LEARNING COMPACT REGULAR DECISION
PROCESSES USING PRIORS AND CASCADES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we study offline Reinforcement Learning (RL), and extend the previous
work on learning Regular Decision Processes (RDPs), which are a class of non-
Markovian environments, where the unknown dependency of future observations
and rewards from the past interactions can be captured by some hidden finite-state
automaton. We utilise the language metric introduced by Deb et al. (2025), and
introduce a novel algorithm to learn a significantly more compact RDP with cycles,
which are crucial for scaling to larger, more complex environments. Key to our
results is a novel notion of priors for automaton learning, that allows us to exploit
prior domain-related knowledge, used to factor out of the state space any feature
that is known a priori. We validate our approach experimentally and provide
a Probably Approximately Correct (PAC) analysis of our algorithm, showing it
enjoys a sample complexity polynomial in the problem parameters.

1 INTRODUCTION

Reinforcement Learning (RL) is a family of algorithms for learning behaviour from repeated in-
teractions with a stochastic dynamical system. A key assumption behind RL algorithms is the
Markov property, which implies that the current observation and action are sufficient to predict the
future evolution of the system (Puterman, 1994; Sutton et al., 1998). Though the Markov property
is the basis for many efficient algorithms, there exist many applications —e.g., in robotics— where
the Markov property does not hold. A common approach to deal with such cases is to consider a
hidden state (Whitehead and Lin, 1995) to account for missing information. This is most notably
studied in the context of Partially Observable Markov Decision Processes, or POMDPs (Kaelbling
et al., 1998). Although the POMDP framework offers very expressive representations and is of great
relevance in practice, it suffers from intractability in both planning and learning, and consequently
the corresponding learning algorithms become impractical in large problems, unless some restrictive
assumptions are imposed. An alternative recently proposed framework is Regular Decision Process,
or RDP (Brafman and De Giacomo, 2019; 2024), wherein the past interaction history is compactly
represented by a finite state automaton. In essence, an RDP is a special POMDP, whose hidden
dynamics evolve according to some (unobservable) finite-state automaton featuring a controlled form
of stochasticity, ensuring key favourable properties. Although RDPs by construction are less generic
compared to POMDPs, they are computationally and statistically tractable. This has led to a growing
interest in developing RDP learning algorithms from trajectories (Abadi and Brafman, 2020; Ronca
and De Giacomo, 2021; Ronca et al., 2022; Cipollone et al., 2023; Deb et al., 2025).

We investigate offline RL in episodic RDPs, where the goal is to find a near-optimal policy from a
dataset pre-collected using a behaviour policy. This problem was first studied by Cipollone et al.
(2023), where a first algorithm with provable PAC-type performance guarantee in terms of sample
complexity was proposed. Despite its appeal, this bound may imply a sample complexity growing
exponentially in episode length in some problem instance. This was remedied in (Deb et al., 2025)
through statistical tests defined via a novel metric called the language metric, specifically designed
for traces, borrowing ideas from the theory of formal languages. However, the models presented in
these papers consider an unstructured (i.e., atomic) hidden state modelling, which are incompetent to
leverage some prior information one has about the structure of the hidden states.

In this paper, we extend previous work for RDP learning along two dimensions. The first contribution
is to introduce priors for automaton learning. A prior is an automaton that incorporates prior

knowledge about a problem. Given one or more priors, an RDP can be expressed as the cascade
composition of the prior automata and a domain-specific automaton. This amounts to factoring out
the features provided by the priors, and hence learning compact domain-specific automata. Notable
priors include the fimestep prior to factor out timesteps from the state space while still considering
them, the Markov prior to specify that the previous observation may be relevant and avoid learning to
remember it (notably this ensures that the domain-specific automaton will be a trivial single-state
automaton if the RDP is in fact an MDP), and spatial priors that provide a description of the physical
space of the domain and relieve the domain-specific automaton from having to learn it.

The second contribution is to allow cycles in the learned domain-specific automaton. In previous
work the RDP states are organized in layers, one for each timestep. Introducing cycles can make the
learned automaton significantly more compact, especially for episodic problems with long horizons.
We identify conditions under which RDPs with cycles can be correctly learned, and demonstrate in
experiments that the learned RDPs are often much smaller than in previous work. To learn RDPs
with cycles our algorithm has to compare suffix distributions with different lengths, which is possible
by exploiting the language metric (Deb et al., 2025). In addition to experiments, we perform a
theoretical analysis of the sample complexity of our algorithm, showing it enjoys a sample complexity
polynomial in the problem parameters.

1.1 RELATED WORK

Offline RL under the Markov property is by now well-established, and there exists a large and growing
literature covering a broad range of MDP settings. In many settings, algorithms with optimal sample
complexity bounds exist. To mention some notable studies, we refer to (Chen and Jiang, 2019; Jin
et al., 2021; Li et al., 2024b; Rashidinejad et al., 2021; Uehara and Sun, 2022). Research on decision
making under non-Markov assumption dates back to, at least, three decades ago; some early attempts
include (Schmidhuber, 1990; Whitehead and Lin, 1995; Bacchus et al., 1996; Bakker, 2001). A
classical and effective approach to tackle non-Markov problems was through considering hidden
states (Whitehead and Lin, 1995), which related such problems to partially-observable problems.
We discuss below the most relevant lines of research that can handle non-Markov problems, while
excusing ourselves to give a through overview of all related developments.

POMDPs, PSRs, and State Representation There exist at least two major lines of research
to handle hidden information states in the context of partial observability: POMDPs and state
representations. Since RDPs are special POMDPs —with underlying dynamics evolving according
to some finite state automaton—, RL algorithms for POMDPs also apply to RDPs. Unfortunately,
tractable learning for general POMDPs remain to be an open problem, and to the best of our
knowledge has only been achieved in subclasses such as ergodicity (Azizzadenesheli et al., 2016),
undercomplete POMDPs (Guo et al., 2022; Jin et al., 2020), few-step decodability (Efroni et al.,
2022; Krishnamurthy et al., 2016), or weakly-revealing (Liu et al., 2022). In this context, Hahn et al.
(2024) introduces a generalization of RDPs with w-regular lookahead called Omega-Regular Decision
Processes (ODPs) and provide classical complexity results. In the case of state representation, the
most notable notion is Predictive State Representation (PSR) (Bowling et al., 2006; James and Singh,
2004; Kulesza et al., 2015; Singh et al., 2003), which provide general descriptions of dynamical
systems; they capture POMDPs and therefore RDPs. However, existing work on PSRs (Zhan et al.,
2023) rely on PSR-specific parameters and are therefore not directly applicable to RDPs.

Reward Machines and RDPs Some early work on non-Markov decision making restrict attention
to non-Markov rewards, while assuming Markov dynamics. This is, for instance, considered in
(Bacchus et al., 1996), where the reward function is specified in a temporal logic of the past.
Revisiting this setting has led to some fast growing lines of research that notably include reward
machines (Toro Icarte et al., 2018) and temporal logics of the future on finite traces (Brafman et al.,
2018; Giacomo et al., 2020). A reward machine is a finite automaton (or transducer) used to specify a
non-Markovian reward function. Reward machines have been introduced in (Toro Icarte et al., 2018)
along with an RL algorithm that assumes the reward machine to be known. There is a fast growing
line of research on reward machines in a variety of settings; see, e.g., (Gaon and Brafman, 2020; Xu
et al., 2020; Dohmen et al., 2022; Furelos-Blanco et al., 2023; Varricchione et al., 2024; Paraé et al.,
2024; Li et al., 2024a; Bourel et al., 2023). Reward machines have been generalised so as to predict
observations as well (Toro Icarte et al., 2019; Hasanbeig et al., 2021), which makes them equivalent

to RDPs—as mentioned above. Although some of these algorithms tackle the case of unobservable
reward machines, they do not report performance guarantees on the proposed methods. Following
their introduction by Brafman and De Giacomo (2019), RDPs were studied in the RL setting; in the
online RL setting, some attempts include (Ronca and De Giacomo, 2021; Ronca et al., 2022; Abadi
and Brafman, 2020). They are recently studied in the offline RL setting —the same setting considered
here— following the work by Cipollone et al. (2023).

Feature MDPs Hutter (2009) introduces ®-MDPs, a generalization of POMDPs with feature maps.
Concretely, the map & partitions the history space, and associates a state with each partition, and
can be represented by trees, e.g. suffix trees (McCallum, 1996). As explained by Ron et al. (1993),
a finite state automaton can be used to represent a prediction suffix tree, considering the nodes of
the tree as the states of the automaton, where each state of the automaton is determined by the last &
inputs. In RDPs, the function 7 (k) is implicitly defined as a map from histories to RDP states, which
is the RDP equivalent of the map ® in feature MDPs.

2 PRELIMINARIES

Notation We use A(X) to denote the set of probability distributions over a set X. A conditional
probability distribution is a function p : X — A()) whose elements equal p(y |). We use I(E)
to denote the indicator function of an event E. Given integers m and n such that 0 < m < n, let
[m,n] :={m,...,n} and [n] := [1,n]. The notation O(-) hides poly-logarithmic terms.

2.1 LANGUAGE METRICS

The notion of language metric has been introduced by Deb et al. (2025), and here we present a close
variant. Let T be an alphabet, i.e. a finite set of symbols. Given a natural number ¢ € N, let T'* be the
set of strings of symbols in I of length ¢, and let T+ = U;?‘;IFE be the set of non-empty strings of
any length. The empty string is denoted €. A language X C I'T is a subset of non-empty strings. Let
X be a set of languages. The language metric in X is a function Ly : A(T'") x A(T'") — R, on
pairs of probability distributions p, p’ € A(I'"), defined as Ly (p, p') := maxxex |p(X) — p'(X)|,
where the probability of a language is p(X) = >y p(z).

To learn cyclic automata in episodic RDPs we necessarily have to compare probability distributions
over strings of different lengths. To do so we exploit the fact that the language metric Ly is a
pseudo-metric: two different distributions p # p’ may satisfy Ly (p,p’) = 0. We are therefore
interested in languages that are invariant to the string length. One such example is the family of
languages that contain some pattern, e.g. any string that contains a given symbol v € I". Even if p
and p’ assign non-zero probability to strings of different lengths, we may still have Ly (p,p’) = 0.

2.2 EPISODIC DECISION PROCESSES AND REGULAR DECISION PROCESSES

An episodic decision process is a tuple P = (O, A, R, T, R, H,v), where O is a finite set of
observations, A is a finite set of actions, R C [0, 1] is a finite set of rewards, H > 0 is an integer
horizon, and v € A(O) is an initial distribution on observations. We frequently consider the
concatenation AQ of the sets A and O. Let H; = (AQO)!*! be the set of histories of length ¢ + 1, and
let hyy.p, € Hiy—im denote a history from time m to time n, both included. Each action-observation
pair ao € AQ in a history has an associated reward label r € R, which we write ao/r € AO/R
with the understanding that the slash corresponds to string concatenation. A trajectory eg.r is the full
history generated until (and including) time 7.

We assume that a trajectory ey.7 can be partitioned into episodes eg.o+;r € Hy of length H 4 1. In
each episode eq. 7, ag is a dummy action and og is sampled from the distribution v. The transition
function T’ : H x A — A(O) and the reward function R : H x A — A(R) depend on the current
history in H = UL H,. Given P, a generic policy is a function 7 : (AO)* — A(A) that maps
trajectories to distributions over actions. The value function V™ : [0, H] x H — R of a policy 7 is a
mapping that assigns real values to histories. For h € H, it is defined as V™ (H, h) := 0 and

VT(t,h) = E [Zfimm

h,yr] . Vit e [0,H], Yh € H,.

For brevity, we write V" (h) := V7 (t, h). The optimal value function V* is defined as V,*(h) =
sup,. V;"(h),Vt € [0, H],Vh € H., where sup is taken over all policies 7 : (40)* — A(A). Any
policy achieving V* is called an optimal policy, which we denote by 7*; namely V™ = V*. In
what follows, we consider simpler policies of the form 7 : 4 — A(.A) mapping finite histories to
distributions over actions. Let 113, denote the set of such policies. It can be shown that 115, always
contains an optimal policy, i.e. V;*(h) = maxyem,, V" (h),Vt € [H],Vh € H;. A policy 7 is
e-optimal iff By, [V (ho) — V& (ho)} < g, where hg = a_ 0g for some oy ~ v.

Each history h € H; and policy 7 induces a probability distribution over suffixes p} € A(THY),
where I' = AO/R is the alphabet of action-observation-reward triplets. Concretely, the probability
of a suffix e;y1.7 = Q4110¢41 /741 - - - agom /T 1S given by

Dh(etr1:m) = HiH:tH m(ailhi—1) T(0ilhi—1,a;) R(r3|hi—1, a;),
where h;_1 = hay110441 -+ a;_10;_1 foreach i € [t + 1, H]. Two histories h and h’ are equivalent
w.r.t. a class of policies IT if p] = p7, for every policy 7 € II; we write equivalence as h ~g /.
Observation 1. Specific policies may induce the same distribution for histories that are not equivalent.
Namely, for a class of policies T1, and two histories h and h/, a policy m; € II may induce different
distributions py* # py, while a second policy 7o € II may induce identical distributions p;? = p;?
(as shown in Example 5, Appendix C).

Episodic RDPs We adopt the episodic variant of RDPs by Deb et al. (2025), a minor modification
of the one by Cipollone et al. (2023). An episodic regular decision process is an episodic decision
process R = (O, A, R, T, R, H,v) described by a probabilistic-deterministic finite automaton, or
simply automaton for us, of the specific form A = (U, 3, Q, 7,0, ug) with I a finite set of states,
> = AQO afinite input alphabet composed of actions and observations, € a finite output alphabet,
7 :U X ¥ — U atransition function, 6 : U — 2 an output function, and uy € U an initial state. Let
771 denote the inverse of 7, i.e., 771 (u) C U x AQ is the subset of state-input pairs that map to
u € U. An RDP R implicitly represents a function 7 : 4 — U from histories in H to states in 4,
recursively defined as 7(ho) = 7(qo, ap0o) and 7(h:) == 7(T(ht—1), ato:). We use 4,0, R, U to
denote the cardinality of A, O, R, U, respectively, and assume H > 2, A > 2and O > 2.

The output function 6 : U — €2 maps the current state to an output in §2. The output space 2 = 2, %2,
consists of a finite set of functions that specify the conditional probabilities of observations and
rewards, of the form Q, C A — A(O) and Q, C A — A(R). For convenience, we often split the
output function into two functions 6, : U x A — A(O) and 6, : U x A — A(R) specifying the
conditional probabilities separately. The transition function and reward function of R are defined
asT(o | h,a) = 05(0 | 7(h),a) and R(r | h,a) = 6,(r | 7(h),a) for each history h € H and
action-observation-reward triplet ao/r € AO/R. An RDP is minimal if its automaton is minimal,
i.e., without redundant states, and hence unique, cf. (Hartmanis and Stearns, 1966).

The class IIg of policies acting according to the states of an RDP R is of particular importance. They
are called regular policies, and they are defined as the policies 7 : H — A(.A) satisfying the equality
m(h1) = w(hg) for all pairs of equivalent histories h1, h2 mapping to same state u = 7(h) = 7(h’).
Hence, we can compactly define a regular policy as a function of the state, i.e., 7 : U — A(A).
Regular policies exhibit key properties: (P1) under a regular policy, suffixes have the same probability
of being generated for histories that map to the same state in /; (P2) there exists at least one optimal
policy that is regular; (P3) in the special case where an RDP is Markovian in both observations and
rewards, it is sufficient for the states in I/ to track the observation in O.

For RDPs, under regular policies, the notion of history equivalence admits an alternative form. Two
histories h and b’ are equivalent if and only if they map to the same state, i.e., h ~rz B’ < 7(h) =
T(h') = u for u € Y. In this setting, we can write p], in place of the identical distributions p} and
pf,. This shows that the meaning of a history is captured by the state v = 7(h) the history maps to.

Distinguishing RDP states We will use language metrics Ly to learn RDPs from data. Thus
we are interested in language sets X that correctly distinguish an RDP R. For a given regular
policy 7, a language set distinguishes an RDP R if: (i) For each pair of histories &, h’ such that
7(h) = 7(1), Lx(p},p}/) = 0; (ii) for each pair of histories h, h’ such that T(h) £ 7(h'),
Lx(p},pp,) > px > 0. Two histories h, A’ s.t. 7(h) = 7(h') may have different lengths. In this
case we have pJ. # p7,, but Ly (p], p7,) = 0 may still hold due to Ly being a pseudo-metric. The
quantity gy = infy, przny27(ny) Lx (0f;, pf) is called the distinguishability of R under X’ and 7.

Automata cascades Representing automata with a state space ¢/ of atomic elements does not allow
for specifying the complex meaning of a state and the single functionalities implemented by the
transition function 7 in order to perform state updates. Cascades offer a richer way to represent
automata and overcome such limitations. A cascade is an automaton C = (3, U, 7, ug, €2, 0) given
by the composition A x --- x Ay where every A; = (X;,U;, 7;,u}) is a partial automaton that
only specifies the components relevant to describe transitions (called a semiautomaton, following
the terminology of automata theory). Every A is called a component of the cascade, and its input
alphabet is X; = U; - - -U; 1Y, allowing it to read the states of the preceding components in addition
to inputs from X. Then, the states of C are given by the states of the single components, with
U:=U x - xUgand ug := (u}, ..., uld), and the transition function is

T(u1,...,u4,0) = (11(u1,0),72(us, u10),...,7a(ug,us -+ - ug—10)),

where the transition function 7; of the ¢-th cascade component is applied to the component’s state u;
and to the extended input u; - - - u;_10 containing the states of the preceding cascade components
in addition to the input 0. We note that a component does not need to depend on all preceding
components necessarily—in some cases, its transition function may ignore the state of some of the
preceding components. This can be specified through the cross-product notation. For example, we
can write (A X Ay) X Aj to say that A, ignores the state of A, and then A3 reads the state of
both A; and As—note that parentheses are important to make it clear that we are not stating that
Aj is independent of A;. We remark that cascades offer an advanced representation formalism—
compared to conventional representations that are oblivious of the structure of states and transition
function—as they allow for specifying how an automaton is realised by the composition of several
components, each implementing a specific functionality, building on information already computed
by the preceding components. This observation applies directly to the transition function 7, and
indirectly also to the output function 6. In fact, the output function 6 : U; x --- x Uy — Qof a
cascade is over a factored state space, which allows for richer descriptions that make it explicit how
the function depends on the single state components. Note however that technical tools developed
for learning Factored MDPs (e.g., Rosenberg and Mansour (2021); Strehl et al. (2007); Talebi et al.
(2021); Tian et al. (2020)) do not carry over to our setting, because of unobservability of RDP states.
Learning factored representations under partial observability is seldom studied in the literature, and
the few existing work (e.g., Sallans (1999)) lack theoretical guarantees.

2.3 OFFLINE RL IN EPISODIC RDPS

Consider a batch dataset D comprising episodes sampled using an admissible regular behavior policy
7°. Specifically, the k-th episode (or episode trace) in D is of the form el ;; = afok /rk - - - ak, 0%, /1%
where, for each ¢ € [H],

o(’i ~ U, UIS = Uo, af ~ Wb(“f)a ~ 0, (Utaat) ~ 0, (“tvat) Uf+1 = T(uf7afof)

The learner seeks an e-optimal policy 7 for a given accuracy e € (0, H], using the smallest dataset D
possible, without further exploration. More precisely, we aim at finding 7 satisfying Vi (h)—V{T (h) <
¢ for each h € H with probability at least 1 — d, using the smallest dataset D possible. We stress that
in so doing 7° and underlying RDP states ¥ are unknown to the learner. It suffices to restrict attention
to regular e-optimal policies (cf. Proposition 5 in Deb et al. (2025)). However, some assumptions
must be imposed on 7® to provably guarantee that an e-optimal regular policy can be learned from D.

Given a regular policy 7 : U — A(A), let dT € A(U x AO) be the induced occupancy, i.e., a
probability distribution over candidate states u, ao € U x AQ, recursively defined as

dfi (ug, agog) = v(0g),

df (ug, ar0r) =32, 4o e =1 (uy) di—1(u, a0) m(ay |uy) Oo(0r [ue, ar), Yt € [H].

Of particular interest is the occupancy d; = df* associated with an optimal policy 7*, which is
unique if we assume that 7* is unique. Likewise, let d? := d7 be the occupancy associated with 7.
Since a state u € I/ may appear at different time steps, we often abuse notation and write d°(u, ao)
or d*(u, ao) to denote the occupancy of u, ao for the first timestep at which v may appear.

As in offline RL in MDPs, it is necessary to control the mismatch in occupancy between the behavior
policy 7® and the optimal policy 7*. Concretely, the single-policy RDP concentrability coefficient

associated with RDP R and behavior policy 7P is defined as
d*(u, ao)
cx = —
R u,aoI»IElZ%{);AO db(u, CLO)

It is generally impossible to learn an RDP correctly from samples collected under a behaviour policy
that does not have a finite concentrability coefficient, since this describes a situation where important
states are not explored. Thus, we assume concentrability to be bounded away from infinity, C{ < oo,
which further implies that for every u, a0 € U x AO, d°(u,ao) > 0 whenever d*(u, ao) > 0 In
what follows pu y refers specifically to the distinguishability under the regular behavior policy 7°.

3 NOVEL TECHNIQUES AND CONCEPTS

Equipped with the notions and definitions introduced in Section 2, we introduce two key notions
that prove instrumental in the design of our proposed algorithm (Section 2.3). The first one deals
with incorporating and leveraging some prior knowledge in RDPs, while the second characterises
particularly-favourable cases for learning RDPs with priors, also extending the stationarity assumption
in terms of timestep priors. We believe these notions could be of independent interest beyond RDPs.

3.1 PRIORS FOR RDPs

We introduce the novel notion of priors for RDPs, that allow for shaping the state space of an
RDP with fundamental structures known a priori. This enables learning algorithms to focus on
domain-specific aspects, relieving them from the burden of having to learn fundamental structures
that are known to be present in a domain. A prior is an automaton without output components (a
semiautomaton), A, = (,,U,, Tp, uf)) with input alphabet X, = AO, or alternatively £, = UF’,A(')
in the case it is part of a cascade where it depends on additional priors that precede it in the cascade
and provide it with states from I{/. Priors are included in the representation of an RDP by expressing
its automaton A as a cascade A = A, X A, where A, is a second ‘remainder’ semiautomaton. In
general, we can include several priors as A= AFl) X Ap' x A,. We can specify independence
between some of the cascade components as, e.g., A (A1 X A2) x A,. Effectively, cascades
allow for decomposing A into several components, each factormg out a specific feature implicit in
the states of A. The cascade decomposition focuses on states and transitions, but also provides a
structured state space that allows for richer descriptions of the output function of A. In fact, output
functions will be over a factored state space UF} X oo X Z/l;" X U, (abbreviated as Z/{F}:m X U,), and
they can be seen as functions of the overall state as in (a), or as functions of ¢/, mapping to functions
over the prior state space Z/{;:m as in (b),

@ 60: U™ xU)— (A= AOR)), b 0:U— U™ — (A= AOR))).

Note that, although the output function of A has an extended domain, the automaton A still represents
the functions 7" and R of the RDP over histories as usual. Specifically, the cascade decomposition
only changes the way we express the (hidden) states of an RDP, that are now seen as consisting
of several components focusing on specific aspects. It is also important to note that, although the
factored state space may contain extra states compared to the standard state space consisting of
atomic elements, this redundancy does not prevent the cascaded automaton from representing the
RDP correctly, since redundant states can be ‘collapsed’ by the output function—formally, there
may not be a bijection (isomorphism), but there is always an injection (homomorphism) that maps
factored states to the corresponding atomic states.

Next we describe three of the most fundamental priors, and showcase their usage in RDPs.

Markov priors Markov priors allow for specifying that the previous observation may be a relevant
feature in determining distributions over episode suffixes. Markov priors are simple semiautomata
that store the previous observation. Specifically, the Markov prior for observations O is Mp =
(AO, O U {x}, 7o, *) where the initial state ‘" is an arbitrary element not in O, and the transition
function is the function 7, (0, a0’) = ¢, that simply returns o’ disregarding o and a. Including a
Markov prior in the RDP automaton as A = My x A, allows for factoring out the functionality of
storing the previous observations, hence avoiding that this aspect is factored into the state space of
A, which is left more compact and cleaner.

Timestep priors Timestep priors allow for specifying that the current timestep in an episode
may be a relevant feature in determining distributions over episode suffixes. Timestep priors are
simple semiautomata that count the number of timesteps elapsed. Specifically, the timestep prior for
horizon H is Ty = (AO, [0, H], 7, 0) where the transition function is defined as 74 (¢, ao) := ¢ + 1.
Including a timestep prior in the RDP automaton as A = Ty x A, allows for factoring out the
functionality of keeping track of the current timestep, hence avoiding that this aspect is factored into
the state space of A, which is left more compact and cleaner.

Spatial priors Spatial priors allow for describing the physical space (its geometry) of a domain,
and specify that the current position in such space may be a relevant feature in determining distri-
butions over episode suffixes. Automata allow for describing all finite spaces. A notable instance
is the m x n grid prior for an RDP including motion actions A, = {—,+,1,]}} C A, defined
as Goxn = (AO, [m] X [n], Tmxn, (o, yo)) With transition function 7, x, (x, y, ao) returning
updated coordinates when a is one of the motion actions.

A notable case: RDPs with Markov and timestep priors To convey a clearer idea of the effect of
priors, we show explicitly what the automaton of an RDP looks like for the notable case when Markov
and timestep priors are included at the same time. In particular, the two priors do not depend on each
other, and hence they are composed as T ;7 X M. Then, the automaton of the RDP is expressed as
(T x Mp) x A,. The resulting state space is i = [0, H] x O x U,, and the transition function is

7(t, 0,up,a0") = (1:(t,a0"), 7,(0,a0"), To(uy, toaod))) = (t+ 1,0, 4.
(77 b b b b b b) 2/

where ul = 7 (u,, toao’) is the result of applying the transition function 7, of A, to the previous state
u, and the extended input toao’, which includes the current timestep ¢ and the previous observation o,
in addition to the current action a and observation o'.

3.2 PARTIAL INDEPENDENCE FROM PRIORS AND SEMI-STATIONARITY

In some special cases, the domain-specific automaton can be learned without considering priors
explicitly at learning time. Let us consider an RDP expressed as a cascade A, X A, where A, is a
prior and A, is a domain-specific automaton. This yields a state space i/ = U, x U,, and hence an
output function of the form 6 : U, x Uy — (A — A(OR)). Intuitively, this cascade representation
amounts to a factoring out the cascade features from A. Then, the special case when priors can be
considered separately is captured by the following notion.

Definition 1. An RDP represented by the cascade A, x A, is partially independent from priors
when the following conditions hold: (I) the two cascade components are independent, A = A, x A,
(IT) the observation function 6, of A can be expressed as the product of two independent functions
as 6o (0 | up, ur,a) = 65 (0|up,a) - 05(o| ur,a), and (III) the reward function ¢, can be expressed
as the product of two independent functions as 6, (7 | up, uy, @) = OP(r | up, a) - 05 (7| uy, @). When
Conditions (I) and (III) hold, we say the RDP is partially independent from priors w.r.t. rewards.
When an RDP is partial independent from a timestep prior T z7, we say the RDP is semi-stationary.

The definition applies to the case of multiple priors, as they can all be seen as part of A,. Partial
independence is important as it enables learning the domain-specific automaton A, while ignoring
learning the prior A,, since states u, = 7,(h) and their transition function 7, can be learned by
checking similarity of the distributions they induce on episode suffixes, which are independent of any
feature provided by the priors. If independence is only w.r.t. rewards, only the reward function can be
captured correctly by a cascade where independence from priors is included, which can still be useful
to learn optimal policies.

Next we showcase the above notions through an example.

Example 1. The T-maze of length N and horizon H (Deb et al., 2025), when represented as
Ty x A, is partially independent from the timestep prior T g, or semi-stationary. Furthermore,
when represented as (Tx X Ggx(n+1)) X Ay, With G, (y41) the grid prior, the RDP is partially
independent from both priors w.r.t. rewards only. Further details are deferred to Appendix C.3.

e % 9 N R W N =

L S S G
S e ® Q& AW NR S

[SE S
[N

4 ALGORITHM AND PAC ANALYSIS

In this section we present ADACT-L, our algorithm for learning RDPs with priors and cycles. The
algorithm assumes that we are provided with a prior automaton A, = (X, U,, 7, u > and the aim is
to learn a problem-specific automaton A, = (3, U,, 7., u®) such that the complete RDP is expressed
as acascade A = A, x A,. For this purpose, the transition function 7, : U, X U, ¥ — U, incorporates
the states of the prior automaton as part of its input. We remark that the prior automaton A, could
itself be a cascade of automata, and that the algorithm can learn an RDP without prior knowledge by
defining a prior automaton A, with a single state.

Intuitively, ADACT-L learns an RDP A with composne states up, in a breadth-first manner starting
from upu To represent a transition from upu, to upu as a result of observing ao, it is sufficient to
define 7, (ur, upao) = uy, since the transition 7,(up, a0) = uj, is handled separately by the prior A,,.
The algorithm is based on the fact that the transition function 7, is invariant to the identity of ur in
composite states upur as long as the initial state up of A, is always paired with the initial state u of
A.,. For example, let u} and u? be two states of A, and let up, be a state of A,. We can construct an
equivalent automaton by swapping the definitions of 7,(u}, u, -) and 7,(u?, u, -) and changing the

o (- . ~ =
definition of 7, (-, u,a0) from u} to u? or vice versa whenever 7, Uy, a0) = up

As a consequence of the above fact, when we discover a new composite state u,u,, the identity of u]
can be arbitrary. In the algorithm, we simply choose w, as next available state in U, for up To do so,
0 4l 2,

we assume that we have access to a sequence of states u, , u, , u7, . . . and for each prior state u €Uy
we remember the index i(u;,) > 0 of the next available state in U Th1s also allows us to iterate over
all existing composite states involving up (line 10). We also remember the first timestep ¢(upu,) of

each state pair in order to add all suffixes of the same length to the associated multiset (line 17).

Function ADACT-L(U,, D, A,, 0)

Input: Automaton states U, = {ur ,ub, u? o .}, dataset D of traces in
prior automaton A, = (3, Uy, 7y, u)), failure probability 0 < § < 1
Output: Transition function 7, : Uy X Uy A O — U,

TH+H

foreach u, € U, do i(u,) < 0
Q «— {ug O} // queue data structure containing u‘plu(r’
i(ud) < 1, t(ugu)) « 0, Z(upuy) < D
whlle Q is not empty do
dequeue upur from @ // next joint state
for ao € AO do
u;, +— 7p(up, ao) // next prior s
Z(ao) +— {€t+1:H | aO/TetJrl;H S Z(upur)} // compute suffi
J < iup)
fork=0,...,i(u,) —1do
| if not TESTDISTINCT(Z (upuf, Z(ao), §) then j < k
end

7 (tr, Upao) < uf // define transition function
if j = i(uy) then

enqueue upuf in Q

i(up) + § + 1, t(upud) « t(upur) + 1, Z(upul) < Z(ao)
else if t(upuf) = t(upu,) + 1 then Z(upui) < Z(upul) U Z(ao)

end

end
return 7,
Function TESTDISTINCT(Z1, 22, §)
‘ return Lx (21, Z5) > \/10g(2|/\’|/5)/min(‘21|, | Z2]) // statistical test

In Appendix A we prove the following sample complexity bound for ADACT-L.

Theorem 1. ADACT-L(D,§) returns a minimal automaton A, with probability at least 1 —
2A0UU, § when using a language set X that distinguishes A, x A, under the behavior policy T°

with associated distinguishability jx and the size of the dataset D is at least

~ ’ 1/6)1
"D| 2 O (CRIOg(* /(5)20g|‘)(>7
dm'.“){

where d},, = miny, 4, d*(u, ao) is the minimum occupancy of the optimal policy T*.

In Appendix B we prove that a version of ADACT-L which returns an approximately optimal policy
achieves an improved sample complexity.

5 EXPERIMENTAL EVALUATION

We conduct numerical experiments to further demonstrate the performance and properties of
ADACT-L. We present our results for five familiar domains in the literature of POMDPs and
RDPs: Corridor (Ronca and De Giacomo, 2021), T-maze(c) (Bakker, 2001), Cookie (Toro Icarte
et al., 2019), Cheese (McCallum, 1992) and Mini-hall (Littman et al., 1995), and summarize our
results in Table 1. We compare against FlexFringe (Baumgartner and Verwer, 2023), a state-of-the-art
algorithm for learning probabilistic-deterministic finite automata, which includes RDPs as a special
case, and ADACT-H (Deb et al., 2025). FlexFringe can learn RDPs with cycles, but includes several
heuristics that do not preserve high-probability sample complexity guarantees. ADACT-H learns
RDPs without cycles. The proposed algorithm ADACT-L can learn cycles in addition to providing
sample complexity guarantees. In all experiments we use a Markov prior and a language set X
consisting of one language per action-observation-reward triplet, containing all strings of any length
that includes the triplet. This language set may only learn an approximate RDP in some domains.

From our results in Table 1, we can see that ADACT-L learns much smaller automata, while also
achieving the highest average reward. In T-maze(c), FlexFringe fails to find the optimal policy, since
the heuristics defined for FlexFringe are not optimized to preserve reward. In the domains Cheese and
Minihall, all the algorithms fail to learn the optimal policy owing to the complexity of the POMDP
environments; however, ADACT-L outperforms the other approaches by getting a higher average
reward as well as learning significantly smaller automata.

FlexFringe ADACT-H ADACT-L
Name H U r time U r time U r time
Corridor 5 11 1.0 0.03 1 1.0 0.01 3 1.0 0.01
T-maze(c) 5 29 0.0 0.11 18 1.0 0.26 5 1.0 0.15
Cookie 9 220 1.0 0.36 91 1.0 008 11 1.0 0.08
Cheese 6 669 0.69+.04 19.28 1178 0.87+.03 12.11 85 0.89+.04 7.27
Mini-hall 15 897 0.33+£.04 25.79 6098 0.86+.03 2990 65 0.87+.04 25.18

Table 1: For each domain, H, U are the horizon and the number of states in the learned automaton
respectively, 7 is the average normalised reward (over 100 episodes) of the derived policy, and ‘time’
is the running time in seconds of automaton learning. Best results emphasised in bold.

6 CONCLUSIONS

In this work, we introduce a novel algorithm ADACT-L utilizing the language metric introduced
by Deb et al. (2025), which allows us to learn a significantly smaller RDP with cycles, and also
identify conditions under which RDPs with cycles can be correctly learned which makes it possible
to scale to larger and more complex domains. Further to exploit domain-related knowledge, we
also introduce the notion of priors for automaton learning, that can be used to factor out of the state
space any feature that is known a priori. We further validate our approach experimentally over five
familiar domains in the POMDP and RDP literature, and compare the performance of our algorithm
to FlexFringe, a state-of-the-art algorithm for learning PDFA. Finally, as future work, we plan to
explore the approximate version of our algorithm and also to extend our work to the online setting.

REFERENCES

Eden Abadi and Ronen I. Brafman. Learning and solving regular decision processes. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 1948—-1954, 2020.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning
of POMDPs using spectral methods. In Conference on Learning Theory (COLT), pages 193-256,
2016.

Fahiem Bacchus, Craig Boutilier, and Adam J. Grove. Rewarding behaviors. In AAAI, pages
1160-1167, 1996.

Bram Bakker. Reinforcement learning with long short-term memory. In Neural Information Process-
ing Systems (NeurlPS), pages 1475-1482, 2001.

Robert Baumgartner and Sicco Verwer. Learning state machines from data streams: A generic
strategy and an improved heuristic. In International Conference on Grammatical Inference (ICGI),
pages 117-141, 2023.

Hippolyte Bourel, Anders Jonsson, Odalric-Ambrym Maillard, and Mohammad Sadegh Talebi. Ex-
ploration in reward machines with low regret. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 41144146, 2023.

Michael H. Bowling, Peter McCracken, Michael James, James Neufeld, and Dana F. Wilkinson.
Learning predictive state representations using non-blind policies. In International Conference on
Machine Learning (ICML), pages 129-136, 2006.

Ronen I. Brafman and Giuseppe De Giacomo. Regular decision processes: A model for non-
Markovian domains. In International Joint Conference on Artificial Intelligence (IJCAI), pages
5516-5522, 2019.

Ronen I Brafman and Giuseppe De Giacomo. Regular decision processes. Artificial Intelligence,
331:104113, 2024.

Ronen I. Brafman, Giuseppe De Giacomo, and Fabio Patrizi. LTLf/LDLf non-Markovian rewards. In
AAAI, pages 1771-1778, 2018.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning (ICML), pages 1042-1051, 2019.

Roberto Cipollone, Anders Jonsson, Alessandro Ronca, and Mohammad Sadegh Talebi. Provably
efficient offline reinforcement learning in regular decision processes. In Neural Information
Processing Systems (NeurIPS), 2023.

Ahana Deb, Roberto Cipollone, Anders Jonsson, Alessandro Ronca, and Mohammad Sadegh Talebi.
Offline RL in regular decision processes: Sample efficiency via language metrics. In International
Conference on Learning Representations (ICLR), 2025.

Taylor Dohmen, Noah Topper, George Atia, Andre Beckus, Ashutosh Trivedi, and Alvaro Velasquez.
Inferring probabilistic reward machines from non-markovian reward signals for reinforcement
learning. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 32, pages 574-582, 2022.

Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforcement
learning with a short-term memory. In International Conference on Machine Learning (ICML),
pages 5832-5850, 2022.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo. Hierarchies
of reward machines. In International Conference on Machine Learning, pages 10494—10541.
PMLR, 2023.

Maor Gaon and Ronen I. Brafman. Reinforcement learning with non-Markovian rewards. In AAAI,
pages 3980-3987, 2020.

10

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro Ronca. Tem-
poral logic monitoring rewards via transducers. In Principles of Knowledge Representation and
Reasoning (KR), pages 860-870, 2020.

Hongyi Guo, Qi Cai, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Provably efficient offline
reinforcement learning for partially observable Markov decision processes. In International
Conference on Machine Learning (ICML), pages 8016-8038, 2022.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Omega-regular decision processes. In Thirty-Eighth AAAI Conference on Artificial
Intelligence (AAAI), pages 21125-21133, 2024.

Juris Hartmanis and R. E. Stearns. Algebraic structure theory of sequential machines. Prentice-Hall
international series in applied mathematics. Prentice-Hall, Englewood Cliffs, N.J, 1966.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and
Daniel Kroening. DeepSynth: automata synthesis for automatic task segmentation in deep
reinforcement learning. In AAAI Conference on Artificial Intelligence, pages 7647-7656, 2021.

Marcus Hutter. Feature reinforcement learning: Part I: unstructured mdps. CoRR, abs/0906.1713,
2009.

Michael R. James and Satinder Singh. Learning and discovery of predictive state representations in
dynamical systems with reset. In International Conference on Machine Learning (ICML), 2004.

Chi Jin, Sham M. Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforcement
learning of undercomplete POMDPs. In Neural Information Processing Systems (NeurIPS), 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
International Conference on Machine Learning (ICML), pages 5084-5096, 2021.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99-134, 1998.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich
observations. In Neural Information Processing Systems (NeurIPS), pages 1840-1848, 2016.

Alex Kulesza, Nan Jiang, and Satinder Singh. Spectral learning of predictive state representations
with insufficient statistics. In AAAI Conference on Artificial Intelligence, pages 2715-2721, 2015.

Andrew Li, Zizhao Chen, Toryn Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, and Sheila
Mcllraith. Reward machines for deep rl in noisy and uncertain environments. Advances in Neural
Information Processing Systems, 37:110341-110368, 2024a.

Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
model-based offline reinforcement learning. The Annals of Statistics, 52(1):233-260, 2024b.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning policies for partially
observable environments: Scaling up. In International Conference on Machine Learning (ICML),
pages 362-370, 1995.

Qinghua Liu, Alan Chung, Csaba Szepesvari, and Chi Jin. When is partially observable reinforcement
learning not scary? In Conference on Learning Theory (COLT), pages 5175-5220, 2022.

Andrew Kachites McCallum. Reinforcement Learning with Selective Perception and Hidden State.
PhD thesis, University of Rochester, 1996.

R. Andrew McCallum. First results with utile distinction memory for reinforcement learning.
Technical report, University of Rochester, USA, 1992.

Roko Paraé, Lorenzo Nodari, Leo Ardon, Daniel Furelos-Blanco, Federico Cerutti, and Alessandra
Russo. Learning robust reward machines from noisy labels. In Proceedings of the 21st International
Conference on Principles of Knowledge Representation and Reasoning, pages 909-919, 2024.

11

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
1994.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. In Neural Information
Processing Systems (NeurlPS), pages 11702—-11716, 2021.

Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia. In J. Cowan, G. Tesauro, and
J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6. Morgan-
Kaufmann, 1993. URL https://proceedings.neurips.cc/paper_files/paper/
1993/£i1e/08419be897405321542838d77£855226-Paper.pdf.

Alessandro Ronca and Giuseppe De Giacomo. Efficient PAC reinforcement learning in regular
decision processes. In International Joint Conference on Artificial Intelligence (IJCAI), pages
2026-2032, 2021.

Alessandro Ronca, Gabriel Paludo Licks, and Giuseppe De Giacomo. Markov abstractions for PAC
reinforcement learning in non-Markov decision processes. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 3408-3415, 2022.

Aviv Rosenberg and Yishay Mansour. Oracle-efficient regret minimization in factored MDPs with
unknown structure. Advances in Neural Information Processing Systems, 34:11148-11159, 2021.

Brian Sallans. Learning factored representations for partially observable markov decision processes.
Advances in neural information processing systems, 12, 1999.

Jurgen Schmidhuber. Reinforcement learning in markovian and non-markovian environments.
Advances in neural information processing systems, 3, 1990.

Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter Stone. Learning
predictive state representations. In International Conference on Machine Learning (ICML), pages
712-719, 2003.

Alexander L Strehl, Carlos Diuk, and Michael L Littman. Efficient structure learning in factored-state
mdps. In AAAI volume 7, pages 645-650, 2007.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Mohammad Sadegh Talebi, Anders Jonsson, and Odalric Maillard. Improved exploration in factored
average-reward MDPs. In International conference on artificial intelligence and statistics, pages
3988-3996. PMLR, 2021.

Yi Tian, Jian Qian, and Suvrit Sra. Towards minimax optimal reinforcement learning in factored
Markov decision processes. Advances in Neural Information Processing Systems, 33:19896—-19907,
2020.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. Mcllraith. Using
reward machines for high-level task specification and decomposition in reinforcement learning. In
International Conference on Machine Learning (ICML), pages 2112-2121, 2018.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Q. Klassen, Richard Anthony Valenzano, Margarita P.
Castro, and Sheila A. Mcllraith. Learning reward machines for partially observable reinforcement
learning. In Neural Information Processing Systems (NeurIPS), pages 15497-15508, 2019.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. In International Conference on Learning Representations (ICLR), 2022.

Giovanni Varricchione, Natasha Alechina, Mehdi Dastani, and Brian Logan. Maximally permissive
reward machines. In ECAI 2024, pages 1181-1188. I0S Press, 2024.

Steven D Whitehead and Long-Ji Lin. Reinforcement learning of non-Markov decision processes.
Artificial intelligence, 73(1-2):271-306, 1995.

12

https://proceedings.neurips.cc/paper_files/paper/1993/file/08419be897405321542838d77f855226-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/08419be897405321542838d77f855226-Paper.pdf

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. In International
Conference on Automated Planning and Scheduling (ICAPS), pages 590-598, 2020.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D. Lee. PAC reinforcement learning for
predictive state representations. In International Conference on Learning Representations (ICLR),
2023.

13

A TECHNICAL LEMMAS

The technical lemmas are reformulated from (Deb et al., 2025) for our setting. Following the proof-
structure, we first provide the high probability upper bound on the language metric L » adapted to
our setting.

Lemma 2. Let X be a language set. Given a candidate state u, ao € U X AQ and a multiset Z(uao)
of suffixes in 'Y, with probability at least 1 — § the language metric Ly satisfies

log(2|X1/9)

L A’u,aov uao < b
% (Puao; Puao) < 2| Z(uao)|

where puao € A(UT) is the true distribution on suffixes induced by the candidate uao and the
behavior policy °, and Py, € A(T'F) is the empirical estimate on suffixes induced by Z(uao).

Proof. Let puao(X) = D, c x Puao(z) be the true probability of each language language X € X,
andlet Puao(X) = X, z(ua0) 1(z € X)/[Z(uao)| be the empirical estimate of pyqo(X). Following
Hoeffding’s inequality we get

_ log(2/55)
P uao X)— wao X)| > S 55.
<p () = Puaal X1 > | [
Choosing ds = §/|X| and taking a union bound implies that L satisfies

log(2|X]/9)

Lt (Puaor Puso) = 102% [Puao(X) = Puao(X) <4 [520 o

with probability 1 — |X|ds = 1 — , which completes the proof. O

Next, we define an associated event £y to correctly bound the language metric Ly for all candidate
states:

X lo(21:%1/5)
_ : waos Puao) < BIEPNY
Ex {Vu, ao € U x AO : Lx(Puaos Puao) 2| Z(uao)|

We next prove a high-probability sample complexity bound for accurately estimating the occupancy
d®(u, ao) of each candidate state. Let d(uao) be the empirical occupancy of uao. Given a number of
episodes IV, an empirical Bernstein inequality yields

P c?(uao) - db(u7ao)‘ > \/2d(uao)}\l}og(4/5) + 141(;55[4/5) <. e

We can next define G5 as the function for the bound in the empirical Bernstein inequality where ¢ is
the given failure probability, given by

Gs(d,N) = W+ 1412%4/6)

where G5 is monotonically increasing in d and monotonically decreasing in N. We can further define
an associated event g to correctly bound |d(uao) — d®(u, ao)| for all hao:

Ep = {Vu,ao eUx AO: ’c?(uao) - db(u,ao)‘ < Gg(c?(uao),N)} .
The following lemma shows that we can control the number of episodes /N to obtain an upper bound

on the function G.
Lemma 3. For fived probabilities § and d, if N > 161log(4/5)/d it holds that 3G5(d, N) < 2d.

14

Proof. We first show that the inequality holds for N = 161log(4/6)/d. In this case we have

3G5(d,N) = 3

2d2log(4/6) l4dlog(4/8) (3 14
161log(4/8) = 16log(4/d) (\/g 16

The case N > 161og(4/9)/ d follows from the fact that G5 is monotonically decreasing in N. [

>d<2d

Since c?(uao) = | Z(uao)|/N implies N = |Z(uao)|/ c/l\(uao), we obtain the following corollary.

Corollary 4. Under event Ep, if | Z(uao)| > 161log(4/9), it holds that \8(ua0) — d°(u,a0)| <
2d(uao)/3.

We show that under event £5, we can choose the sample complexity N to ensure that we obtain at
least a certain number of elements in Z(uao).

Lemma 5. Given a candidate state u,a0 € U x AO, under event Ep, it holds that | Z(uao)| >
blog(4/0) if the sample complexity N satisfies
log(4/6)

N = B, a0)

(2b+ 31/6).

Proof. Letting M = | Z(uao)|, due to event Ep and the given bound on N it holds that

d°(u, ao) — % < Gs(M/N,N)

& 0< M+ NGs(M/N,N)— Nd®(u,ao)
< M ++/2M log(4/6) + 141og(4/5)/3 — log(4/5) (2b + 31/6)
= M + \/21log(4/6)V'M —log(4/8) (2b+ 1/2).

Solving the quadratic inequality for positive v/ M yields

VM > _\/log(;l/(S) + \/log(;l/d) +log(4/8) (2b+1/2)

- log(;l /9 L\ fiog(@/3) % 2bTog(4)3)
log(4 2blog(4
. \/log 4/9) . /log(4/9) + /2blog(4/5) _ biog(@/5).
2 V2
where we have used the inequality v/z + y > (v/Z + \/¥)/v/2. Hence the bound on N in the lemma
implies that M = /M~ > blog(4/9). O

A.1 PROOF OF THEOREM 1

We first prove two lemmas very similar to Lemmas 16 and 17 of (Deb et al., 2025).

Lemma 6. Let R be an RDP and let X be a language set that distinguishes R under the behavior
policy ©°. Given a candidate state u, a0 € U x AQ and a reference state u' € U, let Z, and Z, be
two multisets sampled from the true distributions p,q, and p, on suffixes in U'T, respectively. Under
event Ex, if T(u, a0) = v’ then TESTDISTINCT(Z1, 22, 0) returns false.

Proof. Since T(u,a0) = ', any pair of histories hy and hs associated with u, ao and v’ satisfy
7(h1) = 7(hg) = u'. Since X distinguishes R, this implies that L (puqo, pw) = 0 holds. Letting
Duao and P, be the empirical distributions on suffixes induced by the multisets Z; and Z,, we can
now use the event £y, Lemma 2 and the triangle inequality to obtain

LX(Z/)\uamﬁu/ < LX puampuao + LX puampu + LX(pu’apu)

log(2|X]/9) 40 log 2|X|/6 2log(2]|X|/9) .
2|Zl| 2|ZQ Il’lln(‘2{1|7 |ZQ|)

This is precisely the condition for which TESTDISTINCT returns false. O

15

Lemma 7. Let R be an RDP and let X be a language set that distinguishes R under the behavior
policy w°. Given a candidate state u,ao € U x AQ and a reference state u' € U, let Z| and Z,
be two multisets sampled from the true distributions pyq. and p. on suffixes in I'", respectively.
Under event Ex, if T(u, ao) # u' then TESTDISTINCT(Z, 29, 6) answers true if Z1 and Z5 satisfy
min(|Z1, | Z51) > 8log(2¥]/6) /1.

Proof. Since 7(u,a0) # v, any pair of histories hy and hy associated with u, ao and v’ satisfy
7(h1) # T(h2). Since X distinguishes R, this implies that L x (puao, Pur) > f1x holds. Letting Duqo
and p,+ be the empirical distributions on suffixes induced by the multisets Z; and Z5, we can now
use the event £y, Lemma 2 and the triangle inequality to obtain

LX (ﬁuaov ﬁu’) 2 LX (puam pu’) - LX (ﬁuaov puao) - LX (pu’)]/)\u’)

e ¢log<2|X|/6> B \/10g<2|»a/5)

2|2,| 2|2,|
2log(2|X|/0) py _ px | 2log(2X]/0)
e > — [= > [
min(| 2], | 22]) 4 2 min(| 21|, [22])

where we have used the given condition on min(|Z;[, | Z2|) twice on the last line. This is precisely
the condition for which TESTDISTINCT returns true. O

The following lemma shows that the algorithm ADACT-L returns a minimal RDP if the multisets Z
associated with candidate states satisfy | Z| > 16log(4/9) log |X|/u2% = My.

Lemma 8. Under event £x, ADACT-L outputs a minimal automaton A, if the language set X
distinguishes A, x A, under the behavior policy 7 and the multiset Z(uao) associated with each
candidate state u, ao € U x AQ satisfies | Z(uao)| > My.

Proof. We prove the lemma using induction on RDP states u = upu, € Up U,. Since the algorithm
uses a queue data structure, such state pairs are visited in breadth-first order. The base case is given
by the initial state pair uJu; and the associated multiset Z(u3u)) = D. This state pair is covered by
the single initial state u? that has to be part of any minimal automaton A,.

The inductive case is given by a state pair upu, visited by the algorithm, and the associated multiset
Z(upuy) induced by all shortest histories mapping to u,u,. By hypothesis of induction, all state
pairs visited by the algorithm prior to (and including) u,u, are induced by the known prior A, and a
minimal automaton A,. Consider an action-observation ao € AQ and let Z(ao) be the multiset of
suffixes in Z(upu,) consistent with ao. Let u, = 7,(up, ao) be the resulting next state of the prior
automaton, and let u, = 7,(u,, upao) be the next state of a minimal automaton A.. If u/ u;, is visited
before u,uy,, then Lemma 6 implies that TESTDISTINCT(Z(a0), Z(uyuy), d) returns false. In this
case the algorithm correctly defines 7, (u,, upao) = uy;, and does not enqueue a new state pair. On the
other hand, if u;uﬁ is not visited before upu,, then if the multisets associated with all candidate states
have cardinality at least My, Lemma 7 implies that TESTDISTINCT(Z(a0), Z(Upy), §) returns true
for all state pairs 4%, visited before upu,. In this case the algorithm defines 7, (u,, upao) = u, for
the next available state u; € U, associated with u,, and enqueues a new state pair u,u,. This proves

. P
that the output of the algorithm is the transition function 7, of a minimal automaton A,. O

To complete the proof of the theorem we need to select a minimum number of episodes to ensure that
|Z(uao)| > My for each u,ao. Choosing b = 16log|X|/u3 in Lemma 5, we get the following

bound:
N> max{ log(4/6) (3210g|2(| +31/6) } .

wao | d°(u,ao) 0%

Since X distinguishes A, x A, and event £x holds, Lemma 8 now directly applies. It is sufficient to
choose 6y = §/2UU,AO to ensure that events £x and £p hold for all candidate states. Using the
lower bound d°(u, ao) > d*(u, ao0)/Cy > d,/Cy yields

N> Ck log(8UU,AO /o) (321og|X +31/6> _5 <CRlog(1/6) log|X|) .

- ds, 1 din - 11

16

which concludes the proof. We remark that Deb et al. (2025) present an improved analysis for an
approximate version of their algorithm, but we leave a similar analysis for future work.

B APPROXIMATION ALGORITHM

In this appendix we prove a sample complexity bound for the approximation algorithm ADACT-L-A
presented below. The algorithm is identical to ADACT-L, but if the multiset of a candidate state is
smaller than a given threshold (line 10), the candidate state maps to an absorbing dummy state. The
resulting RDP A, x A] approximates the minimal RDP A, x A,, and the threshold is selected such
that an optimal policy for A, x A/ is an £/2-approximation of the optimal policy for A, x A,.

Function ADACT-L-A(U,, D, A,, §,U,C)

Input: Automaton states U, = {ur Jul ut ..}, dataset D of traces in

prior automaton A, = (E Uy, T, ul), fallure probability 0 < § < 1, upper bounds U and C
Output: Transition function 7/ : Uy X Uy AO — U,

FH+1

1 foreach u, € U, do i(up) < 0

2 foreach upao € Up AO do 7/ (ui-, upao) < ui-

3Q «+ {u } // queue data structure containing ugut’
4 i(ud) < 1, t(udu?) « 0, Z(ugu)) < D

s while Q is not empty do

6 dequeue upur from @ // next joint state
7 for ao € AO do

8 u;, — Tp(up,ao) // next prior state
9 Z(ao) < {et+1:1 | ao/ret+1:0 € Z(upur)} // compute suffixes
10 if |Z(a0)|/|D| < 3¢/(10U AOC) then

1 77 (ur, upao) < u; // map to dummy state
12 else

13 J <« i(up)

14 fork=0,...,i(u,) —1do

15 | if not TESTDISTINCT(Z(upur , Z(ao), 8) then j «+ k

16 end

17 7! (tr, Upao) < ul // define transition function
18 if j = i(u,) then

19 enqueue upuf in Q

20 i(up) + § + 1, t(upud) « t(upur) + 1, Z(upul) < Z(ao)

21 else if t(upuf) = t(upu,) + 1 then Z(upui) < Z(upul) U Z(ao)

2 end

23 end

24 end

25 return 7/

26 Function TESTDISTINCT(Z1, 22, §)

27 ‘ return Lx (21, Z2) > +/log(2|X|/8)/ min(| Z1], | Z2]) // statistical test

Concretely, the subroutine TESTDISTINCT is only called for a candidate state uao on line 15 when
p(uao) satisfies

| Z(a0)]| < 3e
D]~ 10UAOC
where ¢, U and C are inputs to the algorithm and 1/ is the threshold. We prove the following theorem:

Theorem 9. With probability at least 1 — QAOUU 0, ADACT-L-A(U,, D, A,, 6, U,C) returns
an automaton A; such that Ay x A] is an §-approximation of the minimal RDP A X A, when
using a language set X that dzstznguzshes A X A, under the behavior policy wzth associated
distinguishability .y and the size of the dataset D is at least

UAOC log(l/d) log | X|)

en%

p(uao) = = 1),

|D|>(’)<

17

We first prove that the resulting RDP R/ = A, x A/ is 5-approximate.

Lemma 10. Under events Ex and Ep, if U and C are upper bounds on the number of RDP states
|Uy| and concentrability Cf, of the resulting RDP R’ = A, x A/, then ADACT-H-A returns an

returns an automaton A; such that R’ is an §-approximation of the minimal RDP R = A, x A,.

Proof. Consider a candidate state uao with M = | Z(ao)|. If p(uao) > 1) we impose the condition
M > My as before. For each such candidate state, ADACT-L—A calls TESTDISTINCT and correctly
promotes uao to an automaton state or merges it with an existing automaton state.

On the other hand, if p(uao) < 1 and N > 16log(4/0) /v, event £ and Lemma 3 yield
d5(u, a0) — Pluac) < Gs(Plgao), N)
59 €
d? G Gs(p,N) < —
& (u,a0) < p(uao) + Gs(p(uao), N) < + Gs(¢p, N) < 3 = 30400

In this case, ADACT-L-A does not call TESTDISTINCT and hence the resulting RDP state may be
incorrect. We can bound the contribution of uao to the value under the optimal policy 7* as

d:(u,ao)Zﬂ 7(u, ao) ZO 7(u,a0),a’,r) - r
a’'€eA reR

< d;j(u,ao) Z 7 (1 (u, ao) ZG u,a0),a’,r) = d; (u,a0) < Cg.d> < 2Ui10
a’eA TER

where we have used the fact that the reward is bounded by 1. Summing up the contribution of all
such incorrect candidate states to the expected optimal value of histories in 7 yields

Z de(ut,ao)z 7(u, ao) ZG 7(u,a0),a’,r)-r < Z ZQUAO_2

te[0,H] utao a’'€A re€R te[0,H] utao

This proves that the resulting RDP R/ is §-approximate. O

To prove Theorem 9, for each candidate state uao such that p(uao) < 1, a number of episodes which
satisfies N > 161og(4/4) /4 is sufficient to ensure that R’ is §-approximate. If p(uao) > v, we
instead require M > My as before. Since My = 161og(4/6) log | X |/ 1%, event Ep together with
Corollary 4 yield

2p(uao) p(uao S Y €
3 3 T3 10040C°
Choosing b = 16log | X'| /% in Lemma 5 and enforcing N > 161og(4/5) /¢ yields
log(4/8) (32log|X| 161og(4/9)
N > 31/6 —_—.
>y (T +ous) f+

x
We can now use the definition of 1) and the lower bound on d(u, ao) in the case p(uao) > ¥ to
achieve the following bound:

<

p(uao) — d®(u, ao) < & dP(u,a0) >

10U AOC log(8UU, A 2log |X 160U AOC log(8UU, A
N> 0UAOC log(8UU,AO /o) (3 o§| | +31/6) N 60U AOC log(8UU,AO /o)
€ Mo 3¢
_5 (UAOClog(1/6)10g|X>
en%

18

C EXAMPLES

We provide several examples that help to understand important aspects of RDPs, as well as of our
novel notions.

C.1 EXAMPLE RDPS WITH A FOCUS ON DISTINGUISHABILITY

Example 2. Consider an RDP defined by R = (O, A, R, T, R, H,v) and A = (U, %, Q, 7,0, ug)
with components given by

O ={o1,02}, A={ai,a2}, R={0,1}, U = {up,u1,us,us}.
The (semi-)automaton A is illustrated in the following figure:

201, a202

@101, a102,

4101, a102 a201, G202
b

201, a202

The output function 6 is defined as follows:

o(0 | u,a) = 0.5 foreach o € O, u € {ug,us} anda € A.

0| u,a2) =0.5foreacho € O andu € {uy,us}.

[o}

olO01 I ul,al) = 90(02 | ’LLQ,CLl) = 075

(
(
(
o(02 | u1,a1) = 0o(01 | uz,a1) = 0.25.

/(0] u,a) =1foreachu € {up,us} and a € A.

0
0
6

* 0
bi(
6,(1 | u,ay) =1foreachu € {uy,us}.
bi(

(0| u,ag) =1 foreach u € {uy,us}.

Let 7 be the regular policy defined as m(alu) = 0.5 for each a € A and each u € U. Let X be
the language defined by the regular expression . * (.011) . . Hence a string in Tt = (AOQ/R)™
belongs to X if and only if the observation-reward pair 011 appears in the string. Let X = {X} be
the language set containing only X.

We claim that X distinguishes the RDP R under the regular policy 7. For any history ~ mapping to
state us, the probability of the language X is p} (X) = 0 since the reward 1 can never appear. For
any history h mapping to state u1, eventually the policy 7 will select action a; and the probability
of 011 is 65(01 | w1,01)0r(1 | wi,a1) = 0.75 -1 = 0.75, implying p}(X) = 0.75. For any
history h mapping to state uy, eventually the policy 7 will select action a; and the probability
of 011 is 65(01 | ug,a1)0r(1 | ug,a1) = 0.25-1 = 0.25, implying p}(X) = 0.25. For any
history A mapping to state ug, eventually the policy 7 will select action as. This always causes
a reward of 0 and transitions to u; or uy with equal probability. Hence the probability of 011 is
0.5-0.75 + 0.5 - 0.25 = 0.5, implying p} (X) = 0.5.

As a consequence, given two histories h,h’ € H, if h ~ h’ the language metric is given by
Lx(p},p7,) = |pp(X)—pF.(X)| = 0, while if h ¢ h' we have Lx (p}, p7,) = |pp(X)—pF. (X)| >
0.25. Hence X distinguishes R for 7 and has distinguishability pxr = 0.25. '

19

Example 3. Another example RDP is the following one.
O:{OlaOQ}a A:{a1;a2}a R:{Oal}a u:{UO,Ul,Ug,Ug,U4,U5}.
The (semi-)automaton A is illustrated in the following figure:

4201 a201

a101, a102,

a101,0102 201, 0202
b

a102 ai102

The output function 6 is defined as follows:

* Oo(0| u,a) =0.5foreacho € O, u € {up,us} and a € A.
* Oo(01 | u1,a) = 05(02 | uz,a) = 0.75 for each a € A.

* Oo(02 | u1,a) = 65(01 | uz,a) = 0.25 foreach a € A.

* Oo(01 | ug,a) = 05(02 | ug,a) =1 foreacha € A.

* 0,(0] u,a) =1 for each u € {ug,u1,usz,us} and a € A.

* 0,(0] uz,az) = 6,0 | ug,a1) =1.

o 9,(1 | u3,a1) = 9,(1 | u4,a2) =1.

Consider the regular policy 7 defined as 7(a|u) = 0.5 for each v € U and a € A. Some facts about
the RDP:

e From state us we can never observe reward 1.

* From state uz we eventually observe o1 1.

* From state u4 we eventually observe os1.

» From state u; we eventually reach u3 with probability 0.75 and w4 with probability 0.25.
* From state us we eventually reach ugz with probability 0.25 and u4 with probability 0.75.

» From state ug we eventually reach us with probability 0.5 and u4 with probability 0.5.

To prove the last three facts, let pg, p1, p2 be the probability of reaching ug from wug, w1, us
respectively. These probabilities satisfy the following system of linear equations:

po = 0.5p1 + 0.5p2,
p1 = 0.2pg 4+ 0.2p2 4 0.6,
P2 = 02])0 + 02]91

The solution is given by py = 0.5, p1 = 0.75, pa = 0.25.

20

Consider the language set X = { X7, X5}, where X is the language defined by the regular expression
.* (.011) . and X5 is the language defined by the regular expression . * (.021) . . For each
state u € U, the probabilities of the two languages for histories & that map to u, i.e. 7(h) = u, are
given by

up: pr(Xi1) =05, pr(Xse)=0.5
Ui. pZ(Xl) = 0.75, pZ(XQ) = 0.25,
Uu9: pZ(Xl) = 0.25, pZ(XQ) = 075,
uz: pr(X1) =1, pr(X2) =0,
ug: pp(X1) =0, ph(X2) =1,
us: pp(X1) =0, pi(Xs2) =0.

It is easy to verify that for the given language set X" and two histories h, b’ € H, Ly (p},pL/) = 0 if
h ~ k' and Lx(p},pr) > 0.25if h ¢ h'. Hence X distinguishes R and the distinguishability is
Hx = 0.25.

We can represent the RDP more compactly using a cascade A, x A,., where A, is a Markov prior
and A, is the following automaton:

*@101, *A102 01a2%, 02a1% 010201,02a102 *

014101,020202 }}\ 010101,020202

2/

*@201, *A202

U3
01G102, 020201

Concretely, the state o; 1) in the cascade corresponds to the state u; in the original RDP, while oqu
corresponds to us. Likewise, o1uj in the cascade corresponds to the state w3 in the original RDP,
while oquf corresponds to Uy, Both oqu(, and oguy map to o, and both o0;u5 and ozu% map to us.
Note that the automaton A ,. is more compact than the original RDP. '

Example 4. A third example to illustrate the difficulty of suffixes with different lengths. Here I have
omitted actions and observations and focus only on probability distributions over suffixes (under
the given behavior policy). For simplicity, assume that all transitions are deterministic except for
ug — ug, which has probability p (else the agent remains in us).

1-p

We can reach us in two different ways: directly from wug (history h), or via uy (history k). Let us
assume that the only language in X’ checks if reward 1 is present in a suffix. The current algorithm
will estimate L (p}, pfr,) using two multisets of suffixes: one whose suffixes have length H — 1, and
one whose suffixes have length H — 2.

The probability of not reaching uz in k steps is (1 —p)¥, since the agent will attempt to reach uz every
timestep and fails with probability 1 — p. Hence the probability of observing reward 1 in suffixes
of length H — 1is 1 — (1 — p)*¥ 2, and the probability of observing reward 1 in suffixes of length
H —2is1— (1—p)H=3. To observe reward 1 in k steps we have to reach u3 in k — 1 steps to have
time for the last transition from w3 to u4. For example, if p = 0.1 and H = 10 we have

1-(1-pf—2=1-09%=0.57,
1-(1-p)f3=1-09"=0.52.

21

C.2 EXAMPLES FOR SECTION 2 (PRELIMINARIES)

Example 5. Specific policies may induce the same distribution for histories that are not equivalent, as
noted in Observation 1. This phenomenon can be observed in the following example, which focuses
on the probability of observations, omitting rewards since they follow the same argument,

A= {a1?a2}7 0= {01702}’ U= {UQ,Ul,Ug},
T(ug,a01) =u1 Ya € A, 7(ug,a02) =ug Ya € A, 7(u;,a0) =wu; Vao € AO,Vi € {1,2},

Oo(01 | ur,a1) = 0.1, O5(01 |ur,a2) =0.9, 65(02|u1,a1) =0.9, 6,(02|uy,as)=0.1,
00(01 |UQ,CL1) = 09, 00(01 |u2,a2) = 0]., 90(02 \u2,a1) = 01, 90(02 | UQ,CLQ) =0.9.

In this example, a regular policy causing the collapse of distributions over observations determined
by the two different states u;, ug is the following one, defined as a function of RDP states,

m(ay|ur) =09, 7w(ag|ur)=0.1, 7w(ay|uz)=0.1, w(az|uz)=0.9.
For instance, we have that the probability of 0; coincides in the two states u; and uo,
P(oy |u1,m) = 001 |ur,a1) - w(ay |u1) + 0o(01 | u1, az) - w(ag | uy) = 0.18,
]P(Ol | u1,7r) = 00(01 | Uy, al) . 7'('(0,1 | Ul) + 90(01 | ul,(lg) . 71'((12 | Ul) = 0.18.

Similarly for 0z, we have P(0g |u1,m) = P(02 | ug, 7) = 0.82. In general pj; = pf; for histories
h1, heo mapping to uy, us respectively, even though hq o he since uy # us. .

C.3 EXTENDED VERSION OF EXAMPLE | (PARTIAL INDEPENDENCE FROM PRIORS)

The T-maze with corridor length [V and horizon H has observations, actions, and rewards given by
O = {InCorridor, InJunction, GoalNorth, GoalSouth},
A = {North, South, East, West},
R = {0,1},
U = ({corridor} x [0, N] U {junction} x [~1,+1]) x {GoalNorth, GoalSouth},

and it is represented by the cascade Ty x A where T is the timestep prior and the semiautomaton
A = (U, AO, 7,up) is defined as follows.

States,

U = {uo} U (({corridor} x [0, N] U {junction} x [—1,+1]) x {GoalNorth, GoalSouth}) .
The transition function is defined as follows, where all variables range over their entire respective
domains,

(corridor, 1, goal) if a = West

) =
7(uo, a goal) {(corm’dar,O,goal) otherwise

(corridor, z, goal) if a = North or a = South
. (corridor, max(0,x — 1), goal) if a = East
d l =
7(corridor, ., goal, ao) (corridor, x + 1, goal) ifa= West and z < N
(junction, 0, goal) ifa= West and x = N
(junction, min(1,y + 1), goal) if a = North
(junction, max(—1,y — 1), goal) if a = South
T(junction, y, goal, ao) = < {junction,y, goal) if a = West
(junction,y, goal) if a = Fast and y # 0
(corridor, N, goal) if a = Fast and y =0

22

Let L represents the observation symbol marking the end of an episode. When the symbol is produced,
the generated episode trace is to be considered complete.

The (deterministic) observation output function over the cascade state space 6, : [0, H] xU x A — O
is defined as follows, where ¢ ranges over [0, H — 1].

corridor if a = North or a = South
corridor if a = Fast

corridor ifa = West and © < N
junction ifa = West and x = N

0o (t, corridor, z, goal, a) =

Junction if a = North
jgunction if a = South
0o (t, junction, y, goal, a) = < junction ifa = West
junction if a = East and y # 0
corridor ifa = Fast and y =0

HO(Hvula Uz, us, Cl,O) =1

The (deterministic) reward output function over the cascade state space 0, : [0, H] x U x A — R is
defined as follows, where all variables range over their entire respective domains (including ?),

0,(t, corridor, xz, goal,a) = 0

1 ify =0 and a = North and goal = GoalNorth
0, (t, junction,y, goal,a) = ¢ 1 if y =0 and a = South and goal = GoalSouth
0 otherwise

Showing partial independence from the timestep prior (semi-stationarity) The automaton above
already satisfies the cascade condition (I) since it is given by T x A. We show its output functions
satisfy conditions (II) and (IIT). The observation output function (seen as returning distributions) can
be factored into the following two functions,

1 if o = 0s(corridor, x, goal, a)

0: (o] corridor, z, goal, a) = {0 otherwise

1 ifo# 1 and
0t(o|t,a) =<1 ifo=1and t=H
0 otherwise

Remark 1. The above function 6} does not specify episode termination, and hence, at learning time,
the distributions it induces must be assessed by a language metric that ignores string length—as we
do when relevant in our experiments.

The reward output function (seen as returning distributions) can be factored into the following
functions, where all variables range over their entire respective domains,

0; (r| corridor, x, goal,a) = 0

1 if r = 0,(juncti l
0r (r | junction,y, goal, a) = nr .,(]unc ion, y, goal, a)
0 otherwise
and
0l (r|t,a) = 1.

The above shows that the T-maze is partially independent from the timestep prior, i.e., it is semi-
stationary.

23

Preserving rewards only In the T-maze automaton, we can also factor out a spatial prior as
(TH x S) x A where S describes the space of the maze, using states

Us = {corridor} x [0, N] U {junction} x [—1,+1].

Note that we could also use the spatial prior Gz, (n41) (introduced earlier) as a correct over-
approximation. However, introducing the independence (T 5y X S) x A allows only for representing
an approximation of the original automaton. Specifically, we can still represent the reward function
exactly, clear from the fact that the function 6, above is independent of its first three arguments.
However, we can no longer represent precisely distributions on observations, since the function 6,
depends on its second and third arguments. The advantage is that the domain-specific automaton A
is very compact. It only needs to remember the goal position communicated at the beginning of an
episode, and it can do so by using the two states { GoalNorth, GoalSouth}.

24

	Introduction
	Related work

	Preliminaries
	Language metrics
	Episodic decision processes and regular decision processes
	Offline RL in episodic RDPs

	Novel Techniques and Concepts
	Priors for RDPs
	Partial independence from priors and semi-stationarity

	Algorithm and PAC analysis
	Experimental Evaluation
	Conclusions
	Technical Lemmas
	Proof of Theorem 1

	Approximation algorithm
	Examples
	Example RDPs with a focus on distinguishability
	Examples for Section 2 (Preliminaries)
	Extended version of Example 1 (Partial independence from priors)

