
Published as a conference paper at ICLR 2025

LANGUAGE-GUIDED DIFFUSION FOR DOMAIN GENER-
ALIZATION

Haolin Ren1, Xinyi Li2, Yancong Deng3
1University of Chinese Academy of Sciences, Beijing, China
2University of California, Davis, USA
3University of California, San Diego, USA
renhaolin22@mails.ucas.edu.cn

ABSTRACT

Domain generalization (DG) addresses the challenge of training machine learning
models that generalize effectively to unseen target domains exhibiting distribu-
tional shifts. Traditional data augmentation techniques, while useful, often fail to
adequately simulate the novel domain characteristics necessary for robust DG. We
introduce a novel data augmentation framework leveraging the synergistic power of
Large Language Models (LLMs) and diffusion models to generate diverse and real-
istic training data for DG. Our method employs LLMs to create creative prompts
that encapsulate new domain styles, which are then used by diffusion models to
synthesize high-fidelity images representative of these unseen domains. Further-
more, we integrate a CLIP-guided diversity analysis to ensure that the generated
data effectively enhances model generalization while maintaining computational
efficiency. Experiments on the PACS dataset show that our method significantly
outperforms traditional techniques.

1 INTRODUCTION

Domain generalization (DG) aims to develop machine learning models that maintain robust perfor-
mance when deployed in unseen target domains (Blanchard et al., 2011). The fundamental challenge
lies in overcoming distribution shifts between training (source) and test (target) domains—a problem
exacerbated by conventional data augmentation techniques that primarily generate in-domain varia-
tions through geometric transformations (Shorten & Khoshgoftaar, 2019) or style transfers. While
these methods improve within-domain robustness, they fundamentally lack the capacity to simulate
genuinely novel domain characteristics essential for true cross-domain generalization.

Recent advances in generative AI present new opportunities for addressing this limitation. Diffu-
sion models (Rombach et al., 2022) have demonstrated unprecedented capabilities in generating
high-fidelity images, while large language models (LLMs) (Achiam et al., 2023) offer sophisticated
semantic understanding for controlled generation. However, the synergistic potential of these tech-
nologies remains underexplored for DG—existing approaches either apply diffusion models naively
for in-domain augmentation (Sauer et al., 2023) (failing to induce cross-domain invariance), use
LLMs for label-space augmentation (Ma et al., 2023) (neglecting visual domain characteristics), or
lack systematic methods for generating compositionally novel domains that preserve semantic content.
Our work bridges this gap through LLM-prompted diffusion generation that systematically produces
novel domain variations. As illustrated in Figure 1, our method combines three key innovations:

1. LLM-guided domain space expansion through semantic-aware prompt engineering

2. CLIP-regularized diffusion generation ensuring visual-semantic consistency

3. Diversity-constrained augmentation scaling optimized for DG effectiveness

Extensive experiments across PACS, OfficeHome, and VLCS benchmarks demonstrate that sup-
plementing merely 50% of training data with our generated samples improves state-of-the-art DG
methods by up to 3.6% absolute accuracy.
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2 METHODOLOGY

Figure 1: Overview of our proposed method for dataset augmentation using LLM and diffusion
models. Scale: orig → 50% per domain, new: → 50% of orig mean. The 50% generation ratio
was determined through a preliminary CLIP-based diversity analysis on PACS dataset and adopted as
a practical guideline for all datasets.

We studied the Domain Generalization (DG) classification problem. We fine-tuned a pretrained
model on data composed of multiple domains and evaluated it on data from unseen domains. More
formally, we consider training domains D = {D1, . . . ,Dn}, where each domain’s data source differs
from the others. For example, domains may include sketches, cartoons, or photos. We used a Large
Language Model (LLM) and diffusion models(Stable Diffusion) to generate new images based on the
original dataset, including both domains present in the original dataset and new domains generated
by the LLM, D = {Dorig+aug

1 , . . . ,Dorig+aug
n ,Daug

n+1, . . . ,D
aug
n+m}. Based on our extended training

domains, we trained models and evaluated the trained models on test domains that were not expanded
D = {(XD1

orig,y
D1

orig), . . . , (X
Dn

orig,y
Dn

orig)}. We test multiple generation methods to determine the best
one. Our goal is to investigate the extent to which augmenting the original dataset with LLM and
diffusion models improves the performance of models trained on the augmented dataset compared to
those trained on the original dataset. This provides a novel data augmentation approach for future
model training.

2.1 LARGE LANGUAGE MODELS FOR DOMAIN GENERATION

Large Language Models (LLMs) have been proven effective in various natural language processing
tasks, including text generation, translation, and sentiment analysis. These models are trained on
massive amounts of textual data and are capable of capturing complex patterns in language. In this
work, we leverage the powerful text generation capabilities of LLMs to generate new domains beyond
the original dataset’s domains. We then use both the original domains and the newly generated domain
categories to extend the original dataset, thereby enhancing it to improve the model’s performance in
classification tasks.

New Domain Generation To generate new domains, we inform the LLM of the ex-
isting domains in the dataset and then use a large language model (LLM) to synthe-
size new similar domains. Taking the PACS dataset as an example, which contains
photo, art painting, cartoon, and sketch domains, we use LLM to generate other domains
through prompts: "My dataset currently has these domains {domains in
original dataset}, help me generate a few more related domains."

The newly generated domains were then integrated into the original dataset, thereby augment-
ing its diversity and enriching the breadth of visual representations available for subsequent
analysis. The domain sets are defined as follows. The original domain set is Dorig =
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{photo, art_painting, cartoon, sketch}. Using the LLM, we generate a new domain set Daug =
{3D_render,watercolor}. These are combined to form the extended domain set Dextended =
{photo, art_painting, cartoon, sketch, 3D_render,watercolor}.

Figure 2: Illustration of the new domain generation, prompt generation and diffusion model for image
generation.

Prompt Generation The process of prompt generation can be mathematically formulated as
follows. Let the function f : A → B generate a prompt containing both the class name and the
domain style:

prompt = f(class_name, domain)

where class_name is the given category and domain represents the style domain. This function f
generates distinct prompts based on the inputs.

Given a set of classes C and domains D, a prompt pi,j is generated for each class ci ∈ C and domain
dj ∈ D:

pi,j = f(ci, dj)

In this paper, the function f can be decomposed into two components:

f = fLLM ◦ fprompt

where:

1. fprompt: The prompt provided to the large language model (LLM), which guides the genera-
tion process.

2. fLLM: The large language model (LLM) itself, which processes the prompt and generates
the output.

Thus, the overall function f combines the input prompt and the LLM’s generation capabilities.

In our actual experiments, the function f—the prompt function—is a simple string concatenation
function that concatenates the class and domain style together, which is then passed as input to the
LLM. The output generated by the LLM is a sentence that contains both the class and domain style.
This sentence can be used for image generation. The prompt designed for the LLM is as follows:

"’[class_name] = {class_name}; [domain style] = {domain}’. I want
to generate a sentence/description which contains the classname
and one of domain styles above. Please make sure the description
has a certain degree of variation and with about 40 words."

Using this prompt, we can generate a series of prompts that contain both the class name and one of
the domain styles. These sentences can be used to generate images, thus augmenting the original
dataset.

3



Published as a conference paper at ICLR 2025

2.2 DIFFUSION MODEL FOR IMAGE GENERATION

dog elephant giraffe guitar horse house person

3D render

art painting

cartoon

cyberpunk

Figure 3: Sample images from the augmented PACS dataset. The dataset consists of images of 8
domains, 4 of them were generated by the LLM and diffusion model. Original domains: {photo,
art_painting, cartoon, sketch}. Augmented domains: {3D_render, cyberpunk, pixel art, watercolor}.

Using the prompts generated by LLM, we employ diffusion models to create high-quality synthetic
images. Let the original dataset be Dorig, and the augmented dataset Daug is created by generating
new images using the diffusion model:

Daug = Dorig ∪ {g(f(ci, dj)) | ci ∈ C, dj ∈ D}

where g(·) represents the image generation process using the diffusion model, and f(ci, dj) is the
prompt generation function.

2.3 CLIP-GUIDED DIVERSITY ANALYSIS

Using CLIP embeddings to evaluate image diversity across various generation scales, we found an
optimal theoretical ratio of 64.96%. For practical efficiency, we adopted a 50% generation ratio
across all datasets, which provides a good balance between diversity and computational cost while
maintaining consistent performance improvements.

2.4 GENERATION METHOD

We test multiple generation methods to determine the best one. o-Domain only uses the original
domains for data augmentation. q-Domain uses the original domains with an extended number
of generated samples. d-Domain only uses the new domains generated by the LLM and diffusion
models. qd-Domain combines both the original domains and new domains.

3 EXPERIMENTS

In this section, we provide implementation details using LLM and diffusion models, and present
experiments using the domainbed experimental environment(Gulrajani & Lopez-Paz, 2020).

3.1 IMPLEMENTATION DETAILS

LLM Choice and Diffusion Model Choice We used the GPT-4o model as our LLM, which is
known for its powerful text generation capabilities. For the diffusion model, we choose the stable
diffusion model, following the specific settings of (Fan et al., 2024), which has been shown to be
very effective in image generation tasks.
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Prompt length The prompt length is an important hyperparameter that can significantly impact the
quality of the generated images. A longer prompt can provide more detailed information to the LLM.
In order to make the prompt words carry as much information as possible, we chose a prompt word
length of at least 40 words.

CLIP-based Diversity Analysis and Optimal Generation Scale To evaluate the diversity in-
troduced by the generated images and determine the optimal number of synthetic images, we
employed the pretrained CLIP model (ViT-B/32) on 400M image–text pairs. For each generation
scale s ∈ {10%, 20%, . . . , 100%}, we generated s × |Dorig| synthetic images. We then extracted
512-dimensional image embeddings using CLIP’s vision encoder and computed the intra-domain
variance as:

Score(s) =
1

|D|
∑
d∈D

Vard,

where D is the set of all domains and Vard is the variance of embeddings within domain d. Figure 4
depicts the relationship between the generation scale and the diversity scores.

A cubic polynomial fit was applied to the obtained scores, leading to a theoretical optimum of
approximately 64.96% for the generation scale. However, since the diversity gains tend to plateau
beyond 50% and to reduce computational cost, we adopted a final generation scale of 50% in our
experiments.
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Figure 4: CLIP-based diversity analysis results showing the relationship between generation scale
and intra-domain diversity. The blue dots represent measured diversity scores, while the orange line
shows the cubic polynomial fit.

3.2 DOMAINBED EXPERIMENTS

Table 1: Model Performance on Different PACS Variants with Averages

Algorithm oPACS qPACS dPACS qdPACS

ERM 84.4 84.6 88.5 87.5
IRM 83.5 86.2 88.1 86.5
Mixup 86.8 88.0 86.6 87.8
MLDG 79.2 76.9 77.6 80.0
CORAL 84.2 87.0 86.6 88.7
MTL 85.2 86.9 86.0 88.4
SagNet 83.2 84.4 85.8 85.0
SelfReg 81.9 85.0 87.4 86.3

Avg 83.6 84.9 85.8 86.3
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Figure 5: UMAP visualization of the PACS dataset features. Top left: Original PACS dataset. Top
right: Generated data with oral domain. Bottom left: Generated data with gen domain. Bottom right:
Complete dataset combining original and generated data.

Table 2: Average Performance of o-Domain and qd-Domain Methods Across Datasets

Algorithm o-Domain qd-Domain
OH VLCS PACS OH VLCS PACS

ERM 70.3 77.8 84.4 73.9 78.3 87.5
IRM 58.1 78.8 83.5 66.5 79.4 86.5
Mixup 69.2 77.8 86.8 72.4 76.6 87.8
MLDG 56.0 71.5 79.2 59.5 70.1 80.0
CORAL 70.3 75.9 84.2 71.3 77.2 88.7
MTL 68.8 76.8 85.2 72.2 78.5 88.4
SagNet 68.7 78.0 83.2 71.5 76.1 85.0
SelfReg 70.7 76.9 81.9 73.4 78.7 86.3
Avg 66.5 76.7 83.6 70.1 76.9 86.3

Note: OH stands for OfficeHome dataset. Best results between o-Domain and qd-Domain are in bold.

We evaluate the performance of our methods on a well-known DG benchmark Domainbed(Gulrajani &
Lopez-Paz, 2020). For fair comparison, we reuse the training and evaluation protocols in DomainBed,
including dataset splits, training iterations, and model selection criteria. Our evaluation employs the
training-domain validation set. The final data augmentation method is selected based on its combined
accuracy on the validation set of all training domains.

It can be seen from Table 1 that, all data enhancement methods are better than the original data set,
among which the qd-Domain method performs best, reaching an accuracy of 86.3%. This shows that
our data augmentation method achieves significant improvement on the domain generalization task.

Furthermore, we apply the qd-Domain method to the OfficeHome and VLCS datasets to validate the
performance of our approach across different datasets. From Table 2, we can see that the qd-Domain
method performs better than the o-Domain method on all datasets. This demonstrates the effectiveness
of our data augmentation method on different datasets.
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A RELATED WORK

Our work bridges domain generalization, diffusion-based generative models, and long-tail recognition.

A.1 DOMAIN GENERALIZATION

Domain generalization (DG) aims to build models that perform well on unseen domains by learn-
ing domain-invariant features. Various approaches have been proposed, including Empirical Risk
Minimization (ERM) (Vapnik, 1998), Interdomain Mixup (Mixup) (Yan et al., 2020), Invariant repre-
sentation learning (Liu et al., 2021; Li et al., 2021), and Meta-learning (Liu et al., 2023). However,
most methods struggle to generalize across diverse settings, motivating our use of diffusion models to
generate domain-agnostic samples for improved generalization.

A.2 DIFFUSION MODELS

Diffusion-based generative models, such as Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020), have gained attention for their ability to generate high-quality, diverse data. Unlike GANs,
diffusion models offer more stable training and are effective at generating realistic images. Recent
works (Dhariwal & Nichol, 2021) have applied diffusion models in various tasks, including image
synthesis and augmentation. In this work, we employ diffusion models to enhance generalization by
generating diverse samples across domains.

A.3 LONG-TAIL RECOGNITION

Long-tail recognition addresses class imbalances where few-shot categories are often underrepre-
sented. Leveraging synthetic data has shown promise in improving tail-class performance (Kang
et al., 2019; Liu et al., 2022). Zhao et al. (Zhao et al., 2024) recently used LLM-driven synthetic data
to address long-tail issues, leading to performance improvements. Inspired by this, we use diffusion
models to generate balanced data, especially for underrepresented domains.

Our approach uniquely combines diffusion-based data generation with domain generalization and
long-tail classification, targeting improved performance on both unseen domains and imbalanced
datasets.
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