
Published at ICLR 2025 Workshop on Foundation Models in the Wild.

ROBOMORPH : EVOLVING ROBOT MORPHOLOGY US-
ING LARGE LANGUAGE MODELS

Kevin Qiu1,2∗, Władysław Pałucki1, Krzysztof Ciebiera1, Paweł Fijałkowski1,
Marek Cygan1,3, Łukasz Kuciński1,2,4 ∗
1University of Warsaw 2IDEAS NCBR 3Nomagic 4Polish Academy of Sciences
kevinxqiu@gmail.com

ABSTRACT

We introduce RoboMorph, an automated approach for generating and optimiz-
ing modular robot designs using large language models (LLMs) and evolutionary
algorithms. In this framework, we represent each robot design as a grammar and
leverage the capabilities of LLMs to navigate the extensive robot design space,
which is traditionally time-consuming and computationally demanding. By intro-
ducing a best-shot prompting technique and a reinforcement learning-based con-
trol algorithm, RoboMorph iteratively improves robot designs through feedback
loops. Experimental results demonstrate that RoboMorph successfully gener-
ates nontrivial robots optimized for different terrains while showcasing improve-
ments in robot morphology over successive evolutions. Our approach highlights
the potential of using LLMs for data-driven, modular robot design, providing a
promising methodology that can be extended to other domains with similar de-
sign frameworks.

1 INTRODUCTION

Figure 1: Visualization of one iteration of
RoboMorph. At each stage, the prompt
(blue), robot design (green), and fitness score
(orange) are displayed. The element modified
in each step is highlighted with a red border.

Generative methods, such as large language models
(LLMs), have increasingly influenced various do-
mains of machine learning and everyday life, in-
cluding robotics. LLMs are utilized to generate
robot policies as code Liang et al. (2023), provide
knowledge for executing complex instructions Ahn
et al. (2022), enhance generalization and seman-
tic reasoning Brohan et al. (2023b;a), design re-
ward functions and domain randomization Ma et al.
(2024a;b), and develop general policies for robot
manipulation Team et al. (2024).

In this paper, we address the challenge of robot de-
sign, a fundamental problem in modern robotics
Zeng et al. (2023). Traditional engineering ap-
proaches are often time-consuming and heavily de-
pend on human designers to manually prototype,
test, and iterate through an extended design cycle.
This challenge is further compounded by the vast
robot design space that must be explored. By au-
tomating key aspects of the design process, we can
significantly reduce the time and costs associated
with development. Furthermore, leveraging data-
driven approaches has the potential to generate de-
signs that surpass those conceived and produced by human designers.

Previous attempts to automate the design process have been slow and require searching through
a vast design space, which is often computationally inefficient. One class of such approaches is

∗Corresponding author.

1

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

inspired by evolutionary algorithms (EAs) found in nature Bäck & Schwefel (1993). However, EAs
necessitate iterating through hundreds of generations, and existing solutions struggle to scale with
increasing design complexity Thierens (1999).

In this work, we propose a method to address some of these challenges. We introduce RoboMorph,
a novel approach to robot design that is data-driven, generative, and modular. RoboMorph draws in-
spiration from recent advancements in large language models (LLMs) OpenAI et al. (2024), prompt-
ing techniques Brown et al. (2020); Wei et al. (2022b), and compositional design generation based
on a structured robot grammar Zhao et al. (2020). Additionally, we employ reinforcement learn-
ing (RL)-based control algorithms to compute fitness scores for each automatically generated robot
design. An overview of our approach is presented in Figure 1.

We leverage LLMs in our method for several reasons. First, LLMs possess extensive prior knowl-
edge and demonstrate emergent capabilities Wei et al. (2022a), which can fundamentally transform
the methodology of robot design. Second, utilizing natural language as an input module enables
a flexible approach that accommodates custom designs based on specific user requirements. For
example, this flexibility allows users to specify particular designs tailored for specific tasks or en-
vironments. Finally, unlike search engines, LLMs can suggest ways to integrate knowledge into
prompts and apply it to novel problems, thereby ensuring the generated designs are practical and
effective.

We experimentally demonstrate that an iterative approach provides feedback to the LLM, enabling
it to generate progressively improved designs over time. RoboMorph illustrates the feasibility of
using LLMs for robot design across different environments, and we believe this approach can be
extended to other domains that follow similar design principles. Our work represents a step toward
a future in which robots are designed in a manner which can facilitate their rapid deployment in
real-world applications.

Our contributions are as follows:

• We introduce RoboMorph, which, to the best of our knowledge, is the first approach to in-
tegrate LLMs, evolutionary algorithms, robot grammars, and RL-based control to automate
robot design for a given task.

• Our modular framework enables greater customization than existing methods, allowing
users to modify the pipeline to suit specific needs. For example, users can adjust the input
prompt or modify the simulation environment.

• We present experimental results demonstrating the potential of RoboMorph, showcasing
its effectiveness and benchmarking its improved designs against existing methods.

2 PROBLEM FORMULATION

We formulate our problem with the objective of optimizing the morphology of a robot across differ-
ent terrains. Below, we provide a detailed description of both key components.

2.1 DESIGN OPTIMIZATION

In episodic environments, RL models problems as a Markov Decision Process (MDP), defined as
M = (S,A, T , R, γ), where S is the state space, A is the action space, T represents the transi-
tion dynamics, R is the reward function, and γ is the discount factor. The agent follows a policy
π(at|st), selecting actions at ∈ A based on the current state st ∈ S. Starting from the initial state
s0, actions are sampled from π, leading to state transitions governed by T (st+1|st, at) with an asso-
ciated reward rt. The goal of RL is to determine the optimal policy π∗ that maximizes the expected
discounted reward: J(π) = Eπ

[∑H
t=0 γ

trt

]
, where H denotes the time horizon.

An agent’s design D ∈ D plays a crucial role in determining its functionality. In our frame-
work, D encompasses both the agent’s skeletal structure and component-specific attributes, such
as limb lengths, joint types, and end effectors. To account for design variations, the original re-
ward function J(π) = Eπ

[∑H
t=0 γ

trt

]
is extended to incorporate design dependence: J(π,D) =

Eπ,D

[∑H
t=0 γ

trt

]
. Thus, the objective is to determine the optimal design D∗ that maximizes the

2

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

expected cumulative rewards:
D∗ = argmax

D
max
π

J(π,D). (1)

To compute Equation 1, we must design the robot’s morphology and train its control network. How-
ever, defining the design spaceD is challenging due to the vast number of possible skeletal structure
combinations. Consequently, the training process must refine both the robot’s morphology and its
control network simultaneously. To simplify this co-optimization problem, we divide the overall
process into two main stages and alternate between the design stage and the control stage.

In the design stage, the design Dt+1 is updated based on the input prompt, which consists of the
system prompt, user prompt, and few-shot examples, formally defined as:

Dt+1 = fLLM(promptinput). (2)

The mapping function fLLM determines which components of the robot should be modified or re-
constructed. We hypothesize that the LLM can acquire this capability. To obtain a new pol-
icy πt+1, we use RL to train a set of parameters θ from scratch, optimizing them to maximize:
J(πt+1, Dt+1) = J(πθ, Dt+1).

2.2 TERRAINS

Terrains define the tasks for which robot morphologies are optimized. Each terrain is designed to
produce a distinct set of optimal designs. We extend the set of environments introduced in Robo-
grammar Zhao et al. (2020). Figure 5 provides visualizations of each terrain.

Ridged terrain. A series of evenly spaced ridges, averaging two meters apart, spans the entire
width of this terrain. It requires locomotion designs capable of jumping or crawling for effective
navigation.

Flat terrain. A featureless surface with a high friction coefficient of 1.0, accommodating a wide
range of locomotion styles and designs.

Frozen terrain. A flat surface with a low friction coefficient of 0.05. This terrain challenges designs
to either maximize traction or exploit the reduced friction for movement.

Beams terrain. A series of platforms with overhanging beams suspended in the air. Designs must
navigate beneath the beams, favoring those that remain close to the ground while avoiding tall or
upright postures.

3 ROBOMORPH

The framework introduced in this paper, RoboMorph, is illustrated in Figure 2. It follows an evolu-
tionary pipeline that maintains a population of robot designs generated using an LLM (specifically,
GPT-4o). At each iteration, the LLM prompt is provided with a series of few-shot examples, which
serve as a guide for the LLM to reason about its design output (Sections 3.1 and 3.2).

Figure 2: Overview of the RoboMorph framework, which consists of a design stage and a control
stage. The process is divided into six steps: (1) The input consists of the system prompt, user
prompt, and few-shot examples. (2) Based on the input prompt, the LLM generates a new design
and provides its reasoning. (3) A compiler converts the LLM-generated design into an XML file,
which can be rendered in a simulator. (4) An RL control policy is trained in simulation for the robot
in a given environment. (5) The robot is evaluated, and a fitness score is assigned to each design. (6)
The population of robots is updated through evolution by pruning the worst-performing candidates.

3

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

The designs are expressed as text that adheres to the rules of the robot grammar Zhao et al. (2020).
This is particularly beneficial, as recursion and branching enable the generation of a diverse set of
designs that are feasible for real-world construction. A compiler converts each new design into an
XML file (Section 3.3), which is then fed into the MuJoCo Todorov et al. (2012) physics simulator
(Section 3.4) to learn a control policy and compute a fitness score for each design (Section 3.5).

The new batch of designs is added to the existing population, and the worst candidates are pruned,
retaining only the top-k best designs (Section 3.6). These top-k designs are subsequently incor-
porated into the few-shot examples for the next iteration. The entire pipeline is initialized with an
initial set of few-shot robot design examples (Appendix A). In the following subsections, we detail
each module and provide the pseudocode for RoboMorph in Algorithm 1.

3.1 PROMPT STRUCTURE

Algorithm 1 Pseudocode for RoboMorph
Requires:
promptsystem robot grammar rules
promptuser instructions for designing a robot
evolutions number of evolutions
population number of designs per population
K number of few-shot examples
Q min-queue {(fitnessi, designi, reasoni)}Ki=1

function RoboMorph
fewshots = init few shots() {Appendix A}
for i = 1 to evolutions do

for j = 1 to population do
designnew, reasonnew ←
LLM(promptsystem, promptuser, fewshots)
designxml ← Compiler(designnew)
if designxml is corrupted then continue
fitnessnew = Evaluate(designxml)
γmin ← argmini fitnessi in Q
if fitnessnew > Q[γmin].fitness then
Q[γmin] ←
(fitnessnew, designnew, reasonnew)

end if
end for
fewshots← ∅
for all (fitness, design, reason) ∈ Q do
fewshots.append(str(design, reason))

end for
end for
end function

We generate robot designs using the chat
API of GPT-4o with its default settings
and hyperparameters. The input to the
model consists of three main components:

System prompt. This defines both the
structural and component rules governed
by the robot grammar Zhao et al. (2020),
ensuring that the generated designs are
physically feasible. The LLM is instructed
to provide reasoning and a step-by-step ex-
planation of how the structural rules are
applied during the assembly process.

User prompt. This instructs the LLM
to design a robot while explaining its
reasoning in a step-by-step manner,
inspired by the approach in Wei et al.
(2022b). The user prompt remains fixed
and is defined as: "Your task is
to design a single robot.
Use the examples provided
to guide your reasoning and
explain your design step by
step."

Few-shot examples. This set consists of
robot designs that have achieved the high-
est fitness scores up to the given evolution
step. By including these examples, the
LLM can iterate on existing designs and
generate improved variations. For each ex-
ample, we also provide the reasoning that
was used in constructing the design. Further details are provided in Section 3.2.

For a detailed listing of the prompts, see Appendix B.

3.2 BEST-SHOT PROMPTING

Inspired by the work in Brown et al. (2020), our motivation for appending few-shot examples in the
prompt is threefold.

First, when initially testing our pipeline in a zero-shot manner, we observed hallucinations in the
LLM’s output, where generated designs were not plausible under the rules of robot grammar. This
issue is common when using LLMs for creative tasks Romera-Paredes et al. (2024) and is particu-
larly problematic, as it prevents us from compiling the LLM’s textual output into a realizable robot
that can be rendered in simulation. We further describe this issue in Section 3.3. To mitigate this,

4

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

we include step-by-step robot-building examples as few-shot prompts to better ground the LLM in
following the robot grammar rules.

Beyond improving the LLM’s adherence to grammar constraints, the few-shot examples also serve
to guide its design process more effectively. We frequently observed that the LLM could become
trapped in a local minimum of creative designs, limiting its ability to generate diverse robot mor-
phologies. Here, we define diversity as a qualitative measure based on the number of limbs and the
variety of joints present in a robot’s structure. To address this, we initialize the few-shot examples
by randomly sampling robot grammar rules to construct a robot. The exact details of the few-shot
initialization are outlined in Appendix A.

Finally, our results in Section 4.2 demonstrate that continuously updating the few-shot examples in
the prompt with better robot designs—those with higher fitness scores—leads to progressively more
optimal designs generated by the LLM over time. We refer to this process of updating the few-shot
examples as best-shot prompting and further discuss this evolutionary approach in Section 3.6.

Notably, we do not provide the fitness values associated with each design, as we observed that doing
so causes the LLM to overfit to those designs, thereby reducing exploration. Figure 3 presents
examples of few-shot robot designs that were initialized at the beginning of the framework. The
random generation of these morphologies introduces diverse and interesting designs, albeit ones
that are initially unoptimized for forward locomotion.

3.3 ROBOT DESIGN

Figure 3: Examples of initial few-shot
robot designs generated using Algo-
rithm 2 (see Appendix A).

The textual representation of a robot design, adhering to
the rules of the robot grammar, is generated by the un-
derlying LLM. Unlike the search algorithm proposed in
Robogrammar, our method avoids the computational bot-
tleneck of iteratively exploring multiple branches within a
tree-like structure to identify the optimal design. Instead,
the LLM directly generates a robot design, which is then
compiled into an XML file compatible with the MuJoCo
simulator.

Although it is possible to convert the LLM’s output di-
rectly into an XML file, our initial results indicated that
GPT-4 was unreliable in performing this task without er-
rors, a limitation also noted in Makatura et al. (2023).
One important consideration is that we disable collisions
between bodies in the robot XML to accelerate training
when learning the corresponding control policy. While
this may affect the absolute fitness values obtained, applying this modification consistently across
all evaluated robots ensures that relative performance comparisons remain valid. In the final evalu-
ation, we re-enable collisions for the best-performing design, as discussed in Section 4.3.

3.4 SIMULATION

Since our method relies on generating a large number of designs, each of which must be trained
using an RL policy, it was crucial to optimize the training and evaluation loop for speed. To achieve
this, we adopted MuJoCo XLA (MJX), a JAX-based implementation of the well-known MuJoCo
physics simulator, capable of running on accelerated hardware. MJX leverages modern GPUs to
enable parallelized experience collection across thousands of environment instances. Additionally,
we utilized Brax Freeman et al. (2021), a JAX-based framework for RL, which seamlessly integrates
with the MJX physics pipeline and provides implementations of popular RL algorithms such as Soft
Actor-Critic (SAC) Haarnoja et al. (2018b) and Proximal Policy Optimization (PPO) Schulman et al.
(2017). To further accelerate computation, we parallelized RL training, allowing multiple robot
designs to be trained and evaluated simultaneously, each on a separate GPU. This parallelization,
combined with the computational speedup from MJX, significantly increased both the number of
evolutionary iterations and the number of designs generated per evolution.

5

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

3.5 CONTROL

After compiling the design into XML format, each robot design is trained in simulation using the
SAC algorithm, and the resulting policy is evaluated to compute a fitness score. We also experi-
mented with PPO, but SAC was found to be more consistent in learning to control a diverse range
of robot designs. Each design was evaluated using the same set of hyperparameters and the same
number of environment steps (see Appendix C for details).

3.6 EVOLUTION

Exploration. We consider the LLM as an evolution of search engines, capable of generating the
”most probable” response to a given prompt Shanahan (2024). However, LLMs are prone to hal-
lucinations, which can result in outputs that appear plausible but are factually incorrect Bang et al.
(2023). We leverage this phenomenon by treating the LLM as a generator of robot designs, with the
primary goal of providing creative solutions. To facilitate this, we repeatedly prompt the LLM to
generate a diverse population of robots, encouraging exploration while using a verifier to ensure the
viability of the suggested designs.

Exploitation. Once a population of robot designs has been generated, we evaluate each design to
filter out poorly suggested ideas from the exploration phase. As previously discussed, each robot is
tested in simulation under a control policy and assigned a fitness score. Following an evolutionary
approach, we retain and store the top-k designs with the highest fitness scores in a database while
discarding the remaining candidates.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate RoboMorph using 8 random seeds over 50 evolutionary generations, with a popula-
tion size of 32 designs per evolution. Given the stochastic nature of the LLM’s output, our initial
grid search for optimal evolution and population size proved ineffective, as different combinations
yielded varying results across different seeds. As a result, we selected suitable values for these two
hyperparameters based on similar work found in Fernando et al. (2023); Ringel et al. (2024). In
total, 1,600 robot designs are evaluated per seed of the framework. During RL policy training, we
evaluate 8 robot designs simultaneously in a cluster equipped with 8 NVIDIA A100-40GB GPUs.
The total runtime of RoboMorph for a single seed amounts to approximately 200 GPU hours.

We assess the fitness of each design within a custom MJX environment and use the Brax imple-
mentation of the SAC algorithm. The state space is represented by a vector encoding the position
and velocity of each joint, while the action space consists of joint actuations with elements ranging
within (−1, 1). The reward function is defined in Equation 3 as follows:

rt(s, a, s
′) = v⃗x(s, a, s

′), (3)

where v⃗x(s, a, s
′) represents the instantaneous forward velocity of the robot as it transitions from

state s to s′ using action a.

The fitness score of a design, shown in Equation 4, is defined as the average reward obtained by the
corresponding policy learned in the control module. It is estimated using a Monte Carlo approach
over N = 128 random rollouts:

F (design) =
1

N

N∑
i=1

1

Ti

Ti∑
j=1

rij , (4)

where Ti denotes the length of the i-th rollout, and rij is the reward obtained at the j-th step of the
i-th rollout. Rollouts terminate either when the agent becomes unhealthy or when the end of the
episode is reached. The agent’s health is determined by checking whether its z-coordinate remains
within a predefined range.

The architecture of both the critic and policy networks consists of fully connected layers of size
[256, 256]. We employ the Adam optimizer Kingma & Ba (2017) and use ReLU activation functions

6

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

across all layers in each network. The training process involves 1,000,000 environment interactions
with a batch size of 256, striking a balance between computational efficiency and training stability.
All other RL-related hyperparameters are listed in Appendix C, Table 1. To ensure a fair fitness
assessment of each design, these hyperparameters remain constant throughout all experiments.

4.2 MAIN EXPERIMENT

In this section, we present the results obtained from RoboMorph. Figure 4(a) illustrates the av-
erage fitness score and the 95% confidence intervals across 8 seeds for the best-performing robot
design in the population at each evolutionary step. A positive trend indicates that each iteration
of RoboMorph functions as a robot design improvement operator. The confidence intervals high-
light the stochastic nature of our approach, with two primary sources of randomness: the RL opti-
mization algorithm and the evolutionary mechanism. Figure 4(b) depicts the evolution of the best-
performing seed and the highest-scoring robot design obtained across all seeds for each terrain using
RoboMorph. This represents the exploitation phase of our evolutionary algorithm (see Section 3.6).

(a) Average maximum fitness with 95% confidence inter-
vals across 8 seeds for the best robot design in the popula-
tion at each evolutionary step.

(b) Evolution of the best-performing seed for
each terrain.

Figure 4: Maximum fitness of the best robot design in the population at each evolutionary step.

Figure 5: Best-performing robot de-
signs generated by RoboMorph for
each terrain: ridged (top-left), flat (top-
right), frozen (bottom-left), and beams
(bottom-right).

The best robot designs generated by RoboMorph across
all seeds for each terrain are shown in Figure 5. As ob-
served, the optimal design for the ridged terrain is char-
acterized by long limbs with knee joints that can swing
upwards to clear obstacles. The design for the flat ter-
rain features shorter limbs with unactuated wheels spaced
far apart along the body, enabling a full range of mo-
tion. The low inertia of short limbs, combined with free-
spinning wheels, provides efficient and fast locomotion
on obstacle-free terrains.

The frozen terrain requires a different strategy to over-
come its frictionless surface. The design generated by
RoboMorph features a hexapod with rigid joints posi-
tioned at the upper legs of all limbs, which allows the
robot to maintain a wide base and a low center of grav-
ity—both crucial for balance. Interestingly, the beam ter-
rain produces a design similar to that of the flat terrain.
This similarity is expected, given that both surfaces are
identical. However, the design for the beam terrain has
even shorter limbs, allowing the robot to traverse under-
neath the overhanging beams.

7

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

4.3 ROBOMORPH VS. ROBOGRAMMAR

In this section, we benchmark RoboMorph against the best designs obtained from the original
Robogrammar work. Unlike our method, which leverages LLMs to generate designs, Robogrammar
introduces a Graph Heuristic Search algorithm that explores combinatorial design spaces. For a
detailed explanation of their approach, we refer readers to the work in Zhao et al. (2020). The best
designs obtained using Robogrammar are showcased in Appendix D.

To compare both methods, we first reconstruct the exact designs from Robogrammar within our
environment, which consists of ridged, flat, and frozen terrains. For a fairer comparison, we en-
able collisions between bodies in our method—previously disabled to accelerate computation, as
discussed in Section 3.3. This modification results in a variation in absolute fitness scores com-
pared to the results presented in Figure 4(b). We then evaluate each method’s proposed designs
on their respective terrains across 8 seeds, training our RL control policy on each design. Fi-
nally, we present the average fitness scores along with error bars for both methods in Figure 6.

Figure 6: Average fitness of the best designs gen-
erated by RoboMorph and Robogrammar across
8 seeds.

Our comparison highlights several key obser-
vations regarding the best designs for each ter-
rain between the two methods. First, while
we present results for the beam terrain, we do
not evaluate any Robogrammar designs in this
environment, as this terrain is specific to our
method. Second, the fitness scores obtained for
the ridged terrain using both methods are sim-
ilar, with overlapping error bars. This result is
unsurprising given the morphological similari-
ties between the two designs. Both designs fea-
ture a quadrupedal structure with two roll joints
in the body and similar types and quantities of
joints in the limbs.

The most notable performance difference be-
tween the two methods is observed on the flat
terrain. While the arrangement of joints in the body could be subjectively debated between the two
designs, the most striking distinction is the use of wheels as limb end effectors in the design gen-
erated by RoboMorph. The incorporation of wheels on flat terrain is advantageous, as continuous
contact with the ground minimizes energy loss, enabling faster locomotion. In contrast, limb-based
locomotion is inherently limited by stride length and frequency. Finally, on the frozen terrain, the
design generated by RoboMorph also demonstrates an improvement over the design obtained using
Robogrammar.

Robogrammar’s frozen terrain design emphasizes the use of ”highly articulated yet compact arms to
maintain contact with the ground during the stance phase, while the rear body segment slides freely.”
Similar reasoning can be applied to the design generated by RoboMorph. We observe the use of
rigid joints in the upper legs of each limb, extending the reach of each stride while maintaining a low
center of gravity—crucial for locomotion on low-friction surfaces. Additionally, the rear rigid joint
in the body extends the tail, similarly allowing the rear body segment to slide freely. We hypothesize
that the hexapod structure of the design from RoboMorph provides enhanced stability and more
efficient forward motion compared to the bipedal structure presented in Robogrammar.

While the results of RoboMorph benchmarked against Robogrammar appear promising, several im-
portant considerations regarding our comparison should be noted. First, we manually reconstructed
Robogrammar’s designs using XML bodies to the best of our ability. Although the overall morphol-
ogy remains identical, there may be minor discrepancies in physical parameters such as mass and
size. Second, it is important to highlight that Robogrammar utilized MPC control with a similar,
though slightly different, reward function for evaluating its designs, whereas our method employs
a model-free RL approach. Finally, RoboMorph is evaluated in a different simulator (MJX) than
Robogrammar (PyBullet). While the underlying physics solvers of both simulators should be largely
similar, this difference is worth acknowledging.

8

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

5 RELATED WORK

LLMs for design. Limited work has been conducted in the area of LLM-based robot design, which
is arguably a bottleneck in the field Zeng et al. (2023). The work in Stella et al. (2023) introduces
a framework that utilizes ChatGPT to guide the robot design process at both the conceptual and
technical levels with questions prompted by a human-in-the-loop. An extensive study Makatura
et al. (2023) presents the use of LLMs for design and manufacturing, leveraging GPT-4’s ability to
generate high-level structures through discrete compositions. Unlike previous studies, our approach
integrates a fitness evaluation module within the framework, enabling optimization of the design for
specific objectives. The most similar work to ours is Text2Robot Ringel et al. (2024), which presents
a framework for converting user text specifications into quadrupedal robot designs. However, our
approach addresses a key limitation of Ringel et al. (2024) by enabling the design of morphologies
with a varying number of limbs and joints.

Legged locomotion. Designing control algorithms for legged locomotion has been a long-standing
challenge in robotics due to the high-dimensional state space and the system’s nonlinear dynamics.
Model Predictive Control (MPC) Di Carlo et al. (2018); Kim et al. (2019), as used in Robogram-
mar, along with classical control methods, often requires precise system dynamics models and is
challenging to tune for complex systems. Consequently, we adopt a model-free approach using
reinforcement learning Hwangbo et al. (2019); Haarnoja et al. (2018a); Tsounis et al. (2020); Lee
et al. (2020), specifically leveraging the Soft Actor-Critic (SAC) algorithm Haarnoja et al. (2018b)
to learn policies for evaluating robot designs.

6 LIMITATIONS AND FUTURE WORK

More tailored input prompts. A valuable direction for future work is to develop a curated set of in-
put prompts specifically tailored to robot design. This would require further advancements in prompt
engineering to refine the LLM’s output responses. One promising approach could involve incorpo-
rating mutation operators commonly found in EAs into the natural language space, as demonstrated
in Fernando et al. (2023). This may be advantageous since the natural language space operates at a
lower fidelity than the corresponding design space, potentially making search and optimization more
efficient. Additionally, automating prompt discovery could help mitigate occasional hallucinations
produced by the LLM for the given task.

Diverse mix of environments. A natural next step is to ensure broad coverage of various environ-
mental features, such as terrain shape and texture. Extending this work to design a more general-
purpose robot capable of traversing multiple terrains simultaneously would be an interesting di-
rection. An open question remains whether this could be achieved by initializing the system with
diverse few-shot examples specifically tailored to different environments. Alternatively, incorpo-
rating textual descriptions of the environment into the prompt may encourage the LLM to generate
morphologies that dynamically adapt to varying terrain conditions.

Joint generation of a robot and its policy. Future research could explore whether LLMs are
capable of co-designing both a robot’s morphology and its control strategy. Recent work, such
as Ma et al. (2024a), has demonstrated the possibility of using LLMs to generate reward functions
without task-specific prompting or predefined reward templates.

7 CONCLUSION

We present RoboMorph, a framework that integrates LLMs, evolutionary algorithms, RL-based
control, and robot grammars to facilitate the design of modular robots. Our approach streamlines
and simplifies the workflow of conventional robot design methods while enabling more efficient
design schemes. Experimental results demonstrate significant improvements in robot morphology
over successive evolutions. Future research will further explore the intersection of LLMs’ generative
capabilities and low-cost additive manufacturing techniques to develop robots suitable for real-world
deployment.

9

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022.

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2:
Vision-language-action models transfer web knowledge to robotic control, 2023a.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. Dynamic
locomotion in the mit cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pp. 1–9. IEEE, 2018.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. arXiv preprint arXiv:1812.11103, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018b.

10

http://github.com/google/brax
http://github.com/google/brax

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. Highly dy-
namic quadruped locomotion via whole-body impulse control and model predictive control. arXiv
preprint arXiv:1909.06586, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024a.

Yecheng Jason Ma, William Liang, Hungju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bastani,
and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. 2024b.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,

11

https://arxiv.org/abs/1412.6980

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wo-
jciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Ryan P Ringel, Zachary S Charlick, Jiaxun Liu, Boxi Xia, and Boyuan Chen. Text2robot: Evolu-
tionary robot design from text descriptions. arXiv preprint arXiv:2406.19963, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Murray Shanahan. Talking about large language models. Communications of the ACM, 67(2):68–79,
2024.

Francesco Stella, Cosimo Della Santina, and Josie Hughes. How can llms transform the robotic
design process? Nature Machine Intelligence, pp. 1–4, 2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy, 2024.

Dirk Thierens. Scalability problems of simple genetic algorithms. Evolutionary computation, 7(4):
331–352, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco Hutter. Deepgait: Plan-
ning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robotics and
Automation Letters, 5(2):3699–3706, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning Liu, and Philip S Yu. Large language models
for robotics: A survey. arXiv preprint arXiv:2311.07226, 2023.

Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela Rus,
and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. ACM
Transactions on Graphics (TOG), 39(6):1–16, 2020.

12

https://arxiv.org/abs/1707.06347

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

A INITIALIZATION OF FEW-SHOT EXAMPLES

The pseudocode for initializing the few-shot examples is presented in Algorithm 2 below.

Algorithm 2 Pseudocode for initializing few-shot examples
Requires:
promptsystem robot grammar rules
max steps maximum number of steps
K number of few-shot examples

function init few shots
fewshots← ∅
repeat

Initialize design← ∅
Initialize steps← 0
while steps < max steps do

Identify structural rules R from promptsystem
if R = ∅ then break
Sample r ∼ R and apply rule r to list design
steps← steps+ 1

end while
for all ri ∈ design do

Identify components C for ri from promptsystem
Sample c ∼ C and swap ri with c in design

end for
fewshots.append(str(design))

until |fewshots| = K
return fewshots
end function

B PROMPTS

All RoboMorph prompts are highlighted below.

Prompt 1: System Prompt

You are a helpful assistant specialized in designing robots.
My ultimate goal is to discover as many diverse designs as
possible, accomplish as many diverse tasks as possible and
become the best robot designer in the world.

You will represent robot designs as graphs composed of
interconnected nodes, where each node corresponds to a
specific component or function of the robot. You must
construct these graphs by applying structural rules
sequentially and then replacing the nodes with specific
component rules to generate a final design. The process
ensures the robot is both structurally valid and functionally
robust.

The following symbols represent the nodes in the robot graph:
S: Start symbol
H: Head part
Y: Body joint
B: Body part
T: Tail part

13

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

U: Body link
C: Connector
M: Mount part
E: Limb end
J: Limb joint
L: Limb link

STRUCTURAL RULES:
Start node
r0) S

Body structure
r1) Replace S with H-B-T
r2) Replace T with Y-B-T

Adding appendages to the body
r3) Replace B with U-(C-M-E)
r4) Replace B with U

Appendages
r5) Replace E with J-L-E
r6) Replace T with C-M-E
r7) Replace H with E-M-C

COMPONENT RULES:
U: body={15cm}
L: limb={10-15cm}
Y: rigid, roll or twist
J: rigid, roll, knee={0-60deg} or elbow={0-180deg}
C: connector
M: mount
E: wheel or null
H: null
T: null

Note: Component rules are applied only after the structural
graph is fully constructed. Each node must be replaced with
its corresponding component, selecting exactly one parameter
from each {} set.

Apply the structural rules sequentially. For each step,
specify the rule applied (e.g., r1, r2) and display the
updated graph at each step, clearly indicating node
replacements. Once the structural graph is complete (all end
nodes are H, T, or E), replace each node with its respective
component as per the component rules.

Use the following format for responses:

STRUCTURAL RULES:
Step 1: r0) S
Step 2: r1) H-B-T
Step 3: ...

14

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

...

COMPONENT RULES:
Final graph representation with components.

REASONING: Provide an explanation of your design choices,
including why specific rules were applied.

Here are some important considerations:
Completeness: Ensure all end nodes are resolved into H, T, or
E before applying component rules.
Consistency: Adhere to the defined structural and component
rules.
Diversity: Prioritize generating a wide range of designs by
exploring different rule combinations.

Prompt 2: User Prompt

Your task is to design a single robot. Use the examples
provided to guide your reasoning and explain your design step
by step.

Prompt 3: Few Shot Examples

EXAMPLE {i}
STRUCTURAL RULES:
Step 1: r0) S
Step 2: r1) H-B-T
Step 3: ...

COMPONENT RULES:
[null]-[body=15cm] ...

REASONING: ...

15

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

C HYPERPARAMETERS AND COMPUTE

For reinforcement learning, we use the SAC algorithm implementation available in Brax, with hy-
perparameters listed in Table 1.

Table 1: Reinforcement learning hyperparameters
Hyperparameter Value

num_envs 4096
num_timesteps 1,000,000
max_replay_size 4,000,000
min_replay_size 5,000
episode length 1,000
discounting 0.99
num_envs 1024
batch_size 256

unroll_length 62
learning_rate 1e-3

hidden layers (for both critic and actor) [256,256]
grad_updates_per_step 64

num_minibatches 16
entropy_cost 0.0

D ROBOGRAMMAR BEST DESIGNS

Figure 7 presents our reconstruction of the best designs for the ridged, flat, and frozen terrains using
the Robogrammar method Zhao et al. (2020).

Figure 7: Best-performing designs generated by Robogrammar for the ridged, flat, and frozen ter-
rains.

16

	Introduction
	Problem Formulation
	Design Optimization
	Terrains

	RoboMorph
	Prompt Structure
	Best-Shot Prompting
	Robot Design
	Simulation
	Control
	Evolution

	Experiments
	Experimental Setup
	Main Experiment
	RoboMorph vs. Robogrammar

	Related Work
	Limitations and Future Work
	Conclusion
	Initialization of Few-Shot Examples
	Prompts
	Hyperparameters and Compute
	Robogrammar Best Designs

