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ABSTRACT

The training of large models is memory-constrained, one direction to relieve this
is training using local loss, like GIM, LoCo, and Forward-Forward algorithms.
However, the local loss methods often face the issue of slow or non-convergence.
In this paper, we propose a novel BP-modified local loss method that uses the true
Backward Propagation (BP) gradient to modify the local loss gradient to improve
the performance of local loss training. We use the stochastic modified equation
to analyze our method and show that modified offset decreases the bias between
the BP gradient and local loss gradient, but introduces additional variance, which
results in a bias-variance balance. Numerical experiments on full-tuning and LoKr
tuning on the ResNet-50 model and LoRA tuning on the ViT-b16 model on CIFAR-
100 datasets show 20.5% test top-1 accuracy improvement for the Forward-Forward
algorithm, 18.6% improvement for LoCo algorithm and achieve only an average
7.7% of test accuracy loss compared to the BP algorithm, with up to 75% memory
savings.

1 INTRODUCTION

Neural networks have seen rapid advancements in recent years, becoming widely applied across
various fields. A key algorithm for training deep neural networks is the Backward Propagation (BP)
algorithm (Rumelhart et al., 1986), which needs to store the intermediate state in the forward pass
to compute the gradient in the backward pass and thus leads to a large memory usage. This issue
becomes more severe as the models become deeper and require larger batch sizes, like SimCLR (Chen
et al., 2020). Consequently, reducing the memory footprint of training and fine-tuning remains an
active area of research (Krizhevsky et al., 2017; Rhu et al., 2016; Malladi et al., 2023).

To mitigate this memory issue, one common approach is gradient accumulation or distributed
training strategies, such as Data Parallelism (Zhang et al., 1989; Das et al., 2016) and Pipeline
Parallelism (Huang et al., 2019)), which trades memory usage for additional computation time or
enlarge the total memory by using multiple devices. An alternative is using local loss (also known
as local learning, or layerwise learning) to train the neural networks instead of the full BP (e.g.
Greedy InfoMax algorithm (Löwe et al., 2019), Forward-Forward algorithm (Hinton, 2022)), where
the backward propagation is applied only to portions of the model, reducing memory consumption.
However, this method generally leads to poorer accuracy compared to BP. Recently, the Model
Predictive Control (MPC) framework (Ren & Li, 2024) has been proposed to unify the BP algorithm
and the local loss method, balancing memory usage and performance through different horizons. It
uses the truncated loss to train the neural networks. However, the MPC framework still faces the
trade-off between efficiency and performance: smaller horizons require less memory but result in
lower accuracy.

Similar to leveraging global information to improve local loss (Lorberbom et al., 2023), we propose a
BP-modified local loss method. Our method integrates the true BP gradient to modify the local loss
gradient. Using stochastic modified equations (Li et al., 2017; 2018), we show that this modification
reduces bias between the gradients but introduces additional variance, thus resulting in a bias-variance
trade-off. Through an analysis based on the Ornstein–Uhlenbeck process and one-step loss, we
further illustrate this balance and derive the explicit update equations for the scaling factor λh

and ah by minimizing the balance. Numerical experiments on full-tuning and LoKr tuning on the
ResNet-50 model and LoRA tuning on the ViT-b16 model on the CIFAR-100 dataset show up to 28%
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improvement in test top-1 accuracy for the Forward-Forward algorithm and 29% improvement for
the LoCo algorithm, with only 7.7% average test accuracy loss compared to the BP algorithm while
saving 75% memory.

The main contributions of this paper are as follows:

• We introduce a novel local loss training algorithm that significantly improves performance
with minimal additional memory overhead.

• We provide a theoretical analysis using the stochastic modified equation, illustrating the
bias-variance trade-off and deriving optimal scaling factors.

• Numerical experiments on both CNN and vision transformer models using different tuning
methods verify that our method can improve the performance of the local loss methods with
minimal additional memory usage.

The rest of the paper is organized as follows. In Section 2, we review the related work. Section 3
introduces the proposed BP-modified local loss method. The theoretical analysis is in Section 4
In Section 6, we present the numerical experiments. Section 7 discusses the limitations and future
directions.

2 LITERATURE REVIEW

To address the memory issue of the BP algorithm, many local loss methods have been pro-
posed (Belilovsky et al., 2019). For example, Löwe et al. (2019) proposed the Greedy InfoMax
(GIM) learning approach which uses local constructive loss to train the model in self-supervised
learning. Belilovsky et al. (2019) greedily train each convolution layer at one time and construct
the model layerwise. Hinton (2022) proposed the Forward-Forward algorithm using simple local
loss to train the MLP model. However, these methods suffer performance issues compared to the
BP algorithm since the local loss cannot give the true BP gradient. Recently, Ren & Li (2024)
proposed the MPC framework that unifies the BP algorithm and the local loss method. The MPC
framework uses the "loss split" method to create local loss from terminal loss and truncated loss. It
uses different lengths ("horizon" in the language of MPC) of truncated loss to balance memory usage
and performance. It finds the convergence of the gradient to the true gradient in the large horizon.
However, the MPC framework still has the efficiency-performance trade-off: small horizons use less
memory but result in larger losses.

To improve the performance of the local loss methods, one natural idea is to offer additional infor-
mation. The LoCo algorithm (Xiong et al., 2020) uses the adjacent two blocks in the model for
back-propagation to indirectly pass the global information. Lorberbom et al. (2023) uses the infor-
mation from other layers to update the threshold in the Forward-Forward algorithm. The proposed
BP-modified local loss method uses the difference between the true gradient and local loss gradient
in another small batch to modify the original local gradient and reduce its bias thus improving the
performance of the original local loss training method.

The implementation of our method uses the delayed update strategy, i.e. the modified term only
updates periodically in a larger batch, which is similar to the control variate methods such as
SVRG (Johnson & Zhang, 2013), SARAH (Nguyen et al., 2017), and Control variate forward
gradient (Arisaka & Li, 2024). Both our methods and theirs include some additional parameters
that are expensive in computation (the control variate in their method and the modified term in our
method), and an inner loop where these parameters stay unchanged. However, the motivation of the
control variate methods is to reduce the variance while our method tends to reduce the bias in the
expense of adding variance.

3 METHOD: BP-MODIFIED LOCAL LOSS

In this section, we first introduce the deep learning training problem and the MPC framework. Then,
we present our BP-modified local loss approach. We consider the "feed-forward" neural network with
T layers or blocks, where each block is sequentially connected as follows:

xt+1 = ft(xt, ut), (1)
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Figure 1: Diagram of the BP-modified local loss method
Usually, there is a large deviation between true gradient gT and local (loss) gradient gh. The BP-
modified local loss method introduces an additional offset ∆g̃h using local gradient and true gradient
in batch B′ to modify local gradient gh to modified gradient ĝh in other batches B.

where t ∈ {0, ..., T − 1} denotes the block index, xt ∈ Rnt denotes the input of the t-th block, (with
x0 being the model input and xT the model output) , and ut ∈ Rmt are the trainable parameters in the
t-th block, the function ft : Rnt × Rmt → Rnt+1 represents the forward mapping of the t-th block.
Moreover, we denote the combination of head and final loss as L(xT ), omitting possible parameters,
targets/labels, and regularization terms for ease of notation. We assume L is compatible with xt for
all t = 1, · · · , T . By compatibility of the loss L, we mean it can accept the outputs of all blocks, i.e.
L(xt) is valid for ∀t = 1, · · · , T . For further details of L, refer to Appendix A

Recently, Ren & Li (2024) introduced the MPC framework that unifies BP and the local loss method.
Since this framework includes many other local losses like Forward-Forward algorithm (Hinton,
2022) and LoCo algorithm (Xiong et al., 2020), we use this framework to present our proposed
method, which applies generally to local loss training algorithms.

The MPC framework uses a "loss split" technique to decompose the terminal loss into local losses:

lt(xt, ut) = L(ft(xt, ut))− L(xt) = L(xt+1)− L(xt), (2)

and then define the truncated loss:

Lh,t(xt, u) =

h−1∑
s=0

lt+s(xt+s, ut+s) = L(xh+t)− L(xt) (3)

where u = (u⊤
0 , · · · , u⊤

T−1)
⊤ ∈ Rm represents all the weights in the model, m =

∑T−1
t=0 mt, and

h ∈ {1, · · · , T} is the hyper-parameter that controls the length of the truncated loss. We assume
xt = xT when t > T and remove the constraint t ≤ T and the minimum argument with T for
simplicity. The gradient of ut under horizon h is defined as the corresponding gradient of Lh,t:

gh,t ≜ ∇ut
Lh,t(xt, u) = ∇ut

L(xh+t). (4)

From Eq. (4), we know that when h = T , gT,t correspond to the gradient of the terminal loss, reducing
to traditional BP, i.e. gT,t = gBP; when h = 1, Lt,1(xt, u) = lt(xt, ut) = L(xt+1)− L(xt), which
reduces to the Forward-Forward algorithm (Hinton, 2022). Further, the LoCo algorithm (Xiong et al.,
2020) can be seen as the case when h = 2. For a detailed example and comparison, please refer
to (Ren & Li, 2024).

The MPC framework adjusts the accuracy-memory trade-off through horizon h. Since the gradient of
the t-th block gh,t is ∇ut

L(xh+t), a smaller h uses less global information thus less accurate and a
larger horizon h receives more global information and gets better performance. However, the gradient
gh,t only depends on the loss xt+h, so the gradient only needs to back-prop from L(xt+h) to ut

through h blocks, reducing memory usage to O(h), i.e., a smaller horizon will save more memory.

3.1 BP-MODIFIED LOCAL LOSS

To retain the memory efficiency while improving the performance of small horizons, we propose
a BP-modified local loss. This is especially useful for the h = 1 case, i.e. Forward-Forward case,
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which has minimal memory usage. The method introduces an offset to modify the local loss gradient
gh,t, as illustrated in Figure 1:

ĝh,t = ah,tEµB
[gh,t] + λh,tEµB′ [g̃T,t − ah,tg̃h,t] ≜ ah,tEµB

[gh,t] + λh,tEµB′ [∆g̃h,t], (5)

for all t = 0, · · · , T − 1, where µB represents the empirical distribution of the mini-batch with size
B, i.e. µB = 1

B

∑B
i=1 δxi

, and µB′ is the empirical distribution of another independent mini-batch
with size B′, and letting g denotes the gradient obtained from µB , g̃ denotes the gradients obtained
from µB′ and ĝ is the modified gradient. ah,t ∈ R, λh,t ∈ [0, 1] are two scaling factors, where ah,t
scales the original gradient and λh,t scales the offset.

The additional information of the BP-modified local loss method lies in the offset term ∆g̃h,t, which is
the difference between the true gradient gT,t and the local loss gradient gh,t of another mini-batch µB′ .
If the difference of gradient in different samples are similar, i.e. EµB

[gh,t−gT,t] ≈ EµB′ [gh,t−gT,t],
then the modified term ∆g̃h,t will reduce the bias of local gradient. However, the offset term itself
will introduce additional variance. In the following section, we will theoretically analyze the impact
of the offset.

Furthermore, to acquire this offset term, we need to sample another mini-batch µB′ and compute
the local gradient g̃h,t and true gradient g̃T,t on it. This will increase computation cost and memory
usage. Some techniques are used in the algorithm to mitigate the impact on both time and memory
usage. For the detailed implementation, please refer to Section 5 and Alg. 1. Storing the offset ∆g̃h,t
will also need additional memory in the size of trainable parameters, which is negligible especially
for CNN models and low-rank tuning cases such as LoRA (Hu et al., 2022).

4 THEORETICAL ANALYSIS

In this section, we theoretically analyze the performance of the proposed BP-modified local loss
method using the stochastic modified equation of stochastic gradient descent (SGD) (Li et al., 2017;
2018; Mandt et al., 2017) which is applicable for various models and tasks. For clarity, we consider
the full set of weights u, where the local gradient gh and true gradient gT are the concatenation of the
block gradient (i.e., gh = (g⊤h,0, · · · , g⊤h,T−1)

⊤). However, the following analysis can apply to each
block t individually. Further, we will omit the dependency of gradients g∗ and their variance C∗ on
weights u in the following for simplicity.

Similar to traditional BP, the stochastic modified equation of SGD for horizon h within the original
MPC framework can be written as:

dU(τ) = −Eµ[gh] dτ +

…
η

B
Ch dWτ , (6)

where U is the first order continuous approximation of weights u as U(ηk) ≈ u(k), µ denotes the
empirical distribution of the whole training data, τ is time index for the stochastic modified equation,
η is the learning rate, B is the batch size, and Ch = Cov(gh)

1 is the autocovariance matrix of gh,
and Wτ represents a standard Brownian motion. By Li et al. (2017), we can derive that U(ηk) is a
first-order approximation of u(k) in a weak sense. Please refer to B.1 for details.

To simplify the analysis, we assume that the mini-batch B′ for computing offset is independently
sampled at each step. The stochastic modified equation for the proposed BP-modified local loss
method then becomes:

dU(τ) = −Eµ[(1− λh)ahgh + λhgT ] dτ +

 
ηa2h
B

Ch +
ηλ2

h

B′ C̃h dWτ , (7)

where C̃h = Cov(∆gh) = a2hCh+CT −ahCh,T is the autocovariance matrix of ∆gh = gT −ahgh,
Ch,T = Cov(gh, gT ) + Cov(gT , gh) is the covariance matrix between gh and gT . The detailed
derivation of Eq. (6) and Eq. (7) please refer to Appendix B.1

By comparing Eq. (7) with Eq. (6), we can see that the proposed BP-modified local loss method
reduces the bias between the applied gradient with the true gradient from ∥Eµ[gh] − Eµ[gT ]∥2 to

1In the paper, we denote Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])⊤] denotes the covariance matrix of
random vectors X and Y , and Cov(X) = Cov(X,X) be the autocovariance matrix of random vector X .
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∥(1 − λh)Eµ[gh] − Eµ[gT ]∥2 while introducing additional variance ηλ2
h

B′ C̃h. This leads to a bias-
variance trade-off in the proposed method. We will further illustrate this trade-off using a toy model
and then analyze it in the one-step setting in general.

Remark 4.1 Note that when λh = 0, Eq. (7) reduces to Eq. (6) since there is no addition offset.
When ath = 0, λh = 1, Eq. (7) describes the stochastic modified equation for traditional BP with
batch size B′ since there is only gT sampled from B′ in Eq. (5).

4.1 TOY EXAMPLE: ORNSTEIN-UHLENBECK PROCESS

To illustrate the bias-variance balance in Eq. (7), we consider an Ornstein-Uhlenbeck (OU) pro-
cess (Uhlenbeck & Ornstein, 1930). Although it is generally not the true training process of neural
networks, this simple model allows for exact calculations which gives important insights into the
effect of λh and bias-variance trade-off that is aligned with the discoveries in the following analysis.

Assuming u ∈ Rn and the global loss and local loss with respect to u are:

J(u) =
1

2
u⊤Au ≜

1

2
∥u− u∗

T ∥2A, Jh(u) =
1

2
∥u− u∗

h∥2A, (8)

where A ∈ Rn×n is a symmetric positive-definite matrix and the optimal solution are u∗
T , u

∗
h

respectively, and u∗
T = 0. Assuming the gradient variance V ∈ Rn×n remains constant throughout

the dynamic, the stochastic modified equation of SGD for both global loss J and local loss Jh follows
Ornstein-Uhlenbeck (OU) process

dUT (τ) = −∇J(UT (τ))dτ +
√
V dWt = −AUT (τ)dτ +

√
V dWt. (9)

dUh(τ) = −∇Jh(Uh(τ))dτ +
√
V dWt = −A(Uh(τ)− u∗

h)dτ +
√
V dWt. (10)

Assuming their initial point are the same,i.e. UT (0) = Uh(0) = u0 ∈ Rn.

For the BP-modified version, mimicking Eq. (7) and assuming ah = 1 for simplicity, we add the
modified term Auh(τ)−A(uh(τ)−u∗

h) and the additional variance Ṽ (which also remains constant)
into Eq. (10), we have:

dÛh(τ) = −((1− λh)A(Ûh(τ)− u∗
h) + λhAÛh(τ))dτ +

»
V + λ2

hṼ dWt (11)

Where the drift term is modified towards true gradient (i.e. Au), with additional variance and rescaling.
The optimal λ∗

h and optimal expected loss can be explicitly solved:

λ∗
h(T ) =

(e−AT u0)
⊤Au∗

h(T ) + ∥u∗
h(T )∥2A

tr(Σ̃T A) + ∥u∗
h(T )∥2A

=
(e−AT u0)

⊤Au∗
h(T ) + Bias

Var + Bias
, (12)

min
λh

E[J(Ûh(T ))] = E[J(Uh(T ))]−
(
E[Uh(T )]⊤Au∗

h(T )
)2

2
Ä
tr(Σ̃T A) + ∥u∗

h(T )∥2A
ä < E[J(Uh(T ))], (13)

where u∗
h(T ) = (I − e−AT )u∗

h, Σ̃T = λ2
h

∫ T
0

e−AtṼ e−A⊤t dτ . The derivations of Eq. (12) and Eq.
(13) please refer to Appendix B.2. The Bias,Var terms in Eq. (12) just to indicate ∥u∗

h(T )∥2A is
bias-related and tr(Σ̃T A) is variance-related.

For large T , since e−AT → 0 as T → ∞, we have λ∗
h(T ) ∈ (0, 1), demonstrating both λh = 0

(original MPC) and λh = 1 (unbiased modification) are suboptimal choices. When bias is dominate,
i.e. ∥u∗

h(T )∥2A ≪ tr(Σ̃T A), λ∗
h tends to 1 to reduce the bias, while if the additional variance

tr(Σ̃T A) is large compared to the bias |u∗
h(T )∥2A, λ∗

h tends to 0 to reduce the variance. This is the
basic idea of the bias-variance balance which will also appear in the following one-step analysis.
Further from Eq. (13), we know that for optimal λ∗

h, the modified version will have a better-expected
loss than the original.

4.2 ONE-STEP BIAS-VARIANCE BALANCE

In the previous section, we demonstrate the bias-variance balance inherent in the BP-modified local
loss method. However, modeling this through an OU process may oversimplify the dynamics. In this
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section, we delve deeper into the local bias-variance balance of the proposed method using one-step
loss analysis. We postpone the derivation of this section to Appendix B.3 for clarity.

Let J(u) = Eµ[L(xT )] = Eµ[LT,0(x0, u)] be the empirical loss with respect to weights u, where
∇J(u) is assumed to be β−Lipschitz continuous. Assuming g(u(k); ξ) to be a general gradient
estimator whose randomness is controlled by the random variable ξ. Using the update rule u(k+1) =
u(k)− ηg(u(k); ξ).

Taking the expectation conditioned on u(k) (denoted as Ek ≜ E[·|u(k)]) we have:

Ek[J(u(k + 1))] ≤ J(u(k))− η

Å
1− ηβ

2
− η(1− ηβ)

2ϵ

ã
∥∇J(u(k))∥22

+

Å
η2β

2
+

ϵ

2

ã
Ek[∥∇J(u(k))− g(u(k); ξ)∥22]

(14)

where Ek[∥∇J(u(k))− g(u(k); ξ)∥22] indicates the bias-variance balance since:

Ek[∥∇J(u(k))−g(u(k); ξ)∥22] = ∥∇J(u(k))−Ek[g(u(k); ξ)]∥22+Ek[∥g(u(k); ξ)−Ek[g(u(k); ξ)]∥22]
(15)

The first term is the norm of bias between true gradient ∇J(u(k)) and the expected gradient
Ek[g(u(k); ξ)], while the second term represents the variance of the gradient. Substitute g(u(k); ξ)
by ĝh we have:

Ek[∥∇J(u(k))− g(u(k); ξ)∥22] =∥Ek[(1− λh)(ahgh − gT )]∥22

+ tr

Å
a2h
B

Ch +
λ2
h

B′
(
a2hCh + CT − ahCh,T

)ã
,

(16)

which is a quadratic equation for both ah, λh. Optimizing Eq. (16) over ah and λh, we obtain:

a∗h =
b

b+ d
a∗h,bias +

d

b+ d
a∗h,var, (17)

λ∗
h =

∥Ek[ahgh − gT ]∥22
1
B′ tr (ah2Ch + CT − ahCh,T ) + ∥Ek[ahgh − gT ]∥22

=
Bias

Var + Bias
. (18)

where a∗h,bias, a
∗
h,var are the optimums of the bias and variance respectively, and b, d are defined as

follows:

a∗h,bias =
Ek[gh

⊤gT ]

∥Ek[gh]∥22
= argmin

a
∥Ek[(1− λh)(ahgh − gT )]∥22

a∗h,var =
λ2
hB

λ2
hB +B′

tr(Ch,T )

tr(Ch)
= argmin

a
tr

Å
a2h
B

Ch +
λ2
h

B′
(
a2hCh + CT − ahCh,T

)ã
b = (1− λh)

2∥Ek[gh]∥22 ≥ 0, d =

Å
1

B
+

λ2
h

B′

ã
tr(Ch) ≥ 0.

(19)

From Eq. (17), we observe directly that the a∗h is the linear combination of the optimum of bias
and variance, which strikes a balance between them. The weights b, d are related to the bias and the
variance of the local gradient gh. In the early training stage where the gradient is large and so is b,
a∗h will tend to a∗h,bias to reduce the bias. When the variance dominates, d is larger and leads a∗h to
a∗h,var to reduce the variance.

As for λ∗
h, since it has a similar Bias

Bias+Variance structure as Eq. (13), we can derive the same
observations: both λh = 0 and λh = 1 are sub-optimal and λh can adjust the bias-variance balance
for fixed ah.

Remark 4.2 Simultaneously solving ah
∗ and λ∗

h results in a quintic function, making the solution
highly complex. However, since Eq. (15) is convex in both ah and λh, we can simply optimize ah and
λh alternatively till their convergence.

In conclusion, the balancing of bias and variance is the crucial point in the BP-modified local loss
since it reduces the bias of the local gradient at the expense of introducing additional variance. This
balance exists throughout the whole analysis. If the variance is large, the estimation of the offset is
inaccurate, leading the method to fail. Conversely, the balancing of bias and variance gives a useful
way to sign the scaling factors.
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Algorithm 1 BP-modified Local Loss Algorithm

Require: Starting point u0, Local loss gradient estimator gh,t, Global loss gradient estimator gT,t,
Total training step T , Gradient-based Optimizer Opt, Batch size B,B′, Sampling period K,
Function M to get a, λ

1: u(0) = u0

2: k = 0
3: for Training period i ∈ {1, · · · , ⌈ T

K ⌉} do
4: Sample small-batches µB′ with size B′ ▷ Lazy update of ∆g̃h,t, ah,t, λh,t

5: for Layer t ∈ {0, · · · , T − 1} do
6: Compute g̃h,t, g̃T,t, Ch,t, CT,t, Ch,T,t on µB′

7: Compute ah,t, λh,t = M(g̃h,t, g̃T,t, Ch,t, CT,t, Ch,T,t) ▷ e.g. Eq. (17), Eq. (18)
8: Compute EµB′ [∆g̃h,t] = EµB′ [g̃T,t − ah,tg̃h,t] ▷ Eq. (5)
9: end for

10: while k < i ∗K and k < T do
11: Sample small-batches µB with size B
12: for Layer t ∈ {0, · · · , T − 1} do
13: Compute gh,t on µB ▷ get local gradient, Eq. (4)
14: Compute ĝh,t = ah,tEµB

[gh,t] + λh,tEµB′ [∆g̃h,t] ▷ modify local gradient, Eq. (5)
15: Update weight ut(k) = Opt(ut(k − 1), ĝh,t)
16: end for
17: k = k + 1
18: end while
19: end for
20: return Final weight u(T )

5 IMPLEMENTATION OF THE BP-MODIFIED LOCAL LOSS ALGORITHM

In this section, we present the detailed implementation of the BP-modified local loss algorithm.
Instead of simply applying Eq. (5) in every step, we use the following two techniques to further
mitigate the impact on both time and memory: (1) lazy update of the offset ∆g̃h,t and scaling factors
ah, λh; (2) split mini-batch B′ into smaller mini-batches to compute the offset. The final algorithm is
presented in Algorithm 1.

Lazy update reducing computation overhead Assuming the gradient does not change rapidly, we
can periodically update the offset and scaling factors and use the same values within each period to
reduce the time required for computing the offset. In other words, we sample µB′ and compute the
offset ∆gh and scaling factors ah, λh at the beginning of every K steps, and apply the same offset in
Eq. (5) to modify the local gradient in the next K steps. The additional relative computation overhead
will be about (1+r)B′

KB where r is the ratio of the computation time of computing the true gradient to
the computation time of acquiring the local gradient.

Batch split reducing memory overhead Further, the total memory overhead of the BP-modified
local loss method will be on the scale of O(Bh,B′h,B′T )2. We need B′ ≲ h

T B to sustain
comparable memory usage as the original algorithm, i.e. O(Bh). However, small B′ will increase
the additional variance introduced by the offset (Eq. (7)). Combined with the impact of lazy update
strategy (see following discussion and Appendix C for details), the variance of the offset will be
unacceptable. Therefore, we further split the mini-batch µB′ into smaller mini-batches and use the
gradient accumulation technique to compute the offset, and the memory overhead will reduce to
O(Bh, b′T, b′h) where b′ is the size of the smaller mini-batch.

However, some problems will appear after applying these two strategies. For example, the noise in
the offset will be accumulated in the period thus increasing the equivalent variance. As we use the
same offset in one period, the same noise will accumulate, leading to a larger variance in the long

2Firstly, the memory usage will increase linearly with batch size B and it is reported that the memory usage
will grow linearly with respect to horizon h (Ren & Li, 2024), and these two factors are independent. Secondly,
acquiring different gradients is asynchronous so only need to consider the maximum memory for different
gradients.
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run. For further discussion of the impact of delayed gradient adjustment, please refer to Appendix C.
Secondly, further splitting µB′ into smaller mini-batches requires more computation time. However,
the lazy update relieves this issue. As long as B′ is smaller than the scale of KB, the impact of
computation time will be small, thus B′ no longer needs to be smaller than B.

From the above discussion, we know that larger batch size B′ and quicker update (i.e. smaller period
K) will reduce the variance of the offset and the delayed bias thus improving performance, at the
expense of more computation. We have shown the numerical results of different choices of K and B′

in Appendix D.2 and its result is aligned with the analysis.

There is an inner loop (i.e. the update period) in the implemented BP-modified local loss method,
and B′ will become larger by introducing the lazy update. This procedure is similar to control variate
methods like SVRG (Johnson & Zhang, 2013), where an additional term is introduced (the variance
reduction term in SVRG and the offset ∆g̃h in our method), which is computation-consuming and
updated periodically. However, the basic motivation of the control variate method is to reduce the
variance, while our method aims to reduce the bias. Furthermore, the variance reduction methods are
based on acquiring the true gradient, i.e., BP, while our method is based on the local loss gradient.

6 NUMERICAL RESULTS

To evaluate the effectiveness of the proposed BP-modified local loss method, we conducted several
experiments on CIFAR100 (Krizhevsky, 2009) and ImageNet-Tiny (mnmoustafa & Ali, 2017) dataset:
(1) Fine-tuning a pre-trained ResNet-50 model (He et al., 2016); (2) LoKr fine-tuning (Hyeon-Woo
et al., 2022) of a pre-trained ResNet-50; (3) LoRA fine-tuning (Hu et al., 2022) pre-trained ViT-b16
model. We test the proposed method on these tasks with Forward-Forward algorithm (FF) (Hinton,
2022), LoCo algorithm (Xiong et al., 2020), and MPC algorithm (Ren & Li, 2024) with horizon
h = 5 and the traditional BP algorithm. All the experiments are done by ourselves since no related
results are provided in the original papers.

All the experiments use batch size B = 64, learning rate 0.001 and epoch 30, and SGD optimizer
with momentum 0.9. For the BP-modified local loss method, the batch size to compute the offset is
B′ = 320 and split into mini-batches with size 8, and the period of the offset update is one epoch, i.e.
K = ⌈N

B ⌉, where N is the size of the training dataset. The input image is resized to (224,224) and
then normalized without any other enhancement before training. For the LoRA and LoKr, the rank
and alpha are set to be r = 1, α = 4. All the experiments were conducted using a single NVIDIA
GeForce RTX 3090 GPU using PyTorch (Paszke et al., 2019).

In summary, the numerical experiments show that

1. The BP-modified local loss method outperforms the original local loss in terms of perfor-
mance.

2. The performance improvement is more significant in small horizons, i.e. Forward-Forward
algorithm and LoCo algorithm.

3. Ablation studies on the impact of the offset show the importance of the offset in improving
the local loss.

We further provide more experiment results in Appendix D including: (1) memory/time usage of the
BP-modified local loss method (Appendix D.1); (2) sensitivity analysis of the update period K and
the offset batch size B′ (Appendix D.2); (3) number of epochs the BP-modified local loss method
needs to achieve the original test accuracy (Appendix D.3).

6.1 PERFORMANCE IMPROVEMENT OF THE BP-MODIFIED LOCAL LOSS METHOD

In this section, we highlight the performance of the BP-modified local loss method in improving local
loss. We compare the results of the BP-modified method against the original methods on the same
model and tasks with identical training settings.

Table 1 shows the test accuracy of the BP-modified local loss method on different methods and tasks.
The results indicate that the BP-modified local loss method significantly outperforms the original
local loss method across all tasks and methods. It achieves an average improvement of 20.53% on the
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Table 1: Test accuracy of BP-modified local loss on different methods and tasks on CIFAR100
Dataset. The numbers in parentheses indicate the improvement over the original local loss method.

Method
Task

ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
BP 82.90 76.47 91.49

FF
original 40.10 54.43 63.65
BP-modified 68.30 (+28.20) 65.34 (+10.91) 86.30 (+22.65)

LoCo
original 45.29 55.84 74.31
BP-modified 74.61 (+29.32) 66.15 (+10.31) 90.54 (+16.23)

MPC (h=5)
original 66.02 65.65 84.03
BP-modified 77.24 (+11.22) 67.77 (+2.12) 90.29 (+6.26)

Table 2: Test accuracy of BP-modified local loss on different methods and tasks on ImageNet-Tiny
Dataset. The numbers in parentheses indicate the improvement over the original local loss method.

Method
Task

ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
BP 78.56 74.22 87.39

FF
original 24.58 61.23 49.69
BP-modified 68.14 (+43.56) 53.58 (-7.65) 73.81 (+24.12)

LoCo
original 31.02 61.97 63.36
BP-modified 68.49 (+37.47) 66.50 (+4.93) 72.94 (+9.58)

MPC (h=5)
original 55.11 66.27 69.57
BP-modified 66.03 (+10.92) 65.30 (-0.97) 72.60 (+3.03)

FF method, 15.29% on the LoCo method, and 6.53% on the MPC method with horizon h = 5. The
test accuracy of the BP-modified local loss method is comparable to the full BP method.

Additionally, we observed that the performance improvement is more significant in the FF method
than in the LoCo and MPC methods. Since the FF method is the MPC method with horizon h = 1,
this result suggests that the BP-modified local loss method is more effective when the original
performance is worse. As the FF method uses the least global information, the bias of the local
gradient is more significant, leading to a larger offset as shown in Eq. (18) thus a more significant
performance improvement.

Further, we observed that the test accuracy of the BP-modified local loss method is higher in larger
horizons, i.e. LoCo and MPC h = 5 cases. These original local loss methods already get better
performance, indicating a smaller bias and maybe more alignment with the true gradient. This
results in a smaller variance of the offset (Eq. (7)). However, the performance improvement of the
BP-modified local loss method in the LoKr task with horizon h = 5 is much smaller than the other
tasks. This is largely due to the estimated variance dominating the bias-variance trade-off, leading to
a smaller offset.

We also conducted experiments on the ImageNet-Tiny dataset with the same models and settings used
in the CIFAR100 dataset, except we set the total epochs to 10 and period K = 500. The results are
shown in Table 2. Consistent results are found that the BP-modified local loss method can improve
the original method when the original performance is worse. In the LoKr tuning case where the
original methods have achieved good performance, then the proposed method cannot improve their
performance.

We also provide the memory and time usage of the above experiments in Appendix D. The results
show that the memory and time usage of the BP-modified local loss method are comparable to the
original local loss method. Additionally, the memory overhead is significantly lower than the full BP
method.
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Table 3: Test accuracy of the BP-modified local loss method with and without the offset on the FF
method. The numbers in parentheses indicate the improvement over the original local loss method.

Method
Task

ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
BP 82.90 76.47 91.49

FF

original 40.10 54.43 63.65
BP-modified (λ = 0) 46.21 (+6.11) 59.71 (+5.28) 74.36 (+10.71)
BP-modified 68.30 (+28.20) 63.71 (+9.28) 86.30 (+22.65)

6.2 ABLATION STUDY ON THE IMPACT OF THE OFFSET

In the ablation study, we investigate the impact of the offset on the performance of the BP-modified
local loss method. We set λh = 0 to remove the offset from the BP-modified local loss method,
leaving the scaling factor ah = a∗h,bias. We conducted the study on the FF method and show the
results in Table 3. Although the scaling factor ah can improve the performance of the original local
loss method without the offset, adding the offset can further improve the performance. This result
indicates the importance of both the offset and the scaling factor in improving the local loss method.

Further sensitivity experiments on the update period K and the offset batch size B′ are provided in
Appendix D.2.

7 DISCUSSION

In this paper, we introduced a novel BP-modified local loss method. This method incorporates an
additional offset to adjust the local gradient. Through the use of the stochastic modified equation, we
demonstrated that the offset helps reduce the bias between the local gradient and the true gradient.
However, it introduces additional variance. By employing the Ornstein-Uhlenbeck (OU) process and
one-step loss analysis, we analyzed the bias-variance trade-off and derived optimal scaling factors,
λh and ah. The impact of delayed versions of the offset was also explored. Numerical experiments
across various models, tasks, and optimizers illustrate the potential of the proposed method. However,
certain limitations should be acknowledged.

The OU process model used in Section 4.1 is a simplified approximation of the true stochastic gradient
descent (SGD) dynamics in neural network training. Its primary role is to provide insight into the
global bias-variance trade-off in the training dynamics. While several simplifications were made to
obtain an explicit solution, the OU model is sufficient to capture the key phenomena of bias-variance
balance and the sub-optimality of the unbiased modification. These insights were later validated in
our one-step analysis and numerical experiments.

Some important aspects, however, remain under-explored. For instance, the bias introduced by the
delayed offset, as discussed in Section C, and certain hyperparameters, such as the offset batch size
B′ and the sampling period K, are not fully analyzed. Although these factors are critical, their
complexity exceeds the scope of this work and is left for future investigation.

The computation of the offset requires access to the true gradient. This process involves further
splitting the batch size B′ into smaller sub-batches, as discussed in Section 5. This adds complexity
to the training process. Integrating this approach with methods like forward gradient techniques (e.g.,
MeZO (Malladi et al., 2023)) and control variate gradient estimation (e.g., (Arisaka & Li, 2024))
could be a promising direction. We reserve this for future exploration.

Due to limited computational resources, we did not experiment with larger models or datasets, and
all experiments were conducted on a single GPU without distributed implementation. Nevertheless,
our experiments across various models and tasks consistently demonstrated the potential of the
BP-modified local loss method. Further optimization of the method and implementation, including
distributed settings and tests on larger datasets, will be explored in future work.
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A EXPLANATION FOR LOSS L (REN & LI, 2024)

In Ren & Li (2024), the author states that the loss function L includes the head block and other
possible weights, and target y is omitted as stated in the main paper. Moreover, it can vary through
the block, i.e. the loss function L in L(xt) and L(xt+1) in Eq. (2) can be different. However, in this
paper, we still assume the loss needs to have the same structure.

For example, assuming an image classification task, it is allowed that the two loss functions Lt in
Lt(xt) and Lt+1(xt+1) with the same global pooling-linear-softmax-cross-entropy loss structure
to have independent weights in its linear layer and the weight even size of the linear layer can be
different (e.g., in CNN networks, the number of channels will increase through the block). We still
think of them as the ’same’ loss and thus do not distinguish them in the main paper. However, it is
not allowed that Lt use cross-entropy loss while Lt+1 use contrastive loss.

The study of using different losses in different blocks is left for future work.

B DETAILED DERIVATIONS

In this section, we will give detailed derivations of Section 4.

B.1 DERIVATIONS OF THE STOCHASTIC MODIFIED EQUATIONS (6) AND (7)

In this section, we will give the derivation of the stochastic modified equation Eq. (6) and Eq. (7)
using the analysis and result of Li et al. (2017).

For the SGD update of a general gradient estimator g(u(k); ξ(k)), where the random variable ξ(k)
controls its randomness:

u(k + 1) = u(k)− ηg(u(k); ξ(k)) = u(k)− ηEξ(k)[g(u(k); ξ(k))] +
√
ηV (u(k); ξ(k)), (20)

where η is the learning rate and V (u(k); ξ(k)) =
√
ηEξ(k)[g(u(k); ξ(k))] −

√
ηg(u(k); ξ(k)). By

simple computation, we can know:

Eξ(k)[V (u(k); ξ(k))] = 0, Cov(V (u(k); ξ(k))) = ηCov(g(u(k); ξ(k))). (21)

Thus Eq. (20) can be seen as the Euler-Maruyama discretization of the SDE:

dU(τ) = −b(U, τ)dτ +
»
ηΣ(U, τ)dWτ (22)

for a time step δτ = η and u(k) ≈ U(ηk), where b(U, τ) = Eξ(τ)[g(U(τ); ξ(τ)],Σ(U, τ) =
Cov(g(U(τ); ξ(τ)).

Denoting G is the set of functions that have at most polynomial growth, i.e.

g ∈ G ⇔ ∃κ1, κ2, L > 0, s.t.∥g(x)∥22 ≤ L(κ1 + ∥x∥2κ2
2 ), (23)

and Gn is the set of n-times continuously differentiable functions with its partial derivatives belonging
in G, and Gn

w is the weak differentiable analog (detailed definition please refer to (Li et al., 2017)).
From Theorem 9 and Corollary 10 in (Li et al., 2017), if the gradient estimator g(u(k); ξ(k)) satisfies
the following assumptions:

1. Uniform linear growth for mean and variance in U, τ , i.e.

∥b(U, τ)∥22 + ∥Σ(U, τ)∥2F ≤ β1(1 + ∥U∥22),∀U ∈ Rm, τ ∈ [0, 1] (24)

for some β1 > 0,
2. Uniform Lipschitz condition for mean and variance in U, τ , i.e.

∥b(U1, τ)−b(U2, τ)∥22+∥Σ(U1, τ)−Σ(U2, τ)∥2F ≤ β2∥U1−U2∥22,∀U ∈ Rm, τ ∈ [0, 1],
(25)

3. b(U, τ) is continuously differentiable and b(U, τ) ∈ G3
w,

4. ∇g(U(τ), ξ(τ)) is Lipschitz continuous almost surely in U with Lipschitz constant βξ(τ)

and Eξ(τ)[β
m
ξ(τ)] < ∞ for all τ ∈ [0, 1] and m ≥ 1,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

then U(τ) is a 1-order weak approximation of u(k), i.e. for each g ∈ G2, exists C > 0 independent
of η, such that:

max
k=0,··· ,T

∥Eξ(τ)[u(k)− U(ηk)]∥2 ≤ Cη (26)

Then we just substitute g(u; ξ) by local gradient gh to get the Eq. (6). As for Eq. (7), the mean and
covariance modified gradient ĝh are:

Eµ[ĝh] = Eµ[(1− λh)ahgh + λhgT ] (27)

Cov(ĝh) =
a2h
B

Cov(gh) +
λ2
h

B′Cov(∆g̃h). (28)

Then we can get the 1-order stochastic modified equations of the proposed method Eq. (7).

B.2 DERIVATION OF OU PROCESS

In this section, we will derive the Eq. (12) and Eq. (13) in Section 4.1.

By Eq. (10):

dUh(τ) = −∇Jh(Uh(τ))dτ +
√
V dWt = −A(Uh(τ)− u∗

h)dτ +
√
V dWt, (29)

and the property of the OU process, the distribution of Uh(T ) satisfies the Gaussian distribution:

Uh(T ) ∼ N
(
e−AT u0 + u∗

h(T ),ΣT
)

(30)

where u∗
h(T ) = (I − e−AT )u∗

h, and ΣT =
∫ T
0

e−AtV e−A⊤t dτ . The expectation loss at time T is:

E[J(Uh(T ))] =
1

2
tr(ΣTA) + J(E[Uh(T )]). (31)

which consist of a bias-related term J(E[Uh(T )]) and a variance-related term 1
2 tr(ΣT A).

Similarly by Eq. (11):

dÛh(τ) = −((1− λh)A(Ûh(τ)− u∗
h) + λhAÛh(τ))dτ +

»
V + λ2

hṼ dWt, (32)

the distribution of ûh(T ) is:

ûh(T ) ∼ N
(
e−AT u0 + (1− λh)u

∗
h(T ),ΣT + λ2

hΣ
′
T
)

(33)

where Σ̃T = λ2
h

∫ T
0

e−AtṼ e−A⊤t dτ . The expected loss is:

E[J(Ûh(T ))] = E[J(Uh(T ))] +
λ2
h

2

(
tr(Σ′

T A) + ∥u∗
h(T )∥2A

)
− λhE[Uh(T )]⊤Au∗

h(T ). (34)

To minimize the expectation loss, we need to balance the bias and variance by λh, which results in:

λ∗
h(T ) =

(e−AT u0)
⊤Au∗

h(T ) + ∥u∗
h(T )∥2A

tr(Σ̃T A) + ∥u∗
h(T )∥2A

, (35)

min
λh

E[J(Ûh(T ))] = E[J(Uh(T ))]−
(
E[Uh(T )]⊤Au∗

h(T )
)2

2
Ä
tr(Σ̃T A) + ∥u∗

h(T )∥2A
ä , (36)

which is Eq. (12) and Eq. (13)

B.3 DERIVATIONS IN ONE-STEP LOSS ANALYSIS

In this section, we will derive Eq. (14) and (16) in Section 4.2

By the β−Lipstichz continuity of the gradient ∇J , we have:

J(u1)− J(u2) =

∫ 1

0

∇J(tu1 + (1− t)u2)
⊤(u1 − u2) dt

=∇J(u2)
⊤(u1 − u2) +

∫ 1

0

(∇J(tu1 + (1− t)u2)−∇J(u2))
⊤(u1 − u2) dt

≤∇J(u2)
⊤(u1 − u2) +

β

2
∥u1 − u2∥22

(37)
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Substitute u1, u2 by u(k + 1), u(k), we have:
J(u(k + 1))− J(u(k))

≤ ∇J(u(k))⊤(u(k + 1)− u(k)) +
β

2
∥u(k + 1)− u(k)∥22

= −η∇J(u(k))⊤g(u(k); ξ) +
η2β

2
∥g(u(k); ξ)∥22

= −(1− ηβ)η∇J(u(k))⊤g(u(k); ξ) +
η2β

2
(∥g(u(k); ξ)−∇J(u(k))∥22 − ∥∇J(u(k))∥22)

≤ −η

Å
1− ηβ

2
− η(1− ηβ)

2ϵ

ã
∥∇J(u(k))∥22 +

Å
η2β

2
+

ϵ

2

ã
∥∇J(u(k))− g(u(k); ξ)∥22

(38)

where the second inequality is the Cauchy-Schwartz inequality for arbitrary ϵ > 0. Taking expectation
condition on u(k) on both sides we can get Eq. (14):

Ek[J(u(k + 1))] ≤ J(u(k))− η

Å
1− ηβ

2
− η(1− ηβ)

2ϵ

ã
∥∇J(u(k))∥22

+

Å
η2β

2
+

ϵ

2

ã
Ek[∥∇J(u(k))− g(u(k); ξ)∥22]

(39)

For the derivation of a∗h, λ
∗
h, consider the last term in the previous equation (i.e. Ek[∥∇J(u(k))−

g(u(k); ξ)∥22]) and substitute g(u(k); ξ) by ĝh, we have:

Ek[∥∇J(u(k))− g(u(k); ξ)∥22]
= ∥∇J(u(k))− Ek[g(u(k); ξ)]∥22 + Ek[∥g(u(k); ξ)− Ek[g(u(k); ξ)]∥22]

= ∥Ek[(1− λh)(ahgh − gT )]∥22 + tr

Å
a2h
B

Ch +
λ2
h

B′ C̃h

ã
= ∥Ek[(1− λh)(ahgh − gT )]∥22 + tr

Å
a2h
B

Ch +
λ2
h

B′
(
a2hCh + CT − ahCh,T

)ã
,

(40)

which is Eq. (16)

C IMPACT OF DELAYED GRADIENT ADJUSTMENT

Since the computation of gradient adjustment in the BP-modified local loss method every step can be
computationally expensive, in practice, we update the sample offset ∆gh and ah, λh only every K
steps, which reduces the computational cost. This delayed gradient adjustment introduces two effects
on the dynamics: noise accumulation and biased adjustment.

Accumulation of Noise Applying the same offset noise over multiple steps in a period introduces a
higher variance. To illustrate this, consider the OU process in Section 4.1, using the Euler-Maruyama
method with timestep dt and A = I , ξτ ∼ N(0, V dt), ξ̃τ ∼ N(0, λ2

hṼ dt), then the update are:
uh(τ + dt) = uh(τ)− dt(uh(τ)− u∗

h) + ξτ , (41)

ũh(τ + dt) = ũh(τ)− dt(ũh(τ)− u∗
h) + ξτ − dtu∗

h + ξ̃τ = (I − dt)ũh(τ) + ξτ + ξ̃τ . (42)
After K steps, the solutions are:

uh(Kdt) = (1− dt)Ku0 + (1− (1− dt)K)u∗
h +

K−1∑
τ=0

(1− dt)K−τ−1ξτ , (43)

ũh(Kdt) = (1− dt)Ku0 +

K−1∑
τ=0

(1− dt)K−τ−1ξτ +

K−1∑
τ=0

(1− dt)K−τ−1ξ̃τ . (44)

If we apply the first modify term −u∗
hdt + ξ̃0 over the entire K steps, the solution for ũh(Kdt)

becomes:

ũh(Kdt) = (1− dt)Ku0 +

K−1∑
τ=0

ξτ (1− dt)K−τ−1 +
1− (1− dt)K

dt
ξ̃0. (45)
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The variance of the noise terms can be computed as:

K−1∑
τ=0

(1−dt)K−τ−1ξ′τ ∼ N
Å
0,

1− (1− dt)2K

2dt+ dt2
λ2
hṼ

ã
,
1− (1− dt)K

dt
ξ̃0 ∼ N

Ç
0,

Å
1− (1− dt)K

dt

ã2
λ2
hṼ

å
.

(46)
When dt ≪ 1, we have 1−(1−dt)2K

2dt+dt2 ∼ K and ( 1−(1−dt)K

dt )2 ∼ K2, indicating that the variance
increases by a factor of approximately K. This noise accumulation will also happen in the stochastic
modified equations (Eq. (7)), and thus in practice, we multiply the variance introduced by the offset
by a factor of K (i.e. ηλ2

hK
B′ C̃h).

Biased Adjustment The delayed gradient adjustment introduces additional bias E[λhah(gh(τ)−
gh(τ

′))− λh(gT (τ)− gT (τ
′))] where τ ′ is the last offset-sampling step. As mentioned in Remark

4.1, when λh = 1, the modified gradient is an unbiased estimator of the true gradient. However, in
the delayed adjustment case, this is no longer true. This additional bias introduced by this delay will
also affect the bias-variance trade-off and thus the optimal values of ah and λh, which we leave for
future study.

D FURTHER EXPERIMENT RESULTS

This section provides additional experimental results to further demonstrate the effectiveness of the
BP-modified local loss method. We report the memory usage and runtime of the BP-modified local
loss method compared to the original local loss and full BP methods of the experiments in Section 6.1.
We also provide additional results on the impact of period K and batch size B′ on the performance
and efficiency of the BP-modified local loss method.

D.1 COMPARISON OF MEMORY USAGE AND RUNTIME

We compared the memory usage and runtime of the BP-modified local loss method against the
original local loss and full BP methods. Memory usage was evaluated by profiling several training
steps, including the original training step and the computation of offsets, and recording peak memory
usage. Detailed procedures for memory profiling are provided in Appendix E.

Table 4 indicates that the memory usage of the BP-modified local loss method is comparable to the
original local loss method, which is significantly lower than the full BP method. The additional
memory required by the BP-modified method is minimal, as it primarily involves storing offsets
(equal to the size of trainable parameters) and scalar scaling factors. As described in Section 5, most
memory usage during training stems from storing intermediate states for backpropagation, making
the memory overhead introduced by the BP-modified method negligible. This is particularly evident
in low-rank methods like LoRA and LoKr, where the trainable parameter size is significantly smaller
than the model size, rendering the memory overhead negligible.

On the other hand, Table 5 compares the runtime per epoch of the original and BP-modified methods.
The BP-modified local loss method incurs a small runtime increase due to the computation of offsets
and scaling factors. This overhead is mitigated by the lazy update strategy. In our experimental setup
with B′ = 320 and period K = 1 epoch, the additional runtime is under 6% of the original local
loss method. This increase is higher than the expected batch size ratio (B

′

N = 0.64%) due to the
mini-batch split technique.

Combining memory and runtime efficiency with performance results from the previous section, the
BP-modified local loss method demonstrates a strong balance of accuracy and resource usage.

D.2 SENSITIVITY TO PERIOD K AND MODIFY BATCH SIZE B′

We further examine the sensitivity of the BP-modified local loss method to the update period K
and modify batch size B′ in the BP-modified local loss method. In the FF algorithm experiments,
we vary K = {0.1 epoch, 0.3 epoch, 1 epoch} and B′ = {32, 320, 3200}, while keeping other
hyperparameters consistent with the settings in Section 6.
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Table 4: Memory usage (MB) of BP-modified local loss on different methods and tasks. The numbers
in parentheses indicate the additional memory usage and its percentage of the BP-modified local loss
method compared to the original local loss method

Method
Task

ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
BP 5617 5529 5586

FF
original 1555 1366 1519
BP-modified 1642 (+88 (5.63%)) 1370 (+4.1 (0.30%)) 1520 (+0.15 (0.01%))

LoCo
original 2239 2251 1926
BP-modified 2329 (+90 (4.02%)) 2252 (+1.1 (0.05%)) 1926 (+0.15 (0.01%))

MPC (h=5)
original 3965 3965 3146
BP-modified 4055 (+91 (2.29%)) 3968 (+3.1 (0.08%)) 3146 (+0.15 (0.005%))

Table 5: Runtime per epoch (s) of BP-modified local loss on different methods and tasks. The
numbers in parentheses indicate the additional runtime and its percentage of the BP-modified local
loss method compared to the original local loss method

Method
Task

ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
BP 127.07 193.51 322.84

FF
original 123.03 171.11 291.99
BP-modified 126.79 (+3.76 (3.06%)) 177.1 (+5.99 (3.50%)) 296.37 (+4.38 (1.50%))

LoCo
original 201.53 298.00 527.05
BP-modified 205.67 (+4.14 (2.05%)) 314.58 (+16.58 (5.56%)) 515.08 (-11.97 (-2.27%))

MPC (h=5)
original 363.71 566.94 967.10
BP-modified 367.48 (+3.77 (1.04%)) 578.08 (+11.14 (1.96%)) 979.28 (+12.18 (1.26%))

Theoretically, a larger period K—corresponding to a less frequent update of ∆gh,t and scaling
factors ah,t, λh,t—introduces greater variance and amplifies the delayed bias, potentially impacting
performance, as discussed in Appendix C. Conversely, a smaller B′ increases variance, as suggested
by Eq. (7). In contrast, using a smaller K or a larger B′ improves performance but comes at the cost
of higher computational requirements.

Table 6 and 7, summarize the results for different B′ and K values. These results align with our
theoretical analysis: larger B′ and smaller K lead to better performance but increases computation.
A detailed comparison shows that if the mini-batch size B′ is too small, the variance of the modified
gradient will be large and the performance might be worse, while it seems that it has more tolerance
for larger K. If the period K is too small or B′ is too large, the computation overhead will be
large with diminishing performance improvement3. Our experience suggests that B′ should be large
enough to reduce the variance of the modified gradient while K can be relatively large such that the
computation overhead is small. B′ being 1% of BK are usually good choices.

Table 6: Sensitivity of modify batch size B′. Test accuracy (in percentage) and training time (second
per epoch) are reported.

Method
ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
Test Acc Time(s) Test Acc Time(s) Test Acc Time(s)

FF

original 40.10 123.03 54.43 171.11 63.65 291.99
BP-modified (B’=32) 38.97 125.32 57.84 173.19 74.88 317.63
BP-modified (B’=320) 68.30 126.79 65.34 177.10 86.30 296.37
BP-modified (B’=3200) 74.62 152.88 71.91 219.16 90.47 333.50

3Noted that there is no change in memory overhead because of batch split technique. Larger B′ means more
computation but no more memory usage.
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Table 7: Sensitivity of period K. Test accuracy (in percentage) and training time (second per epoch)
are reported.

Method
ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
Test Acc Time(s) Test Acc Time(s) Test Acc Time(s)

FF

original 40.10 123.03 54.43 171.11 63.65 291.99
BP-modified (K=0.1Epoch) 73.98 152.30 72.99 218.52 89.97 337.07
BP-modified (K=0.3Epoch) 68.18 133.28 65.34 186.26 87.83 324.80
BP-modified (K=1Epoch) 68.14 126.79 65.34 177.10 86.30 296.37

Table 8: Average first epoch to reach the same test accuracy as the original local loss method in
the CIFAR100 dataset. The numbers in parentheses indicate the final test accuracy of the original
methods.

Method
Task

ResNet-50 Full Tune ResNet-50 LoKr ViT-b16 LoRA
FF 1.0 (40.10) 3.0 (54.43) 4.0 (63.65)
LoCo 1.0 (45.29) 3.3 (55.84) 2.0 (74.31)
MPC (h=5) 2.0 (66.02) 13.0 (65.65) 4.0 (84.03)

D.3 EPOCHS TO GET THE ORIGINAL PERFORMANCE

Here we provide the number of epochs needed for the BP-modified local loss method to achieve the
same test accuracy as the original local loss method in CIFAR100 dataset. We report the results in
Table 8. We find that the BP-modified local loss method requires much less epochs to reach the same
performance as the original local loss method, demonstrates the efficiency of the proposed method. It
is also consistent with the significant improvement in test accuracy.

E RECORDING THE MEMORY USAGE

We did not directly check the GPU memory usage by PyTorch, instead, we used the torch.profiler
module to capture the GPU memory allocation by torch following this blog4. This method can show
detailed memory usage through training steps. We construct the same model as training and call the
training procedure for a few steps including some offset computation steps. Then we use the peak
memory allocation as the memory usage of that method to train the model. Each experiment was
done three times and reported their average.

4https://pytorch.org/blog/understanding-gpu-memory-1/
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