
An Architecture Search Framework for Inference-Time Techniques

Jon Saad-Falcon 1 Adrian Gamarra Lafuente 1 Shlok Natarajan 1 Nahum Maru 1 Hristo Todorov 1

Etash Guha 2 E. Kelly Buchanan 1 Mayee Chen 1 Neel Guha 1 Christopher Ré 1 Azalia Mirhoseini 1

Abstract
Inference-time techniques, such as repeated
sampling or iterative revisions, are emerging as
powerful ways to enhance large-language models
(LLMs) at test time. However, best practices for
developing systems that combine these techniques
remain underdeveloped due to our limited
understanding of the utility of each technique
across models and tasks, the interactions between
them, and the massive search space for combining
them. To address these challenges, we introduce
ARCHON, a modular and automated framework for
optimizing the process of selecting and combining
inference-time techniques and LLMs. Given a
compute budget and a set of available LLMs,
ARCHON explores a large design space to discover
optimized configurations tailored to target bench-
marks. It can design custom or general-purpose
architectures that advance the Pareto frontier of
accuracy vs. maximum token budget compared
to top-performing baselines. Across instruction-
following, reasoning, and coding tasks, we show
that ARCHON can leverage additional inference
compute budget to design systems that outperform
frontier models such as OpenAI’s o1, GPT-4o, and
Claude 3.5 Sonnet by an average of 15.1%.

1. Introduction
Inference-time techniques—strategies that use additional

compute during model inference—are gaining traction as
effective methods for improving model capabilities. LLMs,
such as OpenAI’s o1 (OpenAI, 2024), QwQ (Team, 2024),
and Sky-T1 (Team, 2025), utilize such techniques to translate
additional inference compute into better performance across
a broad set of tasks. Example techniques include generation
ensembling, ranking, and fusion, where models in the

1Stanford University, Stanford, CA, USA 2University of Wash-
ington, Seattle, WA, USA. Correspondence to: Jon Saad-Falcon
<jonsaadfalcon@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: ARCHON’s Performance Effectively Scales with
Increasing Inference Budget. Individual dataset analysis
included in Figure 8.

ensemble are queried in parallel, their responses are ranked,
and the best ones are fused into a single, higher quality output,
respectively (Jiang et al., 2023b; Wang et al., 2024a). Other
types of inference-time techniques are based on querying a
single LLM successively (via repeated sampling) and using
a voting strategy or unit tests to select the top generation
(Brown et al., 2024; Chen et al., 2024; Li et al., 2024a).

Recent work has made progress towards building robust
inference-time architectures: systems composed of one or
more large language models (LLMs) leveraging inference-
time techniques. Examples include Mixture-of-Agents
(MoA) (Wang et al., 2024a) and LLM-Blender (Jiang et al.,
2023b), as well as single-model systems like ADAS (Hu et al.,
2024) and AFlow (Zhang et al., 2024). However, our exper-
iments show that these top-performing baselines have limi-
tations in compute utilization and task generalization. (see
Section 4.2). We argue that designing effective and general-
izable inference-time architectures requires the following:

• Understanding the Utilities of Inference-Time Tech-
niques: Inference-time architectures typically delegate
their additional inference budget towards more model
sampling calls (Chen et al., 2024; Brown et al., 2024),
which can be effective for math and coding tasks. Other
tasks, such as following instructions and reasoning,
have been shown to benefit from additional techniques,

1

An Architecture Search Framework for Inference-Time Techniques

Available
LLMs

Target
Benchmark(s)

Inference Call
Budget

Generator

U
G

nit Test

enerator

U
E

nit Test

valuator

Verifier

Ranker

Critic

Fuser

Inference Time
Techniques Architecture

Optimizer
(Hyperparameter

Selection)

Proposed

Archon

Architecture

Sample
Benchmark

Results

Optimized Archon
Architecture

G

C

GR

F

G G

Output

Inputs Optimizer Outputs

Figure 2: Overview of ARCHON Framework: ARCHON’s search algorithm requires the following inputs: target benchmarks,
inference call budget, available LLMs, and available inference-time techniques (left). The search algorithm uses Bayesian
optimization (Snoek et al., 2012) to construct and evaluate different ARCHON configurations (middle) before returning the
optimized ARCHON architecture (right) for the target benchmarks (Section 3.3).

including ranking and fusion (Wang et al., 2024a; Jiang
et al., 2023b). While all of these methods are valuable, it
is essential to identify which inference-time techniques are
most effective for different task categories.

• Understanding the Interactions Between Inference-
Time Techniques: While previous studies analyzed these
techniques individually (e.g., generation sampling in Chen
et al. (2024)), we need a more comprehensive understand-
ing of the relationships between different inference-time
techniques across different tasks (e.g., is it better to use
more models or generate more samples per model?).

• Efficiently and Automatically Searching the Large
Design Space of Inference-Time Architectures: Given a
set of available LLMs and target tasks, there is currently no
single prevailing inference-time architecture for maximiz-
ing downstream accuracy across all tasks (Table 1). The
search space for inference-time architectures is expansive,
requiring practitioners to make several key configuration
decisions, such as which LLMs to use, how many times to
sample them, and how to combine and filter the candidate
generations. These motivate the need for automated and
adaptive architecture search approaches.

In our work, we address each of these challenges.
First, we evaluate the utilities of a comprehensive set
of existing and proposed inference-time techniques
across instruction-following, reasoning, and coding tasks.
Using both open-source and closed-source models, we
examine a range of techniques such as ensembling, fusion,
ranking, critiquing, verification, and model-based unit test
generation/evaluation (Sections 3.1 and 3.2). We find that no
single technique completely dominates across all tasks, with
different approaches being more effective for different tasks.

Second, we analyze the interactions between inference-

time techniques and explore the benefits of adding new
models and new techniques individually. We find that
generation ensembling combined with critique, verification,
and fusion improves the final response quality beyond the
oracle best candidate from individual (non-fused) responses,
particularly for instruction-following and reasoning tasks
(Figure 4; Figure 7; Table 5). We also demonstrate increased
performance as we scale up the layers of inference-time tech-
niques and combine multiple approaches together, allowing
us to discover effective new combinations of inference-time
techniques (Sections 3.2, 4.2, A.3). Combining multiple
strategies significantly improves task performance, but deter-
mining the specific combination remains challenging. This
requires manually testing models, inference-time techniques,
architecture designs, inference budgets, and more.

Third, drawing upon our analysis of inference-time
techniques, we present ARCHON, an open-source modular
framework for automatically designing LLM systems
composed of existing inference-time techniques (or new
ones), allowing practitioners to optimize for their desired
objective functions: accuracy, latency, and cost (Sections 3.1,
3.3). Unlike alternative LM systems that perform prompt en-
gineering and tool use over a single LM (Khattab et al., 2023;
Yuksekgonul et al., 2024; Hu et al., 2024; Zhang et al., 2024),
our approach integrates multiple LMs in a single architecture
and reduces prompt selection to a set of core components.
The ARCHON framework utilizes automatic architecture
search algorithms to maximize generation quality for the
given tasks(s), leveraging Bayesian optimization (Snoek
et al., 2012; Nardi et al., 2019) techniques inspired by (NAS)
(Zoph & Le, 2017; Ren et al., 2021) to rapidly traverse the
space of potential inference architectures (Section 3.3).

We evaluate ARCHON architectures across a diverse set

2

An Architecture Search Framework for Inference-Time Techniques

of instruction-following, reasoning, and coding benchmarks
(Table 1): MT-Bench, Arena-Hard-Auto, Alpaca-2.0 Eval,
MixEval, MATH, and CodeContests (Zheng et al., 2023;
Li et al., 2024b; 2023; Ni et al., 2024; Hendrycks et al.,
2021; Li et al., 2022). Our best ARCHON architectures
surpass both frontier models (e.g. OpenAI’s O1, GPT-4o and
Claude-3.5 Sonnet) and prior top-performing inference-time
architectures (e.g. ADAS, AFlow, and MoA), boosting
state-of-the-art (SOTA) performance by 15.1%, on average.
Furthermore, ARCHON achieves SOTA performances while
using 20.0% less inference calls, 15.1% less input tokens,
and 13.5% less output tokens than alternative inference-time
architectures (Figure 1; Table 1; Figure 8). Even when
solely using open-source LLMs, ARCHON architectures, on
average, surpass SOTA LLMs by 11.2%.

Overall, we present ARCHON as an open-source inference-
time framework, readily extensible to new inference-time
techniques, models, and tasks via user-friendly interfaces.

2. Related Work
Despite advancements in inference-time architectures,

many architectures focus on additional generations (Jiang
et al., 2023b; Chen et al., 2024; Davis et al., 2024), which is
effective for reasoning tasks (Brown et al., 2024). However,
for tasks like instruction-following and reasoning, techniques
such as fusion and ranking are effective for bolstering task
performances (Wang et al., 2024a; Jiang et al., 2023b). Prior
studies have explored limited aspects of configurations, often
focusing on specific benchmarks (Jiang et al., 2023b; Wang
et al., 2024a; Chen et al., 2024; Li et al., 2024a). It’s crucial to
efficiently develop inference-time architectures, as optimal
configurations vary based on benchmarks, available models,
and inference compute limits (Section 4.2). Furthermore,
LM orchestration frameworks, such as DSPy (Khattab
et al., 2023), only optimize a single prompt for a single
LM, better equipping it for tool use by utilizing supervised
data but still unable to leverage multiple inference-time
techniques in parallel or sequentially. While each of these
approaches manually selects a subset of existing techniques,
ARCHON unifies available inference-time techniques and
automates architecture construction with search algorithms,
simplifying the model and component selection process for
each set of tasks (Sections 3.1 and 3.3).

3. Inference-Time Techniques for ARCHON

With the proliferation of inference-time techniques,
ARCHON introduces a systematic framework for under-
standing and unifying these methods into inference-time
architectures. Below, we elaborate on the structure, inputs,
and outputs of each of the inference-time techniques
(Table 3). Then, we discuss how to combine the different
techniques into an inference-time architecture (Section
3.2) before finally exploring automatic approaches for

constructing inference-time architectures (Section 3.3).

3.1. LLM Components of ARCHON

In this section, we discuss the LLM components of
ARCHON, which are LLMs that perform a specific inference-
time technique. We test an array of different components
inspired by recent work, incorporating approaches for
generating, ranking, and fusing candidates (Wang et al.,
2024a; Jiang et al., 2023b) as well as approaches for
improving candidate response quality through critiquing,
verifying, and unit testing (Bai et al., 2022; Zheng et al.,
2023). The components and their prompts are summarized
in Table 3 and Appendix A.2. We also perform an extensive
ablation study of the given ARCHON components across
instruction-following, reasoning, and coding benchmarks to
better understand their individual utilities and their optimal
combinations for different tasks (Appendix A.3).

Generator is an LLM that takes in the instruction prompt
and outputs candidate responses. Generators can be called
in parallel to perform generation ensembling (i.e. calling
multiple LLMs in parallel) (Wang et al., 2024a), or sampled
multiple times (Brown et al., 2024). The number of models,
samples, and generation temperature can be adjusted.

We find additional model sampling to significantly boost
performance (Figure 6), particularly for coding tasks
(Table 1). We see a similar pattern for model ensembling,
where sampling from additional models leads to continual
performance increases (assuming the models are ordered
from best to worst for the given task) (Figure 7).

Fuser is an LLM that, given an instruction prompt and a set
of proposed responses as input, combines these responses
to generate one or more higher-quality fused responses.

For every benchmark explored, we found that the Fuser
module substantially improved performance (8.9% on
average) (Figure 6; Figure 7; Figure 4). Additionally, we
observed similar benefits in the ARCHON framework when
adding multiple layers of Fusers (Figure 4). The number of
Fuser layers needed to improve performance varied by task
(Figure 12), with some tasks receiving limited benefits from
added layers (1-2 point increase in accuracy for MixEval)
while others experienced significant benefits with 3-4 fusion
layers and more (10 to 15 point increase in win rate for MT
Bench and Alpaca Eval 2.0).

Ranker is an LLM that, given an instruction prompt and
a set of proposed responses as input, ranks the candidate
generations based on their quality, producing a ranked list
of responses as output. This ranking is then used to filter the
set of responses to the top-K, as specified.

From our results in Table 5, Figure 6, and Figure 7, our results
show the Ranker was most effective for instruction-following
and reasoning tasks by using pair-wise comparisons that

3

An Architecture Search Framework for Inference-Time Techniques

focus on style and prompt adherence. We found that on
MT Bench and Arena-Hard-Auto benchmarks, the Ranker
improved output quality by 10.8% over random selection
while performing within 2.7% of oracle selection.

Critic is an LLM that, given an instruction prompt and a set of
proposed responses as input, produces a list of strengths and
weaknesses for each response, which is then used to improve
the quality of the final response (Section 3.2; Figure 4).

The Critic module proved effective for every task we
explored in Figure 4 and Table 5. With our 10-model 70B+
Generator ensemble and Fuser configuration of ARCHON,
the added Critic improved performance on average by 11.5
percentage points across the benchmarks explored.

Verifier is an LLM that verifies whether a provided candidate
response has appropriate reasoning for a given instruction
prompt. It proceeds in two stages: Stage #1 takes in the
instruction prompt and a candidate response as input and
outputs reasoning for why the candidate response is correct;
Stage #2 takes in the instruction prompt, candidate response,
and produced reasoning before outputting reasoning and
a verdict (i.e., binary [Correct] or [Incorrect]) for whether
or not the candidate response is correct according to the
provided instruction prompt and reasoning. Only verified
responses are passed to the next ARCHON layer.

The Verifier was most effective for the reasoning benchmarks
explored in Table 5, improving performance by 8.4% for
MixEval, MixEval Hard, and MATH. When just using a 70B+
Generator ensemble with Verifier module after generation,
the ARCHON configuration lagged behind the ARCHON en-
semble and fuser configuration by 1.5%, on average, across
all benchmarks explored, suggesting verification is most ef-
fective when combined with other inference-time techniques.

Unit Test Generator and Unit Test Evaluator are comple-
mentary LLM components in our system: the Unit Test Gen-
erator takes an instruction prompt and produces 5-10 concise
test statements (Section 4.2; examples in Table 16) for as-
sessing response accuracy and relevance, while the Evaluator
takes the instruction prompt, candidate response(s), and these
tests as input to rank responses by test passage. The Evalu-
ator justifies and aggregates test verdicts across candidates,
scoring each response for reasoning and coding tasks, and
only responses passing all tests proceed to the next ARCHON
layer. This approach extends evaluation beyond coding to
various task types through configurable test quantities.

The Unit Test Generator and Evaluator were most effective
on reasoning and coding tasks, improving performance on
benchmarks that required more verification steps (7.4%
boost) (Table 5). When the 70B+ ensemble of Generators
was only combined with unit tests, it was less effective
for reasoning tasks like Arena-Hard-Auto and MixEval,
lagging behind the ensemble and fuser configuration by

3.1%. However, when we increased generation sampling
and added unit test generation/evaluation for CodeContests,
we observed a 56% boost in Pass@1 performance (Table 1),
increasing from 17.9 to 29.3% Pass@1.

3.2. Combining the LLM Components

Performance Gains from Scaling Inference-Time
Techniques: We explore the utilities of individual AR-
CHON components and evaluate whether combinations of
inference-time techniques enable us to build LM systems
greater than the sum of their parts. For our analysis, we look
at seven datasets spanning instruction-following, reasoning,
mathematics, and coding: MT-Bench (Zheng et al., 2023),
AlpacaEval 2.0 (Li et al., 2023), Arena Hard Auto (Li et al.,
2024b), MixEval (Ni et al., 2024), MixEval-Hard, MATH
(Hendrycks et al., 2021), and CodeContests (Li et al., 2022).
We also test across the current SOTA open-source and
closed-source LMs (Table 28; Table 29). For the analysis
of each inference-time technique, we focus on 1) testing it
across different benchmarks, 2) scaling its usage individually,
3) scaling it while randomly choosing another technique and
holding that technique constant, and 4) varying its position
among different components. We include these ablation
experiments in Section A.3, where we include the ARCHON
component combinations in Table 5 and the model type used
in the combinations in Table 6 and Table 9.

From our analysis, we find several trends (designated with
Ts) across the combinations of inference-time architectures:

• T1: Repeated model sampling and additional ensemble
models leads to substantial gains, leading to 9.3% and
18.5% increases, respectively (Figure 11; Figure 7).

• T2: Scaling the layers of inference-time techniques signifi-
cantly improves performance across instruction-following,
reasoning, and coding tasks, such as always adding a
single fuser as the last layer (Figure 4).

• T3: Scaling the diversity of inference-time techniques
included also bolsters task performance across the
explored tasks, with critics and rankers before fusers being
particularly effective (Figure 4; Figure 11).

• T4: In reasoning tasks, incorporating the Verifier and Unit
Test Generator/Evaluator modules alongside the Fuser
improves performance by filtering out flawed responses,
contributing to significant performance gains in tasks like
MixEval and CodeContests (Table 5; Section A.9).

Framework Overview: Drawing upon our analysis of the
inference-time components, we propose ARCHON, a frame-
work for automatically designing LLM systems composed
of existing inference-time techniques (or new ones). In-
spired by the structure of neural networks (Hinton et al.,
1992), ARCHON consists of layers of LLM components (Fig-
ure 2; Section 3.1). Each layer is composed of sets of LLM
components called in parallel. These components perform a

4

An Architecture Search Framework for Inference-Time Techniques

Critic

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Fuser

Llama 3.1 405B

Verifier

GPT 4o

Prompt

Output

Generator

GPT 4o

1

Generator

Claude 3.5 Sonnet

2

Generator

Llama 3.1 405B

10

Fuser

Claude 3 Haiku 6

Fuser

Llama3-70B 2

Fuser

Qwen1.5-110B 1

n=1 n=1 n=1

Figure 3: Example ARCHON Architecture: This architec-
ture starts with ten generator models (each sampled once), fol-
lowed by a critic model, a ranker model, one layer of six fuser
models, a verifier model, and finishes with a fuser model.

text-to-text operation on the initial instruction prompt and the
candidate responses from the previous layer. Furthermore,
like a neural network, some layers perform transformations
of the provided list of strings (e.g., Generator and Fuser),
converting a list of strings into a different list of strings (the
numbers of candidates can vary from the original number
of candidates). Other components introduce non-linearities
into the ARCHON structure, performing filtering of the list of
strings (e.g., Ranker and Verifier). Ultimately, the inputs and
outputs for each layer is always a list of strings, whether that
is the instruction prompt (i.e., a single string) or a list of candi-
date responses. If a list of strings is outputted at the last layer
of the ARCHON structure, the first string in the list is returned.

Unlike a classical neural network, no weights are learned
between the LLM components and the layers; in turn, the
ARCHON architecture can be deployed off-the-shelf without
any tuning. Additionally, a single state is transformed
sequentially from the input layer to the final output; this
single state is the initial instruction prompt and the current
candidate responses (example architecture in Figure 3).

Rules for Construction: The LLM components in Section
3.1 can only be placed in specific orders (4). While alterna-
tive combinations and orderings of ARCHON components
are technically viable, we found these orderings to be
optimal after conducting an ablation study of ARCHON
components across seven benchmarks and two model classes
(open-source and closed-source) (Appendix A.3).

1. Only one type of component is allowed in any given layer.
2. Generator components can only be placed in the first layer

of ARCHON; you can place one or more Generators.
3. The Critic must come before a Ranker or a Fuser. Other-

wise, the generated strengths and weaknesses cannot be
incorporated into generation ranking or fusion.

4. Ranker, Critic, Verifier, and Unit Test Genera-
tor/Evaluator layers can go anywhere in ARCHON except
the first layer. For each of these components, it must be
the only module in its layer.

5. Fuser components can go anywhere in ARCHON except
the first layer. Multiple Fusers can be used in a layer.

6. Unit Test Generators and Evaluators are placed in consec-
utive layers, with the Unit Test Generator always first.

3.3. Architecture Search Algorithms

Search Hyperparameters: In this section, we explore how
to automatically design inference-time architectures for
target tasks via ARCHON’s architecture search algorithms.
Guided by the trends found in our analysis in Section 3.2, we
establish six axes of hyperparameters for the search space:

1. Top-K Generators for Ensemble: The top-K models
for the initial Generator ensemble, ranging from 1 to 10
(T1). The top-K models are selected greedily based on
their individual performances on target task(s)(Table 29).

2. Top-K Generator Samples: The number of samples
gathered from each ensemble generator (same for all the
models), ranging from 1 to 5 (T1). For CodeContests, we
explore high-sample settings: [1, 10, 100, 500, 1000].

3. Number of Fusion Layers: Ranges from 1 to 4. The last
fusion layer will always have a single Fuser (T2).

4. Top-K Fusers: Number of models used for each fusion
layer, ranges from 2 to 10 in increments of 2 (T2,3).

5. Critic and Ranker Layers: We add critic and ranker
layers before each fuser layer since we find they provide
added benefits across the benchmarks explored (T3)
(Section 3.2; Figure 4; Figure 7).

6. Evaluation Layer: Option to add Verifier, Unit Test
Gen./Eval., or neither before the last Fuser layer (T4).

While it is possible to further expand the search space of
potential ARCHON architectures (e.g., different temperatures
for generative LLM components, alternative prompts for
each LLM component, additional LLM components for
ARCHON, etc.), the trends we identify from Section 3.2
reasonably constrain the search space of configurations
to focus on the most influential hyperparameters. In total,
our search space contains 9,576 configurations, which
we obtain by combining all possible hyperparameters and
removing invalid configurations (for example, we discard
configurations where the number of initial generations
exceeds the context window of the fusers).

5

An Architecture Search Framework for Inference-Time Techniques

Figure 4: Performance Improves by Scaling Layers of Inference-Time Techniques: When controlling for inference budget,
generation ensembling and fusion across 8 different 70B LLMs is generally more effective than repeated sampling with
only the top performing model. Furthermore, adding layers of critique and fusion led to a 18.8% boost in task performance,
on average. However, the best inference-time architecture differed by task, such as MixEval and CodeContests (Section
4.3), which inspired us to develop architecture search techniques for ARCHON (Section 3.3).

Search Method: The ARCHON search method takes in
four inputs: the target benchmark(s), the inference call
budget, the set of available LLMs, and the inference-time
techniques for construction (Figure 2). As output, the search
method outputs a single optimized ARCHON architecture.
We use 20% of each target dataset as a development set for
guiding architecture search. We explore three approaches for
ARCHON’s architecture search: random search (randomly
test potential architectures in the search space), greedy search
(greedily optimize individual hyperparameters one at a time,
starting from a random initial architecture), and Bayesian
Optimization (Snoek et al., 2012) (global hyperparameter
optimization with Gaussian processes). As inputs, Bayesian
optimization takes in a vector specifying the configuration
choices for the generators (i.e., number of models and
samples), layers of fusers, numbers of fusers per layer, and
final verifier / unit tester (Section 3.2). Bayesian optimization
begins by sampling a specified number of random ARCHON
architectures to calibrate its surrogate model. The task
performance of these sampled architectures is used to
guide more informed architecture suggestions during the
configuration search. The algorithm repeats the following
cycle—evaluating each suggested architecture and using its
performance to refine future suggestions—until it discovers
the optimal ARCHON configuration, or until the inference
call budget is exhausted. For more details on our open-source
Bayesian optimization approach, please see Appendix A.4,
where we further discuss implementation and how to utilize
alternative optimization functions, such as latency.

Bayesian optimization found the best architectures in
96.0% of searches and required 88.5% fewer architecture
evaluations than greedy search and 90.4% fewer than ran-

dom search (Figure 10). The effectiveness of Bayesian op-
timization increases with the number of initial randomly
sampled architectures, up to around 230-240 samples, after
which further testing is better focused on configuration search
(Table 20). For limited inference call budgets (<20 calls),
Bayesian optimization is less effective, and traditional meth-
ods like greedy search may perform comparably (Table 21).

Adding Search Restrictions: To impose compute
constraints during architecture search, we exclude any
ARCHON architecture that would exceed the inference call,
input token, or output token budgets from the search space.
Multiple restrictions can be added. For example, you can
filter out architectures with more than 20 inference calls or
more than 20,000 input tokens. This prevents our Bayesian
optimization algorithm from even considering these invalid
architectures in our architecture search, allowing us to
compute-match ARCHON against alternate inference-time
frameworks such as ADAS and AFlow (Figure 8; Figure 5).

4. Experiments
Our experiments focus on answering the following

questions: (1) how does ARCHON compare to existing
SOTA LLMs and inference-time architectures in terms of
accuracy and compute efficiency (Section 4.2)? (2) how does
ARCHON performance compare across the tasks explored
(Section 4.3)? (3) what are the considerations for model
size, latency, and cost surrounding ARCHON (Section 4.4)?
We outline the benchmarks, models, and techniques for
constructing ARCHON architectures in Section 4.1.

6

An Architecture Search Framework for Inference-Time Techniques

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH∗ Code

Contests∗

Approaches
Average

Infer.
Calls

Average
Input

Tokens

Average
Output
Tokens

Avg. PFLOPs
per Query

Dollars
per Query W.R. L.C.

W.R. W.R Acc. Acc. Pass
@1

Pass
@1

B
as

el
in

es

LM
GPT-4o 1 95 549 0.6 ± 0.1 0.01 ± 0.01 44.2% ±0.5 57.8% ±0.6 80.6% ±0.6 63.4% ±0.2 87.5% ±0.3 83.5% ±0.4 18.1% ±0.2

Claude 3.5 Sonnet 1 105 602 1.4 ± 0.2 0.01 ± 0.01 N/A 52.7% ±0.4 81.4% ±0.4 68.7% ±0.2 89.1% ±0.2 82.5% ±0.7 12.3% ±0.4
Llama 3.1 405B 1 118 631 1.5 ± 0.1 0.01 ± 0.01 44.1% ±0.3 40.7% ±0.5 64.5% ±0.7 66.0% ±0.3 88.2% ±0.2 85.0% ±0.5 20.4% ±0.5

LM
Systems

MoA 19 25,109 17,422 15.3 ± 0.3 0.06 ± 0.01 51.6% ±0.6 65.0% ±0.3 85.3% ±0.3 62.3% ±0.4 86.9% ±0.2 82.9% ±0.6 15.1% ±0.5
ADAS 52 72,804 44,872 58.8 ± 0.3 0.63 ± 0.04 66.3% ±0.7 60.1% ±0.5 85.4% ±0.4 64.2% ±0.2 87.0% ±0.2 86.0% ±0.8 23.7% ±0.3
AFlow 48 68,596 41,748 55.2 ± 0.4 0.59 ± 0.05 62.4% ±0.2 57.8% ±0.6 83.2% ±0.6 63.5% ±0.3 87.2% ±0.4 84.5% ±0.2 21.1% ±0.6

o1 Unk. 112 Unk. Unk. 0.52 ±0.05 56.3% ±0.5 59.3% ±0.5 81.7% ±0.3 72.0% ±0.4 87.5% ±0.2 92.7% ±0.5 31.5% ±0.8

A
rc

ho
n

Open
Source

General Purpose 35 51,113 31,508 3.1 ± 0.3 0.12 ± 0.02 67.2% ±0.4 63.3% ±0.6 85.6% ±0.5 65.3% ±0.3 86.2% ±0.2 87.5% ±0.6 18.2% ±0.4
Task Specific 44 63,157 39,949 3.7 ± 0.3 0.15 ± 0.02 71.1% ±0.6 68.1% ±0.4 89.6% ±0.4 67.5% ±0.2 88.8% ±0.3 89.5% ±0.3 28.9% ±0.9

Closed
Source

General Purpose 32 52,747 27,894 40.3 ± 0.5 0.44 ± 0.04 72.7% ±0.3 63.9% ±0.7 86.2% ±0.7 67.5% ±0.4 87.2% ±0.2 87.9% ±0.7 20.2% ±0.6
Task Specific 40 59,085 37,271 48.2 ± 0.4 0.49 ± 0.05 77.0% ±0.5 68.9% ±0.5 90.5% ±0.3 72.3% ±0.3 89.5% ±0.3 92.1% ±0.4 25.1% ±0.6

All
Source

General Purpose 35 50,427 30,461 27.8 ± 0.4 0.32 ± 0.04 76.2% ±0.7 66.4% ±0.3 89.8% ±0.6 69.8% ±0.2 87.3% ±0.4 89.3% ±0.5 23.4% ±0.9
Task Specific 39 58,250 36,114 33.7 ± 0.6 0.37 ± 0.04 79.5% ±0.4 69.0% ±0.6 92.5% ±0.5 72.7% ±0.3 89.7% ±0.2 93.5% ±0.6 41.4% ±0.7

Table 1: ARCHON’s Strong Performance with Open Source, Closed Source, and All Source Models: Consistent
outperformance over SOTA LLMs and LM Systems across explored benchmarks. The standard error numbers were calculated
from 10 independent evaluation runs. ∗MATH and CodeContests use a subset of their test sets for evaluation (Section 4.1).

4.1. Benchmarks and Models
Benchmarks: We evaluate our models with several
benchmarks for instruction-following, reasoning, and
coding: MT-Bench (Zheng et al., 2023), AlpacaEval 2.0 (Li
et al., 2023), Arena Hard Auto (Li et al., 2024b), MixEval (Ni
et al., 2024), MixEval-Hard, MATH (Hendrycks et al., 2021),
and CodeContests (Li et al., 2022). We provide an overview
of each dataset in Table 22. Since we perform automatic
architecture search on a randomly sampled 20% subset of
each benchmark, we evaluate on the remaining held-out
80% subset of the benchmark (Table 1) (for ARCHON
performances on the entire benchmarks, please see Table 27).
The delta between the ARCHON performance on the entire
benchmark vs. 80% held-out subset is relatively small: only
0.44%, on average, across these datasets with an S.D. of
0.20%. For MATH, we evaluate a random sample of 200
problems from the dataset’s test set. For CodeContests, we
evaluate on the 140 test set questions that do not include
image tags in the problem description.

Models: We test the efficacy of the ARCHON framework by
creating different ARCHON architectures across three model
categories: 8B or less parameter models, 70B or more param-
eter models, and closed-source model APIs. For our 8B and
70B+ models, we selected the top-10 performing chat models
for each parameter range on the Chatbot Arena Leaderboard
(Chiang et al., 2024) as of July 2024. For our ARCHON
architectures, we explore multiple model types: open-source,
closed-source, and all-source (i.e. both open-source and
closed-source available). For our closed-source model APIs,
we include GPT-4o, GPT-4-Turbo, Claude Opus 3.0, Claude
Haiku 3.0, and Claude Sonnet 3.5. We list and compare all
of the models tested in the ARCHON framework in Table 28

and Table 29. For all the LLMs utilized and every ARCHON
component, we set the generation temperature to 0.7. As
baselines, we compare ARCHON against both SOTA single-
call LLMs (GPT-4o (OpenAI et al., 2024), Claude 3.5 Sonnet
(Anthropic, 2024), and Llama 3.1 405B Instruct (AI@Meta,
2024)) as well as SOTA inference-time approaches (Ope-
nAI’s o1 (OpenAI, 2024), MoA (Wang et al., 2024a), ADAS
(Hu et al., 2024), and AFlow (Zhang et al., 2024)).

Task-Specific and General-Purpose ARCHON Architec-
tures: We compare custom ARCHON architectures, specifi-
cally configured to a single evaluation dataset ("Task-specific
ARCHON Architectures"), and a generalized ARCHON ar-
chitecture configured to handle all the evaluation datasets
("General-purpose ARCHON Architectures") (Table 1). For
our three model selection settings for ARCHON (i.e. open-
source, closed-source, and all-source), we utilize automatic
architecture search to find targeted ARCHON architectures
for each task (7 architectures total) and find a single general-
ized ARCHON architecture for maximizing performance over
all the tasks (Table 1). The benchmarks are concatenated
together and shuffled for generalized ARCHON architecture
search. Importantly, all the ARCHON architectures utilized
in Section 4 are automatically generated by our Bayesian
architecture search technique, which searches over the hyper-
parameter search space for ARCHON as covered in Section
3.3. For examples of targeted and generalized ARCHON archi-
tectures, please see Figure 3 and Appendix A.9. For our archi-
tectures, we outline the average number of input tokens (i.e.
combined total of tokens inputted over the entire architecture)
and output tokens (i.e. combined total of tokens outputted
over the entire architecture) for each category in Table 1.

7

An Architecture Search Framework for Inference-Time Techniques

4.2. ARCHON vs. Closed-Source
LLMs and Other Inference-Time Architectures

Task Performances: We start by comparing ARCHON
architectures to existing SOTA closed-source LLMs and
inference-time architectures across a set of instruction-
following, reasoning, and coding tasks. Based on our results
in Table 1, we find that ARCHON architectures consistently
match or surpass existing approaches across all the bench-
marks explored. ARCHON architectures with open-source
models demonstrate a 11.2% average improvement over
SOTA open-source approaches; for its worst performance,
our open-source ARCHON architectures are still 3.1%
above SOTA open-source approaches on AlpacaEval 2.0.
ARCHON architectures with closed-source models achieve
SOTA performance across MT Bench, Arena-Hard-Auto,
MixEval, and MixEval-Hard, leading to a 15.1% average
improvement over closed-source LMs and a 8.4% average
improvement over open-source inference-time frameworks
(i.e. MoA, ADAS, and AFlow). Compared to o1 and o1-mini,
ARCHON’s best targeted architectures beat them by 8.1% and
9.7%, on average, on MT Bench, AlpacaEval 2.0, Arena Hard
Auto, MixEval, MixEval Hard, MATH, and CodeContests.
For approaches that use all models available, both open and
closed-source, ARCHON achieves an average 10.9% improve-
ment over existing SOTA single-call LLMs and an average
8.6% improvement over existing inference-time frameworks.

Compute Efficiency: Compared to open-source inference-
time frameworks (i.e. AFlow, ADAS, MoA), ARCHON is
20.0% more inference call efficient while having higher per-
formances on all benchmarks tested (Table 1). We also find
that our best ARCHON architectures use 15.1% less input to-
kens and 13.5% less output tokens compared to the best alter-
native open-source inference-time frameworks. When we uti-
lize ARCHON’s architecture search technique with different
token budgets (Figure 8), we find that the generated ARCHON
architectures achieve 12.4% higher performance than alter-
nate baselines when given the same budget. Overall, the gen-
eralized all-source ARCHON architecture achieves 6.4% bet-
ter performance across all the tasks while being 31% more to-
ken efficient than the best LM system baselines (Table 1). Fur-
thermore, compared to the generalized all-source ARCHON
architecture, the targeted all-source ARCHON architectures
use 15.5% and 18.6% more input tokens and output tokens,
respectively, but they achieve 8.4% higher accuracies, on av-
erage. The targeted architectures are more compute intensive
since they can further leverage additional LM operations to-
wards a single set of specific task constraints (Appendix A.9).

Discovered Architectures: We include the targeted and gen-
eralized ARCHON architectures in Appendix A.9 (Figure 13).
The best performing all-source, general-purpose ARCHON
architecture starts with a broad initial layer of our 10 best
generators before four successive layers of critique and
fusion with Qwen2 72B and Claude 3.5 Sonnet, respectively.

GPQA
Diamond MMLU∗ MMLU

Pro∗

All-Source Generalized AFlow 37.1%±0.2 53.0%±0.4 43.4%±0.4
Task-Specific AFlow 52.4%±0.1 71.8%±0.5 62.9%±0.5

AFlow Performance Preservation 70.8% 73.8% 67.0%

All-Source Generalized ADAS 39.8%±0.3 53.5%±0.3 44.1%±0.7
Task-Specific ADAS 54.4%±0.5 73.0%±0.4 66.0%±0.4

ADAS Performance Preservation 73.2% 73.3% 66.8%

All-Source Generalized ARCHON 56.1%±0.4 76.5%±0.3 71.0%±0.1
Task-Specific ARCHON 61.2%±0.5 81.5%±0.3 75.4%±0.4

Archon Performance Preservation 91.7% 93.9% 94.2%

Table 2: Generalized ARCHON Architecture Strong
Performance on Out-of-Domain Tasks: The generalized
ARCHON architectures achieved 91 to 95% the performance
of the specialized ARCHON architectures on GPQA, MMLU,
and MMLU Pro, despite not being trained for these tasks.
Standard error calculated from 10 independent evaluation
runs. ∗For MMLU and MMLU Pro, we use a randomly
selected 500 query sample of the test set for evaluation.

Each subsequent layer has fewer fuser models (i.e. 8, 6, and
4), leading to a "funneling" effect on the generations before
the final output. The best targeted architectures can vary
by task. For instruction-following and reasoning tasks, the
targeted architectures tend to be multiple layers of critiquing
and fusing with a diverse mix of LMs (Figure 14). For math
tasks, the targeted architectures tend to consist of an initial
broad set of generations before being reduced quickly to a
chosen answer (Figure 15). For coding tasks, the targeted ar-
chitectures tend to focus on multiple iterations of generation,
critique, and fusion over a single response before outputting
an answer (Figure 16). Besides the ARCHON architectures
included in Appendix A.9, we include all the generalized and
targeted ARCHON architectures in our supplementary files.

To explore the efficacy of our general purpose ARCHON
architectures, we evaluate them on three previously unseen
tasks: GPQA (Rein et al., 2024), MMLU (Hendrycks et al.,
2021), and MMLU Pro (Wang et al., 2024b). We find that
our all-source general purpose ARCHON architecture cap-
tures 91 to 94% of the task-specific ARCHON architectures
performances on these benchmarks, suggesting that our archi-
tectures are more broadly applicable to out-of-domain tasks
(Table 2). The generalized ADAS and AFlow architectures
only achieve 66% and 74% of their specialized architecture
performance, respectively.

4.3. ARCHON by Task

Instruction-Following and Reasoning: On MT Bench,
AlpacaEval 2.0, and Arena-Hard-Auto, open-source
ARCHON architectures outperform current open-source
baselines by 10.5%, on average, while closed-source
ARCHON outperforms current closed-source baselines
by 14.6% (Table 1). With ARCHON, multiple models
used for Generators and the depth of fusion layers lead

8

An Architecture Search Framework for Inference-Time Techniques

Figure 5: ARCHON’s Performance Exceeds Baselines across FLOP Budgets: Across different FLOP budgets (Section
3.3), we compare ARCHON architectures against top-performing inference-time system baselines. The MoA architecture and
OpenAI’s o1 are static so they use the same number of tokens across budgets. The results were averaged over 10 independent
evaluation runs. ∗MATH and CodeContests use a subset of their test sets for evaluation (Section 4.1).

to performance boosts on instruction-following tasks,
increasing the richness of responses and allowing multiple
iterations for step-by-step instruction-following (Table 30).
For reasoning, while the performance boost from ARCHON
is smaller when we consider the aggregate scores for
MixEval and MixEval-Hard, we do see meaningful increases
in performance when we create inference-time architectures
for each individual task under MixEval and MixEval-Hard
(Table 24; Table 25). When we create individual ARCHON
architectures for each subtask, we see 3.7 and 8.9 percentage
point increases in accuracy, on average, for MixEval and
MixEval-Hard, respectively. This finding suggests that
reasoning tasks (e.g. math, sciences, logic) require more
individualized inference-time architectures.

Coding: We have observed that ensembling, fusion, and
ranking techniques have limited impact on CodeContests
(Figure 4). For example, when we apply the general all-
source architecture from Table 22 to CodeContests problems,
we achieve small gains from ARCHON (see Table 1). One con-
tributing factor is that, unlike the distribution of instruction-
following/reasoning tasks, coding tasks tend to have one or
two LLMs that perform substantially better than the rest of
models (Table 29). However, when we add unit test genera-
tion/evaluation, and scale the number of samples, ARCHON’s
performance on CodeContests improves significantly (Ta-
ble 1), allowing us to boost GPT-4o Pass@1 performance by
44.3% for Pass@1 (from 40 to 58 out of 140 questions). For
model-based unit test generation/evaluation, we generate 5
unit tests and use the LM to evaluate each candidate response
against the generated unit tests, allowing us to rank the differ-
ent candidate responses (details are provided in Section A.2)

4.4. Discussion

Impact of Model Size: The ARCHON framework is most
effective when utilizing LLMs with 70B+ parameters. When
we build ARCHON architectures with 7B open-source mod-

els, we can boost task performance over the best individual
7B LM by 7.5%, on average, compared to the best individual
7B model (Table 32). Across tasks, 7B models work well
for ranking but are less effective for critique and fusion.

Latency and Costs: Since ARCHON architectures make mul-
tiple LLM API calls successively for different operations it
can take 5x more time and money than a single LLM API call
(Table 33; Table 34). Note that these increases in compute
costs and latency translate to higher quality responses, and
can be justified in many application domains, such as science,
programming, and complex agentic tasks (Rein et al., 2023;
Mialon et al., 2023). Furthermore, LLM vendors are rapidly
decreasing their inference costs (Table 33). For tasks in
which speed is most preferred, future work should explore
how distillation strategies (Sreenivas et al., 2024; DeepSeek-
AI et al., 2025) could be used to pack the aggregate
knowledge of ARCHON architectures into a smaller LM.

Impact Statement
ARCHON’s methodology for optimizing multi-model

LM architectures could transform how organizations deploy
AI systems, enabling smaller companies and research labs
to achieve state-of-the-art performance without access to
the largest models or extensive computing resources. The
framework’s ability to boost performance while reducing
compute costs results in energy savings and a lower environ-
mental footprint. The technique of effectively combining
multiple specialized models through systematic architecture
search could also find applications beyond language models,
potentially generalizing to other AI models and tools. As
ARCHON demonstrates how to extract significantly better
performance from existing models rather than relying on
scaling one model alone, it may influence the trajectory
of AI development toward more efficient, specialized
inference-time architectures rather than ever-larger models.

9

An Architecture Search Framework for Inference-Time Techniques

Acknowledgments
We thank Simran Arora, Daniel Biderman, Bradley

Brown, Ryan Ehrlich, Sabri Eyuboglu, Jordan Juravsky,
Jerry Liu, Avanika Narayan, Benjamin Spector, Alyssa
Unell, Benjamin Viggiano, and Michael Zhang for their
constructive feedback during the composition of the paper.
We would also like to thank our collaborators at the Stanford
Artificial Intelligence Laboratory (SAIL) and TogetherAI.

We gratefully acknowledge the support of NIH under No.
U54EB020405 (Mobilize), NSF under Nos. CCF2247015
(Hardware-Aware), CCF1763315 (Beyond Sparsity),
CCF1563078 (Volume to Velocity), and 1937301 (RTML);
US DEVCOM ARL under Nos. W911NF-23-2-0184
(Long-context) and W911NF-21-2-0251 (Interactive
Human-AI Teaming); ONR under Nos. N000142312633
(Deep Signal Processing); Stanford HAI under No. 247183;
NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC,
Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, Google Cloud, Salesforce,
Total, the HAI-GCP Cloud Credits for Research program, the
Stanford Data Science Initiative (SDSI), and members of the
Stanford DAWN project: Meta, Google, and VMWare. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied,
of NIH, ONR, or the U.S. Government.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

AI@Meta. Llama 3 model card. ArXiv, 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Anthropic. The claude 3 model family: Opus, sonnet, haiku.
ArXiv, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M., Lin,
J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J., Men, R.,
Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang, P., Wang,
S., Wang, W., Wu, S., Xu, B., Xu, J., Yang, A., Yang, H.,
Yang, J., Yang, S., Yao, Y., Yu, B., Yuan, H., Yuan, Z.,
Zhang, J., Zhang, X., Zhang, Y., Zhang, Z., Zhou, C.,
Zhou, J., Zhou, X., and Zhu, T. Qwen technical report.
arXiv preprint arXiv:2309.16609, 2023.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion,
J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A.,
McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez,
D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E.,
Perez, E., Kerr, J., Mueller, J., Ladish, J., Landau, J.,
Ndousse, K., Lukosuite, K., Lovitt, L., Sellitto, M.,
Elhage, N., Schiefer, N., Mercado, N., DasSarma, N.,
Lasenby, R., Larson, R., Ringer, S., Johnston, S., Kravec,
S., Showk, S. E., Fort, S., Lanham, T., Telleen-Lawton,
T., Conerly, T., Henighan, T., Hume, T., Bowman,
S. R., Hatfield-Dodds, Z., Mann, B., Amodei, D.,
Joseph, N., McCandlish, S., Brown, T., and Kaplan, J.
Constitutional ai: Harmlessness from ai feedback, 2022.
URL https://arxiv.org/abs/2212.08073.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling
inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Chen, L., Davis, J. Q., Hanin, B., Bailis, P., Stoica, I., Zaharia,
M., and Zou, J. Are more llm calls all you need? towards
scaling laws of compound inference systems, 2024. URL
https://arxiv.org/abs/2403.02419.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhang, H., Zhu, B., Jordan, M., Gonzalez,
J. E., and Stoica, I. Chatbot arena: An open platform for
evaluating llms by human preference, 2024.

Databricks. Dbrx technical report. 2024.

Davis, J. Q., Hanin, B., Chen, L., Bailis, P., Stoica, I., and
Zaharia, M. Networks of networks: Complexity class
principles applied to compound ai systems design, 2024.
URL https://arxiv.org/abs/2407.16831.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang,
R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., Zhang, X.,
Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao,
Z., Liu, A., Xue, B., Wang, B., Wu, B., Feng, B., Lu, C.,
Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Chen,
D., Ji, D., Li, E., Lin, F., Dai, F., Luo, F., Hao, G., Chen,
G., Li, G., Zhang, H., Bao, H., Xu, H., Wang, H., Ding, H.,
Xin, H., Gao, H., Qu, H., Li, H., Guo, J., Li, J., Wang, J.,
Chen, J., Yuan, J., Qiu, J., Li, J., Cai, J. L., Ni, J., Liang, J.,
Chen, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang, K.,
Yu, K., Wang, L., Zhang, L., Zhao, L., Wang, L., Zhang,
L., Xu, L., Xia, L., Zhang, M., Zhang, M., Tang, M., Li,
M., Wang, M., Li, M., Tian, N., Huang, P., Zhang, P.,
Wang, Q., Chen, Q., Du, Q., Ge, R., Zhang, R., Pan, R.,
Wang, R., Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou,
S., Chen, S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S.,
Li, S. S., Zhou, S., Wu, S., Ye, S., Yun, T., Pei, T., Sun,
T., Wang, T., Zeng, W., Zhao, W., Liu, W., Liang, W.,
Gao, W., Yu, W., Zhang, W., Xiao, W. L., An, W., Liu, X.,

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2407.16831

An Architecture Search Framework for Inference-Time Techniques

Wang, X., Chen, X., Nie, X., Cheng, X., Liu, X., Xie, X.,
Liu, X., Yang, X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X.,
Shen, X., Chen, X., Sun, X., Wang, X., Song, X., Zhou,
X., Wang, X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X.,
Zhang, Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu,
Y., Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang,
Y., Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y.,
Gong, Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu,
Y., Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A.,
Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A.,
Sravankumar, A., Korenev, A., Hinsvark, A., Rao, A.,
Zhang, A., Rodriguez, A., Gregerson, A., Spataru, A.,
Roziere, B., Biron, B., Tang, B., Chern, B., Caucheteux,
C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller, C.,
Touret, C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C.,
Allonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F.,
Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon,
G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu,
H., Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I.,
Misra, I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes,
J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J.,
Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J.,
Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V.,
Upasani, K., Plawiak, K., Li, K., Heafield, K., Stone, K.,
El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K.,
Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L.,
Jenkins, L., Martin, L., Madaan, L., Malo, L., Blecher,
L., Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti,
M., Singh, M., Paluri, M., Kardas, M., Oldham, M., Rita,
M., Pavlova, M., Kambadur, M., Lewis, M., Si, M., Singh,
M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N.,
Bogoychev, N., Chatterji, N., Duchenne, O., Çelebi, O.,
Alrassy, P., Zhang, P., Li, P., Vasic, P., Weng, P., Bhargava,
P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q.,
Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R.,
Cabral, R. S., Stojnic, R., Raileanu, R., Girdhar, R., Patel,
R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R.,
Silva, R., Hou, R., Wang, R., Hosseini, S., Chennabasappa,
S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie, S.,
Narang, S., Raparthy, S., Shen, S., Wan, S., Bhosale,

S., Zhang, S., Vandenhende, S., Batra, S., Whitman,
S., Sootla, S., Collot, S., Gururangan, S., Borodinsky,
S., Herman, T., Fowler, T., Sheasha, T., Georgiou, T.,
Scialom, T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn,
U., Goswami, V., Gupta, V., Ramanathan, V., Kerkez,
V., Gonguet, V., Do, V., Vogeti, V., Petrovic, V., Chu, W.,
Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X., Tan,
X. E., Xie, X., Jia, X., Wang, X., Goldschlag, Y., Gaur, Y.,
Babaei, Y., Wen, Y., Song, Y., Zhang, Y., Li, Y., Mao, Y.,
Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z., Singh, A.,
Grattafiori, A., Jain, A., Kelsey, A., Shajnfeld, A., Gangidi,
A., Victoria, A., Goldstand, A., Menon, A., Sharma, A.,
Boesenberg, A., Vaughan, A., Baevski, A., Feinstein, A.,
Kallet, A., Sangani, A., Yunus, A., Lupu, A., Alvarado,
A., Caples, A., Gu, A., Ho, A., Poulton, A., Ryan, A.,
Ramchandani, A., Franco, A., Saraf, A., Chowdhury, A.,
Gabriel, A., Bharambe, A., Eisenman, A., Yazdan, A.,
James, B., Maurer, B., Leonhardi, B., Huang, B., Loyd,
B., Paola, B. D., Paranjape, B., Liu, B., Wu, B., Ni, B.,
Hancock, B., Wasti, B., Spence, B., Stojkovic, B., Gamido,
B., Montalvo, B., Parker, C., Burton, C., Mejia, C., Wang,
C., Kim, C., Zhou, C., Hu, C., Chu, C.-H., Cai, C., Tindal,
C., Feichtenhofer, C., Civin, D., Beaty, D., Kreymer, D.,
Li, D., Wyatt, D., Adkins, D., Xu, D., Testuggine, D.,
David, D., Parikh, D., Liskovich, D., Foss, D., Wang, D.,
Le, D., Holland, D., Dowling, E., Jamil, E., Montgomery,
E., Presani, E., Hahn, E., Wood, E., Brinkman, E., Arcaute,
E., Dunbar, E., Smothers, E., Sun, F., Kreuk, F., Tian, F.,
Ozgenel, F., Caggioni, F., Guzmán, F., Kanayet, F., Seide,
F., Florez, G. M., Schwarz, G., Badeer, G., Swee, G.,
Halpern, G., Thattai, G., Herman, G., Sizov, G., Guangyi,
Zhang, Lakshminarayanan, G., Shojanazeri, H., Zou,
H., Wang, H., Zha, H., Habeeb, H., Rudolph, H., Suk,
H., Aspegren, H., Goldman, H., Molybog, I., Tufanov, I.,
Veliche, I.-E., Gat, I., Weissman, J., Geboski, J., Kohli, J.,
Asher, J., Gaya, J.-B., Marcus, J., Tang, J., Chan, J., Zhen,
J., Reizenstein, J., Teboul, J., Zhong, J., Jin, J., Yang, J.,
Cummings, J., Carvill, J., Shepard, J., McPhie, J., Torres,
J., Ginsburg, J., Wang, J., Wu, K., U, K. H., Saxena, K.,
Prasad, K., Khandelwal, K., Zand, K., Matosich, K.,
Veeraraghavan, K., Michelena, K., Li, K., Huang, K.,
Chawla, K., Lakhotia, K., Huang, K., Chen, L., Garg,
L., A, L., Silva, L., Bell, L., Zhang, L., Guo, L., Yu, L.,
Moshkovich, L., Wehrstedt, L., Khabsa, M., Avalani, M.,
Bhatt, M., Tsimpoukelli, M., Mankus, M., Hasson, M.,
Lennie, M., Reso, M., Groshev, M., Naumov, M., Lathi,
M., Keneally, M., Seltzer, M. L., Valko, M., Restrepo,
M., Patel, M., Vyatskov, M., Samvelyan, M., Clark, M.,
Macey, M., Wang, M., Hermoso, M. J., Metanat, M.,
Rastegari, M., Bansal, M., Santhanam, N., Parks, N.,
White, N., Bawa, N., Singhal, N., Egebo, N., Usunier, N.,
Laptev, N. P., Dong, N., Zhang, N., Cheng, N., Chernoguz,
O., Hart, O., Salpekar, O., Kalinli, O., Kent, P., Parekh,
P., Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux,

11

https://arxiv.org/abs/2501.12948

An Architecture Search Framework for Inference-Time Techniques

P., Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P.,
Liang, Q., Alao, R., Rodriguez, R., Ayub, R., Murthy, R.,
Nayani, R., Mitra, R., Li, R., Hogan, R., Battey, R., Wang,
R., Maheswari, R., Howes, R., Rinott, R., Bondu, S. J.,
Datta, S., Chugh, S., Hunt, S., Dhillon, S., Sidorov, S., Pan,
S., Verma, S., Yamamoto, S., Ramaswamy, S., Lindsay,
S., Lindsay, S., Feng, S., Lin, S., Zha, S. C., Shankar, S.,
Zhang, S., Zhang, S., Wang, S., Agarwal, S., Sajuyigbe,
S., Chintala, S., Max, S., Chen, S., Kehoe, S., Satterfield,
S., Govindaprasad, S., Gupta, S., Cho, S., Virk, S.,
Subramanian, S., Choudhury, S., Goldman, S., Remez, T.,
Glaser, T., Best, T., Kohler, T., Robinson, T., Li, T., Zhang,
T., Matthews, T., Chou, T., Shaked, T., Vontimitta, V.,
Ajayi, V., Montanez, V., Mohan, V., Kumar, V. S., Mangla,
V., Ionescu, V., Poenaru, V., Mihailescu, V. T., Ivanov, V.,
Li, W., Wang, W., Jiang, W., Bouaziz, W., Constable, W.,
Tang, X., Wang, X., Wu, X., Wang, X., Xia, X., Wu, X.,
Gao, X., Chen, Y., Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang,
Y., Zhang, Y., Adi, Y., Nam, Y., Yu, Wang, Hao, Y., Qian,
Y., He, Y., Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z.,
Yang, Z., and Zhao, Z. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y. K.,
Luo, F., Xiong, Y., and Liang, W. Deepseek-coder:
When the large language model meets program-
ming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Hartford, E. dolphin-2.2.1-mistral-7b. January 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

Hinton, G. E. et al. How neural networks learn from
experience. na, 1992.

Hu, S., Lu, C., and Clune, J. Automated design of agentic
systems. arXiv preprint arXiv:2408.08435, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A.,
Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T., and
Sayed, W. E. Mistral 7b, 2023a.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Jiang, D., Ren, X., and Lin, B. Y. Llm-blender: Ensembling
large language models with pairwise comparison and
generative fusion. In Proceedings of the 61th Annual
Meeting of the Association for Computational Linguistics
(ACL 2023), 2023b.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z.,
Santhanam, K., Vardhamanan, S., Haq, S., Sharma,
A., Joshi, T. T., Moazam, H., Miller, H., Zaharia, M.,
and Potts, C. Dspy: Compiling declarative language
model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Li, J., Zhang, Q., Yu, Y., Fu, Q., and Ye, D.
More agents is all you need, 2024a. URL
https://arxiv.org/abs/2402.05120.

Li, T., Chiang, W.-L., Frick, E., Dunlap, L., Banghua Zhu,
J. E. G., and Stoica, I. From live data to high-
quality benchmarks: The arena-hard pipeline, April
2024b. URL https://lmsys.org/blog/
2024-04-19-arena-hard/.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I., Guestrin,
C., Liang, P., and Hashimoto, T. B. Alpacaeval: An auto-
matic evaluator of instruction-following models. https:
//github.com/tatsu-lab/alpaca_eval,
2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A., et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Meng, Y., Xia, M., and Chen, D. SimPO: Simple preference
optimization with a reference-free reward. ArXiv, 2024.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., Le-
Cun, Y., and Scialom, T. Gaia: a bench-
mark for general ai assistants, 2023. URL
https://arxiv.org/abs/2311.12983.

Nardi, L., Souza, A., Koeplinger, D., and Olukotun, K.
Hypermapper: a practical design space exploration
framework. In 2019 IEEE 27th International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 425–426,
2019. doi: 10.1109/MASCOTS.2019.00053.

Ni, J., Xue, F., Yue, X., Deng, Y., Shah, M., Jain, K.,
Neubig, G., and You, Y. Mixeval: Deriving wisdom of
the crowd from llm benchmark mixtures, 2024. URL
https://arxiv.org/abs/2406.06565.

OpenAI. Learning to reason with LLMs.
https://openai.com/research/
learning-to-reason-with-llms, Septem-
ber 2024. Accessed November 13, 2024.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2402.05120
https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2406.06565
https://openai.com/research/learning-to-reason-with-llms
https://openai.com/research/learning-to-reason-with-llms

An Architecture Search Framework for Inference-Time Techniques

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I.,
Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D.,
Currier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao,
L., Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh,
G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray,
S., Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C.,
Han, J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama,
K., Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N.,
Such, F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M. B., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,

C., Welihinda, A., Welinder, P., Weng, J., Weng, L.,
Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,
Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,
Zhuk, W., and Zoph, B. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Qwen. Qwen2 technical report. 2024.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof qa benchmark, 2023. URL
https://arxiv.org/abs/2311.12022.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. GPQA: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen,
X., and Wang, X. A comprehensive survey of neural
architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1–34, 2021.

Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian
optimization of machine learning algorithms, 2012. URL
https://arxiv.org/abs/1206.2944.

Sreenivas, S. T., Muralidharan, S., Joshi, R., Chochowski,
M., Patwary, M., Shoeybi, M., Catanzaro, B., Kautz,
J., and Molchanov, P. Llm pruning and distillation
in practice: The minitron approach, 2024. URL
https://arxiv.org/abs/2408.11796.

Team, N. Sky-t1: Train your own o1 preview model within
450. https : //novasky − ai.github.io/posts/sky −
t1,2025.Accessed :2025−01−09.

Team, Q. Qwq: Reflect deeply on the boundaries of the
unknown, November 2024. URL https://qwenlm.
github.io/blog/qwq-32b-preview/.

Tran, H., Glaze, C., and Hancock, B. Iterative dpo alignment.
Technical report, Snorkel AI, 2023.

Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Rasul, K.,
Belkada, Y., Huang, S., von Werra, L., Fourrier, C., Habib,
N., et al. Zephyr: Direct distillation of lm alignment. arXiv
preprint arXiv:2310.16944, 2023.

Wang, J., Wang, J., Athiwaratkun, B., Zhang,
C., and Zou, J. Mixture-of-agents enhances
large language model capabilities, 2024a. URL
https://arxiv.org/abs/2406.04692.

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2311.12022
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/2408.11796
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2406.04692

An Architecture Search Framework for Inference-Time Techniques

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S., Ren,
W., Arulraj, A., He, X., Jiang, Z., et al. Mmlu-pro: A more
robust and challenging multi-task language understanding
benchmark. arXiv preprint arXiv:2406.01574, 2024b.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J.,
Tao, C., Lin, Q., and Jiang, D. WizardLM: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations, 2024. URL https:
//openreview.net/forum?id=CfXh93NDgH.

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Huang,
Z., Guestrin, C., and Zou, J. Textgrad: Automatic
"differentiation" via text. 2024.

Zhang, J., Xiang, J., Yu, Z., Teng, F., Chen, X., Chen,
J., Zhuge, M., Cheng, X., Hong, S., Wang, J., Zheng,
B., Liu, B., Luo, Y., and Wu, C. Aflow: Au-
tomating agentic workflow generation, 2024. URL
https://arxiv.org/abs/2410.10762.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang, H.,
Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge with
mt-bench and chatbot arena, 2023.

Zoph, B. and Le, Q. V. Neural architecture
search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

14

https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/1611.01578

An Architecture Search Framework for Inference-Time Techniques

A. Appendix
A.1. Table of Contents

1. ARCHON LLM Components: Outline of LM components used in ARCHON and the rules for combining them
2. Utilities and Interactions of LLM Components: Analysis of the effectiveness of individual components and their

synergistic effects when combined
3. Bayesian Optimization for ARCHON: Description of search space and optimization methodology for architecture

discovery
4. Bayes Optimization vs. Alternative Approaches: Comparative analysis of search techniques for finding optimal

configurations
5. ARCHON Architecture Algorithms Comparisons: Evaluation of different optimization strategies across various inference

budgets
6. ARCHON Benchmarks and Results: Comprehensive evaluation results across instruction-following, reasoning, and

coding tasks
7. ARCHON LLM Analysis: Details of models tested with parameter counts and sequence lengths
8. ARCHON Architectures: Diagrams and descriptions of optimized architectures for different task categories
9. ARCHON by Inference Compute Budget, Model Size, and Cost: Analysis of performance across different compute

constraints and model sizes

A.2. ARCHON LLM Components

Inference-Time
Technique Definition Input Output Inference

Cost Domains

Generator Generates a candidate response
from an instruction prompt Instruction Prompt Candidate Response(s) 1 call

per cand.
All

Domains

Fuser Merges multiple candidate
responses into a single response

Instruction Prompt +
Candidate Response(s)

Fused Candidate
Response(s)

1 call
per cand.

All
Domains

Critic Generates strengths/weaknesses
for each candidate response

Instruction Prompt +
Candidate Response(s)

Candidate Response(s)
Strengths/Weaknesses 1 call All

Domains

Ranker Returns top-K
candidate responses

Instruction Prompt +
Candidate Response(s)

Ranked Candidate
Response(s) 1 call All

Domains

Verifier Returns the candidate responses
with verified reasoning

Instruction Prompt +
Candidate Response(s)

Verified Candidate
Response(s)

2 calls
per cand.

Reasoning
Tasks

Unit Test
Generator

Generates unit tests to evaluate
the candidate responses Instruction Prompt Instruction Prompt

+ Unit Tests 1 call Reasoning
Tasks

Unit Test
Evaluator

Uses generated unit tests to
evaluate candidate response

Instruction Prompt +
Unit Tests +

Candidate Response(s)

Scored Candidate
Response(s)

1 call
per cand.

Reasoning
Tasks

Table 3: Overview of ARCHON’s Inference-time Techniques: Definitions, Inputs, Outputs, Costs, and Application Domains.

Module Initial Layer
Placement

Placement after
Initial Layer

>1 Module
in Layer

Increase
Candidate
Responses

Decrease
Candidate
Responses

Generator Yes No Yes Yes No

Fuser No Yes Yes Yes Yes

Ranker No Yes No No Yes

Critic No Yes No No No

Verifier No Yes No No Yes

Unit Test
Generator No Yes No No No

Unit Test
Evaluator No Yes No No No

Table 4: Rules of ARCHON Construction: Allowed combinations of each LLM component from Section 3.1.

15

An Architecture Search Framework for Inference-Time Techniques

Figure 6: Performance Gains from Applying Inference Time Techniques on a Single Model: We repeatedly sample
more responses for each individual query. For each sample count, we choose the best response in 5 different ways: (1) using
an oracle (to get the upper bound for performance of best sample), (2) randomly, (3) using a ranker model, (4) by fusion,
in which a model synthesizes a response based on all the samples, and (5) by ranking the top-5 best answers and then fusing
them. For both MT Bench and Arena-Hard-Auto, we find that fusion is an effective technique. In particular, ranking the
candidates first, and then selecting the top-5 and fusing them scores the highest. The best open-source model for these tasks
across all the 70B+ models we are considering is WizardLM-2-8x22B (Xu et al., 2024) (see Table 29 for details). For both
ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

A.3. Utilities and Interactions of LLM Components

In this subsection, we present our analysis of the effectiveness of each LLM component (i.e. the Utility) and the relationships
between each component (i.e. the Component Interactions) by evaluating on instruction-following tasks (MT Bench,
AlpacaEval 2.0, Arena-Hard-Auto), reasoning tasks (MixEval, MixEval-Hard, MATH) and coding tasks (CodeContests)
(Section 4.1). For our ARCHON models, we utilize a host of 70B+ open-source models (Section 4.1; Table 28).

A.3.1. GENERATOR

Utility: For our Generator module, we find additional model sampling to significantly boost performance (Figure 6),
particularly for coding tasks (Table 1). In settings with a limited inference call budget, additional model samples lead to
the largest marginal benefit. We see a similar pattern for model ensembling, where sampling from additional models leads
to continual performance increases (assuming the models are ordered from best to worst for the given task) (Figure 7).

A.3.2. FUSER

Utility: For every benchmark explored, we found that the Fuser module substantially improved performance (Figure 6;
Figure 7; Figure 4). For the single-generation 10-model ensemble of 70B+ models, the Fuser module improved downstream
accuracy by 5.2 points, on average, compared to the single-generation best model (Figure 7). When combined with the Ranker
module for ranking the top-5 candidate responses, the Fuser improved downstream accuracy by 7.3 points and 3.6 points,
on average, compared to the single-sample best model and the oracle best candidate response, respectively (Figure 7). Overall,
we found that Fuser efficacy increased as more candidate responses were provided, demonstrating that additional candidate
generations can continue to bolster inference-time architecture performance when combined with a Fuser.

In previous work like Mixture-of-Agents (MoA) (Wang et al., 2024a), multiple layers of Fusers was found to boost
performance on some instruction-following tasks (i.e. MT Bench and Alpaca Eval 2.0). Across all the benchmarks explored,
we observed similar benefits in the ARCHON framework when adding multiple layers of Fusers (Figure 4). However, based
on our results in Figure 12, the number of Fuser layers needed to improve performance varied by task, with some tasks
receiving limited benefits from added layers (1-2 point increase in accuracy for MixEval) while others experienced significant
benefits with 3-4 fusion layers and more (2 to 5 point increase in win rate for MT Bench and Alpaca Eval 2.0). We attribute

16

An Architecture Search Framework for Inference-Time Techniques

Figure 7: Performance Gains from Applying Inference-Time Techniques on an Ensemble of Models: We incrementally
add more models to the ensemble, which consists of open-source 70B+ models. The models are added to the pool based
on their performance for each task, from best to worse (see Table 29 for details). For each ensemble size, we choose the
best response in 5 different modes: (1) using an oracle (to get the upper bound for performance of best individual response
in the ensemble), (2) randomly, (3) using a ranker model, (4) by fusion, in which one model synthesizes a response based
on all the responses of the ensemble models, and (5) ranking the top-5 best responses and then fusing them. For MT Bench
and Arena-Hard-Auto, we find consistent performance improvements as we add more models to the ensemble. We find that
fusion is beneficial across various ensemble sizes and in particular a fused candidate based on the top-5 ranked responses
scores highest. The ensemble approach scores higher than applying the same techniques on repeated samples from a single
best-performing model (see Figure 6). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

this distinction to the difference in task requirements, with chat and instruction following tasks benefiting more from multiple
iterations of revisions through the multiple Fuser layers, leading to greater diversity in the final generation (Table 30).

Component Interactions: To better understand how the Fuser module works with the other LLM components, we took the
single-sample 10-model ensemble of Generators with a Fuser and tried adding each of these components individually: a Critic,
a Ranker, a Verifier, and a Unit Test Generator/Evaluator. Across all of the benchmarks, the added candidate response analyses
from the Critic improved the Fuser’s ability to effectively merge the different candidate responses, increasing performance
by an average of 3.1 percentage points (Figure 4). With the added Ranker, the ARCHON architecture improved the combined
Ensemble + Critic + Fuser performance across all the benchmarks by 4.8 percentage points, on average (Figure 4). The
Ranker proved most effective for style-oriented tasks (e.g. MT Bench and AlpacaEval 2.0) since the examples mostly focus on
improving the instruction-guidance towards the provided prompt. With the added Verifier module (Figure 4), the performance
of the Ensemble + Critic + Fuser configuration improved marginally for the instruction-following tasks (1.2 percentage points,
on average, for MT Bench, AlpacaEval 2.0, and Arena-Hard-Auto). However, this configuration improved performance
more on reasoning tasks (3.2 percentage points for MixEval and MixEval-Hard, on average), assisting generation by filtering
out irrelevant or flawed answers before the final fusion step (Figure 4). The added Unit Test Generator and Evaluator was
less effective for the instruction-following and reasoning tasks, only providing a 1.5 percentage points increase, on average,
when added to the Ensemble + Critic + Fuser configuration (Table 5). However, for coding tasks, we found unit test generation
and evaluation significantly improved performance, leading to a 10.7 percentage point increase (56% performance increase
comparatively) as we scale model sampling (Table 1).

A.3.3. CRITIC

Utility: The Critic module proved effective for every task we explored in Figure 4 and Table 5. With our 10-model
70B+ Generator ensemble and Fuser configuration of ARCHON, the added Critic improved performance on average by 3.1
percentage points across the benchmarks explored.

Component Interactions: While useful for most ARCHON architectures, the added strengths and weaknesses from the Critic
module are particularly useful when combined with the Fuser module, helping guide generation fusion for a single layer

17

An Architecture Search Framework for Inference-Time Techniques

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R.

Raw
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Best Open-Source 70B+ Model, Sampled Once 1 55.0% ±0.4 44.7% ±0.5 37.1% ±0.6 45.6% ±0.5 58.7% ±0.2 86.5% ±0.3 84.5% ±0.6 22.5% ±0.3

Ensemble + Fuser 9 58.4% ±0.6 57.5% ±0.4 51.3% ±0.5 54.3% ±0.7 60.1% ±0.5 87.3% ±0.2 85.5% ±0.3 23.1% ±0.7
Ensemble + Critic + Fuser 10 60.9% ±0.3 58.7% ±0.6 65.8% ±0.3 58.8% ±0.4 61.7% ±0.5 87.4% ±0.3 87.2% ±0.5 24.9% ±0.4

A
bl

at
io

ns

Ensemble + Ranker 9 52.5% ±0.7 54.7% ±0.5 47.6% ±0.4 50.5% ±0.6 58.7% ±0.3 86.8% ±0.4 80.4% ±0.4 24.1% ±0.4
Ensemble + Verifier 24 53.2% ±0.5 56.2% ±0.3 50.2% ±0.7 52.4% ±0.3 55.9% ±0.5 85.6% ±0.2 85.2% ±0.7 25.3% ±0.5
Ensemble + Unit Test Gen./Eval. 18 51.5% ±0.4 54.4% ±0.6 49.4% ±0.5 46.1% ±0.8 55.2% ±0.4 86.0% ±0.3 85.2% ±0.5 24.6% ±0.6
Ensemble + Ranker + Fuser 10 62.5% ±0.8 60.3% ±0.4 63.6% ±0.6 57.2% ±0.5 59.7% ±0.2 87.6% ±0.3 85.3% ±0.6 24.0% ±0.2
Ensemble + Verifier + Fuser 25 60.5% ±0.3 59.4% ±0.7 58.7% ±0.3 59.2% ±0.4 68.3% ±0.3 87.5% ±0.2 86.7% ±0.4 26.3% ±0.6
Ensemble + Unit Test Gen./Eval. + Fuser 17 61.4% ±0.6 58.5% ±0.5 55.1% ±0.4 56.4% ±0.7 63.9% ±0.3 86.9% ±0.3 86.4% ±0.8 28.0% ±0.6
Ensemble + Critic + Verifier + Fuser 25 61.3% ±0.5 60.0% ±0.3 61.0% ±0.7 59.5% ±0.3 65.8% ±0.4 87.8% ±0.4 86.1% ±0.3 26.8% ±0.3
Ensemble + Critic + Ranker + Fuser 11 64.7% ±0.4 62.6% ±0.6 72.4% ±0.5 60.9% ±0.6 66.8% ±0.4 88.3% ±0.2 87.3% ±0.5 25.5% ±0.3

Table 5: Impact of Different Compositions of ARCHON’s Inference-Time Techniques: We see increased task performances
from adding new LLM components to ARCHON. For CodeContests, we find that there is a single model (Llama 3.1 405B
Instruct) that performs considerably better than the rest of the LLMs studied, making it more effective leverage additional
model sampling (Table 1). For our ensemble, we use the best 8 open-source 70B+ models for the task (Table 29). For our
fuser, critic, ranker, and verifier components, we use the best fuser model found for the task (Table 29). For each evaluation
benchmark, we explain its configuration in Table 22 and Section 4.1. The standard error numbers were calculated from 10
independent evaluation runs.

and even useful when placed between multiple fusion layers (on average 3.2 percentage point boost across benchmarks in
Figure 4). The Critic module was also effective with the Ranker module, providing additional information for comparing
candidate responses (Figure 6) and leading to a 5.9 percentage point increase, on average (Table 5).

A.3.4. RANKER

Utility: From our results in Table 5, Figure 6, and Figure 7, we found the Ranker to be most effective for instruction-
following tasks, where pair-wise comparisons of answers focus on style and adherence to the prompt. To examine the
candidate selection improvement provided by candidate ranking, we compare three approaches to the Ranker: (1) random
selection of candidate generation, (2) oracle selection of candidate generation, and (3) the top-ranked candidate selected
by our Ranker. For MT Bench and Arena-Hard-Auto, we find that the ranker improves generation output quality by 3.8%
compared to random candidate selection and performs within 2.7% of oracle selection (Figure 6).

Component Interactions: Based on our benchmark results in Table 5, the Ranker pairs well with the Critic module; the
provided strengths and weaknesses helps guide ranking, particularly for instruction-following tasks, improving performance
by 5.9 percentage points, on average. Furthermore, the Ranker was also effective when paired with the Fuser; the filtered
list of candidate responses helped improve the final condensed response produced by the Fuser by 3.8 percentage points,
on average (Figure 7). When paired with the Verifier and Unit Test Generator, the Ranker had neutral effects; performances
changed marginally, either positively or negatively by 1-2 percentage points (Table 5).

Overall, our findings demonstrate the value of added Rankers for instruction-following and reasoning tasks when paired
with Fusers. We find that when Rankers are used alone with an ensemble of Generators, their performance lags behind the
10-sample best single model configuration by 3.0 percentage points, on average (Table 5). Additionally, our findings show
the importance of building better rankers for more complex reasoning tasks, such as math and coding, which is a challenge
also raised by (Brown et al., 2024).

A.3.5. VERIFIER

Utility: The Verifier was most effective for the reasoning benchmarks explored in Table 5. When just using a 70B+
Generator ensemble with Verifier module after generation, the ARCHON configuration lagged behind the ARCHON ensemble
and fuser configuration by 1.5 percentage points, on average, across all benchmarks explored. This suggests that the Verifier
is most effective when combined with other inference-time techniques.

Component Interactions: As noted in Section A.3.2, the Verifier augmented the performance of the Critic and Fuser on
reasoning tasks (e.g. Arena-Hard-Auto, MixEval, MixEval-Hard), boosting performance by 3.7 percentage points, on average,
when combined together with these modules. Overall, the Verifier is most powerful when augmenting additional components

18

An Architecture Search Framework for Inference-Time Techniques

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 44.2% ±0.6 57.8% ±0.5 48.1% ±0.7 63.4% ±0.3 87.5% ±0.2 82.1% ±0.4 17.9% ±0.3

Ensemble + Fuser 11 53.7% ±0.3 59.5% ±0.6 49.7% ±0.5 65.5% ±0.2 82.0% ±0.3 81.0% ±0.6 16.0% ±0.4
Ensemble + Critic + Fuser 12 56.1% ±0.7 59.7% ±0.4 53.9% ±0.6 67.4% ±0.4 82.0% ±0.2 82.3% ±0.5 18.9% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 47.6% ±0.4 49.7% ±0.5 45.5% ±0.4 63.3% ±0.3 81.6% ±0.4 77.3% ±0.7 17.9% ±0.5
Ensemble + Verifier 11 48.4% ±0.5 51.2% ±0.7 47.7% ±0.8 61.4% ±0.2 80.5% ±0.3 75.5% ±0.3 23.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 46.8% ±0.8 49.3% ±0.3 41.2% ±0.5 60.2% ±0.4 80.7% ±0.2 78.9% ±0.8 24.0% ±0.7
Ensemble + Ranker + Fuser 12 58.0% ±0.2 60.1% ±0.6 52.2% ±0.3 65.0% ±0.3 82.0% ±0.4 82.1% ±0.4 18.0% ±0.3
Ensemble + Verifier + Fuser 12 55.8% ±0.6 54.2% ±0.4 60.3% ±0.7 67.0% ±0.2 82.5% ±0.3 83.1% ±0.6 22.4% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 56.5% ±0.3 61.4% ±0.5 51.6% ±0.4 67.7% ±0.4 81.7% ±0.2 84.3% ±0.5 25.4% ±0.6
Ensemble + Critic + Verifier + Fuser 13 56.6% ±0.7 62.0% ±0.3 55.0% ±0.6 68.5% ±0.3 82.7% ±0.4 85.7% ±0.3 22.2% ±0.4
Ensemble + Critic + Ranker + Fuser 13 60.0% ±0.4 62.8% ±0.6 56.2% ±0.5 69.4% ±0.2 88.5% ±0.3 87.0% ±0.7 18.5% ±0.5

Table 6: ARCHON Component Compositions with GPT-4o: The ensemble uses generates 10 samples for the given query.
The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 32.1% ±0.7 38.5% ±0.5 30.4% ±0.6 45.2% ±0.3 69.5% ±0.2 72.3% ±0.5 10.5% ±0.6

Ensemble + Fuser 11 44.2% ±0.3 43.0% ±0.6 40.2% ±0.4 46.0% ±0.4 73.0% ±0.3 70.5% ±0.7 6.0% ±0.4
Ensemble + Critic + Fuser 12 46.6% ±0.5 44.2% ±0.4 44.4% ±0.7 47.9% ±0.2 73.0% ±0.4 72.5% ±0.3 8.4% ±0.5

A
bl

at
io

ns

Ensemble + Ranker 11 38.1% ±0.6 40.2% ±0.7 36.0% ±0.5 43.8% ±0.3 72.1% ±0.2 66.2% ±0.6 7.5% ±0.4
Ensemble + Verifier 11 38.9% ±0.4 41.7% ±0.3 38.2% ±0.8 41.9% ±0.4 71.0% ±0.3 68.5% ±0.4 19.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 37.3% ±0.8 39.8% ±0.6 31.7% ±0.3 40.7% ±0.2 71.2% ±0.4 69.8% ±0.8 22.0% ±0.3
Ensemble + Ranker + Fuser 12 48.0% ±0.2 45.6% ±0.5 42.7% ±0.6 45.0% ±0.3 73.0% ±0.2 70.1% ±0.5 8.0% ±0.6
Ensemble + Verifier + Fuser 12 46.3% ±0.5 44.7% ±0.4 45.0% ±0.4 50.5% ±0.4 73.0% ±0.3 71.3% ±0.3 18.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 47.0% ±0.3 43.9% ±0.7 42.1% ±0.7 48.2% ±0.2 72.2% ±0.4 73.1% ±0.6 23.5% ±0.4
Ensemble + Critic + Verifier + Fuser 13 47.1% ±0.7 46.0% ±0.3 45.0% ±0.5 52.4% ±0.3 73.2% ±0.5 74.1% ±0.4 18.4% ±0.7
Ensemble + Critic + Ranker + Fuser 13 50.5% ±0.4 48.3% ±0.6 46.7% ±0.3 55.1% ±0.4 73.7% ±0.3 76.4% ±0.5 8.1% ±0.5

Table 7: ARCHON Component Compositions with GPT-4o-mini: The ensemble uses generates 10 samples for the given
query. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 N/A 52.7% ±0.4 81.4% ±0.6 68.7% ±0.3 89.1% ±0.2 83.5% ±0.5 12.5% ±0.3

Ensemble + Fuser 11 N/A 53.0% ±0.6 83.2% ±0.4 69.5% ±0.2 89.0% ±0.3 81.8% ±0.6 17.0% ±0.4
Ensemble + Critic + Fuser 12 N/A 54.2% ±0.3 85.4% ±0.7 70.9% ±0.4 89.5% ±0.2 82.6% ±0.4 19.4% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 N/A 50.2% ±0.5 85.7% ±0.5 63.8% ±0.3 82.1% ±0.4 80.2% ±0.7 18.5% ±0.5
Ensemble + Verifier 11 N/A 51.7% ±0.7 78.2% ±0.3 60.9% ±0.2 81.0% ±0.3 80.1% ±0.3 21.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 N/A 49.8% ±0.4 71.7% ±0.8 59.0% ±0.2 81.2% ±0.2 80.9% ±0.8 22.0% ±0.7
Ensemble + Ranker + Fuser 12 N/A 55.6% ±0.5 82.7% ±0.4 65.0% ±0.3 89.0% ±0.4 82.4% ±0.4 19.0% ±0.3
Ensemble + Verifier + Fuser 12 N/A 54.7% ±0.3 85.0% ±0.6 70.5% ±0.2 89.3% ±0.3 84.1% ±0.6 21.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 N/A 53.9% ±0.6 82.1% ±0.5 68.2% ±0.4 89.2% ±0.2 82.0% ±0.5 23.5% ±0.6
Ensemble + Critic + Verifier + Fuser 13 N/A 56.0% ±0.4 85.0% ±0.3 71.0% ±0.3 89.4% ±0.4 83.1% ±0.3 21.4% ±0.4
Ensemble + Critic + Ranker + Fuser 13 N/A 58.3% ±0.5 86.7% ±0.7 73.0% ±0.2 89.7% ±0.3 85.3% ±0.7 19.1% ±0.5

Table 8: ARCHON Component Compositions with Claude 3.5 Sonnet: The ensemble uses generates 10 samples for the
given query. The standard error numbers were calculated from 10 independent evaluation runs.

19

An Architecture Search Framework for Inference-Time Techniques

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 35.0% ±0.5 42.0% ±0.6 36.8% ±0.7 64.6% ±0.2 73.2% ±0.3 74.3% ±0.4 10.0% ±0.5

Ensemble + Fuser 11 48.2% ±0.3 47.0% ±0.4 44.2% ±0.5 66.5% ±0.3 77.0% ±0.2 75.1% ±0.7 10.8% ±0.3
Ensemble + Critic + Fuser 12 50.6% ±0.7 48.2% ±0.5 48.4% ±0.3 68.1% ±0.4 77.0% ±0.4 76.3% ±0.5 11.5% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 42.1% ±0.4 44.2% ±0.7 40.0% ±0.6 58.8% ±0.3 76.1% ±0.2 71.8% ±0.6 11.9% ±0.4
Ensemble + Verifier 11 42.9% ±0.6 45.7% ±0.3 42.2% ±0.8 57.9% ±0.2 75.0% ±0.3 70.5% ±0.4 12.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 41.3% ±0.8 43.8% ±0.6 35.7% ±0.4 55.7% ±0.4 75.2% ±0.2 74.1% ±0.8 13.0% ±0.3
Ensemble + Ranker + Fuser 12 52.0% ±0.2 49.6% ±0.5 46.7% ±0.7 60.0% ±0.3 77.0% ±0.4 75.0% ±0.5 12.0% ±0.6
Ensemble + Verifier + Fuser 12 50.3% ±0.5 48.7% ±0.4 48.7% ±0.5 67.5% ±0.2 77.0% ±0.3 77.4% ±0.3 10.5% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 51.0% ±0.3 47.9% ±0.7 46.1% ±0.6 64.2% ±0.4 76.2% ±0.2 78.3% ±0.6 14.3% ±0.4
Ensemble + Critic + Verifier + Fuser 13 51.1% ±0.7 50.0% ±0.3 49.0% ±0.4 68.0% ±0.3 77.2% ±0.4 77.8% ±0.3 10.0% ±0.7
Ensemble + Critic + Ranker + Fuser 13 54.5% ±0.4 52.3% ±0.6 50.7% ±0.3 70.4% ±0.2 77.7% ±0.3 80.5% ±0.5 11.5% ±0.5

Table 9: ARCHON Component Compositions with Claude-3-Haiku: The ensemble uses generates 10 samples for the
given query. The standard error numbers were calculated from 10 independent evaluation runs.

Figure 8: ARCHON’s Performance Exceeds Baselines across Token Budgets: Across different token budgets (Section
3.3), we compare ARCHON architectures against top-performing inference-time system baselines. The MoA architecture and
OpenAI’s o1 are static so they use the same number of tokens across budgets. The results were averaged over 10 independent
evaluation runs. ∗MATH and CodeContests use a subset of their test sets for evaluation (Section 4.1).

for tasks requiring verification of intermediate steps and the final response (Table 5). Therefore, the Verifier was less helpful
for instruction-following tasks (e.g. MT Bench and AlpacaEval) but more effective for reasoning tasks (e.g. Arena-Hard-Auto
and MixEval).

A.3.6. UNIT TEST GENERATOR AND EVALUATOR

Utility: The Unit Test Generator and Evaluator were most effective on reasoning and coding tasks, improving performance
on benchmarks that required more verification steps, such as Arena-Hard-Auto, MixEval, MixEval-Hard, MATH, and
CodeContests (Table 5). For the reasoning tasks, we found the unit test generator and evaluator to be most effective when
combined with other components. When the 70B+ ensemble of Generators was only combined with unit tests, it was less
effective for reasoning tasks like Arena-Hard-Auto and MixEval, lagging behind the ensemble and fuser configuration by
3.1 percentage points. This inspired us to look into other inference-time techniques combinations for unit test generation,
such as increased sampling and fusion. When we increased generation sampling and added unit test generation/evaluation
for CodeContests, we see a 56% boost in Pass@1 performance (Table 1), increasing from 17.9 to 29.3 Pass@1.

Component Interactions: When combined with the Fuser module, the Unit Test Generator and Evaluator improved
performance by 2.1 percentage points across the benchmarks explored (Table 5). The combined ensemble, Unit Test
Generator/Evaluator, and Fuser ARCHON configuration was most effective on the reasoning benchmarks, leading to a 2.5
percentage point boost, on average. For coding, the unit test generator and evaluator was most effective when combined
with the best performing Generator (using large sample counts) and a final Fuser (subsection 4.2).

20

An Architecture Search Framework for Inference-Time Techniques

Figure 9: ARCHON’s Performance Exceeds Baselines across Dollar per Query Budgets: Across different dollar per query
budgets (Section 3.3), we compare ARCHON architectures against top-performing inference-time system baselines. The
MoA architecture and OpenAI’s o1 are static so they use the same number of tokens across budgets. The results were averaged
over 10 independent evaluation runs. ∗MATH and CodeContests use a subset of their test sets for evaluation (Section 4.1).

<instruction here>.

Table 10: Generator Prompt

You have been provided with a set of responses with their individual critiques of strengths/weaknesses from various open-source models to the latest user query.
Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses
and their provided critiques of strengths/weaknesses, recognizing that some of it may be biased or incorrect. Your response should not simply replicate the
given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres
to the highest standards of accuracy and reliability.
Responses from models:
1. <response #1>
Critique: <critique #1>
2. <response #2>
Critique: <critique #2>
...
N. <response #N>
Critique: <critique #N>
<instruction here>

((a)) With Critiques

You have been provided with a set of responses from various open-source models to the latest user query. Your task is to synthesize these responses into a single,
high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect.
Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response
is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
1. <response #1>
2. <response #2>
...
N. <response #N>
<instruction here>

((b)) Without Critiques

Table 11: Fuser Prompt: Without and With Critiques

21

An Architecture Search Framework for Inference-Time Techniques

I will provide you with N responses, each indicated by a numerical identifier []. Rank the responses based on their relevance to the instruction: <instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Rank the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers, in descending order of relevance to
the instruction. The output format should be [] > [], e.g., [4] > [2]. Only respond with the ranking results, do not say any word or explain.

Table 12: Decoder-Based Ranking Prompt

You are a helpful assistant. I will provide you with N responses, each indicated by a numerical identifier (e.g., [1], [2], etc.). Rank the responses based on their relevance to the
instruction: <instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Evaluate the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers. For each response, start the critique
with the numerical identifier (e.g., [1]) followed by the strengths and weaknesses. You must include both strengths and weaknesses, even if there are more of one than the other.
At the end of each response’s analysis, include two new lines to separate the critiques. Do not include any preface or text after the critiques. Do not include any references to
previous critiques within a critique. Start with the analysis for the first response and end with the analysis for the last response. All of the N responses should be included and
evaluated using identifiers. Structure each response’s analysis as follows:
Strengths:
- <strength #1>
- <strength #2>
- <strength #n>
Weaknesses:
- <weakness #1>
- <weakness #2>
- <weakness #n>

Table 13: Critic Prompt

I will provide you with a response indicated by the identifier ’Response’. Provide reasoning for why the response accurately and completely addresses the instruction:
<instruction here>.
Response: <response>
Instruction: <instruction here>.
Provide the reasoning for the response above based on its relevance, completeness, and accuracy when compared to the instruction. Do not include any preface or text after the
reasoning.

Table 14: Verifier Prompt

Instruction Prompt: Given the following query, generate a set of N unit tests that would evaluate the correctness of responses to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the expected outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests as a list of strings (e.g., [’unit
test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

((a)) With Unit Test Cap

Instruction Prompt: Given the following query, generate a set of unit tests that would evaluate the correctness of responses to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the expected outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests as a list of strings (e.g., [’unit
test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

((b)) Without Unit Test Cap

Table 15: Unit Test Generator Prompt: With and Without Unit Test Cap

22

An Architecture Search Framework for Inference-Time Techniques

Instruction Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.
1. Unit Test #1: The blog post mentions at least two cultural experiences specific to Hawaii.
2. Unit Test #2: The blog post highlights at least three must-see attractions in Hawaii.
3. Unit Test #3: The tone of the blog post is engaging and uses descriptive language that would appeal to readers interested in travel.
4. Unit Test #4: The blog post includes factual information about Hawaii’s culture, such as local customs, festivals, or historical facts.
5. Unit Test #5: The blog post contains a clear narrative structure, including an introduction, main body, and a conclusion.

((a)) Instruction-Following Query

Instruction Prompt: Alice and Bob have two dice. They roll the dice together, note the sum of the two values shown, and repeat. For Alice to win, two consecutive
turns (meaning, two consecutive sums) need to result in 7. For Bob to win, he needs to see an eight followed by a seven. Who do we expect to win this game?
1. Unit Test #1: The response correctly identifies the winning condition for Alice (two consecutive sums of 7).
2. Unit Test #2: The response correctly identifies the winning condition for Bob (a sum of 8 followed by a sum of 7).
3. Unit Test #3: The response explains the probability of achieving two consecutive 7s when rolling two dice.
4. Unit Test #4: The response explains the probability of achieving an 8 followed by a 7 when rolling two dice.
5. Unit Test #5: The response provides a conclusion on who is more likely to win based on the probability analysis.

((b)) Reasoning Query

Table 16: Unit Test Examples

Given the following query, candidate response, and unit tests, evaluate whether or not the response passes each unit
test.
- In your evaluation, you should consider how the response aligns with the unit tests, retrieved documents, and
query.
- Provide reasoning before you return your evaluation.
- At the end of your evaluation, you must finish with a list of verdicts corresponding to each unit test.
- You must include a verdict with one of these formatted options: ’[Passed]’ or ’[Failed]’.
- Here is an example of the output format:
Unit Test #1: [Passed]
Unit Test #2: [Failed]
Unit Test #3: [Passed]
- Each verdict should be on a new line and correspond to the unit test in the same position.
- Here is the query, response, and unit tests for your evaluation:

Query: <instruction here>.

Candidate Response: <response>

Unit Tests:
Unit Test #1: <Unit Test #1>
Unit Test #2: <Unit Test #2>
...
Unit Test #N: <Unit Test #N>

Table 17: Unit Test Evaluator Prompt

A.4. Bayesian Optimization for ARCHON

A.4.1. ARCHON SEARCH SPACE AND OBJECTIVE

The ARCHON configuration space can be defined asX ={xg,xs,xf ,xr,xc,xv}where:

• xg∈ [1,10] : Number of generator models
• xs∈ [1,5] : Samples per generator (extends to [1,1000] for CodeContests)
• xf ∈ [1,4] : Number of fusion layers, including the final fusion layer at the end
• xr∈ [2,10] : Number of models per fusion layer, ranging from 2 to 10 increments of 2
• xc∈{0,1} : Whether to use critic and ranker layers before each fuser
• xv∈{0,1} : Whether to use verification layer before final fusion

The total search space initially contains 18,750 configurations (10·5·5(4−1) ·3=18,750), reduced to 9,576 after removing
invalid configurations where: 1) initial generations exceed fuser context window (24 candidates); and 2) single fuser layer
contains multiple fusers (xf =1 while xr≥2).

23

An Architecture Search Framework for Inference-Time Techniques

Let f(x) be the objective function evaluating an ARCHON configuration x∈X , defined as:

f(x)=Performance(x)−λ·Cost(x) (1)

where Performance(x) is the accuracy on a 20% sample of target tasks and Cost(x) represents inference compute usage.

A.4.2. OPTIMIZATION PROCESS

We describe the components of the Bayesian optimization search approach for ARCHON.

First, define H as a history of architectures and their resulting objective values, which we accumulate throughout the
optimization process. We use Expected Improvement (EI) as the acquisition function for determining how to select the next
architecture configuration to search:

EI(x;H)=E[max(0,f(x)−f(x+))], (2)

where f(x+) is the best-observed value of our objective so far for (x+,f(x+))∈H. We use a Gaussian Process model
as a surrogate model for approximating f(x).

We now describe the Bayesian optimization process. We first initialize the observation history H = ∅. For timestep
t=1,...,T , where T is the maximum number of iterations parameter, we do the following:

1. An architecture xt is selected using the acquisition function, xt=argmaxx∈X EI(x;H).
2. This architecture xt is evaluated, and we obtain f(xt).
3. We use f(xt) to update our acquisition function and the surrogate model using H←H∪(xt,f(xt)).

The process continues until either:

• A maximum number of iterations is reached, T
• Performance convergence: |f(xn+1)−f(xn)|<ϵ
• Budget exhaustion: Cost(x1,...,xn)>B

For ARCHON’s implementation, we initialize with 230-240 random configurations, as this was found to be optimal through
empirical testing. Additional samples beyond this point provide diminishing returns and are better allocated to configuration
search. For our implementation, we utilize the Bayesian Optimization python package for global optimization with Gaussian
processes.

This formulation allows ARCHON to efficiently explore the configuration space, requiring 88.5% fewer evaluations than
greedy search and 90.4% fewer than random search, with Bayesian optimization finding the best architectures in 96.0% of
iterations. Traditional greedy search methods may perform comparably for limited inference budgets (<20 calls), but Bayesian
optimization becomes increasingly effective as the search space and compute budget grow.

A.5. Bayes Optimization vs. Alternative Approaches

Search Techniques: Within the hyperparameter space, we explored three search algorithms for automating the development
of inference-time architectures:

1. Random Search: Randomly selects a combination of hyperparameters for our ARCHON architecture.
2. Greedy Search: Starting with a base ARCHON configuration, marginally changes each hyperparameter and test if it

improves performance or not. If it does, incorporate the change. If not, move on to the next hyperparameter.
3. Bayesian Optimization: Efficiently selects the most promising hyperparameter configurations for ARCHON by building

a probabilistic surrogate model and leveraging an acquisition function for hyperparameter selection (Snoek et al., 2012;
Nardi et al., 2019) (Section A.4).

To get our model ranking for the benchmark, we calculate the model ranking by testing each model individually on a 20%
sample of each dataset benchmark in the first stage of the search. To get our fusion model ranking for the benchmark, we
use the same approach, testing each model’s fusion performance with an ensemble of 10 randomly selected models from
the available set. From our experiments, we found that the best generator and fusion models could vary widely dataset to
dataset, making it beneficial to perform these rankings for new datasets (Table 29). For search, we use the same 20% sample
of each dataset that was used for evaluating generation and fusion, allowing us to guide architecture search with improved
evaluation speed while getting meaningful development signal.

24

https://github.com/bayesian-optimization/BayesianOptimization

An Architecture Search Framework for Inference-Time Techniques

Figure 10: Impact of Different Optimization Algorithms on ARCHON’s Architecture Search: On the benchmarks MT
Bench and Arena-Hard-Auto, we compare four approaches for finding the optimal inference-time architecture: random search,
greedy search, and Bayes Optimization. Bayes Optimization finds the optimal architecture in 88.5% less iterations compared
to greedy search and 90.4% less iterations compared to random search.

Comparing Search Algorithms: In Figure 10, we compare the effectiveness of each search algorithm on our explored
benchmarks. While random search guarantees the optimal ARCHON configuration, we found Bayesian optimization to be
most effective in terms of tradeoff between finding the optimal configurations and minimizing the number of configurations
tested. For 96.0% percent of the search iterations tested in Figure 10, we found that Bayesian optimization had the optimal
configuration amongst the four explored search algorithms. We use 230 initial samples for our Bayes Optimization architecture
search (Section A.4). Bayesian optimization also found the best architecture configuration in 88.5% less evaluations than
greedy search and 90.4% less evaluations than random search.

Bayesian Optimization Analysis: In Table 20, we explore how the number of initial testing points, the number of exploration
iterations, and the ARCHON inference call budget impacts the effectiveness of Bayesian optimization. Additional initial
testing points continue improving search efficacy up until 230-240 samples, where testing would be better delegated towards
configuration search. For lower inference call budgets with ARCHON (e.g. <20 inference calls), Bayesian optimization proved
less effective, performing more similarly to greedy search or random search given the limited search space (Table 21). Therefore,
Bayesian optimization is more effective for more open-ended ARCHON architecture search with larger inference call budgets
(e.g. >20 inference calls) whereas traditional component engineering might be better for more limited inference call budgets.

A.6. ARCHON Architecture Algorithms Comparisons

of Init.
Points

% of Total
Configs

Iter. till
Max. Config. Comb. Iter.

200 2.18% 353 553
210 2.29% 324 534
220 2.40% 301 521
230 2.51% 284 514
240 2.61% 261 501
250 2.72% 265 515
260 2.83% 256 516
270 2.94% 252 522

Table 18: MT Bench

of Init.
Points

% of Total
Configs

Iter. till
Max. Config.

Comb.
Iter.

200 2.18% 478 678
210 2.29% 431 641
220 2.40% 415 635
230 2.51% 382 612
240 2.61% 389 629
250 2.72% 385 635
260 2.83% 372 632
270 2.94% 368 638

Table 19: Arena-Hard-Auto

Table 20: Bayesian Optimization Hyperparameter Comparisons: On MT Bench and Arena-Hard-Auto, we compare
Bayesian optimization configurations for the number of initial sample points. We find that 230 to 240 initial sample points
minimizes the combined number of iterations (both initial sampling and exploring) to find the optimal configuration. For
the configurations explored, the total number of hyperparameter choices is 9,576.

25

An Architecture Search Framework for Inference-Time Techniques

Iterations to Convergence

Inference Budget 10 20 30 40 50

Random Selection 387 1152 2731 4359 5843
Greedy Search 343 984 2153 3045 4895

Bayes Optimization 254 386 452 515 589

Table 21: ARCHON Architecture Search Algorithms Comparison by Inference Call Budget: For our comparison, we
evaluate on MT Bench.

A.7. ARCHON Benchmarks and Results

Benchmark Example
Count

Reference
Model

Judge
Model Scoring Type Metric

AlpacaEval 2.0 805 GPT-4-Turbo GPT-4-Turbo Pairwise
Comparison

L.C. & Raw
Win Rates

Arena-Hard-Auto 500 Claude-3.5-Sonnet
GPT-4-0314 GPT-4-Turbo Pairwise

Comparison Win Rate

MT-Bench 80 Claude-3.5-Sonnet GPT-4-0314 Pairwise
Comparison

Adjusted
Win Rate

MixEval 2000 N/A N/A Ground Truth Accuracy

MixEval-Hard 500 N/A N/A Ground Truth Accuracy

MATH 200
(sampled from 5000) N/A N/A Ground Truth Pass@1

CodeContests 140
(non-visual queries) N/A N/A Ground Truth Pass@1

Table 22: Benchmark Overview: Evaluation configurations for AlpacaEval 2.0 (Li et al., 2023), Arena-Hard-Auto (Li et al.,
2024b), MT-Bench (Zheng et al., 2023), MixEval (Ni et al., 2024), MixEval Hard, MATH (Hendrycks et al., 2021), and
CodeContests (Li et al., 2022)

.

Figure 11: Performance Gains from Repeated Sampling, Ensembling, Ranking, and Fusing on Arena-Hard-Auto:
The ARCHON win-rate continues to grow significantly as we scale model sampling (left) or add additional models to the
generator ensemble (right), increasing by 9.3% and 18.5%, respectively. These best results are achieved by selecting the
top-5 responses and fusing them. The ensemble models are added based on their individual performance on this task, from
best to worse (Table 29). The oracle selection is the performance of picking the best answer generation out of all the generated
samples from the ensemble. The results were averaged over 10 independent evaluation runs.

26

An Architecture Search Framework for Inference-Time Techniques

Arena-Hard-Auto

Model / LLM System Score C.I.

Claude 3.5 Sonnet N/A N/A
GPT-4o 48.1% (-2.3, 1.8)

Llama 3.1 405B Instruct 28.4% (-2.7, 2.5)

O
pe

n
So

ur
ce

General-purpose
ARCHON Architecture 66.2% (-2.4, 2.2)

Task-specific
ARCHON Architectures 69.0% (-2.8, 2.5)

C
lo

se
d

So
ur

ce

General-purpose
ARCHON Architecture 70.5% (-2.5, 2.0)

Task-specific
ARCHON Architectures 74.4% (-2.3, 1.6)

A
ll

So
ur

ce

General-purpose
ARCHON Architecture 72.5% (-2.5, 1.8)

Task-specific
ARCHON Architectures 76.1% (-1.8, 2.2)

Table 23: ARCHON Results on Arena-Hard-Auto Results with Claude-3.5-Sonnet as Baseline Model: The baseline
model is Claude-3.5-Sonnet (default baseline model: GPT-4-0314) while the judge model is GPT-4-Turbo.

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 94.9 89.1 88.2 98.5 98.3 71.5 90.3

Claude 3.5 Sonnet 1 98.0 92.0 92.6 96 95.6 78.0 92.0

Llama 3.1 405B Instruct 1 98.2 87.9 89.6 91.5 95.8 73.2 89.6

General-purpose
ARCHON Architecture 29 98.3 94.8 94.6 98.1 97.3 82.1 94.2

Task-specific
ARCHON Architectures 34 98.2 96.7 95.6 98.5 98.8 84.2 95.7

Table 24: MixEval Results by Sub-Dataset: For the average computed, we do not introduce any weighting for each dataset.

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 72.3 70.5 70.2 94.4 80.0 53.5 73.5

Claude 3.5 Sonnet 1 87.3 75.5 79.3 82.5 80.0 74.6 79.9

Llama 3.1 405B Instruct 1 98.7 71.2 70.7 86.9 78.8 62.0 78.1

General-purpose
ARCHON Architecture 33 96.7 82.7 83.2 93.4 82.0 76.7 85.8

Task-specific
ARCHON Architectures 37 98.9 86.2 85.2 96.2 86.0 80.1 88.8

Table 25: MixEval-Hard Results by Sub-Dataset: For the average computed, we do not introduce any weighting for each
dataset.

27

An Architecture Search Framework for Inference-Time Techniques

GSM8K MMLU
Math

HumanEval
Python MBPP

Model Pass@1 Pass@1 Pass@1 Pass@1

GPT-4o 97.1% 84.8% 89.0% 87.5%

Claude 3.5 Sonnet 96.8% 90.9% 90.2% 88.9%

Llama 3.1 405B Instruct 95.9% 85.4% 90.2% 88.6%

Table 26: Additional Math and Code Benchmarks Explored

Datasets

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

Arena
Hard Auto

MixEval
Hard MixEval MATH∗

Judge Model GPT-4
0314

GPT-4
Turbo

GPT-4
Turbo

GPT-4
Turbo N/A N/A N/A

Reference Model Claude 3.5
Sonnet

GPT-4
Turbo

Claude 3.5
Sonnet

GPT-4
Turbo N/A N/A N/A

Model / LLM System Infer.
Calls W.R. L.C.

W.R.
Raw
W.R. W.R. W.R Acc. Acc. Pass

@1

GPT-4o - 2024-05-13 1 44.7% 57.5% 51.3% 48.1% 80.3% 63.6% 88.0% 84.5%
Claude 3.5 Sonnet 1 N/A 52.4% 40.6% N/A 80.9% 68.9% 89.7% 85.0%

Llama 3.1 405B Instruct 1 44.7% 40.3% 37.7% 28.4% 64.1% 66.2% 88.9% 83.5%

MoA 19 51.6% 65.1% 59.8% 52.2% 84.2% 62.5% 87.3% 82.0%
MoA Lite 7 45.6% 59.3% 57.0% 40.6% 87.8% 61.1% 87.1% 83.0%

O
pe

n
So

ur
ce

General-purpose
ARCHON Architecture 35 67.5% 63.0% 68.3% 66.2% 85.1% 65.5% 86.9% 86.5%

Task-specific
ARCHON Architectures 44 71.6% 66.7% 70.7% 69.0% 89.5% 67.5% 89.6% 90.5%

C
lo

se
d

So
ur

ce

General-purpose
ARCHON Architecture 32 73.1% 63.5% 69.1% 70.5% 85.8% 67.7% 88.2% 88.0%

Task-specific
ARCHON Architectures 40 77.5% 68.4% 72.1% 74.4% 90.2% 72.9% 90.4% 89.5%

A
ll

So
ur

ce

General-purpose
ARCHON Architecture 35 76.8% 65.8% 70.2% 72.5% 89.3% 70.1% 88.1% 90.0%

Task-specific
ARCHON Architectures 39 80.4% 67.6% 73.3% 76.1% 92.1% 72.9% 90.6% 93.5%

Table 27: ARCHON’s Strong Performance on the Complete Evaluation Datasets after ARCHON Architecture Optimiza-
tion: We find that ARCHON’s inference-time architectures consistently outperform single-call state-of-the-art LLMs, both
open-source and closed-source baselines, when evaluating on the complete benchmarks (Table 22). We explore two configura-
tions: architecture search for building custom ARCHON configurations for each individual benchmark and architecture search
for building a single general-purpose ARCHON configuration for all the benchmarks (Section 4.1). We find that a general
ARCHON configuration lags behind the custom ones by only 3.2 percentage points, on average, across our all-source settings,
which suggests the efficacy of general-purpose inference-time architectures created with our framework. For Arena-Hard-Auto,
we also include a configuration with Claude 3.5 Sonnet as a stronger reference model for comparison against ARCHON
inference-time architectures and to mitigate bias from GPT judges towards GPT generations. For MT Bench, we use a
GPT-4-0314 judge model instead of newer LLM judges to be consistent with previous results on this benchmark. For our
task-specific ARCHON architectures, we also provide the average inference calls across the given benchmarks. For our full-list
of models explored, please see Table 28. For MATH, we use a randomly sampled subset of size 200 for evaluation (Section 4.1;
Table 22). We include our ARCHON architecture results on the held-out 80% subset of each evaluation benchmark in Table 1.

28

An Architecture Search Framework for Inference-Time Techniques

MT Bench Alpaca Eval 2.0 Arena Hard Auto MixEval MixEval Hard MATH CodeContests

Models Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion

GPT-4o 44.7% 61.9% 57.5% 64.5% 48.1% 69.2% 88.0% 89.4% 63.6% 65.4% 82.0% 81.0% 17.9% 19.4%

GPT-4-Turbo 42.2% 63.1% 55.0% 65.8% 48.1% 61.9% 88.9% 89.0% 64.1% 64.4% 79.5% 73.5% 9.3% 14.2%

Claude 3
Opus 30.9% 57.2% 40.5% N/A 27.0% 47.9% 88.3% 88.2% 63.6% 64.0% 74.5% 74.0% 10.0% 12.5%

Claude 3.5
Sonnet N/A 71.9% 52.37% 63.6% N/A 73.2% 89.7% 89.3% 68.9% 69.5% 83.5% 86.5% 12.1% 15.5%

Qwen 2
72B Instruct 35.0% 59.7% 37.48% 56.0% 14.5% 49.5% 86.5% 87.5% 58.7% 61.1% 81.0% 78.5% 3.6% 5.2%

DeepSeek LLM
67B Instruct 18.4% 20.0% 17.8% 17.1% N/A N/A 79.2% N/A 42.5% N/A 57.0% N/A 5.7% N/A

Qwen 1.5
72B Chat 24.7% 46.3% 36.6% 55.7% 14.4% 36.4% 84.5% 82.5% 50.3% 52.2% 71.5% 67.5% 15.0% 13.9%

Qwen 1.5
110B Chat 34.4% 50.3% 43.6% 55.9% 21.9% 39.7% 85.3% 86.5% 51.8% 55.6% 67.0% 75.5% 3.6% 7.8%

Wizard 8x22B 53.8% 57.2% 44.7% 50.6% 45.6% 51.2% 83% 78.1% 54.3% 50.4% 76.0% 60.5% 7.1% 10.4%

Llama 3.1
8B Instruct 33.1% 45.9% 25.6% 34.9% 11.9% 28.6% 75.0% 57.5% 41.3% 46.5% 65.5% 60.5% 8.6% 7.8%

Llama 3.1
70B Instruct 45.0% 51.9% 35.6% 40.2% 23.8% 37.2% 85.7% 83.5% 61.1% 65.5% 74.0% 73.5% 20.7% 23.4%

Llama 3.1
405B Instruct 44.7% N/A 40.3% N/A 28.4% N/A 88.9% N/A 66.2% N/A 78.0% N/A 27.1% N/A

Table 29: ARCHON Generation and Fusion Performances for Single Models: For Alpaca Eval 2.0, we use the
length-controlled win rate (LC WR). For fusion, we gather one candidate from each of the top-10 generator models.

A.8. ARCHON LLM Analysis

Model Source Code Parameter
Count

Max Sequence
Length

GPT-4o (OpenAI et al., 2024) Closed-Source — 128K
GPT-4-Turbo (OpenAI et al., 2024) Closed-Source — 128K
Claude-3-Opus (Anthropic, 2024) Closed-Source — 200K

Claude-3.5-Sonnet (Anthropic, 2024) Closed-Source — 200K
Claude-3-Haiku (Anthropic, 2024) Closed-Source — 200K

Llama-3.1-70B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
Llama-3.1-405B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
DeepSeek LLM 67B Chat (Guo et al., 2024) Open-Source 67B 32k

Qwen2 72B Instruct (Qwen, 2024) Open-Source 72B 32k
Qwen1.5 110B Chat (Bai et al., 2023) Open-Source 110B 32k
Qwen1.5 72B Chat (Bai et al., 2023) Open-Source 72B 32k

Mixtral 8x22B v0.1 (Jiang et al., 2024) Open-Source 176B 32k
WizardLM 8x22B (Xu et al., 2024) Open-Source 176B 32k

dbrx-instruct (Databricks, 2024) Open-Source 132B 32k

princeton-nlp/Llama-3-Instruct-8B-SimPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-DPO (Meng et al., 2024) Open-Source 8B 8k

princeton-nlp/Llama-3-Instruct-8B-RDPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-IPO (Meng et al., 2024) Open-Source 8B 8k

Llama-3.1-8B-Instruct (Dubey et al., 2024) Open-Source 8B 8k
Qwen2-7B-Instruct (Qwen, 2024) Open-Source 7B 32k

Qwen/Qwen1.5-7B-Chat (Bai et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) Open-Source 7B 32k

cognitivecomputations/dolphin-2.2.1-mistral-7b (Hartford, 2024) Open-Source 7B 32k
microsoft/Phi-3-mini-4k-instruct (Abdin et al., 2024) Open-Source 4B 4k

HuggingFaceH4/zephyr-7b-beta (Tunstall et al., 2023) Open-Source 7B 32k
microsoft/Phi-3-small-8k-instruct (Abdin et al., 2024) Open-Source 7B 8k

snorkelai/Snorkel-Mistral-PairRM-DPO (Tran et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a) Open-Source 7B 32k

Table 28: Models Tested with ARCHON.

29

An Architecture Search Framework for Inference-Time Techniques

Jaccard Similarity (%)

Inference-Time
Architecture MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Best Open-Source 70B+ Model,
Sampled 8 Times + Fuser 45.3% 52.1% 48.4% 55.2% 58.9% 65.2% 63.7%

Ensemble (8 Top Models),
Sampled Once Each + Fuser 31.6% 34.1% 28.9% 38.6% 40.9% 57.1% 53.4%

Table 30: Jaccard Similarities between Candidates Responses and Fused Response by Benchmark: For the fuser, we
use the best-performing 70B+ model for each benchmark.

Figure 12: Fusion Layer Efficacy by Benchmark: From solely scaling the fusion layers, we see limited benefits across
the benchmarks explored but when we add other inference-time techniques, such as Critic and Ranker, we see increased
downstream performance as we continue scaling inference-time compute (Figure 4). We use an 8-model ensemble of the
top Generator models for each benchmark (Table 29). For our Fuser layers, we use the best Fuser model for the final fuser
layer (Table 29). For the intermediate layers, we use the top-8 Fuser models for each benchmark.

30

An Architecture Search Framework for Inference-Time Techniques

A.9. ARCHON Architectures

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72BPrompt Output

Generator

GPT-4o

Generator

Llama 3.1 405B

Generator

Claude 3.5 Sonnet

Generator

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

1

2

10

3

1

2

8

3

1

2

6

3

1

2

4

3

Figure 13: All-Source Generalizable ARCHON Architecture: Using ARCHON’s architecture search, we found this
all-source ARCHON configuration to be effective across the benchmarks explored (except for CodeContests). In the diagram
above, we use 10 SOTA all-source LLMs to create multiple successive layers of critic, ranker, and fusers, with each successive
fuser layer having less fusers to produce a "funneling" effect as the candidate generations are processed. The layers of critic,
ranker, and fuser led to better candidate generations through iterative critique and rewriting. Each of the initial Generator
models were sampled once.

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405BPrompt Output

Generator

Llama 3.1 405B

Generator

Qwen1.5-110B

Generator

DRBX Instruct

Generator

WizardLM2

8x22B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Mixtral 8x7B

Fuser

Llama 3.1 405B

Fuser

DRBX-Instruct

Fuser

Qwen2-72B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Qwen2-72B

Fuser

Llama 3.1 405B

Fuser

Mixtral 8x22B

Fuser

Qwen2-72B

Fuser

Qwen1.5-110B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Qwen1.5-110B

Fuser

Mixtral 8x22B

Fuser

Llama 3.1 70B

Fuser

Qwen2-72B

1

2

10

3

1

2

8

3

1

2

6

3

1

2

4

3

Figure 14: All-Source ARCHON Architecture for Instruction-Following and Reasoning: Using ARCHON’s architecture
search, we found this all-source ARCHON configuration to be effective across the instruction-following benchmarks explored
(MT Bench, AlpacaEval 2.0, ArenaHardAuto).

Generator

GPT-4o

Generator

Llama 3.1 405B

Generator

Qwen 2.5 72B

Generator

Wizard 8x22B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Qwen 2.5 72B

Fuser

Wizard 8x22B

Critic

Claude 3.5 Sonnet

Ranker

Claude 3.5 Sonnet

Fuser

Claude 3.5 Sonnet

Prompt OutputVerifier

GPT-4o

n = 5 samples each

Figure 15: All-Source ARCHON Architecture for Math: Using ARCHON’s architecture search, we found this all-source
ARCHON configuration to be effective across the math benchmarks explored (MATH).

31

An Architecture Search Framework for Inference-Time Techniques

Claude 3.5

Critic

Critic

GPT-4o

Critic

Model[i]

Unit Test
Evaluator

GPT -4o

Unit Tester
Generator

GPT-4o

Generator

GPT-4o

Prompt Output

Generator

GPT-4o

Generator

GPT-4o

1

5

Generator

GPT-4o

3

Fuser

Model[i]

1

Fuser

Model[i] 5

Model Used Per Round

 Claude 3.5 Sonne
 Llama 405
 GPT-4
 Claude 3.5 Sonnet

4 Rounds

Figure 16: All-Source ARCHON Architecture for Coding: Using ARCHON’s architecture search, we found this all-source
ARCHON configuration to be effective across the coding benchmarks explored (CodeContests).

A.10. ARCHON by Inference Compute Budget, Model Size, and Cost

Datasets

Number of
Inference Calls

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

70
B

+
M

od
el

s

1 55.0% 44.7% 45.6% 86.5% 61.1%
10 52.5% 50.6% 45.6% 86.5% 63.9%
20 65.3% 60.4% 59.4% 89.0% 65.0%
30 69.2% 64.5% 69.0% 89.5% 67.5%
40 69.5% 66.7% 69.0% 89.5% 67.5%
50 71.6% 66.7% 69.0% 89.5% 67.5%

C
lo

se
d

M
od

el
s

1 45.0% 57.5% 48.1% 88.9% 68.9%
10 57.1% 63.2% 68.4% 90.0% 70.1%
20 59.4% 66.5% 75.5% 90.6% 70.5%
30 70.2% 68.8% 77.4% 90.6% 72.9%
40 75.5% 68.8% 77.4% 90.6% 72.9%
50 80.4% 68.8% 77.4% 90.6% 72.9%

Table 31: ARCHON with Different Inference Budgets: For AlpacaEval 2.0, we use the length-controlled win rate (LC WR).

Datasets

Models / LLM Systems MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

Best 7B Model, 1-Sample 15.7% 41.0% 18.3% 76.2% 46.1%

Best 7B Model - 10-Sample + Ranking 16.5% 43.2% 18.9% 78.4% 48.5%

10-Model, 1-Sample Ensemble + Ranking 22.4% 48.2% 25.6% 81.5% 52.9%

10-Model, 1-Sample Ensemble + Fusion 14.3% 39.4% 17.5% 73.2% 45.2%

10-Model, 1-Sample Ensemble
+ Top-5 Ranking + Fusion 15.9% 41.2% 18.0% 75.1% 46.9%

10-Model, 1-Sample Ensemble
+ Critic + Fusion 10.5% 38.4% 16.5% 71.4% 42.5%

Table 32: ARCHON with 7B Open-Source Models: For AlpacaEval 2.0, we use the length-controlled win rate (LC WR).
We use open-source 7B models for testing from Table 28.

32

An Architecture Search Framework for Inference-Time Techniques

Models Cost ($) per
Million Input Tokens

Cost ($) per
Million Output Tokens

Claude 3.5 Sonnet $3 $15

Claude 3.0 Opus $15 $75

GPT-4o $5 $15

GPT-4-Turbo $10 $30

TogetherAI - Llama 3.1 405B Instruct $5 $5

TogetherAI - Llama 3.1 70B Instruct $0.88 $0.88

TogetherAI - Other Models $0.90 $0.90

Table 33: Model API Costs as of November 2024

Cost ($) per Query for Benchmark

Model /
LLM System MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Claude 3.5 Sonnet 0.0305 0.0171 0.0212 0.0231 0.0226 0.0325 0.384

GPT-4o 0.0481 0.0236 0.0324 0.0357 0.0361 0.514 0.562

Llama 3.1 405B Instruct 0.0281 0.0174 0.0185 0.0212 0.0205 0.305 0.372

General Purpose
ARCHON Architecture 0.364 0.189 0.195 0.284 0.252 0.375 0.461

Task Specific
ARCHON Architecture 0.401 0.210 0.221 0.295 0.265 0.425 0.448

Table 34: ARCHON Costs per Query by Benchmark

33

	Introduction
	Related Work
	Inference-Time Techniques for Archon
	LLM Components of Archon
	Combining the LLM Components
	Architecture Search Algorithms

	Experiments
	Benchmarks and Models
	Archon vs. Closed-Source LLMs and Other Inference-Time Architectures
	Archon by Task
	Discussion

	Appendix
	Table of Contents
	Archon LLM Components
	Utilities and Interactions of LLM Components
	Generator
	Fuser
	Critic
	Ranker
	Verifier
	Unit Test Generator and Evaluator

	Bayesian Optimization for Archon
	Archon Search Space and Objective
	Optimization Process

	Bayes Optimization vs. Alternative Approaches
	Archon Architecture Algorithms Comparisons
	Archon Benchmarks and Results
	Archon LLM Analysis
	Archon Architectures
	Archon by Inference Compute Budget, Model Size, and Cost

