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ABSTRACT

The majority of item retrieval algorithms in typical ”retrieval-rank-rerank” struc-
tured recommendation systems can be separated into three categories: deep latent,
sequential and graph-based recommenders, which collect collaborative-filtering,
sequential and homogeneous signals respectively. However, there is a conceptual
overlap between sequential and graph recommenders on a user’s past interacted
items. It triggers an idea that the sequential, collaborative-filtering and home-
geneous signals can be included in one temporal graph formatted data structure,
and the sequential, latent and graph learning algorithms can be summarized as
one temporal graph encoder. In this paper, Temporal Graph Plugin is proposed
as a such explainable temporal graph encoder to supplement deep latent algo-
rithms with aggregated k-hop temporal neighborhood message via a local atten-
tion module. We conduct extensive experiments on two public datasets Reddit
and Wikipedia, where TGP exceeds SOTA sequential, latent, graph algorithms by
1.1%, 52.8% and 98.9% respectively, partially verifying the proposed hypothesis.
Codes will be made public upon receival.

1 INTRODUCTION

The majority of item retrieval algorithms in industrial recommendation systems could be separated
into three categories: 1) deep latent representation learning models which decompose collaborative-
filtering signals from rich user-item interaction history into user and item embedding, and whose
model architecture is optimized for fast inference accurate to milliseconds; 2) deep sequential rec-
ommenders which focus on next-item prediction from past behavior sequences; 3) and graph rec-
ommenders which recognize user-item interaction as graph and emphasize pattern mining from a
heterogeneous way. The three categories form a basic non-semantic retrieval module, combined
with semantic query-item retrieval module, usually build up a typical ”retrieval-rank-rerank” struc-
tured real-time recommendation system.

However, there still exist opportunities for enhancement for all three categories of algorithms due to
increasing model complexity with the purpose of prediction precision and shrinking practicability
limited by serving latency requirement. For example, deep latent models as optimized as DSSM
(Huang et al., 2013), are strong in leveraging rich user- and item-side instinct sparse features and
require minimal feed-forward calculation for personalized data-intensive online systems, while on
the other hand, they are relatively short in carrying on complicated model structures. Deep sequential
models (e.g. LSTM (Zhu et al., 2017), SASRec (Kang & McAuley, 2018), TiSASRec (Li et al.,
2020)) are specifically effective in the area of session recommendation, yet hard for deployment for
its time-consuming attentive operations. Graph recommenders such as PinSAGE (Ying et al., 2018)
and EGES (Wang et al., 2018) face a situation where the lookup time for neighbors vastly exceeds the
computation time for feed forward calculation, and a pre-computation storage of sampled neighbors
harms generalization neither. Therefore, it naturally brings up a straight-forward question: Is there
a method to both draw on the strong points of the three categories and make up their deficiencies?

It sparkles an idea when we observe an overlap between sequential learning and graph recom-
menders on a user’s past interacted items. We argue that sequential, collaborative-filtering and
homogeneous signals can be included in one temporal graph formatted data structure, and
sequential, latent and graph learning algorithms can be summarized as one temporal graph
encoder.
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Figure 1: Visualization of Temporal Interaction Network as a unified network composed of se-
quential, collaborative-filtering, and homogeneous patterns. Figure A pictures a typical user-item
interaction graph where an edge represents a physical interaction. Figure B demonstrates a zoomed-
in view on a specific user u1 and its k-hop neighborhood, where its list of 1-hop neighbors is often
denoted as its sequential history, its list of 3-hop neighbors as hard-coded collaborative filtering
signals from similar users, and its list of 5-hop neighbors as obscure interests.

First of all, as demonstrated in Fig, 1, the traditional recommendation signals can be summarized
with a single Interaction Temporal Graph, where the {1, 3, 5}-hop list of neighbors for each user
node represent its sequential history, hard-coded collaborative-filtering signal and obscure signals.

Secondly, a proper temporal graph encoder is able to operate the same way as three known categories
of recommenders due to the following reasons: 1) the temporal GNN on 1-hop local neighborhood
around user ui is identical deep sequential models. The deep sequential algorithms feed the list
of previously-interacted items into recurrent or self-attentive modules for state learning, while in
a topological view, the neighbor message is aggregated and passed on. 2) Temporal Graph on
3-hop neighborhood around user ui is identical to a hard-coded collaborative filterer. The deep
latent models recognizes implicit signals as positive samples and adopts a two-tower structure to
accelerate representation learning, while a graph neighbor sampler directly samples the items which
”people who bought X would also buy” as 3-hop neighbors and force graph aggregators to consider
such co-appearance information. 3) Temporal graph on 5-hop item neighborhood around user ui

is equivalent to random set of item recommenders introducing obscure signals. This type of items
are bought from dissimilar users and are unlikely to be interacted by current user, while they may
sometimes introduce obscure signals for generalization. In conclusion, a well-designed temporal
graph has full potential to integrate the advantages of sequential, latent and graph learning modules,
which we believe can be a new direction for non-semantic retrieval algorithm studies.

Hence in this paper, we propose a such temporal graph encoder named Temporal Graph Plugin
(TGP) which supplements deep latent algorithms with an explainable temporal graph aggregator that
effectively captures sequential, collaborative-filtering and homogeneous signals from Interaction
Temporal Network. The stack-able multi-layer TGP module adopts local attention unit to aggregate
past sequential k-hop neighborhood message while guarantees parallel-able inference at the same
time. Experiments on two public datasets for temporal graph learning provided preliminary proof
for our unified theory hypothesis, where TGP exceeds SOTA sequential, latent, graph algorithms by
1.1%, 52.8% and 98.9% respectively.

The contributions of our work can be concluded as: 1) We review the three categories of non-
semantic item retrieval algorithms, and reveal the fact that Interaction Temporal Graph is a sum-
marization of sequential, collaborative-filtering and homogeneous signals; 2) We propose Temporal
Graph Plugin to integrate sequential, latent and graph learning model structures, and verified the
hypothesis on two public datasets.

2 RELATED WORKS

In this section, we will list the researches from three categories of non-semantic item retrieval algo-
rithms which have inspired our work, and describe various interdisciplinary researches in between.
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Deep latent retrieval algorithms. Collaborative-filtering signals have been the most essential to
capture in recommendation systems, where CF (Sarwar et al., 2001) and NeuralCF (He et al., 2017)
inspired the entire field of studies. Since the rise of deep learning based infrastructure and exploding
application scenarios, latest studies focus on optimizing inference speed under high concurrency
requests. The most widely applied algorithm DSSM (Huang et al., 2013) outstands by modeling
user-item interaction with two separate channels of stacked layers of fully-connected layers, while
keeping real-time inference speed accurate to milliseconds. Its descendant DIN (Zhou et al., 2018)
and DIEN (Zhou et al., 2019) improves by introducing past sequential history via attention. Interdis-
ciplinary researches with graph neural networks (GNN) was first proposed by NGCF (Wang et al.,
2019), however the intense neighbor search operations have limited GNN from deployment.

Sequential recommenders. Deep sequential models (e.g. LSTM (Zhu et al., 2017), RRN (Beutel
et al., 2018)) are proposed for effective next-item prediction task and are widely applied in item
retrieval, especially in session-based recommendation. However, the non-parallelizable operations
make recurrent modules suffer from long chains of inference. Recent studies SASRec (Kang &
McAuley, 2018) and TiSASRec (Li et al., 2020) introduced time-aware self-attention to acceler-
ate encoders via dedicated parallel processing, and Jodie (Kumar et al., 2019) proposed mutually
recursive RNN to improve dynamic co-evolution with approximate temporal ensembling.

Graph recommenders. The deep learning based graph neural networks can be split into spatial and
spectral graph encoders. The leading algorithms GraphSAGE (Hamilton et al., 2017) accelerates
message passing mechanism via modeling local neighborhood with learn-able linear aggregators,
and NGCF first proposes graph as an alternative operation to view recommendation logs instead
of tabular data. Industrial deployed algorithms PinSAGE (Ying et al., 2018) and EGES (Wang
et al., 2018) emphasize on mining patterns from user interest transition patterns. Following variants
SMAD (Wen et al., 2021), MEIREC (Fan et al., 2019), GrafRank (Sankar et al., 2021), MGFN
(Zhang et al., 2022) turns to subsidiary scenarios (e.g. Ad Search, friend recommendation) with
refined model architectures. Latest temporal graph researches DyRep (Trivedi et al., 2019), TGAT
(da Xu et al., 2020), TGN (Rossi et al., 2020) proposed memory modules which brings time-series
observations into static graph neural networks.

3 METHODOLOGY

The architecture of the proposed Temporal Graph Plugin is shown in Fig. 2. TGP is developed upon
the base model DSSM and utilizes local attention modules to aggregate each sampled sequence of
k-hop temporal neighbors. The pluggable k layers of temporal message is further aggregated via a
fusion layer, and is reconnected to DSSM to supply with sequential temporal information.
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Figure 2: Model architecture of a typical DSSM and Temporal Graph Plugin.

Base Model: DSSM. The base model DSSM is constructed as in typical systems. Training data is
composed of data logs (Query(user, context), Item) linked with real-time fetched user feature xu,
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context feature xc and item feature xi. First of all, a universal embedding layer is adopted to convert
categorical and numerical features into fixed-length valued embedding. Secondly, the user, context
and item representation learning are divided into three separate channels, where each is projected by
three consecutive fully-connected layers. Finally, the combination of user and context embedding
are considered as a query, whose similarity to item embedding is calculated by Equation 1, such as
to project query and item latent vectors into a same embedding space.

cosine(eQ, eI) =
eQ

T · eI
∥eQ∥ · ∥eI∥

(1)

Besides, negative samples are generated by randomly replacing item indexes with a randomly sam-
pled one. Minibatches of triplets (Query+, Item+, Item−) are fed into triplet loss for training,

Ltriplet(Q
+, I+, I−) = max(0, cos(Q+, I+)− cos(Q+, I−) + ϵ) (2)

where margin ϵ indicate the minimum offset between expected distances between query and item.

Base Unit: Local Attention. In order to encode the adaptive message passed to source node from its
sampled list of k-hop neighboring nodes (in the format of a fixed-length sequence), the local atten-
tion unit proposed by DIN (Zhou et al., 2018) is adopted here. Given target user u at timestamp T ,
its k-hop previously interacted sequence Sk(uT ) = [iT−T1

u , iT−T2
u , . . . , iT−Ts

u ] ∈ RD×s is retrieved
and padded with 0 for a fixed step size s. For a mini-batch with batch size b, D-dimensional target
node embedding et ∈ Rb×1×D and padded sequence source node embedding es ∈ Rb×s×D, the
local attention a is computed as the concatenation of 4 combinations of target and sources followed
by a fully-connected layer:

a(et, es) = Wk

[
et ⊕ es ⊕ (et − es)⊕ (et ∗ es)

]
+ bk (3)

Where Wk, bk indicate respective weight and bias tensors for k-hop sequence attention, ⊕ denotes
row-wise concatenation.

The non-existent sequence elements are then eliminated with masking. The summation of local
adaptive message is then fed into subsequent modules as,

mu←Sk(u) =

m∑
s=1

a(eu, es) · es (4)

Temporal Graph Plugin The Temporal Graph Plugin consists of k layers of local attention unit for
k-hop message mu←S1(u),mu←S3(u),mu←S5(u). The k aggregated messages are combined via a
fusion layer, as given by

TGP(u|S(u)) =
k∑

j=1

mu←Sj(u) (5)

Finally, the fused message TGP(u|S(u)) is rewired to DSSM to provide its supplementary sequen-
tial temporal information.

The network structure is straight-forward, while its gather-and-apply property is deploy-friendly.
The network architecture provides no epoch-making novelty but a brand-view perspective into tem-
poral graph networks as a unification of sequential, latent and graph algorithms.

4 EXPERIMENT AND RESULTS

Datasets. In order to verify the hypothesis, we conduct experiments on two public datasets:
wikipedia and reddit 1. Dataset statistics is listed in Table 1. Both public datasets contain one month
of real-world interactions from selected most active users and selected items from reddit posts and
wikipedia pages.

Baselines. The baseline models for comparison are chosen from the three aforementioned categories
of retrieval algorithms: 1) Deep sequential models: LSTM, RRN, Jodie. LSTM and RRN utilize re-
current modules to gather sequence dependencies. Jodie introduces dynamic co-evolutional method

1Dataset available at this masked url
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Table 1: Dataset statistics

Dataset Reddit Wikipedia

# Users 10, 000 8, 227
# Items 984 1, 000
# Interactions 672, 447 157, 474

Table 2: Model performance on Reddit and Wikipedia datasets. The results with highest metrics are
highlighted with blue, and the sub-optimal results with light-blue. TGPk denotes the TGP-boosted
model on k-hop Interaction Temporal Network. On Wikipedia dataset, TGP5 outperforms all SOTA
sequential, latent and graph algorithms.

Reddit Wikipedia

MRR Recall@10 MRR Recall@10

LSTM 0.355 0.551 0.329 0.455
RRN 0.603 0.747 0.522 0.617
Jodie 0.726 0.852 0.746 0.822

CTDNE 0.165 0.257 0.035 0.056
TGAT - - 0.2242 0.4177

DSSM 0.2894 0.4073 0.4365 0.5439

TGP1 0.6752 0.7442 0.6528 0.7142
TGP3 0.6764 0.7483 0.7583 0.8280
TGP5 0.6731 0.7446 0.7551 0.8312

to dual embedding learning. 2) CF-based (latent models optimized for fast inference): DSSM is
the most widely-used algorithm which emphasize real-time personalized similarity prediction on
commodity. 3) Temporal graph recommenders: TGAT, CTDNE. CTDNE is proposed for graph
embedding on temporal networks, while TGAT is well structured for temporal graph attention net-
works. In addition, the variants of proposed TGP model will be tested, where TGPk denotes the
TGP-boosted model on k-hop Interaction Temporal Network.

Training parameters setup. In order to guarantee fair comparison, the training parameters are
aligned across all mentioned models. The learned embedding dimension for query and item is
172. Each dataset is divided into training/validation/test set by 80%, 10%, 10% along timeline. Best
performance is determined on test set from best model with highest validation metrics. Negative
sampling strategy is an essential variable to model performance, yet it is set to selecting 1 random
negative sample for each positive sample here for the sake of fair comparison.

Evaluation metrics. MRR and Recall@10 are common offline metrics to assess retrieval algo-
rithms. They are adopted here to measure the mean reciprocal rank and hit probability in predicting
user’s next interaction item.

The experiment result is shown in Table 2. We make several observations:

1. Overall performance. TGP5 exceeds SOTA sequential, latent and graph algorithms by
1.1%, 52.8% and 98.9% respectively on Wikipedia, and outperforms latent and graph mod-
els on Reddit dataset.

2. Hypothesis testing. We speculate the reason why TGP did not outperform sequential mod-
els on Reddit is due to a lack of collaborative filtering signals where user’s tendency to in-
teract with the next post is more correlated with their own past interacted posts. Therefore,
the hypothesis that sequential, latent and graph learning algorithms can be summarized as
one temporal graph encoder is still verified, but such temporal graph encoder is expected
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to reach optimal performance in the recommendation systems holding rich repetitive and
homogeneous behaviors.

3. Ablation Study. As illustrated in Fig. 2, variants TGPk introduces different amount of
temporal interaction patterns to DSSM. TGP1 introduces sequential patterns to the base
latent model DSSM, TGP3 brings in additional hard-coded collaborative filtering signals
besides TGP1, and TGP5 further imports generalized obscure items. Theoretically, TGP
performance is expected to rise and stagnate with increasing temporal layers, while k = 3
or 5 is already optimal for best performance.

Temporal neighborhood sampling. While local attention is efficient in contrast to recurrent mod-
ules, it is still time-consuming to search for k-hop temporal neighbors prior to training. In our
solution, TGP simply stores k-hop temporal neighbors prior to model training, while in practice,
graph database is a more preferable choice to lower search time.

5 CONCLUSION

In this paper, we briefly summarize the three main categories of item retrieval algorithms, and reason
that sequential, collaborative-filtering and homogeneous patterns can be included in one Interaction
Temporal Graph. We further argue that the sequential, latent and graph learning algorithms can
be summarized into one temporal graph encoder. In this paper, we propose TGP as one example
of such ”one-for-all” temporal graph encoder, which combined with deep latent model DSSM, is
able to achieve optimal performance than SOTA algorithms. Offline experiments on public datasets
demonstrates that TGP outperforms SOTA sequential, latent and graph algorithms by 1.1%, 52.8%
and 98.9% respectively on Wikipedia, validating its effectiveness. Further work on real-world rec-
ommendation systems can be expected.
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