
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING COMPACT REGULAR DECISION
PROCESSES USING PRIORS AND CASCADES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we study offline Reinforcement Learning (RL), and extend the previous
work on learning Regular Decision Processes (RDPs), which are a class of non-
Markovian environments, where the unknown dependency of future observations
and rewards from the past interactions can be captured by some hidden finite-state
automaton. We utilise the language metric introduced by Deb et al. (2025), and
introduce a novel algorithm to learn a significantly more compact RDP with cycles,
which are crucial for scaling to larger, more complex environments. Key to our
results is a novel notion of priors for automaton learning, that allows us to exploit
prior domain-related knowledge, used to factor out of the state space any feature
that is known a priori. We validate our approach experimentally and provide
a Probably Approximately Correct (PAC) analysis of our algorithm, showing it
enjoys a sample complexity polynomial in the problem parameters.

1 INTRODUCTION

Reinforcement Learning (RL) is a family of algorithms for learning behaviour from repeated in-
teractions with a stochastic dynamical system. A key assumption behind RL algorithms is the
Markov property, which implies that the current observation and action are sufficient to predict the
future evolution of the system (Puterman, 1994; Sutton et al., 1998). Though the Markov property
is the basis for many efficient algorithms, there exist many applications –e.g., in robotics– where
the Markov property does not hold. A common approach to deal with such cases is to consider a
hidden state (Whitehead and Lin, 1995) to account for missing information. This is most notably
studied in the context of Partially Observable Markov Decision Processes, or POMDPs (Kaelbling
et al., 1998). Although the POMDP framework offers very expressive representations and is of great
relevance in practice, it suffers from intractability in both planning and learning, and consequently
the corresponding learning algorithms become impractical in large problems, unless some restrictive
assumptions are imposed. An alternative recently proposed framework is Regular Decision Process,
or RDP (Brafman and De Giacomo, 2019; 2024), wherein the past interaction history is compactly
represented by a finite state automaton. In essence, an RDP is a special POMDP, whose hidden
dynamics evolve according to some (unobservable) finite-state automaton featuring a controlled form
of stochasticity, ensuring key favourable properties. Although RDPs by construction are less generic
compared to POMDPs, they are computationally and statistically tractable. This has led to a growing
interest in developing RDP learning algorithms from trajectories (Abadi and Brafman, 2020; Ronca
and De Giacomo, 2021; Ronca et al., 2022; Cipollone et al., 2023; Deb et al., 2025).

We investigate offline RL in episodic RDPs, where the goal is to find a near-optimal policy from a
dataset pre-collected using a behaviour policy. This problem was first studied by Cipollone et al.
(2023), where a first algorithm with provable PAC-type performance guarantee in terms of sample
complexity was proposed. Despite its appeal, this bound may imply a sample complexity growing
exponentially in episode length in some problem instance. This was remedied in (Deb et al., 2025)
through statistical tests defined via a novel metric called the language metric, specifically designed
for traces, borrowing ideas from the theory of formal languages. However, the models presented in
these papers consider an unstructured (i.e., atomic) hidden state modelling, which are incompetent to
leverage some prior information one has about the structure of the hidden states.

In this paper, we extend previous work for RDP learning along two dimensions. The first contribution
is to introduce priors for automaton learning. A prior is an automaton that incorporates prior

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

knowledge about a problem. Given one or more priors, an RDP can be expressed as the cascade
composition of the prior automata and a domain-specific automaton. This amounts to factoring out
the features provided by the priors, and hence learning compact domain-specific automata. Notable
priors include the timestep prior to factor out timesteps from the state space while still considering
them, the Markov prior to specify that the previous observation may be relevant and avoid learning to
remember it (notably this ensures that the domain-specific automaton will be a trivial single-state
automaton if the RDP is in fact an MDP), and spatial priors that provide a description of the physical
space of the domain and relieve the domain-specific automaton from having to learn it.

The second contribution is to allow cycles in the learned domain-specific automaton. In previous
work the RDP states are organized in layers, one for each timestep. Introducing cycles can make the
learned automaton significantly more compact, especially for episodic problems with long horizons.
We identify conditions under which RDPs with cycles can be correctly learned, and demonstrate in
experiments that the learned RDPs are often much smaller than in previous work. To learn RDPs
with cycles our algorithm has to compare suffix distributions with different lengths, which is possible
by exploiting the language metric (Deb et al., 2025). In addition to experiments, we perform a
theoretical analysis of the sample complexity of our algorithm, showing it enjoys a sample complexity
polynomial in the problem parameters.

1.1 RELATED WORK

Offline RL under the Markov property is by now well-established, and there exists a large and growing
literature covering a broad range of MDP settings. In many settings, algorithms with optimal sample
complexity bounds exist. To mention some notable studies, we refer to (Chen and Jiang, 2019; Jin
et al., 2021; Li et al., 2024b; Rashidinejad et al., 2021; Uehara and Sun, 2022). Research on decision
making under non-Markov assumption dates back to, at least, three decades ago; some early attempts
include (Schmidhuber, 1990; Whitehead and Lin, 1995; Bacchus et al., 1996; Bakker, 2001). A
classical and effective approach to tackle non-Markov problems was through considering hidden
states (Whitehead and Lin, 1995), which related such problems to partially-observable problems.
We discuss below the most relevant lines of research that can handle non-Markov problems, while
excusing ourselves to give a through overview of all related developments.

POMDPs, PSRs, and State Representation There exist at least two major lines of research
to handle hidden information states in the context of partial observability: POMDPs and state
representations. Since RDPs are special POMDPs –with underlying dynamics evolving according
to some finite state automaton–, RL algorithms for POMDPs also apply to RDPs. Unfortunately,
tractable learning for general POMDPs remain to be an open problem, and to the best of our
knowledge has only been achieved in subclasses such as ergodicity (Azizzadenesheli et al., 2016),
undercomplete POMDPs (Guo et al., 2022; Jin et al., 2020), few-step decodability (Efroni et al.,
2022; Krishnamurthy et al., 2016), or weakly-revealing (Liu et al., 2022). In this context, Hahn et al.
(2024) introduces a generalization of RDPs with ω-regular lookahead called Omega-Regular Decision
Processes (ODPs) and provide classical complexity results. In the case of state representation, the
most notable notion is Predictive State Representation (PSR) (Bowling et al., 2006; James and Singh,
2004; Kulesza et al., 2015; Singh et al., 2003), which provide general descriptions of dynamical
systems; they capture POMDPs and therefore RDPs. However, existing work on PSRs (Zhan et al.,
2023) rely on PSR-specific parameters and are therefore not directly applicable to RDPs.

Reward Machines and RDPs Some early work on non-Markov decision making restrict attention
to non-Markov rewards, while assuming Markov dynamics. This is, for instance, considered in
(Bacchus et al., 1996), where the reward function is specified in a temporal logic of the past.
Revisiting this setting has led to some fast growing lines of research that notably include reward
machines (Toro Icarte et al., 2018) and temporal logics of the future on finite traces (Brafman et al.,
2018; Giacomo et al., 2020). A reward machine is a finite automaton (or transducer) used to specify a
non-Markovian reward function. Reward machines have been introduced in (Toro Icarte et al., 2018)
along with an RL algorithm that assumes the reward machine to be known. There is a fast growing
line of research on reward machines in a variety of settings; see, e.g., (Gaon and Brafman, 2020; Xu
et al., 2020; Dohmen et al., 2022; Furelos-Blanco et al., 2023; Varricchione et al., 2024; Parać et al.,
2024; Li et al., 2024a; Bourel et al., 2023). Reward machines have been generalised so as to predict
observations as well (Toro Icarte et al., 2019; Hasanbeig et al., 2021), which makes them equivalent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

to RDPs—as mentioned above. Although some of these algorithms tackle the case of unobservable
reward machines, they do not report performance guarantees on the proposed methods. Following
their introduction by Brafman and De Giacomo (2019), RDPs were studied in the RL setting; in the
online RL setting, some attempts include (Ronca and De Giacomo, 2021; Ronca et al., 2022; Abadi
and Brafman, 2020). They are recently studied in the offline RL setting –the same setting considered
here– following the work by Cipollone et al. (2023).

Feature MDPs Hutter (2009) introduces Φ-MDPs, a generalization of POMDPs with feature maps.
Concretely, the map Φ partitions the history space, and associates a state with each partition, and
can be represented by trees, e.g. suffix trees (McCallum, 1996). As explained by Ron et al. (1993),
a finite state automaton can be used to represent a prediction suffix tree, considering the nodes of
the tree as the states of the automaton, where each state of the automaton is determined by the last k
inputs. In RDPs, the function τ̄(h) is implicitly defined as a map from histories to RDP states, which
is the RDP equivalent of the map Φ in feature MDPs.

2 PRELIMINARIES

Notation We use ∆(X) to denote the set of probability distributions over a set X . A conditional
probability distribution is a function p : X → ∆(Y) whose elements equal p(y | x). We use I(E)
to denote the indicator function of an event E. Given integers m and n such that 0 ≤ m ≤ n, let
Jm,nK := {m, . . . , n} and JnK := J1, nK. The notation Õ(·) hides poly-logarithmic terms.

2.1 LANGUAGE METRICS

The notion of language metric has been introduced by Deb et al. (2025), and here we present a close
variant. Let Γ be an alphabet, i.e. a finite set of symbols. Given a natural number ℓ ∈ N, let Γℓ be the
set of strings of symbols in Γ of length ℓ, and let Γ+ = ∪∞ℓ=1Γ

ℓ be the set of non-empty strings of
any length. The empty string is denoted ε. A language X ⊆ Γ+ is a subset of non-empty strings. Let
X be a set of languages. The language metric in X is a function LX : ∆(Γ+)×∆(Γ+) → R, on
pairs of probability distributions p, p′ ∈ ∆(Γ+), defined as LX (p, p′) := maxX∈X |p(X)− p′(X)|,
where the probability of a language is p(X) :=

∑
x∈X p(x).

To learn cyclic automata in episodic RDPs we necessarily have to compare probability distributions
over strings of different lengths. To do so we exploit the fact that the language metric LX is a
pseudo-metric: two different distributions p ̸= p′ may satisfy LX (p, p′) = 0. We are therefore
interested in languages that are invariant to the string length. One such example is the family of
languages that contain some pattern, e.g. any string that contains a given symbol γ ∈ Γ. Even if p
and p′ assign non-zero probability to strings of different lengths, we may still have LX (p, p′) = 0.

2.2 EPISODIC DECISION PROCESSES AND REGULAR DECISION PROCESSES

An episodic decision process is a tuple P = ⟨O,A,R, T̄ , R̄,H, ν⟩, where O is a finite set of
observations, A is a finite set of actions, R ⊂ [0, 1] is a finite set of rewards, H > 0 is an integer
horizon, and ν ∈ ∆(O) is an initial distribution on observations. We frequently consider the
concatenationAO of the setsA andO. LetHt = (AO)t+1 be the set of histories of length t+1, and
let hm:n ∈ Hn−m denote a history from time m to time n, both included. Each action-observation
pair ao ∈ AO in a history has an associated reward label r ∈ R, which we write ao/r ∈ AO/R
with the understanding that the slash corresponds to string concatenation. A trajectory e0:T is the full
history generated until (and including) time T .

We assume that a trajectory e0:T can be partitioned into episodes eℓ:ℓ+H ∈ HH of length H + 1. In
each episode e0:H , a0 is a dummy action and o0 is sampled from the distribution ν. The transition
function T̄ : H×A → ∆(O) and the reward function R̄ : H×A → ∆(R) depend on the current
history in H = ∪Ht=0Ht. Given P, a generic policy is a function π : (AO)∗ → ∆(A) that maps
trajectories to distributions over actions. The value function V π : J0, HK×H → R of a policy π is a
mapping that assigns real values to histories. For h ∈ H, it is defined as V π(H,h) := 0 and

V π(t, h) := E
[∑H

i=t+1 ri

∣∣∣h, π] , ∀t ∈ J0, HK, ∀h ∈ Ht.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

For brevity, we write V π
t (h) := V π(t, h). The optimal value function V ∗ is defined as V ∗

t (h) :=
supπ V

π
t (h),∀t ∈ J0, HK,∀h ∈ Ht, where sup is taken over all policies π : (AO)∗ → ∆(A). Any

policy achieving V ∗ is called an optimal policy, which we denote by π∗; namely V π∗
= V ∗. In

what follows, we consider simpler policies of the form π : H → ∆(A) mapping finite histories to
distributions over actions. Let ΠH denote the set of such policies. It can be shown that ΠH always
contains an optimal policy, i.e. V ∗

t (h) := maxπ∈ΠH V
π
t (h),∀t ∈ [H],∀h ∈ Ht. A policy π̂ is

ε-optimal iff Eh0 [V
∗
0 (h0)− V π̂

0 (h0)] ≤ ε, where h0 = a⊥o0 for some o0 ∼ ν.

Each history h ∈ Ht and policy π induces a probability distribution over suffixes pπh ∈ ∆(ΓH−t),
where Γ = AO/R is the alphabet of action-observation-reward triplets. Concretely, the probability
of a suffix et+1:H = at+1ot+1/rt+1 · · · aHoH/rH is given by

pπh(et+1:H) =
∏H

i=t+1 π(ai|hi−1) T̄ (oi|hi−1, ai) R̄(ri|hi−1, ai),

where hi−1 = hat+1ot+1 · · · ai−1oi−1 for each i ∈ Jt+1, HK. Two histories h and h′ are equivalent
w.r.t. a class of policies Π if pπh = pπh′ for every policy π ∈ Π; we write equivalence as h ∼Π h′.
Observation 1. Specific policies may induce the same distribution for histories that are not equivalent.
Namely, for a class of policies Π, and two histories h and h′, a policy π1 ∈ Π may induce different
distributions pπ1

h ̸= pπ1

h′ , while a second policy π2 ∈ Π may induce identical distributions pπ2

h = pπ2

h′

(as shown in Example 5, Appendix C).

Episodic RDPs We adopt the episodic variant of RDPs by Deb et al. (2025), a minor modification
of the one by Cipollone et al. (2023). An episodic regular decision process is an episodic decision
process R = ⟨O,A,R, T̄ , R̄,H, ν⟩ described by a probabilistic-deterministic finite automaton, or
simply automaton for us, of the specific form A = ⟨U ,Σ,Ω, τ, θ, u0⟩ with U a finite set of states,
Σ = AO a finite input alphabet composed of actions and observations, Ω a finite output alphabet,
τ : U × Σ→ U a transition function, θ : U → Ω an output function, and u0 ∈ U an initial state. Let
τ−1 denote the inverse of τ , i.e., τ−1(u) ⊆ U × AO is the subset of state-input pairs that map to
u ∈ U . An RDP R implicitly represents a function τ̄ : H → U from histories in H to states in U ,
recursively defined as τ̄(h0) := τ(q0, a0o0) and τ̄(ht) := τ(τ̄(ht−1), atot). We use A,O,R,U to
denote the cardinality of A,O,R,U , respectively, and assume H ≥ 2, A ≥ 2 and O ≥ 2.

The output function θ : U → Ω maps the current state to an output in Ω. The output space Ω = Ωo×Ωr

consists of a finite set of functions that specify the conditional probabilities of observations and
rewards, of the form Ωo ⊆ A → ∆(O) and Ωr ⊆ A → ∆(R). For convenience, we often split the
output function into two functions θo : U × A → ∆(O) and θr : U × A → ∆(R) specifying the
conditional probabilities separately. The transition function and reward function of R are defined
as T̄ (o | h, a) = θo(o | τ̄(h), a) and R̄(r | h, a) = θr(r | τ̄(h), a) for each history h ∈ H and
action-observation-reward triplet ao/r ∈ AO/R. An RDP is minimal if its automaton is minimal,
i.e., without redundant states, and hence unique, cf. (Hartmanis and Stearns, 1966).

The class ΠR of policies acting according to the states of an RDP R is of particular importance. They
are called regular policies, and they are defined as the policies π : H → ∆(A) satisfying the equality
π(h1) = π(h2) for all pairs of equivalent histories h1, h2 mapping to same state u = τ̄(h) = τ̄(h′).
Hence, we can compactly define a regular policy as a function of the state, i.e., π : U → ∆(A).
Regular policies exhibit key properties: (P1) under a regular policy, suffixes have the same probability
of being generated for histories that map to the same state in U ; (P2) there exists at least one optimal
policy that is regular; (P3) in the special case where an RDP is Markovian in both observations and
rewards, it is sufficient for the states in U to track the observation in O.

For RDPs, under regular policies, the notion of history equivalence admits an alternative form. Two
histories h and h′ are equivalent if and only if they map to the same state, i.e., h ∼ΠR

h′ ⇔ τ̄(h) =
τ̄(h′) = u for u ∈ U . In this setting, we can write pπu in place of the identical distributions pπh and
pπh′ . This shows that the meaning of a history is captured by the state u = τ̄(h) the history maps to.

Distinguishing RDP states We will use language metrics LX to learn RDPs from data. Thus
we are interested in language sets X that correctly distinguish an RDP R. For a given regular
policy π, a language set distinguishes an RDP R if: (i) For each pair of histories h, h′ such that
τ̄(h) = τ̄(h′), LX (pπh, p

π
h′) = 0; (ii) for each pair of histories h, h′ such that τ̄(h) ̸= τ̄(h′),

LX (pπh, p
π
h′) ≥ µX > 0. Two histories h, h′ s.t. τ̄(h) = τ̄(h′) may have different lengths. In this

case we have pπh ̸= pπh′ , but LX (pπh, p
π
h′) = 0 may still hold due to LX being a pseudo-metric. The

quantity µX := infh,h′:τ̄(h)̸=τ̄(h′) LX (pπh, p
π
h′) is called the distinguishability of R under X and π.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Automata cascades Representing automata with a state space U of atomic elements does not allow
for specifying the complex meaning of a state and the single functionalities implemented by the
transition function τ in order to perform state updates. Cascades offer a richer way to represent
automata and overcome such limitations. A cascade is an automaton C = ⟨Σ,U , τ, u0,Ω, θ⟩ given
by the composition A1 ⋉ · · · ⋉ Ad where every Ai = ⟨Σi,Ui, τi, ui0⟩ is a partial automaton that
only specifies the components relevant to describe transitions (called a semiautomaton, following
the terminology of automata theory). Every Ai is called a component of the cascade, and its input
alphabet is Σi := U1 · · · Ui−1Σ, allowing it to read the states of the preceding components in addition
to inputs from Σ. Then, the states of C are given by the states of the single components, with
U := U1 × · · · × Ud and u0 := ⟨u10, . . . , ud0⟩, and the transition function is

τ(u1, . . . , ud, σ) := ⟨τ1(u1, σ), τ2(u2, u1σ), . . . , τd(ud, u1 · · ·ud−1σ)⟩,
where the transition function τi of the i-th cascade component is applied to the component’s state ui
and to the extended input u1 · · ·ui−1σ containing the states of the preceding cascade components
in addition to the input σ. We note that a component does not need to depend on all preceding
components necessarily—in some cases, its transition function may ignore the state of some of the
preceding components. This can be specified through the cross-product notation. For example, we
can write (A1 ×A2) ⋉A3 to say that A2 ignores the state of A1, and then A3 reads the state of
both A1 and A2—note that parentheses are important to make it clear that we are not stating that
A3 is independent of A1. We remark that cascades offer an advanced representation formalism–
compared to conventional representations that are oblivious of the structure of states and transition
function—as they allow for specifying how an automaton is realised by the composition of several
components, each implementing a specific functionality, building on information already computed
by the preceding components. This observation applies directly to the transition function τ , and
indirectly also to the output function θ. In fact, the output function θ : U1 × · · · × Ud → Ω of a
cascade is over a factored state space, which allows for richer descriptions that make it explicit how
the function depends on the single state components. Note however that technical tools developed
for learning Factored MDPs (e.g., Rosenberg and Mansour (2021); Strehl et al. (2007); Talebi et al.
(2021); Tian et al. (2020)) do not carry over to our setting, because of unobservability of RDP states.
Learning factored representations under partial observability is seldom studied in the literature, and
the few existing work (e.g., Sallans (1999)) lack theoretical guarantees.

2.3 OFFLINE RL IN EPISODIC RDPS

Consider a batch dataset D comprising episodes sampled using an admissible regular behavior policy
πb. Specifically, the k-th episode (or episode trace) inD is of the form ek0:H = ak0o

k
0/r

k
0 · · · akHokH/rkH

where, for each t ∈ JHK,

ok0 ∼ ν, uk0 = u0, akt ∼ πb(ukt), okt ∼ θo(ukt , akt), rkt ∼ θr(ukt , akt), ukt+1 = τ(ukt , a
k
t o

k
t).

The learner seeks an ε-optimal policy π̂ for a given accuracy ε ∈ (0, H], using the smallest dataset D
possible, without further exploration. More precisely, we aim at finding π̂ satisfying V ∗

0 (h)−V π̂
0 (h) ≤

ε for each h ∈ H with probability at least 1− δ, using the smallest dataset D possible. We stress that
in so doing πb and underlying RDP states ukt are unknown to the learner. It suffices to restrict attention
to regular ε-optimal policies (cf. Proposition 5 in Deb et al. (2025)). However, some assumptions
must be imposed on πb to provably guarantee that an ε-optimal regular policy can be learned from D.

Given a regular policy π : U → ∆(A), let dπt ∈ ∆(U × AO) be the induced occupancy, i.e., a
probability distribution over candidate states u, ao ∈ U ×AO, recursively defined as

dπ0 (u0, a0o0) = ν(o0),

dπt (ut, atot) =
∑

u,ao∈ τ−1(ut)
dπt−1(u, ao)π(at |ut) θo(ot |ut, at), ∀t ∈ JHK.

Of particular interest is the occupancy d∗t := dπ
∗

t associated with an optimal policy π∗, which is
unique if we assume that π∗ is unique. Likewise, let dbt := dπ

b

t be the occupancy associated with πb.
Since a state u ∈ U may appear at different time steps, we often abuse notation and write db(u, ao)
or d∗(u, ao) to denote the occupancy of u, ao for the first timestep at which u may appear.

As in offline RL in MDPs, it is necessary to control the mismatch in occupancy between the behavior
policy πb and the optimal policy π∗. Concretely, the single-policy RDP concentrability coefficient

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

associated with RDP R and behavior policy πb is defined as

C∗
R = max

u,ao∈U×AO

d∗(u, ao)

db(u, ao)
.

It is generally impossible to learn an RDP correctly from samples collected under a behaviour policy
that does not have a finite concentrability coefficient, since this describes a situation where important
states are not explored. Thus, we assume concentrability to be bounded away from infinity, C∗

R <∞,
which further implies that for every u, ao ∈ U × AO, db(u, ao) > 0 whenever d∗(u, ao) > 0. In
what follows µX refers specifically to the distinguishability under the regular behavior policy πb.

3 NOVEL TECHNIQUES AND CONCEPTS

Equipped with the notions and definitions introduced in Section 2, we introduce two key notions
that prove instrumental in the design of our proposed algorithm (Section 2.3). The first one deals
with incorporating and leveraging some prior knowledge in RDPs, while the second characterises
particularly-favourable cases for learning RDPs with priors, also extending the stationarity assumption
in terms of timestep priors. We believe these notions could be of independent interest beyond RDPs.

3.1 PRIORS FOR RDPS

We introduce the novel notion of priors for RDPs, that allow for shaping the state space of an
RDP with fundamental structures known a priori. This enables learning algorithms to focus on
domain-specific aspects, relieving them from the burden of having to learn fundamental structures
that are known to be present in a domain. A prior is an automaton without output components (a
semiautomaton), Ap = ⟨Σp,Up, τp, up0⟩ with input alphabet Σp = AO, or alternatively Σp = U ′

pAO
in the case it is part of a cascade where it depends on additional priors that precede it in the cascade
and provide it with states from U ′

p. Priors are included in the representation of an RDP by expressing
its automaton A as a cascade A = Ap ⋉Ar where Ar is a second ‘remainder’ semiautomaton. In
general, we can include several priors as A = A1

p ⋉ · · ·⋉Am
p ⋉Ar. We can specify independence

between some of the cascade components as, e.g., A = (A1
p ×A2

p) ⋉ Ar. Effectively, cascades
allow for decomposing A into several components, each factoring out a specific feature implicit in
the states of A. The cascade decomposition focuses on states and transitions, but also provides a
structured state space that allows for richer descriptions of the output function of A. In fact, output
functions will be over a factored state space U1

p × · · · × Um
p × Ur (abbreviated as U1:m

p × Ur), and
they can be seen as functions of the overall state as in (a), or as functions of Ur mapping to functions
over the prior state space U1:m

p as in (b),

(a) θ :
(
U1:m
p × Ur

)
→
(
A → ∆(OR)

)
, (b) θ : Ur →

(
U1:m
p →

(
A → ∆(OR)

))
.

Note that, although the output function of A has an extended domain, the automaton A still represents
the functions T̄ and R̄ of the RDP over histories as usual. Specifically, the cascade decomposition
only changes the way we express the (hidden) states of an RDP, that are now seen as consisting
of several components focusing on specific aspects. It is also important to note that, although the
factored state space may contain extra states compared to the standard state space consisting of
atomic elements, this redundancy does not prevent the cascaded automaton from representing the
RDP correctly, since redundant states can be ‘collapsed’ by the output function—formally, there
may not be a bijection (isomorphism), but there is always an injection (homomorphism) that maps
factored states to the corresponding atomic states.

Next we describe three of the most fundamental priors, and showcase their usage in RDPs.

Markov priors Markov priors allow for specifying that the previous observation may be a relevant
feature in determining distributions over episode suffixes. Markov priors are simple semiautomata
that store the previous observation. Specifically, the Markov prior for observations O is MO =
⟨AO,O ∪ {⋆}, τo, ⋆⟩ where the initial state ‘⋆’ is an arbitrary element not in O, and the transition
function is the function τo(o, ao′) := o′, that simply returns o′ disregarding o and a. Including a
Markov prior in the RDP automaton as A = MO ⋉Ar allows for factoring out the functionality of
storing the previous observations, hence avoiding that this aspect is factored into the state space of
Ar, which is left more compact and cleaner.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Timestep priors Timestep priors allow for specifying that the current timestep in an episode
may be a relevant feature in determining distributions over episode suffixes. Timestep priors are
simple semiautomata that count the number of timesteps elapsed. Specifically, the timestep prior for
horizon H is TH = ⟨AO, J0, HK, τt, 0⟩ where the transition function is defined as τt(t, ao) := t+1.
Including a timestep prior in the RDP automaton as A = TH ⋉ Ar allows for factoring out the
functionality of keeping track of the current timestep, hence avoiding that this aspect is factored into
the state space of Ar, which is left more compact and cleaner.

Spatial priors Spatial priors allow for describing the physical space (its geometry) of a domain,
and specify that the current position in such space may be a relevant feature in determining distri-
butions over episode suffixes. Automata allow for describing all finite spaces. A notable instance
is the m × n grid prior for an RDP including motion actions Am = {→,←, ↑, ↓} ⊆ A, defined
as Gm×n = ⟨AO, JmK × JnK, τm×n, ⟨x0, y0⟩⟩ with transition function τm×n(x, y, ao) returning
updated coordinates when a is one of the motion actions.

A notable case: RDPs with Markov and timestep priors To convey a clearer idea of the effect of
priors, we show explicitly what the automaton of an RDP looks like for the notable case when Markov
and timestep priors are included at the same time. In particular, the two priors do not depend on each
other, and hence they are composed as TH ×MO. Then, the automaton of the RDP is expressed as
(TH ×MO)⋉Ar. The resulting state space is U = J0, HK×O × Ur, and the transition function is

τ(t, o, ur, ao
′) = ⟨τt(t, ao′), τo(o, ao′), τr(ur, toao′)⟩ = ⟨t+ 1, o′, u′r⟩,

where u′r = τr(ur, toao
′) is the result of applying the transition function τr of Ar to the previous state

ur and the extended input toao′, which includes the current timestep t and the previous observation o,
in addition to the current action a and observation o′.

3.2 PARTIAL INDEPENDENCE FROM PRIORS AND SEMI-STATIONARITY

In some special cases, the domain-specific automaton can be learned without considering priors
explicitly at learning time. Let us consider an RDP expressed as a cascade Ap ⋉Ar where Ap is a
prior and Ar is a domain-specific automaton. This yields a state space U = Up × Ur, and hence an
output function of the form θ : Up × Ur → (A → ∆(OR)). Intuitively, this cascade representation
amounts to a factoring out the cascade features from A. Then, the special case when priors can be
considered separately is captured by the following notion.

Definition 1. An RDP represented by the cascade Ap ⋉Ar is partially independent from priors
when the following conditions hold: (I) the two cascade components are independent, A = Ap×Ar,
(II) the observation function θo of A can be expressed as the product of two independent functions
as θo(o |up, ur, a) = θpo (o |up, a) · θro(o |ur, a), and (III) the reward function θr can be expressed
as the product of two independent functions as θr(r |up, ur, a) = θpr (r |up, a) · θrr (r |ur, a). When
Conditions (I) and (III) hold, we say the RDP is partially independent from priors w.r.t. rewards.
When an RDP is partial independent from a timestep prior TH , we say the RDP is semi-stationary.

The definition applies to the case of multiple priors, as they can all be seen as part of Ap. Partial
independence is important as it enables learning the domain-specific automaton Ar while ignoring
learning the prior Ap, since states ur = τ̄r(h) and their transition function τr can be learned by
checking similarity of the distributions they induce on episode suffixes, which are independent of any
feature provided by the priors. If independence is only w.r.t. rewards, only the reward function can be
captured correctly by a cascade where independence from priors is included, which can still be useful
to learn optimal policies.

Next we showcase the above notions through an example.

Example 1. The T-maze of length N and horizon H (Deb et al., 2025), when represented as
TH ⋉ Ar is partially independent from the timestep prior TH , or semi-stationary. Furthermore,
when represented as (TH ×G3×(N+1))⋉Ar, with G3×(N+1) the grid prior, the RDP is partially
independent from both priors w.r.t. rewards only. Further details are deferred to Appendix C.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4 ALGORITHM AND PAC ANALYSIS

In this section we present ADACT–L, our algorithm for learning RDPs with priors and cycles. The
algorithm assumes that we are provided with a prior automaton Ap = ⟨Σ,Up, τp, u0p⟩, and the aim is
to learn a problem-specific automaton Ar = ⟨Σ,Ur, τr, u0r ⟩ such that the complete RDP is expressed
as a cascade A = Ap⋉Ar. For this purpose, the transition function τr : Ur×Up Σ→ Ur incorporates
the states of the prior automaton as part of its input. We remark that the prior automaton Ap could
itself be a cascade of automata, and that the algorithm can learn an RDP without prior knowledge by
defining a prior automaton Ap with a single state.

Intuitively, ADACT–L learns an RDP A with composite states upur in a breadth-first manner starting
from u0pu

0
r . To represent a transition from upur to u′pu

′
r as a result of observing ao, it is sufficient to

define τr(ur, upao) = u′r, since the transition τp(up, ao) = u′p is handled separately by the prior Ap.
The algorithm is based on the fact that the transition function τr is invariant to the identity of ur in
composite states upur as long as the initial state u0p of Ap is always paired with the initial state u0r of
Ar. For example, let u1r and u2r be two states of Ar and let up be a state of Ap. We can construct an
equivalent automaton by swapping the definitions of τr(u1r , up ·) and τr(u2r , up ·) and changing the
definition of τr(·, u′pao) from u1r to u2r or vice versa whenever τp(u′p, ao) = up.

As a consequence of the above fact, when we discover a new composite state u′pu
′
r, the identity of u′r

can be arbitrary. In the algorithm, we simply choose u′r as next available state in Ur for u′p. To do so,
we assume that we have access to a sequence of states u0r , u

1
r , u

2
r , . . . and for each prior state u′p ∈ Up

we remember the index i(u′p) ≥ 0 of the next available state in Ur. This also allows us to iterate over
all existing composite states involving u′p (line 10). We also remember the first timestep t(upur) of
each state pair in order to add all suffixes of the same length to the associated multiset (line 17).

Function ADACT–L(Ur, D, Ap, δ)

Input: Automaton states Ur = {u0
r , u

1
r , u

2
r , . . .}, dataset D of traces in ΓH+1,

prior automaton Ap = ⟨Σ,Up, τp, u
0
p ⟩, failure probability 0 < δ < 1

Output: Transition function τr : Ur × UpAO → Ur
1 foreach up ∈ Up do i(up)← 0

2 Q← {u0
pu

0
r } // queue data structure containing u0

pu
0
r

3 i(u0
p)← 1, t(u0

pu
0
r)← 0, Z(u0

pu
0
r)← D

4 while Q is not empty do
5 dequeue upur from Q // next joint state
6 for ao ∈ AO do
7 u′

p ← τp(up, ao) // next prior state
8 Z(ao)← {et+1:H | ao/ret+1:H ∈ Z(upur)} // compute suffixes
9 j ← i(u′

p)
10 for k = 0, . . . , i(u′

p)− 1 do
11 if not TESTDISTINCT(Z(u′

pu
k
r ,Z(ao), δ) then j ← k

12 end
13 τr(ur, upao)← uj

r // define transition function
14 if j = i(u′

p) then
15 enqueue u′

pu
j
r in Q

16 i(u′
p)← j + 1, t(u′

pu
j
r)← t(upur) + 1, Z(u′

pu
j
r)← Z(ao)

17 else if t(u′
pu

j
r) = t(upur) + 1 then Z(u′

pu
j
r)← Z(u′

pu
j
r) ∪ Z(ao)

18 end
19 end
20 return τr

21 Function TESTDISTINCT(Z1, Z2, δ)
22 return LX (Z1,Z2) ≥

√
log(2|X |/δ)/min(|Z1|, |Z2|) // statistical test

In Appendix A we prove the following sample complexity bound for ADACT–L.

Theorem 1. ADACT–L(D, δ) returns a minimal automaton Ar with probability at least 1 −
2AOUUp δ when using a language set X that distinguishes Ap ⋉Ar under the behavior policy πb

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

with associated distinguishability µX and the size of the dataset D is at least

|D| ≥ Õ
(
C∗

R log(1/δ) log |X |
d∗m · µ2

X

)
,

where d∗m = minu,ao d
∗(u, ao) is the minimum occupancy of the optimal policy π∗.

In Appendix B we prove that a version of ADACT–L which returns an approximately optimal policy
achieves an improved sample complexity.

5 EXPERIMENTAL EVALUATION

We conduct numerical experiments to further demonstrate the performance and properties of
ADACT–L. We present our results for five familiar domains in the literature of POMDPs and
RDPs: Corridor (Ronca and De Giacomo, 2021), T-maze(c) (Bakker, 2001), Cookie (Toro Icarte
et al., 2019), Cheese (McCallum, 1992) and Mini-hall (Littman et al., 1995), and summarize our
results in Table 1. We compare against FlexFringe (Baumgartner and Verwer, 2023), a state-of-the-art
algorithm for learning probabilistic-deterministic finite automata, which includes RDPs as a special
case, and ADACT-H (Deb et al., 2025). FlexFringe can learn RDPs with cycles, but includes several
heuristics that do not preserve high-probability sample complexity guarantees. ADACT-H learns
RDPs without cycles. The proposed algorithm ADACT–L can learn cycles in addition to providing
sample complexity guarantees. In all experiments we use a Markov prior and a language set X
consisting of one language per action-observation-reward triplet, containing all strings of any length
that includes the triplet. This language set may only learn an approximate RDP in some domains.

From our results in Table 1, we can see that ADACT–L learns much smaller automata, while also
achieving the highest average reward. In T-maze(c), FlexFringe fails to find the optimal policy, since
the heuristics defined for FlexFringe are not optimized to preserve reward. In the domains Cheese and
Minihall, all the algorithms fail to learn the optimal policy owing to the complexity of the POMDP
environments; however, ADACT–L outperforms the other approaches by getting a higher average
reward as well as learning significantly smaller automata.

FlexFringe ADACT-H ADACT–L

Name H U r time U r time U r time

Corridor 5 11 1.0 0.03 11 1.0 0.01 3 1.0 0.01
T-maze(c) 5 29 0.0 0.11 18 1.0 0.26 5 1.0 0.15
Cookie 9 220 1.0 0.36 91 1.0 0.08 11 1.0 0.08
Cheese 6 669 0.69± .04 19.28 1178 0.87± .03 12.11 85 0.89± .04 7.27
Mini-hall 15 897 0.33± .04 25.79 6098 0.86± .03 29.90 65 0.87± .04 25.18

Table 1: For each domain, H , U are the horizon and the number of states in the learned automaton
respectively, r is the average normalised reward (over 100 episodes) of the derived policy, and ‘time’
is the running time in seconds of automaton learning. Best results emphasised in bold.

6 CONCLUSIONS

In this work, we introduce a novel algorithm ADACT–L utilizing the language metric introduced
by Deb et al. (2025), which allows us to learn a significantly smaller RDP with cycles, and also
identify conditions under which RDPs with cycles can be correctly learned which makes it possible
to scale to larger and more complex domains. Further to exploit domain-related knowledge, we
also introduce the notion of priors for automaton learning, that can be used to factor out of the state
space any feature that is known a priori. We further validate our approach experimentally over five
familiar domains in the POMDP and RDP literature, and compare the performance of our algorithm
to FlexFringe, a state-of-the-art algorithm for learning PDFA. Finally, as future work, we plan to
explore the approximate version of our algorithm and also to extend our work to the online setting.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Eden Abadi and Ronen I. Brafman. Learning and solving regular decision processes. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 1948–1954, 2020.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning
of POMDPs using spectral methods. In Conference on Learning Theory (COLT), pages 193–256,
2016.

Fahiem Bacchus, Craig Boutilier, and Adam J. Grove. Rewarding behaviors. In AAAI, pages
1160–1167, 1996.

Bram Bakker. Reinforcement learning with long short-term memory. In Neural Information Process-
ing Systems (NeurIPS), pages 1475–1482, 2001.

Robert Baumgartner and Sicco Verwer. Learning state machines from data streams: A generic
strategy and an improved heuristic. In International Conference on Grammatical Inference (ICGI),
pages 117–141, 2023.

Hippolyte Bourel, Anders Jonsson, Odalric-Ambrym Maillard, and Mohammad Sadegh Talebi. Ex-
ploration in reward machines with low regret. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 4114–4146, 2023.

Michael H. Bowling, Peter McCracken, Michael James, James Neufeld, and Dana F. Wilkinson.
Learning predictive state representations using non-blind policies. In International Conference on
Machine Learning (ICML), pages 129–136, 2006.

Ronen I. Brafman and Giuseppe De Giacomo. Regular decision processes: A model for non-
Markovian domains. In International Joint Conference on Artificial Intelligence (IJCAI), pages
5516–5522, 2019.

Ronen I Brafman and Giuseppe De Giacomo. Regular decision processes. Artificial Intelligence,
331:104113, 2024.

Ronen I. Brafman, Giuseppe De Giacomo, and Fabio Patrizi. LTLf/LDLf non-Markovian rewards. In
AAAI, pages 1771–1778, 2018.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning (ICML), pages 1042–1051, 2019.

Roberto Cipollone, Anders Jonsson, Alessandro Ronca, and Mohammad Sadegh Talebi. Provably
efficient offline reinforcement learning in regular decision processes. In Neural Information
Processing Systems (NeurIPS), 2023.

Ahana Deb, Roberto Cipollone, Anders Jonsson, Alessandro Ronca, and Mohammad Sadegh Talebi.
Offline RL in regular decision processes: Sample efficiency via language metrics. In International
Conference on Learning Representations (ICLR), 2025.

Taylor Dohmen, Noah Topper, George Atia, Andre Beckus, Ashutosh Trivedi, and Alvaro Velasquez.
Inferring probabilistic reward machines from non-markovian reward signals for reinforcement
learning. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 32, pages 574–582, 2022.

Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforcement
learning with a short-term memory. In International Conference on Machine Learning (ICML),
pages 5832–5850, 2022.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo. Hierarchies
of reward machines. In International Conference on Machine Learning, pages 10494–10541.
PMLR, 2023.

Maor Gaon and Ronen I. Brafman. Reinforcement learning with non-Markovian rewards. In AAAI,
pages 3980–3987, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro Ronca. Tem-
poral logic monitoring rewards via transducers. In Principles of Knowledge Representation and
Reasoning (KR), pages 860–870, 2020.

Hongyi Guo, Qi Cai, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Provably efficient offline
reinforcement learning for partially observable Markov decision processes. In International
Conference on Machine Learning (ICML), pages 8016–8038, 2022.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Omega-regular decision processes. In Thirty-Eighth AAAI Conference on Artificial
Intelligence (AAAI), pages 21125–21133, 2024.

Juris Hartmanis and R. E. Stearns. Algebraic structure theory of sequential machines. Prentice-Hall
international series in applied mathematics. Prentice-Hall, Englewood Cliffs, N.J, 1966.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and
Daniel Kroening. DeepSynth: automata synthesis for automatic task segmentation in deep
reinforcement learning. In AAAI Conference on Artificial Intelligence, pages 7647–7656, 2021.

Marcus Hutter. Feature reinforcement learning: Part I: unstructured mdps. CoRR, abs/0906.1713,
2009.

Michael R. James and Satinder Singh. Learning and discovery of predictive state representations in
dynamical systems with reset. In International Conference on Machine Learning (ICML), 2004.

Chi Jin, Sham M. Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforcement
learning of undercomplete POMDPs. In Neural Information Processing Systems (NeurIPS), 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
International Conference on Machine Learning (ICML), pages 5084–5096, 2021.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1–2):99–134, 1998.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich
observations. In Neural Information Processing Systems (NeurIPS), pages 1840–1848, 2016.

Alex Kulesza, Nan Jiang, and Satinder Singh. Spectral learning of predictive state representations
with insufficient statistics. In AAAI Conference on Artificial Intelligence, pages 2715–2721, 2015.

Andrew Li, Zizhao Chen, Toryn Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, and Sheila
McIlraith. Reward machines for deep rl in noisy and uncertain environments. Advances in Neural
Information Processing Systems, 37:110341–110368, 2024a.

Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
model-based offline reinforcement learning. The Annals of Statistics, 52(1):233–260, 2024b.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning policies for partially
observable environments: Scaling up. In International Conference on Machine Learning (ICML),
pages 362–370, 1995.

Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforcement
learning not scary? In Conference on Learning Theory (COLT), pages 5175–5220, 2022.

Andrew Kachites McCallum. Reinforcement Learning with Selective Perception and Hidden State.
PhD thesis, University of Rochester, 1996.

R. Andrew McCallum. First results with utile distinction memory for reinforcement learning.
Technical report, University of Rochester, USA, 1992.

Roko Parać, Lorenzo Nodari, Leo Ardon, Daniel Furelos-Blanco, Federico Cerutti, and Alessandra
Russo. Learning robust reward machines from noisy labels. In Proceedings of the 21st International
Conference on Principles of Knowledge Representation and Reasoning, pages 909–919, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
1994.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. In Neural Information
Processing Systems (NeurIPS), pages 11702–11716, 2021.

Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia. In J. Cowan, G. Tesauro, and
J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6. Morgan-
Kaufmann, 1993. URL https://proceedings.neurips.cc/paper_files/paper/
1993/file/08419be897405321542838d77f855226-Paper.pdf.

Alessandro Ronca and Giuseppe De Giacomo. Efficient PAC reinforcement learning in regular
decision processes. In International Joint Conference on Artificial Intelligence (IJCAI), pages
2026–2032, 2021.

Alessandro Ronca, Gabriel Paludo Licks, and Giuseppe De Giacomo. Markov abstractions for PAC
reinforcement learning in non-Markov decision processes. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 3408–3415, 2022.

Aviv Rosenberg and Yishay Mansour. Oracle-efficient regret minimization in factored MDPs with
unknown structure. Advances in Neural Information Processing Systems, 34:11148–11159, 2021.

Brian Sallans. Learning factored representations for partially observable markov decision processes.
Advances in neural information processing systems, 12, 1999.

Jürgen Schmidhuber. Reinforcement learning in markovian and non-markovian environments.
Advances in neural information processing systems, 3, 1990.

Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter Stone. Learning
predictive state representations. In International Conference on Machine Learning (ICML), pages
712–719, 2003.

Alexander L Strehl, Carlos Diuk, and Michael L Littman. Efficient structure learning in factored-state
mdps. In AAAI, volume 7, pages 645–650, 2007.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Mohammad Sadegh Talebi, Anders Jonsson, and Odalric Maillard. Improved exploration in factored
average-reward MDPs. In International conference on artificial intelligence and statistics, pages
3988–3996. PMLR, 2021.

Yi Tian, Jian Qian, and Suvrit Sra. Towards minimax optimal reinforcement learning in factored
Markov decision processes. Advances in Neural Information Processing Systems, 33:19896–19907,
2020.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith. Using
reward machines for high-level task specification and decomposition in reinforcement learning. In
International Conference on Machine Learning (ICML), pages 2112–2121, 2018.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Q. Klassen, Richard Anthony Valenzano, Margarita P.
Castro, and Sheila A. McIlraith. Learning reward machines for partially observable reinforcement
learning. In Neural Information Processing Systems (NeurIPS), pages 15497–15508, 2019.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. In International Conference on Learning Representations (ICLR), 2022.

Giovanni Varricchione, Natasha Alechina, Mehdi Dastani, and Brian Logan. Maximally permissive
reward machines. In ECAI 2024, pages 1181–1188. IOS Press, 2024.

Steven D Whitehead and Long-Ji Lin. Reinforcement learning of non-Markov decision processes.
Artificial intelligence, 73(1-2):271–306, 1995.

12

https://proceedings.neurips.cc/paper_files/paper/1993/file/08419be897405321542838d77f855226-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/08419be897405321542838d77f855226-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. In International
Conference on Automated Planning and Scheduling (ICAPS), pages 590–598, 2020.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D. Lee. PAC reinforcement learning for
predictive state representations. In International Conference on Learning Representations (ICLR),
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A TECHNICAL LEMMAS

The technical lemmas are reformulated from (Deb et al., 2025) for our setting. Following the proof-
structure, we first provide the high probability upper bound on the language metric LX adapted to
our setting.

Lemma 2. Let X be a language set. Given a candidate state u, ao ∈ U ×AO and a multiset Z(uao)
of suffixes in Γ+, with probability at least 1− δ the language metric LX satisfies

LX (p̂uao, puao) ≤

√
log(2|X |/δ)
2|Z(uao)|

,

where puao ∈ ∆(Γ+) is the true distribution on suffixes induced by the candidate uao and the
behavior policy πb, and p̂uao ∈ ∆(Γ+) is the empirical estimate on suffixes induced by Z(uao).

Proof. Let puao(X) =
∑

x∈X puao(x) be the true probability of each language language X ∈ X ,
and let p̂uao(X) =

∑
x∈Z(uao) I(x ∈ X)/|Z(uao)| be the empirical estimate of puao(X). Following

Hoeffding’s inequality we get

P

(
|p̂uao(X)− puao(X)| >

√
log(2/δs)

2|Z(uao)|

)
≤ δs.

Choosing δs = δ/|X | and taking a union bound implies that LX satisfies

LX (p̂uao, puao) = max
X∈X

|p̂uao(X)− puao(X)| ≤

√
log(2|X |/δ)
2|Z(uao)|

with probability 1− |X |δs = 1− δ, which completes the proof.

Next, we define an associated event EX to correctly bound the language metric LX for all candidate
states:

EX =

{
∀u, ao ∈ U ×AO : LX (p̂uao, puao) ≤

√
log(2|X |/δ)
2|Z(uao)|

}
.

We next prove a high-probability sample complexity bound for accurately estimating the occupancy
db(u, ao) of each candidate state. Let d̂(uao) be the empirical occupancy of uao. Given a number of
episodes N , an empirical Bernstein inequality yields

P

∣∣∣d̂(uao)− db(u, ao)∣∣∣ >
√

2d̂(uao) log(4/δ)

N
+

14 log(4/δ)

3N

 ≤ δ. (1)

We can next define Gδ as the function for the bound in the empirical Bernstein inequality where δ is
the given failure probability, given by

Gδ(d̂, N) =

√
2d̂ log(4/δ)

N
+

14 log(4/δ)

3N

where Gδ is monotonically increasing in d̂ and monotonically decreasing in N . We can further define
an associated event EB to correctly bound |d̂(uao)− db(u, ao)| for all hao:

EB =
{
∀u, ao ∈ U ×AO :

∣∣∣d̂(uao)− db(u, ao)∣∣∣ ≤ Gδ(d̂(uao), N)
}
.

The following lemma shows that we can control the number of episodes N to obtain an upper bound
on the function Gδ .

Lemma 3. For fixed probabilities δ and d̂, if N ≥ 16 log(4/δ)/d̂ it holds that 3Gδ(d̂, N) < 2d̂.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Proof. We first show that the inequality holds for N = 16 log(4/δ)/d̂. In this case we have

3Gδ(d̂, N) = 3

√
2d̂2 log(4/δ)

16 log(4/δ)
+

14d̂ log(4/δ)

16 log(4/δ)
=

(
3√
8
+

14

16

)
d̂ < 2d̂.

The case N > 16 log(4/δ)/d̂ follows from the fact that Gδ is monotonically decreasing in N .

Since d̂(uao) = |Z(uao)|/N implies N = |Z(uao)|/d̂(uao), we obtain the following corollary.
Corollary 4. Under event EB , if |Z(uao)| ≥ 16 log(4/δ), it holds that |d̂(uao) − db(u, ao)| ≤
2d̂(uao)/3.

We show that under event EB , we can choose the sample complexity N to ensure that we obtain at
least a certain number of elements in Z(uao).
Lemma 5. Given a candidate state u, ao ∈ U × AO, under event EB , it holds that |Z(uao)| ≥
b log(4/δ) if the sample complexity N satisfies

N ≥ log(4/δ)

db(u, ao)
(2b+ 31/6) .

Proof. Letting M = |Z(uao)|, due to event EB and the given bound on N it holds that

db(u, ao)− M

N
≤ Gδ(M/N,N)

⇔ 0 ≤M +NGδ(M/N,N)−Ndb(u, ao)
≤M +

√
2M log(4/δ) + 14 log(4/δ)/3− log(4/δ) (2b+ 31/6)

=M +
√
2 log(4/δ)

√
M − log(4/δ) (2b+ 1/2) .

Solving the quadratic inequality for positive
√
M yields

√
M ≥ −

√
log(4/δ)

2
+

√
log(4/δ)

2
+ log(4/δ) (2b+ 1/2)

= −
√

log(4/δ)

2
+
√
log(4/δ) + 2b log(4/δ)

≥ −
√

log(4/δ)

2
+

√
log(4/δ) +

√
2b log(4/δ)√

2
=
√
b log(4/δ),

where we have used the inequality
√
x+ y ≥ (

√
x+
√
y)/
√
2. Hence the bound on N in the lemma

implies that M =
√
M

2 ≥ b log(4/δ).

A.1 PROOF OF THEOREM 1

We first prove two lemmas very similar to Lemmas 16 and 17 of (Deb et al., 2025).
Lemma 6. Let R be an RDP and let X be a language set that distinguishes R under the behavior
policy πb. Given a candidate state u, ao ∈ U ×AO and a reference state u′ ∈ U , let Z1 and Z2 be
two multisets sampled from the true distributions puao and pu′ on suffixes in Γ+, respectively. Under
event EX , if τ(u, ao) = u′ then TESTDISTINCT(Z1,Z2, δ) returns false.

Proof. Since τ(u, ao) = u′, any pair of histories h1 and h2 associated with u, ao and u′ satisfy
τ̄(h1) = τ̄(h2) = u′. Since X distinguishes R, this implies that LX (puao, pu′) = 0 holds. Letting
p̂uao and p̂u′ be the empirical distributions on suffixes induced by the multisets Z1 and Z2, we can
now use the event EX , Lemma 2 and the triangle inequality to obtain

LX (p̂uao, p̂u′) ≤ LX (p̂uao, puao) + LX (puao, pu′) + LX (pu′ , p̂u′)

≤

√
log(2|X |/δ)

2|Z1|
+ 0 +

√
log(2|X |/δ)

2|Z2|
≤

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

.

This is precisely the condition for which TESTDISTINCT returns false.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Lemma 7. Let R be an RDP and let X be a language set that distinguishes R under the behavior
policy πb. Given a candidate state u, ao ∈ U × AO and a reference state u′ ∈ U , let Z1 and Z2

be two multisets sampled from the true distributions puao and pu′ on suffixes in Γ+, respectively.
Under event EX , if τ(u, ao) ̸= u′ then TESTDISTINCT(Z1,Z2, δ) answers true if Z1 and Z2 satisfy
min(|Z1|, |Z2|) ≥ 8 log(2|X |/δ)/µ2

X .

Proof. Since τ(u, ao) ̸= u′, any pair of histories h1 and h2 associated with u, ao and u′ satisfy
τ̄(h1) ̸= τ̄(h2). Since X distinguishes R, this implies that LX (puao, pu′) ≥ µX holds. Letting p̂uao
and p̂u′ be the empirical distributions on suffixes induced by the multisets Z1 and Z2, we can now
use the event EX , Lemma 2 and the triangle inequality to obtain

LX (p̂uao, p̂u′) ≥ LX (puao, pu′)− LX (p̂uao, puao)− LX (pu′ , p̂u′)

≥ µX −

√
log(2|X |/δ)

2|Z1|
−

√
log(2|X |/δ)

2|Z2|

≥ µX −

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

≥ µX −
√
µ2
X
4

=
µX

2
≥

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

,

where we have used the given condition on min(|Z1|, |Z2|) twice on the last line. This is precisely
the condition for which TESTDISTINCT returns true.

The following lemma shows that the algorithm ADACT–L returns a minimal RDP if the multisets Z
associated with candidate states satisfy |Z| ≥ 16 log(4/δ) log |X |/µ2

X ≡MX .
Lemma 8. Under event EX , ADACT–L outputs a minimal automaton Ar if the language set X
distinguishes Ap ⋉Ar under the behavior policy πb and the multiset Z(uao) associated with each
candidate state u, ao ∈ U ×AO satisfies |Z(uao)| ≥MX .

Proof. We prove the lemma using induction on RDP states u = upur ∈ Up Ur. Since the algorithm
uses a queue data structure, such state pairs are visited in breadth-first order. The base case is given
by the initial state pair u0pu

0
r and the associated multiset Z(u0pu0r) = D. This state pair is covered by

the single initial state u0r that has to be part of any minimal automaton Ar.

The inductive case is given by a state pair upur visited by the algorithm, and the associated multiset
Z(upur) induced by all shortest histories mapping to upur. By hypothesis of induction, all state
pairs visited by the algorithm prior to (and including) upur are induced by the known prior Ap and a
minimal automaton Ar. Consider an action-observation ao ∈ AO and let Z(ao) be the multiset of
suffixes in Z(upur) consistent with ao. Let u′p = τp(up, ao) be the resulting next state of the prior
automaton, and let u′r = τr(ur, upao) be the next state of a minimal automaton Ar. If u′pu

′
r is visited

before upur, then Lemma 6 implies that TESTDISTINCT(Z(ao),Z(u′pu′r), δ) returns false. In this
case the algorithm correctly defines τr(ur, upao) = u′r, and does not enqueue a new state pair. On the
other hand, if u′pu

′
r is not visited before upur, then if the multisets associated with all candidate states

have cardinality at least MX , Lemma 7 implies that TESTDISTINCT(Z(ao),Z(ûpûr), δ) returns true
for all state pairs ûpûr visited before upur. In this case the algorithm defines τr(ur, upao) = u′r for
the next available state u′r ∈ Ur associated with u′p, and enqueues a new state pair u′pu

′
r. This proves

that the output of the algorithm is the transition function τr of a minimal automaton Ar.

To complete the proof of the theorem we need to select a minimum number of episodes to ensure that
|Z(uao)| ≥ MX for each u, ao. Choosing b = 16 log |X |/µ2

X in Lemma 5, we get the following
bound:

N ≥ max
u,ao

{
log(4/δ)

db(u, ao)

(
32 log |X |

µ2
X

+ 31/6

)}
.

Since X distinguishes Ap ⋉Ar and event EX holds, Lemma 8 now directly applies. It is sufficient to
choose δ0 = δ/2UUpAO to ensure that events EX and EB hold for all candidate states. Using the
lower bound db(u, ao) ≥ d∗(u, ao)/C∗

R ≥ d∗m/C∗
R yields

N ≥
C∗

R log(8UUpAO/δ0)

d∗m

(
32 log |X |

µ2
X

+ 31/6

)
= Õ

(
C∗

R log(1/δ) log |X |
d∗m · µ2

X

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

which concludes the proof. We remark that Deb et al. (2025) present an improved analysis for an
approximate version of their algorithm, but we leave a similar analysis for future work.

B APPROXIMATION ALGORITHM

In this appendix we prove a sample complexity bound for the approximation algorithm ADACT–L–A
presented below. The algorithm is identical to ADACT–L, but if the multiset of a candidate state is
smaller than a given threshold (line 10), the candidate state maps to an absorbing dummy state. The
resulting RDP Ap ⋉A′

r approximates the minimal RDP Ap ⋉Ar, and the threshold is selected such
that an optimal policy for Ap ⋉A′

r is an ε/2-approximation of the optimal policy for Ap ⋉Ar.

Function ADACT–L–A(Ur, D, Ap, δ, U,C)

Input: Automaton states Ur = {u⊥
r , u

0
r , u

1
r , u

2
r , . . .}, dataset D of traces in ΓH+1,

prior automaton Ap = ⟨Σ,Up, τp, u
0
p ⟩, failure probability 0 < δ < 1, upper bounds U and C

Output: Transition function τ ′
r : Ur × UpAO → Ur

1 foreach up ∈ Up do i(up)← 0

2 foreach upao ∈ UpAO do τ ′
r (u

⊥
r , upao)← u⊥

r

3 Q← {u0
pu

0
r } // queue data structure containing u0

pu
0
r

4 i(u0
p)← 1, t(u0

pu
0
r)← 0, Z(u0

pu
0
r)← D

5 while Q is not empty do
6 dequeue upur from Q // next joint state
7 for ao ∈ AO do
8 u′

p ← τp(up, ao) // next prior state
9 Z(ao)← {et+1:H | ao/ret+1:H ∈ Z(upur)} // compute suffixes

10 if |Z(ao)|/|D| < 3ε/(10UAOC) then
11 τ ′

r (ur, upao)← u⊥
r // map to dummy state

12 else
13 j ← i(u′

p)
14 for k = 0, . . . , i(u′

p)− 1 do
15 if not TESTDISTINCT(Z(u′

pu
k
r ,Z(ao), δ) then j ← k

16 end
17 τ ′

r (ur, upao)← uj
r // define transition function

18 if j = i(u′
p) then

19 enqueue u′
pu

j
r in Q

20 i(u′
p)← j + 1, t(u′

pu
j
r)← t(upur) + 1, Z(u′

pu
j
r)← Z(ao)

21 else if t(u′
pu

j
r) = t(upur) + 1 then Z(u′

pu
j
r)← Z(u′

pu
j
r) ∪ Z(ao)

22 end
23 end
24 end
25 return τ ′

r

26 Function TESTDISTINCT(Z1, Z2, δ)
27 return LX (Z1,Z2) ≥

√
log(2|X |/δ)/min(|Z1|, |Z2|) // statistical test

Concretely, the subroutine TESTDISTINCT is only called for a candidate state uao on line 15 when
p̂(uao) satisfies

p̂(uao) =
|Z(ao)|
|D|

≥ 3ε

10UAOC
≡ ψ,

where ε, U and C are inputs to the algorithm and ψ is the threshold. We prove the following theorem:

Theorem 9. With probability at least 1 − 2AOUUpδ, ADACT-L-A(Ur, D, Ap, δ, U,C) returns
an automaton A′

r such that Ap ⋉ A′
r is an ε

2 -approximation of the minimal RDP Ap ⋉ Ar when
using a language set X that distinguishes Ap ⋉Ar under the behavior policy πb with associated
distinguishability µX and the size of the dataset D is at least

|D| ≥ Õ
(
UAOC log(1/δ) log |X |

εµ2
X

)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

We first prove that the resulting RDP R′ = Ap ⋉A′
r is ε

2 -approximate.
Lemma 10. Under events EX and EB , if U and C are upper bounds on the number of RDP states
|Ur| and concentrability C∗

R′ of the resulting RDP R′ = Ap ⋉A′
r, then ADACT-H-A returns an

returns an automaton A′
r such that R′ is an ε

2 -approximation of the minimal RDP R = Ap ⋉Ar.

Proof. Consider a candidate state uao with M = |Z(ao)|. If p̂(uao) ≥ ψ we impose the condition
M ≥MX as before. For each such candidate state, ADACT–L–A calls TESTDISTINCT and correctly
promotes uao to an automaton state or merges it with an existing automaton state.

On the other hand, if p̂(uao) < ψ and N ≥ 16 log(4/δ)/ψ, event EB and Lemma 3 yield

dbt (u, ao)− p̂(uao) ≤ Gδ(p̂(qao), N)

⇔ dbt (u, ao) < p̂(uao) +Gδ(p̂(uao), N) < ψ +Gδ(ψ,N) ≤ 5ψ

3
=

ε

2UAOC
.

In this case, ADACT–L–A does not call TESTDISTINCT and hence the resulting RDP state may be
incorrect. We can bound the contribution of uao to the value under the optimal policy π∗ as

d∗t (u, ao)
∑
a′∈A

π∗(τ(u, ao), a′)
∑
r∈R

θr(τ(u, ao), a
′, r) · r

≤ d∗t (u, ao)
∑
a′∈A

π∗(τ(u, ao), a′)
∑
r∈R

θr(τ(u, ao), a
′, r) = d∗t (u, ao) ≤ C∗

R′dbt ≤
ε

2UAO
,

where we have used the fact that the reward is bounded by 1. Summing up the contribution of all
such incorrect candidate states to the expected optimal value of histories inH yields∑
t∈J0,HK

∑
utao

d∗t (ut, ao)
∑
a′∈A

π∗(τ(u, ao), a′)
∑
r∈R

θr(τ(u, ao), a
′, r) · r ≤

∑
t∈J0,HK

∑
utao

ε

2UAO
≤ ε

2
.

This proves that the resulting RDP R′ is ε
2 -approximate.

To prove Theorem 9, for each candidate state uao such that p̂(uao) < ψ, a number of episodes which
satisfies N ≥ 16 log(4/δ)/ψ is sufficient to ensure that R′ is ε

2 -approximate. If p̂(uao) ≥ ψ, we
instead require M ≥MX as before. Since MX = 16 log(4/δ) log |X |/µ2

X , event EB together with
Corollary 4 yield

p̂(uao)− dbt (u, ao) ≤
2p̂(uao)

3
⇔ dbt (u, ao) ≥

p̂(uao)

3
≥ ψ

3
=

ε

10UAOC
.

Choosing b = 16 log |X |/µ2
X in Lemma 5 and enforcing N ≥ 16 log(4/δ)/ψ yields

N ≥ max
uao

{
log(4/δ)

dbt (u, ao)

(
32 log |X |

µ2
X

+ 31/6

)}
+

16 log(4/δ)

ψ
.

We can now use the definition of ψ and the lower bound on dbt (u, ao) in the case p̂(uao) ≥ ψ to
achieve the following bound:

N ≥ 10UAOC log(8UUpAO/δ0)

ε

(
32 log |X |

µ2
X

+ 31/6

)
+

160UAOC log(8UUpAO/δ0)

3ε

= Õ
(
UAOC log(1/δ) log |X |

εµ2
X

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

C EXAMPLES

We provide several examples that help to understand important aspects of RDPs, as well as of our
novel notions.

C.1 EXAMPLE RDPS WITH A FOCUS ON DISTINGUISHABILITY

Example 2. Consider an RDP defined by R = ⟨O,A,R, T̄ , R̄,H, ν⟩ and A = ⟨U ,Σ,Ω, τ, θ, u0⟩
with components given by

O = {o1, o2}, A = {a1, a2}, R = {0, 1}, U = {u0, u1, u2, u3}.

The (semi-)automaton A is illustrated in the following figure:

u0

u1

u2

u3a1o1, a1o2

a2o1, a2o2

a2o1, a2o2

a1o1, a1o2,
a2o1, a2o2

a2o1

a2o2

a1o1, a1o2

a1o1, a1o2

The output function θ is defined as follows:

• θo(o | u, a) = 0.5 for each o ∈ O, u ∈ {u0, u3} and a ∈ A.

• θo(o | u, a2) = 0.5 for each o ∈ O and u ∈ {u1, u2}.

• θo(o1 | u1, a1) = θo(o2 | u2, a1) = 0.75.

• θo(o2 | u1, a1) = θo(o1 | u2, a1) = 0.25.

• θr(0 | u, a) = 1 for each u ∈ {u0, u3} and a ∈ A.

• θr(1 | u, a1) = 1 for each u ∈ {u1, u2}.

• θr(0 | u, a2) = 1 for each u ∈ {u1, u2}.

Let π be the regular policy defined as π(a|u) = 0.5 for each a ∈ A and each u ∈ U . Let X be
the language defined by the regular expression .*(.o11).*. Hence a string in Γ+ = (AO/R)+
belongs to X if and only if the observation-reward pair o11 appears in the string. Let X = {X} be
the language set containing only X .

We claim that X distinguishes the RDP R under the regular policy π. For any history h mapping to
state u3, the probability of the language X is pπh(X) = 0 since the reward 1 can never appear. For
any history h mapping to state u1, eventually the policy π will select action a1 and the probability
of o11 is θo(o1 | u1, a1)θr(1 | u1, a1) = 0.75 · 1 = 0.75, implying pπh(X) = 0.75. For any
history h mapping to state u2, eventually the policy π will select action a1 and the probability
of o11 is θo(o1 | u2, a1)θr(1 | u2, a1) = 0.25 · 1 = 0.25, implying pπh(X) = 0.25. For any
history h mapping to state u0, eventually the policy π will select action a2. This always causes
a reward of 0 and transitions to u1 or u2 with equal probability. Hence the probability of o11 is
0.5 · 0.75 + 0.5 · 0.25 = 0.5, implying pπh(X) = 0.5.

As a consequence, given two histories h, h′ ∈ H, if h ∼ h′ the language metric is given by
LX (pπh, p

π
h′) = |pπh(X)−pπh′(X)| = 0, while if h ̸∼ h′ we haveLX (pπh, p

π
h′) = |pπh(X)−pπh′(X)| ≥

0.25. Hence X distinguishes R for π and has distinguishability µX = 0.25. ■

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Example 3. Another example RDP is the following one.

O = {o1, o2}, A = {a1, a2}, R = {0, 1}, U = {u0, u1, u2, u3, u4, u5}.

The (semi-)automaton A is illustrated in the following figure:

u0

u1

u2

u3

u4

u5

a2o1

a1o2

a2o2

a2o1

a2o2a1o1a1o1, a1o2

a2o1

a1o2

a2o1

a1o2

a1o1, a1o2,
a2o1, a2o2

a1o1

a2o2

a1o1

a2o2

The output function θ is defined as follows:

• θo(o | u, a) = 0.5 for each o ∈ O, u ∈ {u0, u5} and a ∈ A.

• θo(o1 | u1, a) = θo(o2 | u2, a) = 0.75 for each a ∈ A.

• θo(o2 | u1, a) = θo(o1 | u2, a) = 0.25 for each a ∈ A.

• θo(o1 | u3, a) = θo(o2 | u4, a) = 1 for each a ∈ A.

• θr(0 | u, a) = 1 for each u ∈ {u0, u1, u2, u5} and a ∈ A.

• θr(0 | u3, a2) = θr(0 | u4, a1) = 1.

• θr(1 | u3, a1) = θr(1 | u4, a2) = 1.

Consider the regular policy π defined as π(a|u) = 0.5 for each u ∈ U and a ∈ A. Some facts about
the RDP:

• From state u5 we can never observe reward 1.

• From state u3 we eventually observe o11.

• From state u4 we eventually observe o21.

• From state u1 we eventually reach u3 with probability 0.75 and u4 with probability 0.25.

• From state u2 we eventually reach u3 with probability 0.25 and u4 with probability 0.75.

• From state u0 we eventually reach u3 with probability 0.5 and u4 with probability 0.5.

To prove the last three facts, let p0, p1, p2 be the probability of reaching u3 from u0, u1, u2
respectively. These probabilities satisfy the following system of linear equations:

p0 = 0.5p1 + 0.5p2,

p1 = 0.2p0 + 0.2p2 + 0.6,

p2 = 0.2p0 + 0.2p1.

The solution is given by p0 = 0.5, p1 = 0.75, p2 = 0.25.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Consider the language setX = {X1, X2}, whereX1 is the language defined by the regular expression
.*(.o11).* and X2 is the language defined by the regular expression .*(.o21).*. For each
state u ∈ U , the probabilities of the two languages for histories h that map to u, i.e. τ̄(h) = u, are
given by

u0: pπh(X1) = 0.5, pπh(X2) = 0.5,
u1: pπh(X1) = 0.75, pπh(X2) = 0.25,
u2: pπh(X1) = 0.25, pπh(X2) = 0.75,
u3: pπh(X1) = 1, pπh(X2) = 0,
u4: pπh(X1) = 0, pπh(X2) = 1,
u5: pπh(X1) = 0, pπh(X2) = 0.

It is easy to verify that for the given language set X and two histories h, h′ ∈ H, LX (pπh, p
π
h′) = 0 if

h ∼ h′ and LX (pπh, p
π
h′) ≥ 0.25 if h ̸∼ h′. Hence X distinguishes R and the distinguishability is

µX = 0.25.

We can represent the RDP more compactly using a cascade Ao ⋉Ar, where Ao is a Markov prior
and Ar is the following automaton:

u′
0 u′

1 u′
2 u′

3

∗a2o1, ∗a2o2

o1a1o2, o2a2o1

o1a1o1,o2a2o2 o1a1o1,o2a2o2

∗a1o1, ∗a1o2 o1a2∗, o2a1∗ o1a2o1,o2a1o2 ∗

Concretely, the state o1u′1 in the cascade corresponds to the state u1 in the original RDP, while o2u′1
corresponds to u2. Likewise, o1u′2 in the cascade corresponds to the state u3 in the original RDP,
while o2u′2 corresponds to u4. Both o1u′0 and o2u′0 map to u0, and both o1u′3 and o2u′3 map to u5.
Note that the automaton Ar is more compact than the original RDP. ■

Example 4. A third example to illustrate the difficulty of suffixes with different lengths. Here I have
omitted actions and observations and focus only on probability distributions over suffixes (under
the given behavior policy). For simplicity, assume that all transitions are deterministic except for
u2 → u3, which has probability p (else the agent remains in u2).

u0

u1

u2 u3 u4

1− p

r = 0
p r = 1

We can reach u2 in two different ways: directly from u0 (history h), or via u1 (history h′). Let us
assume that the only language in X checks if reward 1 is present in a suffix. The current algorithm
will estimate LX (pπh, p

π
h′) using two multisets of suffixes: one whose suffixes have length H − 1, and

one whose suffixes have length H − 2.

The probability of not reaching u3 in k steps is (1−p)k, since the agent will attempt to reach u3 every
timestep and fails with probability 1 − p. Hence the probability of observing reward 1 in suffixes
of length H − 1 is 1− (1− p)H−2, and the probability of observing reward 1 in suffixes of length
H − 2 is 1− (1− p)H−3. To observe reward 1 in k steps we have to reach u3 in k − 1 steps to have
time for the last transition from u3 to u4. For example, if p = 0.1 and H = 10 we have

1− (1− p)H−2 = 1− 0.98 = 0.57,

1− (1− p)H−3 = 1− 0.97 = 0.52.

■

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

C.2 EXAMPLES FOR SECTION 2 (PRELIMINARIES)

Example 5. Specific policies may induce the same distribution for histories that are not equivalent, as
noted in Observation 1. This phenomenon can be observed in the following example, which focuses
on the probability of observations, omitting rewards since they follow the same argument,

A = {a1, a2}, O = {o1, o2}, U = {u0, u1, u2},

τ(u0, ao1) = u1 ∀a ∈ A, τ(u0, ao2) = u2 ∀a ∈ A, τ(ui, ao) = ui ∀ao ∈ AO,∀i ∈ {1, 2},

θo(o1 |u1, a1) = 0.1, θo(o1 |u1, a2) = 0.9, θo(o2 |u1, a1) = 0.9, θo(o2 |u1, a2) = 0.1,

θo(o1 |u2, a1) = 0.9, θo(o1 |u2, a2) = 0.1, θo(o2 |u2, a1) = 0.1, θo(o2 |u2, a2) = 0.9.

In this example, a regular policy causing the collapse of distributions over observations determined
by the two different states u1, u2 is the following one, defined as a function of RDP states,

π(a1 |u1) = 0.9, π(a2 |u1) = 0.1, π(a1 |u2) = 0.1, π(a2 |u2) = 0.9.

For instance, we have that the probability of o1 coincides in the two states u1 and u2,

P(o1 |u1, π) = θo(o1 |u1, a1) · π(a1 |u1) + θo(o1 |u1, a2) · π(a2 |u1) = 0.18,

P(o1 |u1, π) = θo(o1 |u1, a1) · π(a1 |u1) + θo(o1 |u1, a2) · π(a2 |u1) = 0.18.

Similarly for o2, we have P(o2 |u1, π) = P(o2 |u2, π) = 0.82. In general pπh1
= pπh2

for histories
h1, h2 mapping to u1, u2 respectively, even though h1 ̸∼ h2 since u1 ̸= u2. ■

C.3 EXTENDED VERSION OF EXAMPLE 1 (PARTIAL INDEPENDENCE FROM PRIORS)

The T-maze with corridor length N and horizon H has observations, actions, and rewards given by

O = {InCorridor , InJunction,GoalNorth,GoalSouth},

A = {North,South,East ,West},

R = {0, 1},

U =
(
{corridor} × J0, NK ∪ {junction} × J−1,+1K

)
× {GoalNorth,GoalSouth},

and it is represented by the cascade TH ×A where TH is the timestep prior and the semiautomaton
A = ⟨U ,AO, τ, u0⟩ is defined as follows.

States,

U = {u0} ∪
((
{corridor} × J0, NK ∪ {junction} × J−1,+1K

)
× {GoalNorth,GoalSouth}

)
.

The transition function is defined as follows, where all variables range over their entire respective
domains,

τ(u0, a goal) =

{
⟨corridor , 1, goal⟩ if a = West

⟨corridor , 0, goal⟩ otherwise

τ(corridor , x, goal , ao) =


⟨corridor , x, goal⟩ if a = North or a = South

⟨corridor ,max(0, x− 1), goal⟩ if a = East

⟨corridor , x+ 1, goal⟩ if a = West and x < N

⟨junction, 0, goal⟩ if a = West and x = N

τ(junction, y, goal , ao) =



⟨junction,min(1, y + 1), goal⟩ if a = North

⟨junction,max(−1, y − 1), goal⟩ if a = South

⟨junction, y, goal⟩ if a = West

⟨junction, y, goal⟩ if a = East and y ̸= 0

⟨corridor , N, goal⟩ if a = East and y = 0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Let⊥ represents the observation symbol marking the end of an episode. When the symbol is produced,
the generated episode trace is to be considered complete.

The (deterministic) observation output function over the cascade state space θo : J0, HK×U×A → O
is defined as follows, where t ranges over J0, H − 1K.

θo(t, corridor , x, goal , a) =


corridor if a = North or a = South

corridor if a = East

corridor if a = West and x < N

junction if a = West and x = N

θo(t, junction, y, goal , a) =



junction if a = North

junction if a = South

junction if a = West

junction if a = East and y ̸= 0

corridor if a = East and y = 0

θo(H,u1, u2, u3, a, o) = ⊥

The (deterministic) reward output function over the cascade state space θr : J0, HK× U ×A → R is
defined as follows, where all variables range over their entire respective domains (including t),

θr(t, corridor , x, goal , a) = 0

θr(t, junction, y, goal , a) =


1 if y = 0 and a = North and goal = GoalNorth

1 if y = 0 and a = South and goal = GoalSouth

0 otherwise

Showing partial independence from the timestep prior (semi-stationarity) The automaton above
already satisfies the cascade condition (I) since it is given by TH ×A. We show its output functions
satisfy conditions (II) and (III). The observation output function (seen as returning distributions) can
be factored into the following two functions,

θro(o | corridor , x, goal , a) =
{
1 if o = θo(corridor , x, goal , a)

0 otherwise

θto(o | t, a) =


1 if o ̸= ⊥ and
1 if o = ⊥ and t = H

0 otherwise

Remark 1. The above function θro does not specify episode termination, and hence, at learning time,
the distributions it induces must be assessed by a language metric that ignores string length—as we
do when relevant in our experiments.

The reward output function (seen as returning distributions) can be factored into the following
functions, where all variables range over their entire respective domains,

θrr (r | corridor , x, goal , a) = 0

θrr (r | junction, y, goal , a) =
{
1 if r = θr(junction, y, goal , a)

0 otherwise

and

θtr (r | t, a) = 1.

The above shows that the T-maze is partially independent from the timestep prior, i.e., it is semi-
stationary.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Preserving rewards only In the T-maze automaton, we can also factor out a spatial prior as
(TH × S)⋉A where S describes the space of the maze, using states

Us = {corridor} × J0, NK ∪ {junction} × J−1,+1K.

Note that we could also use the spatial prior G3×(N+1) (introduced earlier) as a correct over-
approximation. However, introducing the independence (TH × S)×A allows only for representing
an approximation of the original automaton. Specifically, we can still represent the reward function
exactly, clear from the fact that the function θr above is independent of its first three arguments.
However, we can no longer represent precisely distributions on observations, since the function θo
depends on its second and third arguments. The advantage is that the domain-specific automaton A
is very compact. It only needs to remember the goal position communicated at the beginning of an
episode, and it can do so by using the two states {GoalNorth,GoalSouth}.

24

	Introduction
	Related work

	Preliminaries
	Language metrics
	Episodic decision processes and regular decision processes
	Offline RL in episodic RDPs

	Novel Techniques and Concepts
	Priors for RDPs
	Partial independence from priors and semi-stationarity

	Algorithm and PAC analysis
	Experimental Evaluation
	Conclusions
	Technical Lemmas
	Proof of Theorem 1

	Approximation algorithm
	Examples
	Example RDPs with a focus on distinguishability
	Examples for Section 2 (Preliminaries)
	Extended version of Example 1 (Partial independence from priors)

