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ABSTRACT

Benchmark contamination poses a significant challenge to the reliability of Large
Language Models (LLMs) evaluations, as it is difficult to assert whether a model
has been trained on a test set. We introduce a solution to this problem by water-
marking benchmarks before their release. The embedding involves reformulating
the original questions with a watermarked LLM, in a way that does not alter the
benchmark quality and utility. During evaluation, we can detect “radioactivity”,
i.e., traces that the text watermarks leave in the model during training, using a the-
oretically grounded statistical test. We test our method by pre-training 1B models
from scratch on 10B tokens with controlled benchmark contamination, and vali-
date its effectiveness in detecting contamination on ARC-Easy, ARC-Challenge,
and MMLU. Results show similar benchmark utility post-rephrasing and success-
ful contamination detection when models are contaminated enough to enhance
performance, e.g., p-val = 10−3 for +5% on ARC-Easy.
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Figure 1: Problem overview. Alice is a benchmark provider and wants to make sure that contamination on
her benchmark can be detected with high confidence. Before release, she rephrases the original benchmark
dataset while embedding a non-intrusive LLM watermark. This rephrasing does not change the utility of the
benchmark. Bob decides to train a model. The benchmark may contaminate Bob’s model during training, either
intentionally or unintentionally. Alice can give statistical evidence if her benchmark was used in training.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated remarkable advancements in
their capabilities (Brown et al., 2020; Touvron et al., 2023). This advancement places increasingly
greater emphasis on proper evaluation to both inform the state of LLM research and to guide fu-
ture developments. To this end, a multitude of benchmark datasets such as (MMLU) (Hendrycks
et al., 2020), School Math 8K (GSM8K) (Cobbe et al., 2021), and the AI2 Reasoning Challenge
(ARC) (Clark et al., 2018), or more recently GPQA (Rein et al., 2023) and FrontierMath (Glazer
et al., 2024), are developed to measure the model’s capabilities in terms of general or specific knowl-
edge, understanding, and scientific reasoning.

However, a significant issue that arises with these benchmarks is contamination. This problem can
occur either intentionally, by training models directly on the benchmark datasets or their reformu-
lated versions, or unintentionally, as these datasets become mixed with the vast amounts of data
used during pre-training. For example, Zhang et al. (2024) created a version of GSM8K with new
questions similar in difficulty and form, and observed that many models show a significant drop in
performance on them compared to the test set of GSM8k. This challenges the reliability and validity
of benchmark evaluations, as it becomes difficult to discern whether a model’s performance is due
to genuine improvement in capabilities or mere memorization. Furthermore, determining whether
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a model has been trained on a specific benchmark is very challenging, as it boils down to the is-
sue of dataset/membership inference which has been shown to be ineffective for LLMs in realistic
scenarios (Duan et al., 2024).

To tackle this problem, we propose a novel strategy of embedding non-intrusive watermarks in the
benchmark dataset before release. Our approach is inspired by Sander et al. (2024), who demon-
strated that fine-tuning on LLM-generated watermarked text can be reliably detected, as the model
retains identifiable traces of the watermark. When applied to benchmark watermarking, this ap-
proach enables reporting both model performance and a reliable p-value as a contamination score: it
is an upper bound to the probability that the model hasn’t been trained on the benchmark questions.
If the reported p-value is low, the LLM’s training data is likely contaminated with the benchmark
dataset and the performance numbers should not be trusted as genuine. Our method requires only
access to an LLM capable of rephrasing benchmark questions; see Figure 1 for an overview.

In summary, our main contributions are:

• Rephrasing benchmark datasets with watermarking: We use Llama-3 instruct models to
rephrase questions from MMLU, ARC-Easy, and ARC-Challenge benchmarks. By applying the
red/green list watermarking technique from Kirchenbauer et al. (2023a), we show that rephrasing
effectively incorporates watermarks while preserving benchmark integrity (subsection 3.1).

• Extending watermark radioactivity: Building on Sander et al. (2024), we extend watermark
radioactivity to a pre-training setup. We pre-train 1B models on 10B tokens, varying benchmark
contamination levels, each benchmark with a different secret watermarking key s. For instance,
our results show detection of contamination with a p-value below 10−3 when the accuracy is only
inflated by 5% on ARC-Easy, indicating a one in a thousand chance of error, while correctly
yielding p-values near 0.5 for uncontaminated models (Figure 3b and Table 1).

2 RELATED WORK

2.1 BENCHMARK CONTAMINATION DETECTION

Benchmark contamination is a significant concern in evaluating LLMs, as it can lead to unreliable
assessments and unfair comparisons (Singh et al., 2024; Balloccu et al., 2024). Although efforts
are made to decontaminate pre-training corpora (Brown et al., 2020), these methods are not fool-
proof (Singh et al., 2024). The impact of contamination can be assessed by comparing training runs
that differ only in the inclusion of contaminated batches: Jiang et al. (2024) have shown that even
small models can exhibit improved benchmark performance due to contamination. Post-hoc analy-
ses on the other hand identify score inflation by comparing performance on original versus similar
questions (Brown et al., 2020; Chowdhery et al., 2023), but Yang et al. (2023) have shown that train-
ing on reformulated questions is enough to boost the performance on the original benchmark, so the
difference in performance does not necessarily provide good correlational insights.

Zhang et al. (2024) craft new questions from the same distribution as GSM8K and observed that
most models show a significant performance drop on these compared to the GSM8K test set. This
result highlights the contamination issue, but does not introduce a scalable solution to the prob-
lem. In parallel, studying memorization in LLMs, such as regurgitating pre-training data, is also
closely related (Carlini et al., 2022; Hartmann et al., 2023). Techniques like membership inference
attacks (Mireshghallah et al., 2022) and context-based completion checks (Golchin & Surdeanu,
2023) attempt to approximate contamination without direct access to pre-training data, but their ef-
fectiveness is debated (Duan et al., 2024). They use a score function to assess the likelihood of a
sample being in the training set. Accurate results require calibrating each sample, by e.g., using a
model trained on all data except the benchmark, which can be impractical. Moreover, these methods
do not guarantee false positive or negative rates, allowing for deniability even with strong evidence.

2.2 DECODING-BASED WATERMARKING & RADIOACTIVITY

Overview. Recent advancements in watermarking techniques for large language models (LLMs)
involve altering either the probability distribution (Kirchenbauer et al., 2023a) or the method used for
sampling the subsequent token (Aaronson & Kirchner, 2023; Kuditipudi et al., 2023). Detection of
these watermarks is influenced by the entropy of the generated text (Christ et al., 2023; Huang et al.,
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2023), so further investigations propose watermarking only sections with high entropy, especially in
code (Lee et al., 2023), while other studies explore “semantic” watermarks that rely on the semantic
representation of the entire preceding text (Liu et al., 2023; Liu & Bu, 2024; Fu et al., 2024).

Green-list/Red-list watermark. This work focuses on the watermarking scheme proposed
by Kirchenbauer et al. (2023b), which modifies the logit vector during token generation based on
a context window of k previous tokens and a private key s. Both are hashed to serve as the seed
for a random number generator (RNG) to create a “greenlist” of γ|V| tokens. Logits of green to-
kens are incremented by δ to increase their sampling probability. Detection involves repeating the
greenlist computation for each token of a text, incrementing a score by 1 if the token is in the
greenlist, and performing a statistical test on the cumulative score. Under the null hypothesis H0,
which corresponds to “the text is not watermarked with that scheme”, this score follows a binomial
distribution (Fernandez et al., 2023).

Radioactivity of LLM watermarks. Sander et al. (2024) show that fine-tuning language models
on LLM-generated watermarked question-answer pairs can be detected with high confidence, as the
model retains traces of the watermark bias. The authors adapt the original watermark detection tests
to detect this watermark “radioactivity”, depending on the access to the suspect model and data.
In the context of benchmark watermarking, we assume access to the LLM that is being evaluated,
the benchmark itself, as well as the benchmark-specific watermarking key s. In this case, Sander
et al. (2024) suggests using what they call “reading-mode”. This involves scoring all next-token
predictions by forwarding the watermarked text in the suspect model. This is detailed in our con-
text in subsection 3.2. Similar observations have been made in other scenarios. For instance, Gu
et al. (2023) demonstrate that LLM watermarks can be intentionally distilled. Additionally, Zhao
et al. (2023) introduce a signal in generated text that can be learned by other LLMs trained on it.
Furthermore, Jovanović et al. (2024) investigate the concept of watermark radioactivity for RAG.

3 METHOD

We first focus in section 3.1 on the task of rephrasing the questions of a benchmark dataset while
embedding a watermark using the method proposed by Kirchenbauer et al. (2023b). Then, in sec-
tion 3.2, we show how to detect if a language model was trained on the watermarked benchmark.

3.1 INSERTING WATERMARK THROUGH QUESTION REPHRASING

We use an instruct language model, denoted as LMrephrase, which is assumed to be capable of
rephrasing each question in the benchmark test set such that the rephrased version is logically
equivalent to the original. This is a pretty light assumption as the task of rephrasing is consider-
ably easier than answering the question (Deng et al., 2023). LMrephrase generates token per token
and at each step, takes as input a context, which is the concatenation of the system prompt, rephras-
ing instruction, the question to rephrase and the answer generated so far. Everything is tokenized
into a sequence

(
x(1), . . . , x(t−1)

)
∈ Vt−1, where V is the vocabulary of the tokenizer.

LMrephrase outputs a logits vector ℓ(t) ∈ R|V|. The watermark embedding modifies ℓ(t) based on a
secret key s (one per benchmark) and the watermark window

(
x(t−k), . . . , x(t−1)

)
∈ Vk Specifi-

cally, following the method of Kirchenbauer et al. (2023b) detailed in 2.2, a secret-key cryptographic
function hashes s as well as the the watermark window, which serves as a seed for a random number
generator used to create a pseudo-random “greenlist” of tokens, comprising 50% of the entire vo-
cabulary V , for which the logits are incremented by a quantity δ to form ℓ̃(t), thereby increasing their
probability of being sampled. The logits vector is then transformed into a probability distribution
p(t) = softmax(ℓ̃(t)) ∈ [0, 1]|V|, and the generation proceeds by sampling the next token x(t) from
this distribution using a sampling procedure such as top-k sampling (Fan et al., 2018) or nucleus
sampling (Holtzman et al., 2019). The selected token is appended to the context, and the process
repeats. An example for the watermark embedding process is depicted in Figure 2a, with a detailed
version with different strength of watermarking in Figure 6.

Detectability/utility tradeoff. There is a common tradeoff in watermarking between detection
and utility. In our case detection is the ability to have statistical evidence that the benchmark was
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used during training. We show in subsection 3.2 that it can be measured through the p-value, which
is an upper-bound to the probability that the model is not contaminated. A lower p-value thus
indicates a stronger detection signal, making it more likely to identify unauthorized usage. On the
other hand, the utility of the watermarked benchmark is its ability to rank models and assess their
performance on specific tasks. To preserve utility, we therefore require that models perform similarly
on both the original and watermarked versions of the benchmark, allowing for accurate evaluation
and comparison of model performance. Specifically, the benchmark dataset exhibits a proportion
ρ > 0.5 of green tokens after rephrasing, the greater the easier detectability. For utility, we check if
pre-trained models perform similarly on the original and rephrased versions.

Enhancing the watermarked benchmark could involve: 1) using rephrasing instructions tailored to
each benchmark’s specifics, 2) employing better rephrasing models and 3) humans to review each
question, correct it, or choose between different watermarked versions from various seeds.
3.2 RADIOACTIVITY DETECTION IN A WHITE BOX SCENARIO

The strength of the watermark is determined by ρ, the proportion of green tokens in the text, which
is influenced by δ and the entropy of the generation process. Sander et al. (2024) demonstrate that
the ability to detect whether a model has been trained on watermarked data—referred to as the
radioactivity power—depends on ρ, as well as the proportion of watermarked text relative to the
total number of training tokens, the size of the model, the fine-tuning method, and other factors.
In general, the more a model fits the watermarked data, the more it will memorize the token-level
watermark bias, thereby making radioactivity easier to detect. The authors also introduce a “reading
mode” to enhance radioactivity detection when the model’s weights are accessible and the suspect
text is known: in our context, we input the tokenized questions into the suspect model and, for each
input token, assign a next token prediction using greedy decoding (i.e., selecting the most likely next
token based on the output logits). For detection, we replay the seed generation using the watermark
window from the inputs and the benchmark-specific key s to determine the green/red split, scoring
+1 if the predicted token is in the corresponding green list. This process is illustrated in Figure 2b.

The score function on a predicted token at index y(t) thus uses Wscore that takes as input the water-
mark window (x(t−k+1), . . . , x(t)) from the question, and depends on the secret key s:

y(t) ;
(
x(t−k+1), . . . , x(t)

)
7→ Wscore

(
y(t) ; s,

(
x(t−k+1), . . . , x(t)

) )
∈ R. (1)

generated token being scored

Watermark window (k previous tokens from the ground truth)

Scoring function (1 if green token, 0 otherwise)

A statistical test is performed on the cumulative score S(XN ) over all token indices t ≥ k:

S(XN ) :=

N∑
t=k

1
(
y(t) is in the greenlist of

(
s, (x(t−i+1))1i=k

))
. (2)

System prompt + instruction:
“You are a problem rephrasing assistant [...]”

Question: “The rate of acceleration of an object
is determined by the mass of the object and”

Rephrased with watermark (δ = 4):
“What factor, aside from an object’s mass, de-
termines its acceleration?” (73% of green to-
kens)

(a) Embedding - benchmark rephrasing

Attention 
mechanism

Watermarked 
Question

Output tokens after 
forward pass, 

,(0)factor(-1)What(-2)

Hash

Create 
Greenlist/Redlist

Score:  +1  | Tape: add [“factor”, “,”]    
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Figure 2: Method description. (Left) Watermarking the benchmark’s questions using an LLM, as detailed
in subsection 3.1, with an example from ARC-easy. The quality of the question is maintained despite strong
watermarking. (Right) Reading mode, as detailed in subsection 3.2. The upper sequence is the watermarked
question, and the tokens bellow are to next token predictions from the suspect model (y(t) in Equation 1).

4



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

The statistical test considers H0: “The tokens are generated without influence from the watermark-
ing bias”. The hypothesis “The model is not contaminated” is included in H0, under which S(XN )
follows a binomial distribution, as it should not output more green than red tokens.

De-duplication for reliable p-values. Under H0, for S(XN ) to indeed follow a binomial distri-
bution, the random variables

(
1
(
y(t) is in the greenlist of

(
s, (x(t−i+1))1i=k

)))
t

should be indepen-
dent and identically distributed and follow a Bernoulli distribution with parameter γ. For the inde-
pendence criterion, we only score

(
y(t); s, (x(t−i+1))1i=k

)
that were not already scored (Kirchen-

bauer et al., 2023a; Fernandez et al., 2023; Sander et al., 2024), by keeping a tape of scored tuples.
The p-value of a test associated with score s, i.e., the probability of obtaining a score higher than s
under H0, can then be obtained theoretically from the regularized incomplete Beta function Iγ :

p-value(s) = P(S(XN ) ≥ s | H0) = Iγ(s+ 1, N − s). (3)

The reading mode can be done either by the community for open-source models, or by the model
owner otherwise, without sharing model weights. Contamination is expected to increase as the
model over-fits on the benchmark. Thus, radioactivity detection should align with benchmark con-
tamination: for a fixed benchmark size, smaller p-values indicate a higher proportion of predicted
green tokens, occurring when predictions replicate green tokens from watermarked questions due to
token-level overfitting.

4 RESULTS

4.1 BENCHMARK QUALITY AFTER WATERMARKING

Set-up. For the watermark embedding, we rephrase with Llama-3.1-8B-Instruct (Dubey et al.,
2024) by default, with top-p sampling with p = 0.7 and temperature = 0.5 (default values on the
Hugging Face hub), and the green/red watermarking scheme of Kirchenbauer et al. (2023b) with a
watermark window k = 2 and a “green list” of size 1

2 |V | (|V | is the vocabulary size). We compare
different values of δ when rephrasing: 0 (no watermarking), 1, 2, and 4. We choose to watermark
ARC-Challenge, ARC-Easy, and MMLU due to their widespread use in model evaluation. In prac-
tice, one would need to watermark their own benchmark before release. For MMLU, we select a
subset of 5000 questions, randomly chosen across all disciplines, to accelerate experimentation and
maintain a comparable size to the other benchmarks. We refer to this subset as MMLU∗. ARC-Easy
contains 1172 questions, and ARC-Challenge contains 2372 questions. In Figure 6 of Appendix A,
we show the exact instructions given to the rephrasing model (identical for all benchmarks) and the
results for different watermarking strengths on one example from ARC-Easy. We use a different
watermarking key s for each benchmark.

Even strong watermarking keeps benchmark utility. We evaluate the performance of Llama-
3.3-1B, Llama-3.3-3B and Llama-3.1-8B on the original benchmark and the rephrased version using
as similar evaluation as the one from the lm-evaluation-harness library (Gao et al., 2024).
To check if the benchmark is still as meaningful, we check that evaluated models obtain a similar
accuracy on the watermarked benchmarks and on the original version (see subsection 3.1). Figure 3a
shows the performance on ARC-Easy. All models perform very similarly on all the rephrased ver-
sions of the benchmark, even when pushing the watermark to 80% of green tokens. Importantly,
they rank the same. Similar results are shown for MMLU∗ and ARC-Challenge in Figure 3a of
Appendix A, although for MMLU∗, we observe some discrepancies. For instance, when using a
watermarking window size of 2 (subfig i), the performance of Llama-3.2-1B increases from 38% to
42% between the original and the other versions. However we observe the same issue when rephras-
ing without watermarking in that case. As detailed in subsection 3.1, designing better instructions
that are more specific to each benchmark could help. We have tried increasing δ even further, but
it broke the decoding process. The choice of δ depends on the benchmark and the model used for
rephrasing, and needs to be empirically tested.

4.2 CONTAMINATION DETECTION THROUGH RADIOACTIVITY

We now propose an experimental design to control benchmark contamination, and evaluate both the
impact on model performance and on contamination detection.
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Training set-up. We train 1B transformer models (Vaswani, 2017) using Meta Lingua (Videau
et al., 2024) on 10B tokens from DCLM (Li et al., 2024). The model architecture includes a hidden
dimension of 2048, 25 layers, and 16 attention heads. The training process consists of 10,000 steps,
using a batch size of 4 and a sequence length of 4096. Each training is distributed across 64 A-100
GPUs, and takes approximately three hours to finish. The optimization is performed with a learning
rate of 3× 10−3, a weight decay of 0.033, and a warmup period of 5,000 steps. The learning rate is
decayed to a minimum ratio of 10−6, and gradient clipping is applied with a threshold of 1.0.

Contamination set-up. Between steps 2500 and 7500, every 5000/#contaminations, we take a
batch from the shuffled concatenation of the three benchmarks instead of the batch from DCLM.
Each batch has batch size× sequence length× number of GPUs = 4× 4096× 64 ≈ 1M tokens As
shown in Table 1, the concatenation of the three benchmarks is approximately 500k tokens, so each
contamination is a gradient that encompasses all the benchmark’s tokens. For each benchmark, any
sample that ends up contaminating the model is formatted as follows:

f"Question: {Question}\nAnswer: {Answer}"

Evaluation. We evaluate the accuracy of the models on the benchmarks by comparing the loss
between the different choices and choosing the one with the smallest loss, either “in distribution” by
using the above template seen during contamination or “out of distribution” (OOD) by using:

f"During a lecture, the professor posed a question: {Question}.
After discussion, it was revealed that the answer is: {Answer}"

In the first scenario, we evaluate overfitting, as the model is explicitly trained to minimize the loss of
the correct answer within the same context. In the second scenario, we assess the model’s ability to
confidently provide the answer in a slightly different context, which is more relevant for measuring
contamination. Indeed, it’s important to note that evaluations often use templates around questions
—e.g., in the lm-evaluation-harness library (Gao et al., 2024)— which may not be part of
the question/answer files that could have leaked into the pre-training data. Table 1 focuses on δ = 4
and shows the increase in performance across the three watermarked benchmarks as a function of the
number of contaminations when evaluated OOD. Results for in-distribution evaluation are provided
in Table 3 of Appendix A (w/o contamination, the model performs similarly on the two templates).

Contamination detection. For each benchmark, we employ the reading mode detailed in subsec-
tion 3.2 to compute the radioactivity score S and the corresponding p-value. Results are illustrated
in Figure 3b for ARC-Easy, and in Figure 8 of Appendix A for the other two benchmarks, across dif-
ferent numbers of contaminations and varying watermark strengths δ. We observe that the stronger
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Figure 3: Result for benchmark watermarking on ARC-Easy. (Left) We rephrase the questions from ARC-
Easy using Llama-3.1-8B-Instruct while adding watermarks of varying strength. The performance of multiple
Llama-3 models on rephrased ARC-Easy is comparable to the original, preserving the benchmark’s usefulness
for ranking models and assessing accuracy (Sec. 3.1, Sec. 4.1). (Right) We train 1B models from scratch on 10B
tokens while intentionally contaminating its training set with the watermarked benchmark dataset. Increasing
the number of contaminations and watermark strength enhances detection confidence (Sec. 3.2, Sec. 4.2)
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Table 1: Detection and performance metrics across different levels of contamination for ARC-Easy, ARC-
Challenge, and MMLU benchmarks, watermarked with δ = 4. The performance increase is shown for OOD
evaluation as detailed in subsection 4.2. The log10 p-value of the detection test is strongly correlated with the
number of contaminations, as well as with the performance increase of the LLM on the benchmark.

ARC-Easy (112k toks.) ARC-Challenge (64k toks.) MMLU∗ (325k toks.)

Contaminations log10(p) Acc. (% ∆) log10(p) Acc. (% ∆) log10(p) Acc. (% ∆)

0 -0.3 53.5 (+0.0) -0.3 29.4 (+0.0) -0.9 30.6 (+0.0)
4 -3.0 57.9 (+4.3) -1.2 32.4 (+3.1) -5.7 35.7 (+5.1)
8 -5.5 63.0 (+9.5) -4.5 39.3 (+9.9) <-12 40.8 (+10.2)

16 <-12 71.7 (+18.2) <-12 54.3 (+24.9) <-12 54.0 (+23.5)

the watermark strength and the greater the number of contaminations, the easier it is to detect con-
tamination: a larger negative log10(p) value indicates smaller p-values, implying a lower probability
of obtaining this score if the model is not contaminated. For instance, a − log10(p) of 6 implies that
we can confidently assert model contamination, with only a 10−6 probability of error. Additionally,
we observe that without contamination, the test yields a log10(p) value close to −0.3 = log10(0.5),
as expected under H0. Indeed, under H0, the p-value should follow a uniform distribution between
0 and 1, which implies that [-1, 0] is a 90% confidence interval for log10(p), and that [-2, 0] is a
99% confidence interval.

Table 1 links the contamination detection to the actual cheating (with OOD evaluation) on the bench-
marks when δ = 4 is used. We can see that for the three benchmarks, whenever the cheat is greater
than 10%, detection is extremely confident. When the cheat is smaller, with four contaminations
ranging from +3% to +5%, the p-value is small enough on ARC-Easy and MMLU∗, but doubtful
for ARC-Challenge (because smaller, see subsection 4.3). For instance, for MMLU∗, we can assert
model contamination, with only a 10−6 probability of error when 5 points are artificially added.

4.3 ADDITIONAL RESULTS

Table 2: Proportion of green tokens in the
predictions (see Equation 2), number of to-
kens scored after dedup and log10 p-values
for different watermark window sizes, with
16 contaminations and δ = 4 on ARC-Easy.

k ρ Tokens log10(p)

0 0.53 5k -6.07
1 0.53 28k -25.89
2 0.53 47k -38.69

Impact of window size. Watermark insertion through
rephrasing (subsection 3.1) depends on the watermark
window size k. Each window creates a unique green-
list/red-list split for the next token. Larger windows re-
duce repeated biases but are less robust. Because of rep-
etitions, Sander et al. (2024) show that smaller windows
can lead to bigger overfitting on token-level watermark
biases, aiding radioactivity detection. In our case, bench-
mark sizes are relatively small and deduplication limits
the number of tokens tested, because each {window +
predicted token} is scored only once. Thus, smaller win-
dows mean fewer tokens to score. Moreoever, as shown in Table 2, the proportion of predicted green
tokens is not even larger for smaller windows: there is not enough repetitions for increased over-
fitting on smaller windows. The two factors combined result in lower confidence. A comparison
of contamination detection across benchmarks and window sizes is shown in Figure 7, and for the
utility of the benchmarks in Figure 8. Overall, larger window size (k = 2) yields better results.

Impact of benchmark size. The benchmark size can significantly affect the method’s effective-
ness. With a fixed proportion of predicted green tokens, more evidence (i.e., more scored tokens)
increases test confidence. As shown in Table 1, at a fixed level of cheating (e.g., +10% on all bench-
marks after 8 contaminations), contamination detection confidence is proportional to benchmark
size. This is similar to our observations on watermark window sizes in Table 2.

Impact of rephrasing model. The difficulty and entropy of questions can significantly affect the
method’s performance. Indeed, math questions for instance can be challenging to rephrase, even
more with watermarks. Thus, better models may be needed for technical benchmarks. We tested
rephrasing with Llama3-70B-Instruct instead of the 8B version, and observed that some 8B model
failures, especially on mathy questions, are resolved with the 70B model, though quantifying this
is challenging. An example is provided in Figure 4. We note that increasing δ to 8 is necessary to
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match the green token proportion of δ = 2 with the 8B model, using the same decoding parameters.
This may result from lower entropy in generation or bigger logits, as the greenlist bias is applied
before the softmax (see subsection 3.1). Moreover, in math or code, rephrasing can offer limited
entropy, and even better models will not be enough. An alternative would be to add watermarked
verbose text around the questions, or using entropy-aware LLM watermarking (Lee et al., 2023).
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Figure 5: Detection confidence as a function of perfor-
mance increase on MMLU∗ for different model sizes
and #contaminations, for δ = 4 and OOD evaluation.

Impact of model size. We also test radioac-
tivity detection on 135M and 360M transformer
models using the architectures of SmolLM and
the same training pipeline as described in sub-
section 4.2, training each model on 10B tokens
as well. Figure 4.3 shows the detection confi-
dence as a function of the cheat on MMLU∗.
We find that, for a fixed number of contami-
nations, smaller models show less performance
increase –expected as they memorize less– and
we obtain lower confidence in the contami-
nation detection test. As detailed in subsec-
tion 3.1, the p-values indicate how well a model
overfits the questions, hence the expected corre-
lation. For a fixed performance gain on bench-
marks, p-values are consistent across models. For example, after 4, 8, and 16 contaminations on the
1B, 360M, and 135M parameter models respectively, all models show around +6% gain, with de-
tection tests yielding p-values around 10−5. Thus, while larger models require fewer contaminated
batches to achieve the same gain on the benchmark, radioactivity effectively measures “cheating”.

5 LIMITATIONS & CONCLUSION

Limitations

• Tokenizer consistency: This study uses the same tokenizer for both the rephrasing and contam-
inated models. If a different tokenizer is used in the suspect model, scoring should be limited to
tokens present in both vocabularies. A smaller intersection of vocabularies or a larger watermark
window thus reduces the number of scored tokens, and thus the power of the test.

• Rephrasing impact: Model performance remains similar across benchmark versions, but some
questions lose coherence after rephrasing (e.g., Figure 4), which can be difficult to spot. Possible
improvements are discussed in subsection 3.1 and subsection 4.3.

• Intentional evasion: The method is primarily designed for unintentional contamination. Ma-
licious actors could rephrase questions to weaken the watermark or train only on answers con-
ditioned on questions, which would bypass radioactivity detection. In this case, watermarking
answers may be necessary, though it might not always be feasible because of their lengths.

Conclusion. Watermarking benchmark appears like an promising solution to the problem of con-
tamination in lLarge lLanguage mModels: experiments confirm the method’s ability to maintain
benchmark utility while successfully identifying contamination.

Original question: An object accelerates at 3 meters per second2 when a 10-newton (N) force
is applied to it. Which force would cause this object to accelerate at 6 meters per second2?
Llama-3-8B-Instruct, δ = 2: What ad-
ditional force, applied in conjunction with
the existing 10-N force, would cause the
object to experience an acceleration of 6
meters per second2? (70%)

Llama-3-70B-Instruct, δ = 8: What force would be
necessary to apply to the object in order to increase its
acceleration to 6 meters per second2, given that an ac-
celeration of 3 meters per second2is achieved with a
10-newton force? (65%)

Figure 4: Watermarking failure on an ARC-Challenge question with an 8B model, while the 70B succeeds.
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Table 3: Detection and performance metrics across different levels of contamination for ARC-Easy, ARC-
Challenge, and MMLU benchmarks, watermarked with δ = 4. The performance increase is for in distribution
evaluation as detailed in subsection 4.2. Similar results for OOD are shown in Table 1.

ARC-Easy (1172 quest.) ARC-Challenge (2373 quest.) MMLU∗ (5000 quest.)

Contaminations log10(p) Acc. (% ∆) log10(p) Acc. (% ∆) log10(p) Acc. (% ∆)

0 -0.3 51.7 (+0.0) -0.3 28.5 (+0.0) -0.9 30.4 (+0.0)
4 -3.0 61.3 (+9.9) -1.2 35.1 (+7.0) -5.7 36.9 (+6.5)
8 -5.5 68.2 (+16.9) -4.5 42.2 (+14.1) <-12 43.0 (+12.6)

16 <-12 84.1 (+32.8) <-12 65.3 (+37.2) <-12 62.1 (+31.7)

A APPENDIX

A.1 QUALITATIVE EXAMPLES

Taking the example of a question from ARC-Easy, we compare qualitatively different watermarking
strength in Figure 6.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Evaluation Template. As detailed in subsection 4.2, we evaluate the accuracy on the benchmark
using both the same template seen during contamination and an alternative one. Table 3 presents
the results when evaluated with the same template. Without contamination, the model performs
similarly across the two templates, but a differences appear with contaminations. Even OOD, only
8 contaminated steps out of 10k steps leads to +10% on all benchmark for these 1B-parameter
language models.

Ablations on different benchmarks, watermark strength, watermark window sizes, and num-
ber of contaminations. Results for all benchmarks (ARC-Easy, ARC-Challenge, and MMLU∗),
with variations in watermark window size, number of contaminations, and watermark strength, are
shown in Figure 7 for utility and Figure 8 for radioactivity detection. For utility, all models perform
very similarly on all the rephrased versions of the benchmarks, even when pushing the watermark
to 80% of green tokens, although for MMLU∗, we observe some discrepancies. For instance, when
using a watermarking window size of 2 (subfig i), the performance of Llama-3.2-1B increases from
38% to 42% between the original and the other versions. However we observe the same issue when
rephrasing without watermarking in that case. The watermark window size does not have an impact.
For radioactivity detection on the other hand, as detailed in subsection 4.3, smaller window sizes
correlates with lower detection confidence.

System Prompt: “You are a problem rephrasing
assistant. Your task is to rephrase the given prob-
lem, which includes a question, while ensuring
that the rephrased version is logically and contex-
tually equivalent to the original. Do not provide
answers or solutions to the problem.”

Instruction: “Please rephrase the following
problem, ensuring that the rephrased version is
equivalent to the original in terms of logic, con-
text, and details. Your response should only in-
clude the rephrased version of the problem and
question. Beginning of the problem:”

Question: “The rate of acceleration of an object
is determined by the mass of the object and”

Llama-3-8B-Instruct Rephrased, δ = 0
What factors, in addition to the mass of an object,
influence its rate of acceleration? (47%)

Llama-3-8B-Instruct Rephrased, δ = 0.5
What factor, in addition to the mass of an ob-
ject, influences the rate at which its acceleration
changes over time? (55%)

Llama-3-8B-Instruct Rephrased, δ = 2
What factor, in addition to the mass of an object,
is a determining influence on its rate of accelera-
tion? (63%)

Llama-3-8B-Instruct Rephrased, δ = 4
What factor, aside from an object’s mass, deter-
mines its acceleration? (73%)

Figure 6: Benchmark watermarking example on a question of ARC-easy. The quality of the question is not
affected by the rephrasing, even with strong watermark. The proportion of green tokens is given in parenthesis.
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Figure 7: Comparison of Llama3 model performance on various versions of ARC-Easy, ARC-Challenge, and
MMLU∗ for different watermark window sizes. Each row corresponds to a different dataset, and each column
corresponds to a different window size. The window size does not noticeably impact the benchmark’s utility.
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(a) ARC-Easy, Window size 0
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(b) ARC-Easy, Window size 1
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(g) MMLU∗, Window size 0
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(h) MMLU∗, Window size 1
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(i) MMLU∗, Window size 2

Figure 8: Comparison of radioactivity detection on various versions of ARC-Easy, ARC-Challenge, and
MMLU∗ for different watermark window sizes. Each row corresponds to a different dataset, and each col-
umn corresponds to a different window size. Bigger benchmarks leads to easier detection, and window size
impacts the detection confidence, the larger the better, accross all benchmarks.
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