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ABSTRACT

Although vision-language models (VLMs) have achieved significant success in various applications
such as visual question answering, their resilience to prompt distractions remains as an under-
explored area. Understanding how distractions affect VLMs is crucial for improving their real-world
applicability, as inputs could be filled with noisy and irrelevant information in many practical scenarios.
This paper aims to assess the robustness of VLMs against both visual and textual distractions in
the context of science question answering. Built on the ScienceQA dataset, we developed a new
benchmark that introduces distractions in both the visual and textual contexts. To evaluate the
reasoning capacity of VLMs amidst these distractions, we analyzed the performance of ten state-of-
the-art models, including GPT-4o. Our findings reveal that most VLMs are vulnerable to various
types of distractions, experiencing noticeable degradation in reasoning capabilities when confronted
with distractions. Notably, models such as InternVL2 demonstrates a higher degree of robustness to
these distractions. We also found that models exhibit greater sensitivity to textual distractions than
visual ones. Additionally, we explored various mitigation strategies, such as prompt engineering, to
counteract the impact of distractions. While these strategies improved model resilience, our analysis
shows that there remain significant opportunities for further improvement.

1 INTRODUCTION

Despite the impressive capabilities of vision-language models (VLMs) in understanding image context and generating
human-like text (Liu et al., 2023c; Dai et al., 2023; Hu et al., 2023), their susceptibility to irrelevant information
remains a critical challenge. In real-world applications, it is common for vision and text inputs to be noisy and filled
with distractions. Such distractions can lead to significant performance degradation, potentially resulting in incorrect
interpretations or responses with hallucination from VLMs (Zhou et al., 2024; Chen et al., 2024b).

Existing benchmarks for VLMs are typically designed under the assumption that inputs in both visual and textual
domains are carefully curated without distractions. This assumption, however, fails to reflect real-world scenarios.
Previous research (Shi et al., 2023) has demonstrated that large language models (LLMs) are vulnerable to textual
distractions. With the rapid development of VLMs, it is crucial to understand how these models handle distractions not
only in the textual domain but also in the visual domain. Compared to LLMs, VLMs face the additional challenge of
potential distractions from bi-modal inputs, making the situation even more complex.

Moreover, current evaluation benchmarks (Lu et al., 2022a; Singh et al., 2019; Lu et al., 2024) do not adequately
account for the presence of distractions within the input data. They often emphasize clean and well-structured datasets,
which do not mirror the complexities and noise inherent in real-world data streams. This oversight limits our ability to
assess the true robustness and reliability of VLMs when deployed in practical settings where distractions are inevitable.
Consequently, there is a pressing need for specialized benchmarks that systematically introduce and evaluate various
types of distractions to better understand and improve VLM performance under realistic conditions.

To address this gap, we present I-ScienceQA, a comprehensive benchmark designed to investigate the robustness of
VLMs towards distractions. Our benchmark, built upon the ScienceQA dataset (Lu et al., 2022a), incorporates various
types of distractions to simulate more realistic, noisy scenarios. Specifically, we aim to answer the following questions:

• How vulnerable are VLMs to distractions across different modalities?
• Which modality, visual or textual, causes greater degradation in model performance when distracted?
• What techniques can mitigate the impact of distractions and improve the performance of VLMs?

To build I-ScienceQA, we leveraged different generative models, including GPT-3.5-turbo (OpenAI, 2024) and Stable
diffusion models (Rombach et al., 2021). Our benchmark comprises 8,100 samples with four scenarios of distractions
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in both visual and textual domains. Specifically, we utilized stable diffusion models to generate visual distractions,
such as neutral backgrounds, generic landscapes, abstract art, and everyday objects. For textual distractions, we
employed GPT-3.5-turbo to produce textual distractions such as contradictory information, irrelevant details. This
approach allowed us to simulate a wide range of real-world scenarios where VLMs might encounter noise or irrelevant
information. More information about the defintions of distractions can be found in section 7.

Through extensive evaluation of the various state-of-the-art VLMs, our key findings include:

• VLMs exhibit varying degrees of vulnerability to distractions, with performance degradation observed across
different models and scenarios (see Section 4).

• Textual distractions tend to have a more significant impact on VLMs compared to visual distractions, particularly
in the “Add Hints” scenario (see Section 4).

• Larger models generally demonstrate better robustness against distractions, with some models like Internvl2 (8B)
showing minimal performance drops in certain scenarios (see Section 5.1).

• Prompt engineering techniques or robust encoders offer limited enhancement to VLM performance against
distractions, with their effectiveness varying across different models and tasks (see Section 5.3).

• The impact of bi-modal distractions (both visual and textual) on VLMs is nuanced, with some models showing
consistent performance while others exhibiting minor fluctuations (see Section 5.4).

Our research not only provides valuable insights into the current limitations of VLMs but also highlights potential areas
for improvement in model design and training methodologies. By addressing these challenges, we can develop more
robust and reliable VLMs for real-world applications.

2 BENCHMARK

2.1 OVERVIEW OF I-ScienceQA

In order to create a comprehensive benchmark for assessing the robustness of VLMs, it is essential to introduce minor
distractions while ensuring that the hints for solving the questions remain accessible in either the textual or visual context.
Developing I-ScienceQA presented several challenges. Firstly, ensuring the diversity and relevance of distractions across
both visual and textual modalities required meticulous selection and generation strategies. Additionally, maintaining
the semantic integrity of the original questions while injecting distractions demanded advanced techniques in data
augmentation and validation. To overcome these challenges, we leveraged state-of-the-art generative models, such as
GPT-3.5-turbo (OpenAI, 2024) for textual distractions and Stable diffusion models (Rombach et al., 2021) for visual
distractions, ensuring that the introduced noise was both diverse and contextually appropriate. These efforts resulted
in a robust and versatile benchmark that not only fills the gaps left by existing datasets but also provides a nuanced
framework for evaluating and enhancing the resilience of VLMs in practical applications. In this paper, we introduce
the I-ScienceQA benchmark, consisting of 8,100 samples distributed across four distraction scenarios.

Data Collection Figure 1 illustrates the models we utilized to construct the dataset. In our study, we employed LLMs
to introduce textual distractions and stable diffusion models to generate visual distractions. As depicted in Figure 1,
we took use of GPT-3.5-turbo to generate short textual contexts or insert brief distractions into existing text. For the
visual domain, we employed stable diffusion models to create various image distractions. We also applied masks to the
main objects in existing images and added distractions to other areas to ensure that the models could still extract useful
information to answer the questions. Figure 1 shows the detailed process for data generation.

Dataset Statistics Built upon the ScienceQA dataset, our dataset is crafted as a comprehensive and diversified benchmark
for evaluating the robustness of VLMs against distractions. In Table 1, we present samples from the dataset for some of
the distraction types. Table 7 shows the dataset statistics. Specifically, the I-ScienceQA dataset contains 8,100 samples,
which include 4,000 text-based distractions and 4,100 image-based distractions. This dataset encompasses 4 scenarios
of distractions. The data are collected from four types of sources including stable diffusion(Rombach et al., 2021),
GPT-3.5, Unsplash API(Unsplash, 2024), and PromeAI(ProMeAI, 2024). It offers a broad spectrum of distractions.
We believe that I-ScienceQA can serve as a comprehensive benchmark for evaluating the robustness of VLMs. In the
following sections, we will describe how we established the I-ScienceQA benchmark.

2.2 DATA COLLECTION AND AUGMENTATION STRATEGIES

Scenario I: Add Image After randomly selecting 2,000 samples from the test partition of examples in ScienceQA (Lu
et al., 2022a) that originally do not include images, we added images to these samples to introduce visual contexts that
test the model’s ability to integrate and prioritize textual information when paired with unrelated visual content. We
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Secnario ScienceQA Data Augment Tool I-ScienceQA

Add 
Image

Insert 
Image

Add 
Hint

Insert
 Hint

Question: Is the following trait inherited or
acquired? Sandra is good at knitting hats.
Options: (A) acquired (B) inherited
Hint: N/A
Image: 

Distraction Subtype: generic landscapes

Question: Is the following trait inherited or
acquired? Sandra is good at knitting hats.
Options: (A) acquired (B) inherited
Hint: N/A
Image: N/A

Question: Which property do these two
objects have in common?
Options: (A) smooth (B) blue
Hint: N/A
Image: 

Question: Is the following trait inherited or
acquired? Sandra is good at knitting hats.
Options: (A) acquired (B) inherited
Hint: N/A
Image: N/A

Question: Is the following trait inherited or
acquired? Sandra is good at knitting hats.
Options: (A) acquired (B) inherited
Hint: The earth is actually flat, not round.
Image: N/A

Distraction Subtype: contradictory

Question: Which property do these two
objects have in common?
Options: (A) smooth (B) blue
Hint: N/A
Image: 

Distraction Subtype: sitting pets

Question: Which property do these two
objects have in common?
Options: (A) smooth (B) rough
Hint: Select the better answer.
Image: 

Question: Which property do these two
objects have in common?
Options: (A) smooth (B) rough
Hint: Select the better answer, but
remember that 2+2=5.
Image: 

Distraction Subtype: Subtle Misinformation

Stable
Difussion

GPT 3.5

GPT 3.5

Figure 1: Diagram illustrating various scenario of distraction we apply to the samples in Science-QA dataset by
leveraging diffusion model or large language model.

employed stable diffusion models to create these images. The types of images added are shown in Table 7 and their
definition can be found in Table 8. We generated a variety of images, ranging from neutral backgrounds to emotional
contexts. In Figure 1, we present an example where the original sample lacks image context, and it is then augmented
with an image generated from a stable diffusion model.

The selection of 2,000 samples was strategically chosen to facilitate an even distribution across eight subtypes of visual
distractions under scenario of Add Image, allocating the same number of samples to each subtype(see Table 7). This
approach ensures that each subtype of distraction is adequately represented, providing a balanced and comprehensive
evaluation. Additionally, limiting the number of samples to 2,000 makes the dataset manageable in size, allowing
for efficient processing and analysis. Random selection was employed to minimize selection bias and ensure that the
distractions are uniformly distributed, enhancing the benchmark’s reliability and validity. Similarly, for the remaining
scenarios, we adopted the same sample selection scheme. Each of those scenarios involved randomly selecting 2,000
samples from ScienceQA and evenly distributing them across their respective distraction subtypes.

Scenario II: Insert Image After randomly selecting another 2,000 samples from the test partition of examples in
ScienceQA (Lu et al., 2022a) that already include images, we inserted visual distractions to them to test the VLMs’
robustness against visual noise and their ability to maintain focus on relevant elements. We mainly collected visual
distraction images from the Unsplash API (Unsplash, 2024) and then combined them with the original images side
by side. The types of images we collected are the same as in the previous section, as shown in Table 7. Additionally,
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Table 1: Examples of various distraction subtypes within the Add Image and Add Hint scenarios of our I-ScienceQA
benchmark, derived from the ScienceQA dataset (Lu et al., 2022a).

Add Image

Neutral Backgrounds Generic Landscapes Abstract Art Everyday Objects

Cultural Artifacts Emotional Contexts Digital Creations Word Embeddings

Add Hint

Non
Sequitur

Contradictory
Information

Irrelevant
Information

Misleading
Information

Bananas are yellow, and
I have never been to

Antarctica.

Chocolate is actually
a vegetable.

Bananas are berries,
but strawberries are not.

That vaccines
cause autism.

we randomly selected 100 samples with large blank areas in the images from these 2,000 samples and employed
diffusion model-based methods (ProMeAI, 2024) to in-paint distractions into these blank areas. For this small subset,
we considered inserting distractions such as flying objects or sitting pets. More details of this diffusion inpainting can
be found in Table 9. In Figure 1, we show an example where there is existing visual context in the original sample, and
a small object is inserted by inpainting.

Scenario III: Add Hint We also explored the integration of textual distractions. Inspired by the findings that large
language models can be significantly distracted by irrelevant context (Shi et al., 2023), we designed textual distractions
using the GPT-3.5-turbo to challenge the VLMs’ ability to focus on relevant content. We first randomly selected 2,000
samples from the test partition of examples in ScienceQA (Lu et al., 2022a) that have the textual hint as “N/A” and then
replace it with GPT-3.5-turbo generated content. In Figure 1, we present an example where there is no textual context
as hints in the original sample, and it is augmented with textual hints generated from GPT-3.5-turbo. More details of
this scenario of textual distraction can be found in Table 10.

Scenario IV: Insert Hint We randomly selected 2,000 samples from the test partition of examples in ScienceQA (Lu
et al., 2022a) where explicit textual hint is provided. Inserting distractions requires careful integration to challenge the
models’ capacity to maintain focus on the relevant information. These distractions are designed to test the model’s
resilience against misleading cues without completely diverging from the context. We employed the GPT-3.5-turbo
to insert textual distractions. Unlike the previous section, we fed the existing textual hint from each sample to better
leverage the LLMs’ ability to create distractions based on the existing hint. In Figure 1, we present an example
where there is existing textual hints in the original sample, and it is inserted with textual distractions generated from
GPT-3.5-turbo. Types of textual distributions are elaborated in Table 11.

Each of these scenarios introduces a layer of complexity into the interaction between text and image, leveraging detailed
contexts to test the model’s ability to navigate and prioritize information effectively. This setup not only simulates more
realistic scenarios where distractions are abundant but also tests the model’s capabilities in discerning and maintaining
relevant information in noisy informational environments. Additionally, we ensured that all generated images and texts
adhere to strict ethical guidelines, avoiding the inclusion of harmful, biased, or inappropriate content. By implementing
rigorous filtering processes and manual reviews, we maintain the integrity and responsibility of our benchmark, thereby
preventing the introduction of unethical concerns.
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2.3 DESIGN PRINCIPLE

The design of our multimodal benchmark for distractions is grounded in the principle of creating realistic and challenging
scenarios that accurately reflect the complexities of real-world environments where VLMs are deployed. The goal is to
assess the robustness and adaptability of these models by introducing a variety of distractions they might encounter in
practical applications. Here are the core principles guiding the benchmark’s design:

• Realism and Relevance: Every element of the benchmark—from the selection of images and texts to the types of
introduced distractions—is designed to closely mimic real-life conditions.

• Comprehensive Challenge: The benchmark is desinged to challenge the models across multiple dimensions. This
includes their ability to process and interpret visual and textual information, filter out irrelevant data, and maintain
focus on the task at hand. Distractions are varied to comprehensively test the models’ capabilities.

• Generative Model-Based Generation: Generative models have demonstrated their ability to generate enriched
samples in both the textual and visual domains. Inspired by recent study (Shu et al., 2023), we propose to leverage
generative models for multimodal data collection, based on the existing image-question pairs from ScienceQA.

3 EXPERIMENTAL SETUP

In our experimental setup, we employ various adavanced VLMs, which are tested with original samples from ScienceQA
benchmark and corresponding samples from out I-ScienceQA benchmark.

3.1 MODELS

Model Name Language Model Vision Encoder

Phi3-V Not specified Not specified

LLaVA Vicuna CLIP ViT-L/14

InstructBLIP Vicuna CLIP ViT-G/14

Qwen2-VL-Instruct QwenLM CLIP ViT-L

InternVL2 InternLM2 InternViT

CogVLM2 LLaMA3 EVA-CLIP-E

GPT-4o Not specified Not specified

Table 2: Models’ Language and Vision Encoder Components

To comprehensively evaluate the robustness
of VLMs, we employ 14 advanced VLMs.
Regarding model size, we consider both small
and large models, with sizes ranging from 1B
to 34B parameters. In terms of model acces-
sibility, we include both open-source models
such as LLaVA (Liu et al., 2023c) and propri-
etary models such as GPT-4o. VLMs include
LLaVA-1.5 (7B, 13B) (Liu et al., 2023c),
InstructBLIP-Vicuna (7B, 13B) (Dai et al.,
2023), Phi3-V (4B) (Gai Zhenbiao, 2023),
InternVL2 (1B, 2B, 8B, 26B) (Chen et al.,
2024c), CogVLM2 (19B) (Hong et al., 2024),
Qwen2-VL (2B, 8B) (Wang et al., 2024a),
and GPT-4o.

3.2 EVALUATION METRICS

To assess the robustness of the model F , we utilize the following evaluation metrics:

• Exact Match The metric Accuracy(F ;D) represents the mean exact match score of the model F across all test
instances D, where yd is the correct output for instance d. The exact match score equally weights all individual test
instances and is calculated as:

Accuracy(F ;D) =

∑
d∈D 1 [F(d) = yd]

|D|
• Exact Match Degradation This metric quantifies the impact of distractions on the model’s performance. For an

exact match score AF,D achieved by F on the original dataset D and its corresponding score AF,D′ on the dataset
with added distractions D′, the degradation in performance is computed as:

∆Accuracy(F) = AF,D′ −AF,D,

where AF,D′ denotes the model’s exact match score on samples with distractions. The value of ∆Accuracy(F) is
always less than or equal to zero (∆Accuracy(F) ≤ 0). A value of zero indicates that the model’s performance
remains unchanged despite the introduction of distractions, showcasing high robustness. Negative values indicate a
decline in performance caused by distractions, with lower values reflecting higher vulnerability to such distractions.
Therefore, the closer ∆Accuracy(F) is to zero, the more robust the model is against distractions.
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Table 3: Performance of various models under different scenarios of distractions. The Original columns display the
exact match scores on the samples of the ScienceQA benchmark. The Distraction columns present corresponding results
on the I-ScienceQA benchmark, including both exact match scores and exact match degradation (shown in parentheses).
Values marked as N/A indicate that the model requires both text and image inputs and are therefore excluded from
evaluation under that section.

Model Add Image(%) Insert Image(%) Add Hints(%) Insert Hint(%)
Original Distraction Original Distraction Original Distraction Original Distraction

Phi3v (4B) N/A 91.15 N/A 83.52 N/A N/A N/A N/A
Instructblip (7B) N/A 41.05 N/A 35.45 N/A N/A N/A N/A
Instructblip (13B) N/A 47.26 N/A 47.80 N/A N/A N/A N/A
Qwen2-VL-Instruct (2B) 63.30 63.30 (0.00) 63.80 63.26 (-0.54) 60.80 54.45 (-6.35) 72.45 64.20 (-8.25)
Qwen2-VL-Instruct (7B) 83.10 83.10 (0.00) 68.40 68.08 (-0.32) 75.65 68.00 (-7.65) 77.40 74.10 (-3.30)
Llava (7B) 71.30 68.05 (-3.25) 68.75 66.36 (-2.39) 69.70 63.80 (-5.90) 70.55 69.30 (-1.25)
Llava (13B) 72.90 72.00 (-0.90) 72.10 69.60 (-2.50) 72.15 67.45 (-4.70) 73.10 71.80 (-1.30)
Llava (34B) 88.05 87.50 (-0.55) 81.55 79.51 (-2.04) 84.65 82.65 (-2.00) 85.50 83.00 (-2.50)
Internvl2 (1B) 85.60 79.70 (-5.90) 88.10 83.47 (-4.63) 87.80 80.55 (-7.25) 85.90 82.85 (-3.05)
Internvl2 (2B) 91.35 86.75 (-4.60) 93.50 90.23 (-3.27) 91.40 82.35 (-9.05) 93.65 91.50 (-2.15)
Internvl2 (8B) 95.45 94.45 (-1.00) 96.90 94.23 (-2.67) 94.80 93.60 (-1.20) 97.60 95.90 (-1.70)
Internvl2 (26B) 95.35 93.40 (-1.95) 97.40 95.14 (-2.26) 95.20 92.80 (-2.40) 97.55 96.55 (-1.00)
CogVLM2 (19B) 73.30 71.70 (-1.60) 89.35 87.47 (-1.88) 78.60 70.50 (-8.10) 84.15 80.85 (-3.30)
GPT-4o 93.50 93.00 (-0.50) 80.70 78.56 (-2.14) 89.50 87.50 (-2.00) 86.00 84.05 (-1.95)

4 EXPERIMENTAL RESULTS

Table 3 presents a comprehensive evaluation of various models across different scenarios of distractions, measured under
both original and distraction settings. For each scenario, the exact match degradation due to distractions is quantified in
parentheses, providing insight into the robustness of each model against distractions. The results exhibit differing
degrees of degradation in model performance when exposed to distractions, highlighting the variability in the
models’ abilities to focus on relevant data. It is important to note that the Phi3v and InstructBLIP models, which
can only process inputs containing both textual and visual components, were evaluated exclusively on the Add Image
and Insert Image scenarios. In this discussion, we analyze the models’ performances in each scenario of distraction,
focusing on both the exact match score and the exact match degradation score.

Firstly, in the Add Image scenario, models are evaluated on their ability to handle additional visual distraction. Notably,
the Internvl2 (8B) model achieves the highest performance in the distraction scenario with a score of 94.45, exhibiting a
minimal decrease of −1.00 from its original score of 95.45. Similarly, GPT-4o maintains high performance with an exact
match score of 93.00 and a slight reduction of −0.50. In contrast, smaller models like Llava (7B) and Internvl2 (1B)
show more significant drops in performance, with exact match scores of 68.05 (−3.25) and 79.70 (−5.90), respectively.
These results suggest that larger models tend to be more robust against visual distractions in this context.

In the Insert Image scenario, where visual distraction are embedded into existing visual input, the performance trends
are consistent. The Internvl2 (8B) model again demonstrates robustness with a exact match scores of 94.23 and a
decrease of −2.67 from its original score of 96.90. Interestingly, the Qwen2-VL-Instruct (2B) and Qwen2-VL-Instruct
(7B) models show minimal performance degradation, with exact match scores of 63.26 (−0.54) and 68.08 (−0.32),
respectively. Despite smaller reduction in exact match score, these models have worse performance than other models.

When examining the Add Hint scenario, which involves injected textual distraction, the impact of distractions becomes
more pronounced. Most models experience larger decreases in performance. The Internvl2 (2B) model, for instance,
has an exact match score of 82.35, reflecting a significant drop of −9.05 from its original score of 91.40. Even the
higher-performing Internvl2 (8B) and Internvl2 (26B) models face reductions to exact match scores of 93.60 (−1.20)
and 92.80 (−2.40), respectively. These findings highlight that adding textual distractions poses a greater challenge
to the models compared to visual distractions, possibly due to the complexity of processing textual information.

Lastly, in the Insert Hint scenario, where textual distractions are interspersed within existing text, models generally
show moderate performance degradation. The Internvl2 (8B) model maintains a high exact match score of 95.90,
with a decrease of −1.70 from its original score of 97.60. Similarly, GPT-4o achieves a exact match scores of 84.05,
reflecting a decrease of −1.95. However, models like Qwen2-VL-Instruct (2B) exhibit a larger drop to a exact match
scores of 64.20 (−8.25), indicating vulnerability to inserted textual distractions. These results suggest that while some
models are adept at managing inserted hints, others may struggle, potentially due to differences in their attention
mechanisms or the diversity of their training data.

6
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5 EXPERIMENTAL ANALYSIS

5.1 MODEL SIZE
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Figure 2: Comparison of Exact Match Score for Internvl2(left) and Llava Models(right).

Observing the performance across different model sizes in Figure 2, we notice that as the model size increases, there is
a general improvement in performance across all scenarios involving distractions.

For the Internvl2 models, we consider four different sizes: 1B, 2B, 8B, and 26B parameters. In the Add Image scenario,
the exact match scores increase from 79.70 for the 1B model to 94.45 for the 8B model, with a slight decrease to 93.40
at the 26B model. In the Insert Image scenario, performance improves steadily from 83.47 (1B) to 95.14 (26B). For the
Add Hints scenario, scores rise from 80.55 (1B) to 93.60 (8B), then slightly decrease to 92.80 (26B). In the Insert Hint
scenario, scores increase from 82.85 (1B) to 96.55 (26B). These results indicate that increasing the model size generally
enhances performance, particularly up to the 8B parameter model. The slight decrease or plateau in performance at the
26B size for some scenarios suggests that beyond a certain point, increasing model size yields diminishing performance
or requires more sophisticated training techniques to leverage the additional parameters effectively.

Similarly, for the Llava models with sizes 7B, 13B, and 34B, we observe performance trends in the distraction scenarios
that reflect improvement with increased model size. In the Add Image scenario, scores increase from 68.05 (7B) to
87.50 (34B). In the Insert Image scenario, performance improves from 66.36 (7B) to 79.51 (34B). For the Add Hint
scenario, scores rise from 63.80 (7B) to 82.65 (34B). In the Insert Hint scenario, scores increase from 69.30 (7B) to
83.00 (34B). The Llava models also show a clear trend of performance improvement with increased model size across
all scenarios. The performance gains are more pronounced between the 7B and 34B models, suggesting that larger
models can better handle distractions and integrate additional information effectively.

Comparing both models, the Internvl2 models generally outperform the Llava models at similar parameter sizes,
especially in higher model sizes. For instance, the Internvl2 (8B) model achieves higher distraction scores than the
Llava (13B) model across all scenarios, indicating that the Internvl2 architecture or training data may be more efficient
in leveraging parameters for scenario performance. These observations underscore the significance of model scaling in
enhancing performance, but they also highlight that architecture design and training data are crucial in maximizing the
benefits of increased model size.

5.2 ANALYSIS ON TRAINING DATASET AND MODEL ARCHITECTURE

The performance of the VLMs is influenced by their training datasets and architectural designs. Figure 3 summarizes
the models’ training datasets, vision encoders, and language models. Notably, some models, such as InternVL2, are
trained on the ScienceQA dataset, raising concerns about potential data contamination. Since the evaluation tasks may
overlap with their training data, their performance metrics might be artificially inflated.

The InternVL2 models combine the InternViT vision encoder with the InternLM2 language model and are trained
on a diverse set of datasets, including COCO, VQAv2, OKVQA, Visual Dialog, and ScienceQA. Similarly, LLaVA
models utilize the CLIP ViT-L/14 vision encoder and Vicuna language models, trained on COCO and ScienceQA. In
contrast, models like InstructBLIP do not include ScienceQA in their training data. They use datasets such as COCO,
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LLaVA (7B, 13B)

CogVLM2 (19B)

InstructBLIP (7B, 13B)

InternVL2 (2B, 8B)

COCO

ScienceQA

VQAv2

OKVQA

TextVQA

TextCaps

OCR-VQA

ChartQA

Visual Dialog

DocVQA

CLIP ViT-L/14 Vicuna (7B, 13B)

EVA-CLIP-E LLaMA3 (8B)

CLIP ViT-G/14 Vicuna (7B, 13B)

InternViT InternLM2

Common Datasets

Vision Encoders and Language Models

Training Dataset Model Vision Encoder Language Model

Figure 3: Training datasets, vision encoders, and language models for LLaVA, CogVLM2, InstructBLIP, and InternVL2.
Non-QA datasets are connected with lighter lines. InternVL2 employs the most diverse QA datasets, enhancing its
robustness. Connections to the ScienceQA dataset are highlighted. See section 7 for details.

VQAv2, OKVQA, and Visual Dialog, leveraging the CLIP ViT-G/14 vision encoder and Vicuna language models.
Their performance is less likely to be influenced by data contamination, providing a more accurate reflection of their
capabilities on unseen data.

Overall, while diverse training data and sophisticated architectures contribute to model performance, the inclusion of
evaluation datasets in training can artificially inflate results. It is crucial to consider potential data contamination when
interpreting performance metrics to ensure fair and accurate assessments of model capabilities.

5.3 DEFENDING AGAINST DISTRACTIONS

Table 4: Exact match scores achieved by the models using a naive prompt without defenses compared to a prompt with
instructions to ignore distractions.

Model Add Image (%) Insert Image (%) Add Hints (%) Insert Hint (%)

No Defense Defense No Defense Defense No Defense Defense No Defense Defense

Qwen2-VL-Instruct (2B) 63.30 73.80 63.26 65.60 54.45 62.60 64.20 70.35
Qwen2-VL-Instruct (7B) 83.10 81.35 68.08 68.60 68.00 68.05 74.10 74.90
CogVLM2 (19B) 71.70 70.15 87.47 85.18 70.50 70.20 80.85 79.10

The findings in Table 4 demonstrate that although prompt engineering techniques—such as adding instructions to guide
the model’s focus toward the question and away from distractions—can partially mitigate the effects of distractions,
models still struggle to ignore them. For instance, in the Add Image scenario, the performance of Qwen2-VL-Instruct
(2B) improves from 63.30 to 73.80 when defense mechanisms are applied, indicating that appropriate prompts can
enhance the model’s focus on relevant information. Similarly, in the Insert Hint scenario, the same model’s performance
increases from 64.20 to 70.35 with defense strategies.

However, the improvements are not uniform across all models and tasks. The Qwen2-VL-Instruct (7B) model shows a
slight decrease in performance in the Add Image scenario when defenses are applied, dropping from 83.10 to 81.35.
This suggests that the effectiveness of defense mechanisms may vary depending on the model’s architecture and size.
Moreover, the CogVLM2 (19B) model exhibits a minor reduction in performance across most tasks with defense
prompts, indicating that larger models are not necessarily better at ignoring distractions when prompted to do so. For
example, in the Insert Image scenario, its performance decreases from 87.47 to 85.18 even with defense strategies.
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Table 5: Exact Math Scores achieved by LLava Models with different vision encoders.

Model (Vision Encoder) Add Image (%) Insert Image (%) Add Hints (%) Insert Hint (%)

Original Distraction Original Distraction Original Distraction Original Distraction

LLava-7B (Robust-clip) N/A 70.40 67.30 63.55 71.78 67.48 64.31 63.25
LLava-7B (Clip) N/A 69.55 68.95 64.32 76.22 72.49 64.39 63.25

Table 5 summarizes the performance of LLava-7B models with two different vision encoders: robust-clip (Schlarmann
et al., 2024) and clip (Ilharco et al., 2021). The models are evaluated across original and distraction scenarios, focusing
on the effects of adding or inserting images and hints. Since the LLava-7B model with robust-clip can only process
inputs that include both text and visual content, samples without images were excluded from this evaluation. The
robust-clip encoder only outperforms the clip encoder slightly in the Add Image scenario by 0.85. In other scenario,
the performance of the robust-clip encoder is lower than that of the clip encoder. These findings suggest that robust-clip
shows very limited efficacy in defending against visual distractions.

These results suggest potential areas for future improvements in model training and design. Developing more effective
prompting techniques and enhancing model architectures could help models better filter out irrelevant information.
Additionally, incorporating training data that specifically addresses the handling of distractions may improve models’
robustness in real-world applications where irrelevant data is commonplace.

5.4 BI-MODAL DISTRACTION

Table 6: Exact Match Score under textual distraction, both with and without simultaneous visual distraction.

Model Add Hint (%) Insert Hint (%)
No Image With Image No Image With Image

Qwen2-VL-2B-Instruct 57.68 57.68 72.86 72.86
Qwen2-VL-7B-Instruct 71.43 71.43 88.57 88.57
CogVLM2-LLaMA3-Chat-19B 57.45 56.91 78.31 79.35

The results in Table 6 examine the models’ performances under conditions where textual distractions are present, with
and without the simultaneous presence of visual distractions. Specifically, the “No Image” columns represent scenarios
with only textual distractions, while the “With Image” columns include both textual and visual distractions.

Analyzing the data, we observe that the performance of Qwen2-VL-Instruct (2B) and Qwen2-VL-Instruct (7B) remains
unchanged between the “No Image” and “With Image” conditions across both “Add Hint” and “Insert Hint” scenarios.
This suggests that the addition of visual distractions does not significantly impact these models when textual distractions
are already present. In contrast, the CogVLM2 (19B) model shows a slight decrease in performance from 57.45% to
56.91% in the “Add Hint” scenario when an image is added, indicating a minor negative effect of visual distractions
in conjunction with textual ones. Interestingly, in the “Insert Hint” scenario, its performance slightly improves from
78.31% to 79.35% with the addition of an image, suggesting that under certain conditions, visual distraction might
compete with textual distraction.

Overall, these findings imply that the models’ abilities to handle bi-modal distractions are nuanced. While some
models maintain consistent performance regardless of the presence of additional visual information, others exhibit
minor fluctuations. This highlights the importance of designing models that can effectively integrate and prioritize
multi-modal inputs, ensuring robustness in environments where distractions are prevalent across different modalities.

6 RELATED WORK

Model Evaluations and Data Contamination. Visual Language Models (VLMs) have traditionally been evaluated
using standard Visual Question Answering (VQA) tasks such as TextVQA (Singh et al., 2019), VQAv2 (Antol
et al., 2015), and GQA (Hudson & Manning, 2019), which focus on foundational VQA questions. More recently,
studies like MM-Vet (Yu et al., 2023b), POPE (Li et al., 2023a), and MM-Bench (Liu et al., 2023d) have emerged to
specifically evaluate VLMs, addressing key challenges like hallucination, reasoning, and robustness. These efforts
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have demonstrated that multimodal LLMs encounter significant issues, such as hallucination (Guan et al., 2023) and
insufficient robustness (Fu et al., 2023). In this papr, we introduce the I-ScienceQA benchmark, which highlights that
even advanced VLMs, such as GPT-4o (OpenAI, 2023), struggle with basic visual questions when irrelevant distractions
are present in the input.

Data contamination has also become a major focus in recent work (Lovin, 2023; Bender et al., 2021; Kocoń et al., 2023;
Li, 2023). Several researchers (Golchin & Surdeanu, 2023; Oren et al., 2023; Yang et al., 2023; Oren et al., 2023) have
developed techniques to detect and mitigate data contamination. Furthermore, dynamic evaluation techniques have
been proposed (Zhu et al., 2023; Lei et al., 2023; Fan et al., 2023), leveraging various algorithms to reduce the adverse
effects of data contamination on model performance.

Benchmarks with Input Perturbations. The use of input perturbations has been a common strategy in natural language
tasks, with approaches ranging from model-agnostic input transformations (Liang et al., 2022; Ravichander et al.,
2022) to adversarial example generation targeting specific models (Jia & Liang, 2017; Shi et al., 2018; Morris et al.,
2020; Wang et al., 2021). Notably, prior research has constructed arithmetic reasoning benchmarks by paraphrasing or
rewriting sentences from clean datasets (Patel et al., 2021; Kumar et al., 2021; Shi et al., 2023).

Robustness of VLM Recent studies have increasingly concentrated on the adversarial vulnerabilities of VLMs Qi et al.
(2024); Carlini et al. (2024); Schlarmann & Hein (2023); Zhao et al. (2023b); Dong et al. (2023). Schlarmann & Hein
(2023) demonstrate that imperceptible perturbations in input images can enable attackers to manipulate LVLMs into
generating specific outputs. Additionally, visual adversarial attacks designed to jailbreak LVLMs are introduced in
works such as Carlini et al. (2024) and Qi et al. (2024). More recently, numerous studies have focused on training
adversary robust vision encoder for VLMs Schlarmann et al. (2024); Mao et al. (2023).

7 LIMITATIONS AND CONCLUSION

In this paper, we introduced I-ScienceQA, a comprehensive benchmark designed to assess the robustness of Vision-
Language Models against distractions in both visual and textual domains. By augmenting the ScienceQA dataset with
diverse forms of distractions, we simulated real-world conditions where input data is often imperfect, noisy. Our
extensive evaluation across state-of-the-art VLMs revealed several key findings: (1) Most VLMs remain vulnerable to
distractions, especially in the textual domain; (2) Larger models tend to be more robust but do not always guarantee
improved performance, particularly when faced with complex bi-modal distractions; (3) Prompt engineering and robust
vision encoder could only partially mitigate these vulnerabilities, there remains significant room for improvement in
handling both textual and visual distractions.

Our findings highlight the need for further research in developing more robust VLM models. As the use of VLMs
expands across domains such as healthcare, education, and autonomous systems, it becomes increasingly important to
build models that can handle the noisy data often encountered in real-world applications.

While our work contributes valuable insights into the challenges of distraction robustness, it also has certain limitations:

• Limited scope of distractions: Although we introduced a variety of textual and visual distractions, the dataset
does not encompass all possible real-world noise. Future work could explore additional forms of noise, such as
adversarial examples, corrupted images to further challenge the models.

• Model evaluation focus: Our study primarily focused on pre-trained VLMs. We did not explore the effects of
fine-tuning models on noisy datasets that may be more resilient to distractions. Fine-tuning on noisy or augmented
data could provide valuable insights into improving model robustness.

• Bimodal distractions: While we examined the compounded effects of bimodal distractions, we did not extensively
explore how interaction effects between the two modalities influence model performance. Future research
should analyze more closely how different types of visual and textual distractions interact and whether certain
combinations are more detrimental than others.

• Defense techniques: Although we explored the use of prompt engineering and robust vision encoder as a defense
mechanism, our study did not delve into other possible methods to enhance model robustness, such as vision
segmentationLai et al. (2023). Exploring these techniques could offer more comprehensive solutions for improving
VLM performance in noisy environments.

In summary, while the I-ScienceQA benchmark provides a valuable tool for evaluating VLM robustness, there is much
work to be done in advancing models that can consistently navigate noisy, real-world data. Future research should focus
on expanding the range of distractions, investigating fine-tuning techniques, and exploring other defense strategies to
create more resilient VLMs.
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A STATISTICS OF DISTRACTIONS

Scenario Types of Distraction and Content Number

Add Image

Neutral Backgrounds 250
Generic Landscapes 250
Abstract Art 250
Everyday Objects 250
Cultural Artifacts 250
Digital Creations 250
Word Embeddings 250
Emotional Contexts 250

Insert Image

Diffusion Inpainting 100
Neutral Backgrounds 250
Generic Landscapes 250
Abstract Art 250
Everyday Objects 250
Cultural Artifacts 250
Digital Creations 250
Word Embeddings 250
Emotional Contexts 250

Add Hints

Irrelevant Context Integration 400
Contradictory Information 400
Non Sequitur 400
Misleading Information 400
Ambiguous Information 400

Insert Hints

Subtle Misinformation 400
Irrelevant Details 400
Disruptive Narrative Inserts 400
Complex Referential Distractions 400
Ambiguous Information 400

Table 7: Distribution of Distraction Scenarios Across Scenarios
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B DEFINITION FOR DISTRACTIONS

Type of Image Description
Neutral Backgrounds Simple, monochromatic backgrounds to minimize distraction and

control variable introduction.

Generic Landscapes Broad, non-specific landscapes (e.g., forests, urban scenes, moun-
tains) that provide a realistic yet contextually neutral backdrop.

Abstract Art Non-representational art that challenges the model to focus on
textual rather than visual cues.

Everyday Objects Common, non-contextual objects to evaluate the model’s ability
to disregard irrelevant visual stimuli.

Cultural Artifacts Images of artifacts that test cultural recognition and contextual
integration capabilities.

Digital Creations Computer-generated or altered imagery to assess the model’s
response to unconventional visual data.

Word Embeddings Images with embedded or overlaid text to examine effective tex-
tual and visual information merging.

Emotional Contexts Images depicting clear emotional tones to probe model’s align-
ment of text and visual emotion cues.

Table 8: Types and definition of Distractions for Scenario I Add Image and Scenario II Insert Image.

Type of Image Description
Flying Objects Introduces elements like birds, planes, or insects, requiring the

model to differentiate between essential static elements and mov-
ing distractions.

Floating Balloons Adds balloons of various colors and sizes that float across the
scene, testing the VLM’s ability to ignore appealing but irrelevant
moving objects.

Passing Vehicles Populates scenes with moving vehicles like cars and bicycles,
challenging the model to disregard transient elements.

Drifting Clouds Simulates clouds moving across the sky, testing the model’s focus
amid ongoing environmental changes.

Bouncing Balls Uses images of balls in motion to introduce unexpected kinetic
elements, assessing the model’s response to sudden movements.

Swarming Insects Adds complexity with swarming insects like butterflies or bees to
test the VLM’s fine-grained visual attention.

Animated Signs Integrates changing digital signs to evaluate the model’s ability
to ignore intermittent visual stimuli.

Symbols and Icons Embeds non-contextual symbols or icons, assessing the model’s
disregard for extraneous visual information.

Overlaid Words Overlays random words or phrases to introduce visual clutter,
testing prioritization of primary textual content.

Sitting Pets Includes images of sitting pets to test the VLM’s focus amidst
visually appealing but irrelevant elements.

Table 9: Types and definition of Distractions for Scenario II: Insert Image.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Distraction Type Description
Irrelevant Context Inte-
gration

Introduce sentences with contextually irrelevant information
to assess the model’s capacity to filter out noise. Based on
studies showing extraneous data can reduce comprehension
accuracy, mirroring real-world information processing chal-
lenges.

Contradictory Informa-
tion

Embed contradictions within the narrative to test the models’
conflict resolution and logic adherence capabilities.

Non Sequitur Use complex sentence structures and ambiguous phrases to
evaluate the models’ parsing and interpretation flexibility.

Misleading Information Include plausible but incorrect data points within texts, test-
ing the models’ fact-checking abilities and resilience against
misinformation.

Ambiguous Information Incorporate vague or unclear statements to assess the model’s
ability to handle uncertainty and make reasonable inferences.

Table 10: Types and definition of Distractions for Scenario III: Add Hint.

Distraction Type Description

Subtle Misinformation Inserts information that subtly misleads, contradicting established data yet remaining
plausible within the context.

Irrelevant Details Introduces extraneous details that do not contribute to the task, challenging the model
to maintain focus on relevant content.

Disruptive Narrative Inserts Incorporates unrelated narratives that interrupt logical progression, testing the model’s
information filtering capabilities.

Complex Referential
Distractions

Utilizes intricate language and referential sequences that complicate the parsing
process, assessing interpretative accuracy.

Ambiguous or Conflicting
Information

Presents choices that include both plausible and incorrect answers, exploiting
potential ambiguities to test decision-making precision.

Table 11: Types and definition of Distractions for Scenario IV: Insert Hint.
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C MORE RESULTS

C.1 ADD IMAGE

Table 12: Exact Match Scores of Various Models Across Different Types of Distractions in the Add Image Scenario.
Abbreviations: AA = Abstract Art, CA = Cultural Artifacts, WE = Word Embeddings, DC = Digital Creations, NB =
Neutral Backgrounds, GL = Generic Landscapes, EC = Emotional Contexts, EO = Everyday Objects.

Model AA CA WE DC NB GL EC EO
InstructBLIP (7B) 38.8 37.6 44.4 42.4 37.6 42.4 40.0 45.2
InstructBLIP (13B) 70.4 72.0 73.6 75.2 73.2 70.4 67.6 73.6
Llava (7B) 66.4 73.2 71.6 70.8 64.4 69.6 62.8 65.6
Llava (13B) 70.4 72.0 73.6 75.2 73.2 70.4 67.6 73.6
Internvl2 (2B) 83.6 84.4 85.6 87.2 92.4 88.0 86.8 86.0
Internvl2 (8B) 94.8 96.0 93.6 95.6 93.6 93.6 92.0 96.4
Qwen/Qwen2-VL-2B-Instruct 59.6 63.6 60.0 64.0 67.6 63.2 65.2 63.2
Qwen/Qwen2-VL-7B-Instruct 84.8 82.0 83.2 85.6 81.6 84.4 83.2 80.0
THUDM/cogVLM2-LLaMA3-Chat-19B 69.2 72.8 72.0 70.8 73.2 74.4 69.2 72.4
GPT-4o 94.0 94.0 90.8 92.0 91.2 94.0 94.8 93.2

C.2 INSERT IMAGE

Table 13: Exact Match Scores of Various Models Across Different Types of Distractions in the Insert Image Scenario.
Abbreviations: AA = Abstract Art, CA = Cultural Artifacts, WE = Word Embeddings, DC = Digital Creations, NB =
Neutral Backgrounds, GL = Generic Landscapes, EC = Emotional Contexts, EO = Everyday Objects, DI = Diffusion
Inpainting.

Model AA CA WE DC NB GL EC EO DI
InstructBLIP (7B) 32.40 39.20 34.00 34.40 37.60 36.80 36.00 30.40 42.42
InstructBLIP (13B) 68.80 72.00 69.60 70.80 73.20 68.40 66.80 66.00 72.73
Llava (7B) 63.60 70.80 67.60 67.20 68.80 68.40 60.40 64.80 64.64
Llava (13B) 68.80 72.00 69.60 70.80 73.20 68.40 66.80 66.00 72.72
Internvl2 (2B) 89.20 87.20 91.20 91.20 91.20 92.00 90.80 90.00 87.87
Internvl2 (8B) 94.00 92.40 93.60 94.80 95.60 96.00 95.20 93.60 90.90
Qwen/Qwen2-VL-2B-Instruct 62.40 64.80 64.40 68.00 64.40 67.20 60.40 58.80 52.53
Qwen/Qwen2-VL-7B-Instruct 64.40 70.80 68.00 71.20 72.00 70.40 61.60 68.80 61.62
THUDM/cogVLM2-LLaMA3-Chat-19B 89.20 86.80 86.00 87.60 87.20 89.20 86.80 88.00 84.85
GPT-4o 79.60 79.60 78.00 82.00 78.80 78.00 77.20 76.40 75.75

C.3 ADD HINT
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Table 14: Exact Match Scores of Various Models Across Different Types of Distractions in the Add Hint Scenario.
Abbreviations: Contradictory = Contradictory Hints, Non Sequitur = Non Sequitur Hints, Ambiguous = Ambiguous
Hints, Irrelevant = Irrelevant Hints, Misleading = Misleading Hints.

Model Contradictory Non Sequitur Ambiguous Irrelevant Misleading
InstructBLIP (7B) 62.75 65.00 66.50 58.75 66.00
InstructBLIP (13B) 67.50 69.25 68.00 63.75 68.75
Llava (7B) 63.60 70.80 67.60 67.20 68.80
Llava (13B) 68.80 72.00 69.60 70.80 73.20
Internvl2 (2B) 81.50 77.00 87.00 85.75 80.50
Internvl2 (8B) 95.00 92.00 94.50 92.25 94.25
Qwen/Qwen2-VL-2B-Instruct 53.00 55.00 59.25 52.00 53.00
Qwen/Qwen2-VL-7B-Instruct 67.75 68.25 71.75 67.50 64.75
THUDM/cogVLM2-LLaMA3-Chat-19B 74.50 68.25 73.75 68.00 68.00
GPT-4o 90.00 87.50 87.50 84.75 87.75

Table 15: Exact Match Scores of Various Models Across Different Types of Distractions in the Insert Hint Scenario.
Abbreviations: Subtle Misinformation = Influence of Subtle Misinformation Hints, Irrelevant Details = Influence
of Irrelevant Details Hints, Disruptive Narrative = Influence of Disruptive Narrative Hints, Complex Referential =
Influence of Complex Referential Hints, Ambiguous or Conflicting = Influence of Ambiguous or Conflicting Hints.

Model Subtle Misinformation Irrelevant Details Disruptive Narrative Complex Referential Ambiguous or Conflicting
Llava (7B) 70.75 69.50 67.50 69.75 69.00
Llava (13B) 74.00 73.50 70.00 70.50 71.00
Internvl2 (2B) 90.25 92.25 90.50 93.75 90.75
Internvl2 (8B) 95.00 95.75 94.25 97.25 97.25
Qwen/Qwen2-VL-2B-Instruct 65.75 65.00 59.75 66.00 64.50
Qwen/Qwen2-VL-7B-Instruct 76.00 71.75 73.25 74.25 75.25
THUDM/cogVLM2-LLaMA3-Chat-19B 78.75 79.25 81.75 83.50 81.00
GPT-4o 83.75 84.75 83.00 82.25 86.50
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D MODELS’ TRAINING DATASET

Model Name Training Data

liu2023llava1.5 Pre-training data: Conceptual Captions (CC) (Changpinyo et al., 2021);
COCO Captions (Lin et al., 2014); ScienceQA (Lu et al., 2022a); LLaVA-
Instruct-158K (Liu et al., 2023c); utilizes a CLIP visual encoder pre-
trained on LAION-2B (Schuhmann et al., 2022a).
Fine-tuning data: COCO (Lin et al., 2014); ScienceQA (Lu et al.,
2022a); LLaVA-Instruct-158K (Liu et al., 2023c), tailored for instruction-
following tasks.

InstructBLIP-Vicuna (7B, 13B) Pre-training data: NoCaps (Agrawal et al., 2019); Flickr30K (Plummer
et al., 2015); VizWiz (Gurari et al., 2018); GQA (Hudson & Man-
ning, 2019); Visual Spatial Reasoning (Liu et al., 2023a); IconQA (Lu
et al., 2021b); ScienceQA (Lu et al., 2022a); Visual Dialog (Das et al.,
2017); TextVQA (Singh et al., 2019); HatefulMemes (Kiela et al., 2020);
MSVD-QA (Xu et al., 2017b); MSRVTT-QA (Xu et al., 2017a); iVQA
(Yang et al., 2021).
Fine-tuning data: COCO Caption (Lin et al., 2014); Web CapFilt (Li
et al., 2022;?); TextCaps (Sidorov et al., 2020); VQAv2 (Goyal et al.,
2017); OKVQA (Marino et al., 2019); A-OKVQA (Schwenk et al.,
2022); OCR-VQA (Mishra et al., 2019); LLaVA-Instruct-150K (Liu
et al., 2023c), transformed into instruction-answer pairs for enhanced
multimodal instruction following.

CogVLM2-LLaMA3-Chat-19B Pre-training data: LAION-2B (Schuhmann et al., 2022a); COYO-
700M (Byeon et al., 2022); LAION-40M-grounding (Zhang et al., 2022);
multilingual image-text pairs from LAION, COCO (Lin et al., 2014),
and Visual Genome (Krishna et al., 2017).
Fine-tuning data: OKVQA (Marino et al., 2019); STVQA (Biten
et al., 2019); visualgenome (Krishna et al., 2017); VQAv2 (Goyal et al.,
2017); DocVQA (Mathew et al., 2021); OCRVQA (Mishra et al., 2019);
TextVQA (Singh et al., 2019); GeoMetry3K (Lu et al., 2021a); Geo170K
(Gao et al., 2023); GeoQA (Chen et al., 2022); ScienceQA (Lu et al.,
2022a); ChartQA (Masry et al., 2022); FigureVQA (Kahou et al., 2018);
InfoVQA (Mathew et al., 2022); DVQA (Kafle et al., 2018); ArxivQA
(Li et al., 2024); TDIUC (Kafle & Kanan, 2017); TallyQA (Acharya
et al., 2019), optimized for multimodal understanding and conversational
abilities.

Qwen2-VL-7B-Instruct Pre-training data: Details not publicly disclosed.
Fine-tuning data: Details not publicly disclosed.

Phi3-V Pre-training data: Details not publicly disclosed.
Fine-tuning data: Details not publicly disclosed.
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Model Name Training Data

InternVL2 (2B, 8B) Pre-training data: Laion-EN (Schuhmann et al., 2022a); Laion-ZH (zh)
(Schuhmann et al., 2022a); COYO (zh) (Byeon et al., 2022); GRIT (zh)
(Peng et al., 2023); COCO (Lin et al., 2014); TextCaps (Sidorov et al.,
2020); Objects365 (en&zh) (Shao et al., 2019); GRIT (en&zh) (Peng
et al., 2023); All-Seeing (en&zh) (Wang et al., 2024b); Wukong-OCR
(zh) (Gu et al., 2022); LaionCOCO-OCR (Schuhmann et al., 2022b);
MMC-Inst (Liu et al., 2023b); LSVT (zh) (Sun et al., 2019); ST-VQA
(Biten et al., 2019); RCTW-17 (zh) (Shi et al., 2017); ReCTs (zh) (Zhang
et al., 2019); ArT (en&zh) (Chng et al., 2019); SynthDoG (en&zh) (Kim
et al., 2022); COCO-Text (Veit et al., 2016); ChartQA (Masry et al.,
2022); CTW (zh) (Yuan et al., 2019); DocVQA (Mathew et al., 2021);
TextOCR (Singh et al., 2021); PlotQA (Methani et al., 2020); InfoVQA
(Mathew et al., 2022).
Fine-tuning data: TextCaps (Sidorov et al., 2020); ShareGPT4V
(en&zh) (Chen et al., 2023); VQAv2 (Goyal et al., 2017); GQA (Hud-
son & Manning, 2019); OKVQA (Marino et al., 2019); VSR (Liu
et al., 2023a); Visual Dialog (Das et al., 2017); AI2D (Kembhavi et al.,
2016); ScienceQA (Lu et al., 2022a); TQA (Kembhavi et al., 2017);
ChartQA (Masry et al., 2022); MMC-Inst (Liu et al., 2023b); DVQA
(Kafle et al., 2018); PlotQA (Methani et al., 2020); GeoQA+ (Cao &
Xiao, 2022); TabMWP (Lu et al., 2022b); MathQA (Yu et al., 2023a);
CLEVR-Math/Super (Lindström & Abraham, 2022; Li et al., 2023b);
Geometry3K (Lu et al., 2021a); KVQA (Shah et al., 2019); A-OKVQA
(Schwenk et al., 2022); ViQuAE (Lerner et al., 2022); Wikipedia (en&zh)
(He et al., 2023); OCRVQA (Mishra et al., 2019); TextVQA (Singh et al.,
2019); RefCOCO/+/g (Yu et al., 2016; Mao et al., 2016); Visual Genome
(Krishna et al., 2017); LLaVA-1580K (en&zh) (Liu et al., 2023c); LVIS-
Instruct4V (Wang et al., 2023); ALLaVA (en&zh) (Chen et al., 2024a);
Laion-GPT4V (LAION, 2023); TextOCR-GPT4V (Jimmycarter, 2023);
SVIT (en&zh) (Zhao et al., 2023a); OpenHermes2.5 (Teknium, 2023);
Alpaca-GPT4 (Taori et al., 2023); ShareGPT (en&zh) (Zheng et al.,
2024); COIG-CQIA (zh) (Bai et al., 2024); optimized for diverse visual-
language tasks including visual question answering, image captioning,
and visual dialogue.

GPT-4o Pre-training data: Details not publicly disclosed.
Fine-tuning data: Details not publicly disclosed.

Table 16: Models and their Pre-training and Fine-tuning Data
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