy to our622

initial hypothesis that the models would perform623

significantly better on events from their potential624

training data.625

5.2.2 Popularity Categorization626

Models demonstrated a slight preference for popu-627

lar entities, but the difference in performance was628

not substantial. While popular entities showed629

marginally better Precision and Accuracy, this im-630

provement was not consistent across all models.631

This suggests that the models handle both popular632

and unpopular entities with relatively equal profi-633

ciency, challenging the assumption that popularity634

significantly impacts performance.635

Figure 4 in Appendix presents a visual overview636

of correct and incorrect predictions in the popular-637

ity categorization for the Llama2 70b, Gemma 7b,638

and GPT 3.5 turbo models.639

5.2.3 Entity Type Categorization640

We finally focus on how the models perform across641

different entity types: organizations, locations, and642

persons. This analysis considers only the after sce-643

nario, examining how the models handle various644

types of events beyond their training cut-off date.645

The results reveal no clear preference for any spe- 646

cific type. Instead, the results vary between mod- 647

els. Some models performed consistently across 648

organizations, locations, and persons, while oth- 649

ers showed more variability. This suggests that 650

model performance is influenced by their internal 651

configurations and training rather than by the type 652

of entity. 653

6 Conclusion 654

Future forecasting is daily activity of everyone. 655

However, the forecasting abilities of LLMs have 656

still not been adequately explored. In this re- 657

search, we explored the predictive capabilities of 658

various language models, focusing on their per- 659

formance in different scenarios and approaches. 660

The evaluations included different questioning ap- 661

proaches, temporal ranges, popularity, and entity 662

types. The results showed that the Likelihood ap- 663

proach showed a slight edge in the affirmative vs. 664

likelihood scenario, yet similar performances in 665

the before and after cut-off training date scenarios. 666

The Reasoning approach achieved higher recall 667

rates yet with an increased rate of false positives, 668

indicating a tendency to classify more events as 669

positive. The Counterfactual approach highlighted 670

a decline in performance, suggesting sensitivity to 671

slight changes. 672

Our research contributes to the field of predic- 673

tive modeling using LLMs, focusing on predictive 674

tasks across various scenarios. We created a time- 675

sensitive dataset for future prediction tasks, which 676

serves as a basis for examining LLMs’ predictive 677

capabilities and identifying areas needing further 678

research. The dataset includes a diverse set of ques- 679

tioning scenarios providing a comprehensive view 680

of LLMs’ performance across different types of 681

predictive tasks, which are all temporally aligned 682

with the cut-off dates of the tested models. The 683

study also analyzed the dataset in different scenar- 684

ios, to explore potential correlations between these 685

factors and the models’ performance. 686

Our future research will focus on extending data 687

collection and investigating event plausibility, re- 688

fining temporal reasoning, and exploring models’ 689

sensitivity to slight changes. Investigating ethical 690

considerations and guardrails that might affect pre- 691

dictions, along with automated predictive text gen- 692

eration, would further enhance the understanding 693

and application of LLMs in predictive modeling 694

tasks. 695
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Limitations696

Throughout this study, several limitations and chal-697

lenges shaped our approach and findings. The698

initial challenge was the limited background re-699

search specifically focused on future prediction700

tasks, which required us to adapt broader temporal701

reasoning literature, potentially introducing incon-702

sistencies. During the dataset creation process, we703

faced significant obstacles due to restricted access704

to news archives, making it difficult to find plausi-705

ble events for future prediction tasks. Large Lan-706

guage Models’ ethical guardrails led to guarded707

responses, often defaulting to "no" for safety. This708

conservative approach impacted predictive capabil-709

ities research, leading to skewed results.710

Ethics Statement711

Our research leverages the GPT-3.5 turbo model,712

and other LLMs. We strictly adhere to the con-713

ditions set forth by these licenses. The datasets714

we use are sourced from repositories that permit715

academic use. To encourage ease of use and modi-716

fication by the research community, we are releas-717

ing the artifacts developed during our study under718

the MIT license. Throughout the project, we have719

ensured that data handling, model training, and720

dissemination of results comply with all relevant721

ethical guidelines and legal requirements.722

An important point to make is that using LLMs723

for forecasting needs to be accompanied by a care-724

ful consideration of the potential risks that may725

arise from acting on the generated forecasts. This726

applies not only to using LLMs but also to employ-727

ing any forecasting tool.728

Questions about future may have large range of729

diverse outcomes due to the large space of possible730

answers and their inherent uncertainty which can731

make them somehow more difficult to test, con-732

trol and align with human values and expectations.733

While this may be used to achieve sub-optimal per-734

formance, we do not believe this is a suitable attack735

vector to achieve harmful behavior.736
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Appendix908

Figure 3 displays confusion matrices of different909

models on the scenarios of before (upper row) and910

after (bottom row) cut-off dates of LLMs.911

Figure 4 provides performance comparison of912

models with respect to the numbers of correct and913

incorrect predictions for the cases of popular en-914

tities (upper row of plots) and unpopular entities915

(bottom row of plots).916
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Figure 3: Confusion matrices of the Before vs. After categorization based on Llama2 70b, Gemma 7b, and GPT
3.5 Turbo models.

Figure 4: Performance comparison of the Popular vs. Unpopular categorization based on Llama2 70b, GPT 3.5
Turbo and Gemma 7b models.
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