Under review as a conference paper at ICLR 2023

MIXQUANT: A QUANTIZATION BIT-WIDTH SEARCH
THAT CAN OPTIMIZE THE PERFORMANCE OF YOUR
QUANTIZATION METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization is a technique for creating efficient Deep Neural Networks (DNNs),
which involves performing computations and storing tensors at lower bit-widths
than 32 floating point precision. Quantization reduces model size and inference
latency, and therefore allows for DNNs to be deployed on platforms with con-
strained computational resources and real-time systems. However, quantization
can lead to numerical instability caused by roundoff error which leads to inaccu-
rate computations and therefore, a decrease in quantized model accuracy. In this
paper we focus on simulated quantized inference, where the quantized model pa-
rameters are stored in low-precision, but the mathematical operations on them (e.g.
matrix multiplications and additions) are performed with floating point arithmetic.
This means that the DNN parameters are first quantized from 32 to, for example,
int4, and then dequantized back to £32 to perform computations. We show that the
roundtrip process of quantizing and dequantizing the model parameters leads to
roundoff error, which may lead to numerical instability. Similarly to prior works,
which have shown that both biases and activations are more sensitive to quanti-
zation and are best kept in full precision or quantized with higher bit-widths, we
show that some weights are more sensitive than others which should be reflected
on their quantization bit-width. To that end we propose MixQuant, a search algo-
rithm that finds the optimal custom quantization bit-width for each layer weight
based on roundoff error and can be combined with any quantization method as a
form of pre-processing optimization. We show that combining MixQuant with
BRECQ, a state-of-the-art quantization method, yields better quantized model
accuracy than BRECQ alone. Additionally, we combine MixQuant with vanilla
asymmetric quantization to show that MixQuant has the potential to optimize the
performance of any quantization technique.

1 INTRODUCTION

Quantization is a method for mapping continuous values to a set of discrete values. The goal of
neural network quantization is to perform computations and store tensors at lower bit-widths than
floating point precision to reduce model size and inference latency while maintaining model ac-
curacy, which allows for deploying DNNs on platforms with constrained computational resources,
e.g.: real time inference on mobile devices. Quantization can be performed during training or infer-
ence. In this paper we focus on quantized inference, specifically post-training quantization, which
quantizes a full precision trained model without the need for re-training or fine-tuning.

Quantized inference can be either simulated or integer-only, and in this paper we focus on simulated
quantization, where the quantized model parameters are stored in low-precision, but the mathemati-
cal operations on them (e.g. matrix multiplications and additions) are performed with floating point
arithmetic (Gholami et al., 2022)). In Tensorflow, PyTorch, and HuggingFace (QDQBERT model),
simulated quantization is referred to as fake quantization. This means that the DNN parameters
are first quantized from f32 to, for example, int4, and then dequantized back to f32 to perform
the forward pass executed during inference. We show that the roundtrip process of quantizing and
dequantizing the model parameters leads to roundoff error, which may lead to numerical instability.

Under review as a conference paper at ICLR 2023

Similarly to prior works, which have shown that both biases and activations are more sensitive to
quantization and are best kept in full precision or quantized with higher bit-widths (Zhou et al.,
2016)), we show that some weights are more sensitive than others which should be reflected on their
quantization bit-width. To that end we propose MixQuant, a search algorithm that finds the optimal
quantization bit-width from int2, int3, int4, int5, int6, int7, and int8 for each layer weight based
on roundoff error and can be combined with any quantization method as a form of pre-processing
optimization. We show that combining MixQuant with BRECQ (Li et al.| [2021), a state-of-the-art
quantization method, yields better quantized model accuracy than BRECQ alone. Additionally, we
combine MixQuant with vanilla asymmetric quantization to show that MixQuant has the potential
to optimize the performance of any quantization technique.

MixQuant has three main benefits. First, MixQuant is a component of the quantization process,
which can be leveraged to find optimal quantization mixed precision bit-widths that can be plugged
into any quantization method to optimize its performance. Second, MixQuant is linear and runs in
a matter of seconds, which makes it practical. Third, combining MixQuant with BRECQ, a state-
of-the-art quantization method yields better quantized model accuracy than BRECQ alone, OMSE
(Choukroun et al., 2019), AdaRound (Nagel et al.l [2020), AdaQuant (Hubara et al., 2020), and
Bit-Split (Wang et al., 2020).

2 RELATED WORK

Neural Network Quantization Neural network quantization can be applied to training (Gupta
et al.L 2015 Zhou et al., 2016} |Hubara et al.,|2017; Bartan & Pilanci, [2021; |[Elthakeb et al., |2020) or
inference. There are two paradigms in quantized DNN inference: post-training quantization (PTQ)
and quantization-aware training (QAT) (Jacob et al.,|2018; [Tailor et al.| [2021). In contrast to PTQ,
QAT requires that the 32 model is retrained while simulating quantized inference in the forward
pass. While MixQuant can be integrated with either, we focus on PTQ which does not require any
re-training.

Hubara et al.|(2021) and [Li et al.|(2021)) are amongst the current state-of-the-art post training quan-
tization works. [Hubara et al.[(2021)) introduce AdaQuant, which finds optimal quantization for both
weights and activations and is based on minimizing the error between quantized layer outputs and
f32 layer outputs. This approach is similar to MixQuant; however, MixQuant finds the optimal
quantization bit-widths based on quantization error (QE) minimization, while AdaQuant treats the
bit-width as a constant and quantizes all weights and activations using the same bit-width (either inr8
or int4). |L1 et al.| (2021) propose BRECQ, a quantization method based on DNN block reconstruc-
tion. [Nagel et al.| (2020) propose AdaRound, adaptive rounding for weights, which achieves better
accuracy than rounding to the nearest. They formulate the rounding procedure as an optimization
problem that minimizes the expected difference between model loss with and without weights quan-
tization perturbation. [Li et al.|(2020) develop a method based on constraining all quantization levels
as the sum of Powers-of-Two terms, Wang et al.[(2020) propose a Bit-Split and Stitching framework
(Bit-split), Nahshan et al.| (2021) study the effect of quantization on the structure of the loss land-
scape, Banner et al.| (2019) develop ACIQ-Mix, a 4 bit convolutional neural network quantization,
and|Cai et al.|(2020) perform zero-shot quantization ZeroQ based on distilling a dataset that matches
the input data distribution.

Quantization originated with convolutional neural networks, but it has been extended to natural
language processing neural networks as well. (Chen & Sun| (2020) propose differentiable product
quantization, a learnable compression for embedding layers in DNNs. |[Kim et al.| (2021) study an
integer-only quantization scheme for transformers, where the entire inference is performed with pure
integer arithmetic.

Other works studied hardware optimization for quantization or the relationship between quantiza-
tion and adversarial robustness. [Han et al.| (2020) focus on performance optimization for Low-bit
Convolution on ARM CPU and NVIDIA GPU. [Fu et al.| (2021) investigate quantized models’ ad-
versarial robustness. They find that when an adversarially trained model is quantized to different
precisions in a post-training manner, the associated adversarial attacks transfer poorly between dif-
ferent precisions.

Under review as a conference paper at ICLR 2023

Mixed Precision Quantization In this paper we focus on mixed precision quantization. There
are only a few prior works that focus on mixed precision quantization since most focus on single
precision quantization, where the quantization bit-width of all weights are uniform and therefore;
treated as a constant. Wang et al.| (2019) propose a framework for determining the quantization
policy with mixed precision and reinforcement learning, but compared to MixQuant it requires sig-
nificantly more overhead (hardware simulators and reinforcement learning). |Liang (2020) focuses
on mixed precision quantization of activations and distinguishes between key and non-key activa-
tions to assign 8-bit and 4-bit precision respectively. In contrast to MixQuant, which searches for
weights mixed precision from 8 to 2 bits, [Liang| (2020) is limited to a choice between 4 and 8 bits
and applies only to activations while all weights are quantized with 8-bit precision. The primary
focus of |Wu et al.| (2018)) is neural architecture search, which can also be used for mixed precision
quantization. However, their search on ResNet 18 for ImageNet takes 5 hours, while MixQuant runs
in order of a few seconds. |Liu et al.|(2021) use single precision for weights, where the mixed pre-
cision is represented only by selecting a different bit-width for weights than activations. [Liu et al.
(2021)) is the most most recent, and we show that MixQuant yields better accuracy.

Another mixed precision quantization work that we build on is [Lin et al.| (2016), who identify op-
timal bit-width allocation across DNN layers. However, there are two primary differences between
Lin et al| (2016) and our work: (1) [Lin et al.| (2016) focus on fixed-point precision, not integer
precision, (2) Lin et al.|(2016) a different method for finding layer bit-widths based on predicted
signal-quantization-to-noise -ratio. Moreover, while they find that on CIFAR-10 convolutional DNN
is able to achieve 20 % model size reduction; their AlexNet experiments on ImageNet-1000 achieve
less than 1% model reduction. In this work we are able to successfully leverage mixed precision
optimal bit-width allocation on ImageNet-1000 models.

3 QUANTIZATION AND NUMERICAL INSTABILITY

Quantization involves lowering the bit-width of a numeric tensor representation, which can cause
numerical instability that leads to inaccurate outputs (Kloberdanz et al.,|2022)). In general, numerical
instability arises due to two types of numerical errors: (1) roundoff errors and (2) truncation errors.
Roundoff errors are caused by approximating real numbers with finite precision, while truncation
errors are caused by approximating an iterative mathematical process with only a finite number of
iterations. We argue that quantization can significantly amplify the roundoff error, which leads to a
degradation in quantized DNN accuracy.

DNN training and inference is typically performed in £32 precison, which already introduces round-
off errors, because it has only 32 bits to represent real numbers. Specifically, f32 can represent
a zero and numbers from -3.40282347E+38 to -1.17549435E-38 and from 1.17549435E-38 to
3.40282347E+38, but numbers outside of this range are not representable in f32. In simulated
quantization the process of quantizing DNN parameters from 32 to int (e.g.: int4) and dequantizing
them back to f32 to perform matrix multiply and add (e.g.: inputs * weights + biases) can lead to a
loss of precision.

Listing 1 shows an example of a simple simulated quantized inference, where the weights tensor is
quantized to int2 and its subsequent dequantization back to f32 has a roundoff error. The roundoff
error occurs in the second element of the weight tensor, which becomes 0.0 (line 40) while its true
original value is 0.01 (line 38). This error caused by quantization then propagates further - the
computation tnputs * weights + biases returns 1.0000e-05 (line 43) instead of 1.2000e-05 (line
42) in the second element of the result tensor.

Listing 1: Loss of Precision due to Quantization Example

scale_.r = (max_.r — min_r) / (gmax — gmin)
return scale_r

1

2 def scale(r, bits):

3 min_r = r.min()

4 max_r = r.max()

5 gmin = -1 % (2 =% (bits — 1))
6 gmax = 2 %% (bits — 1) — 1

7

8

9

Under review as a conference paper at ICLR 2023

10 def zero_point(r, bits):

11 scale_r = scale(r, bits)

12 min_r = r.min()

13 gmin = -1 % (2 =% (bits — 1))

14 zpt_-r = qmin — int(min_r / scale_r)
15 return zpt.r

16

17 def quant(r, bits):

18 z = zero_point(r, bits)

19 s = scale(r, bits)

20 q = (torch.round(r/s) + z).int()
21 return q

22

23 def dequant(q, z, s):

24 r =(q —-2z) % s

25 return r.float ()

26

27 input = torch.tensor ([0.005, 0.0002, 0.01, 0.003])
28 bias = torch.tensor ([0.00001])
29 weight = torch.tensor([-1.0, 0.01, 1.0, 2.0]) # original weight

31 S scale (weight, 2) # quantization scale

32 Z zero_point(weight, 2) # quantization zero point
33 q-weight = quant(weight, 2) # quantized weight

34 dq.weight = dequant(q, Z, S) # dequantized weight

35

36 result = input % weight + bias

37 dq-result = input = dq-weight + bias

38

39 132 weight: tensor ([-1.0000, , 1.0000, 2.0000])

40 quantized weight: tensor([-2, -1, 0, 1], dtype=torch.int32)
41 dequantized weight: tensor([-1., 0., 1., 2.])

43 f32result: tensor([—-4.9900e-03, , 1.0010e-02, 6.0100e-03])
44 simulated quantization result: tensor ([-4.9900e-03, 1.0000e-05, 1.0010e-02,
6.0100e-03])

4 MIXQUANT

MixQuant is a quantization scheme that relies on mixed precision to find the bit-widths of individual
layer weights that minimize roundoff error and therefore, minimize model accuracy degradation due
to quantization. Specifically, MixQuant is a search algorithm that finds optimal bit-widths that min-
imize model accuracy degradation caused by quantization. Prior works have shown that biases and
activations are more sensitive to quantization than weights, and are therefore typically kept in higher
precision. In this paper we argue some weights are more sensitive to quantization than others, which
we show in our ablation studies. This warrants a careful bit-width allocation to individual weights
and serves as motivation for MixQuant. In essence, MixQuant can be viewed as an additional pre-
processing optimization component of the quantization process, which can be combined with any
quantization method optimize its performance.

MixQuant is described in Algorithm[I] The optimal weight layer bit-widths search has two primary
components: layer-wise QE minimization and a QE multiplier (QEM). The layer-wise QE is cal-
culated as the mean squared error (MSE) between the f32 model weights and the weights that have
been dequantized following an int quantization (any quantization method can be used at line 8 in
Algorithm([T)) to capture the information loss due to roundoff error caused by quantization. This error
is calculated for each layer for each bit-width from the following list: 8, 7, 6, 5, 4, 3, and 2 (lines
4-11 in Algorithm[I). Following that, MixQuant searches for the optimal bit-width for each layer by
comparing the QE of each bit-width from this list with an int8 error, which serves as a baseline (lines
12-13 in Algorithm). To push MixQuant to select bit-widths lower than int8, MixQuant leverages
the QEM. If the QE at a bit-width b is less or equal to int8 QE multiplied by the QEM, b becomes

Under review as a conference paper at ICLR 2023

the optimal bit-width for that layer. This can be expressed as an optimization problem:

optBit = arg min, g, quantErrors
Subject to quantErrors < 8bity Error x QEM (D
optBit € B

Because the QEM is an input parameter into MixQuant, it allows the user to specify a custom trade-
off between quantization bit-width and model accuracy; and therefore, it allows the user to find their
optimal layer bit-width.

Algorithm 1 MixQuant

1: Imput: full precision weights W, bit-widths B, QE multiplier Q E M
2: Initialize optimal BitWidths
/* Iterate over all layers */
3: for [in layers do
4: 8bity = Quantize(W, bitWidth = 8)
/* Compute int8 quantization error in layer 1 */
5: 8bitgError =W - Dequantize(8bityy)
/* For every bit-width in B compute quantization error in layer 1 */
Initialize quantErrors
for bitWidth in B do
quantizedW = Quantize(W, bitWidth)
qError =W - Dequantize(quantizedW')
Append qgError to quantErrors
end for
/* Select optimal bit-width at layer 1 */
12: optBit = arg min,,, p;, quantErrors s.t.
quantErrors < 8bit, Error * QEM,
optBit € B
13: Append opt Bit to optimal BitWidths
14: end for
15: return optimal BitWidths

TP RIAD

—_ =

Weights Mixed Precision Quantization We focus on weights quantization for three reasons.
First, weights account for majority of parameters in a DNN and therefore, have the greatest im-
pact on model size and inference time. Second, model accuracy is more sensitive to quantized
activations than weights (Zhou et al., 2016). Third, we guided our algorithm design with the state-
of-the art results in table 2 in|Li et al.| (2021), who introduced BRECQ which shows weight-only
quantization.

Approximating Roundoff Error We use the QE (measured as the MSE between 32 and dequan-
tized weights) to approximate the impact of quantization on model accuracy for three reasons. First,
prior works have leveraged quantization error as a proxy for quantized model accuracy - |Banner,
et al.| (2019) used quantization MSE to approximate optimal clipping value (ACIQ) and optimal
bit-width for each channel. Second, we provide empirical evidence that there is a negative relation-
ship between model accuracy and quantization error (see Figure [6]in Appendix). Third, computing
layer-wise quantization error instead of determining the model accuracy with respect to each layer
and each possible layer bit-width has the advantage of linear time complexity. An exhaustive com-
binatorial search runs in exponential time (Wu et al.,|[2018]).

Time Complexity Analysis We analyze the algorithm’s time complexity by considering its two
logical components - the error calculations and the bit-width search based on them. Let L be the
total number of layers, B the total number of bit-widths, and M the total of QEMs. We calculate
the QE of each layer for each bit-width. Thus, the time complexity of MixQuant’s error calculations
(line 4-11 in Algorithm is O(L = B). The bit-width search (line 12-13 in Algorithm compares
the QE of each bit-width to the baseline int8 QE for each layer and can be performed for M number
of QEMs, which takes (L * (B x M)).

Under review as a conference paper at ICLR 2023

Table 1: Model accuracy comparison of MixQuant combined with BRECQ and BRECQ alone

Bits MixQuant £32 vs MixQuant | Bits BRECQ 32 vs
WIA +BRECQ +BRECQ WIA BRECQ
32732 69.76 3732 71.08
ResNet g | 43632 70.69 0.93 | 4/32 707 -038
4.5 6/32 70.69 0.93 | 3/32 6981 -127
2.5.6/32 68.93 -0.83 | 232 663 -4.78
33732 71.88 332 7249
. 4.5,6,7/32 71.92 0.04 | 4/32 7166 -0.83
MobileNetV2 | " 5" ¢ 7735 71.92 0.04 | 3/32 695 2.9
2.5, 6/32 59.53 1235 | 2132 5967 -12.82

Table 2: Model accuracy comparison of MixQuant combined with BRECQ and [Liu et al.|(2021)

Bits MixQuant £32 vs MixQuant | Bits Liuetal. f32vsLiu
W/A +BRECQ +BRECQ W/A (2021) etal. (2021)
32732 69.76 WRBL 7424
ResNet1g | 4 5-6/32 70.69 093 | 48 61.68 12,56
4.5, 6/32 70.69 093 | 48 61.68 12,56
2.5.6/32 68.93 083 | 48 6168 12,56
32732 71.88 7178
. 4.5,6,7/32 71.92 0.04 | 858 70.7 354
MobileNetV2 |) 5" 6" 7730 71.92 0.04 | 373 70.7 354
2.5.6/32 59.53 1235 | 88 70.7 354

Therefore, the overall time complexity of MixQuant is, which is linear with respect to the number
of layers:
O(L+*B)+ O(L(BxM))=0O(L(B+ B« M)) 2)

If we used model loss instead of layer QE to search for optimal bits, we would need to consider all
the models generated via the combinations of B number of bit-widths over L number of layers. The
time complexity would be O(B*), which is exponential.

5 RESULTS

We implement MixQuant using Python and combine it with two types of quantization techniques:
(1) BRECQ (Li et al., 2021), a state-of-the-art quantization method, and (2) vanilla asymmetric
quantization (Jacob et al.| |2018) and evaluate it on the validation set of the Imagenet ILSVRC2012
dataset. Our results demonstrate that MixQuant can optimize the performance of existing quantiza-
tion techniques.

MixQuant with BRECQ BRECQ is a state-of-the art quantization method that has been shown to
outperform OMSE (Choukroun et al., 2019), AdaRound (Nagel et al., 2020), AdaQuant (Hubara
et al., [2020), and Bit-Split (Wang et al., 2020), and in Table we demonstrate in that when
MixQuant is combined with BRECQ, we achieve better quantized accuracy than BRECQ alone.
Additionally, in Table we compare our results with (Liu et al., 2021), a state of the art mixed pre-
cision quantization technique, and show that the accuracy degradation is significantly greater in Liu
et al.[|(2021)).

MixQuant with Asymmetric Quantization In addition to BRECQ, we combine MixQuant with
asymmetric quantization and compare its quantized model accuracy with f32 and int8 baselines.
Table [3] shows the set of bit-widths found via MixQuant for various QEMs and various ResNet ar-
chitectures along with model top-1 and top-5 accuracy. A user can flexibly select the quantization
solution based on their requirements with the QEM. For higher QEMs the bit-widths are lower and
the model accuracy decreases, while for lower QEMs the bit-widths and quantized model accu-
racy are higher. Therefore, MixQuant allows its user to flexibly select the trade-off between model

Under review as a conference paper at ICLR 2023

Table 3: MixQuant Results: quantization bit-widths, quantized model accuracy, loss and quantiza-
tion mean squared error for various quantitative error multipliers

Architecture Experiment QEM layers_bit_widths Acc@1 Acc@5 loss.avg QMSE
resnet18 baseline: 32 N/A all layers are float 32 69.76 89.08 1.25 N/A
resnet18 baseline: int8§ N/A all layers are int 8 69.63 89.07 1.25 N/A
resnet18 2 6,7 68.20 88.30 1.31 0.23
resnet18 3 5,6,7 63.96 85.58 1.51 0.36
resnet18 MixQuant 3.25 5,6 64.00 85.54 1.51 0.37
resnet18 33 4,5,6 61.29 83.81 1.64 0.37
resnet18 35 4,6 53.67 77.78 2.04 0.38
resnet34 baseline: 32 N/A all layers are float 32 73.31 91.42 1.08 N/A
resnet34 baseline: int8 N/A all layers are int 8 73.24 91.39 1.08 N/A
resnet34 2 6,7 72.35 90.91 1.12 0.24
resnet34 MixQuant 3 4,5,6,7 61.21 82.93 1.70 0.39
resnet34 3.25 4,6 61.36 83.05 1.68 0.40
resnet34 33 4,6 61.36 83.05 1.68 0.40
resnet50 baseline: 32 N/A all layers are float 32 76.13 92.86 0.96 N/A
resnetS50 baseline: int8§ N/A all layers are int 8 75.99 92.81 0.97 N/A
resnet50 2 6,7 75.18 92.52 1.00 0.28
resnet50 MixQuant 3 4,5,6 70.58 90.04 1.19 0.43
resnet50 3.25 4,5,6 50.13 74.29 2.30 0.45
resnet101 baseline: 32 N/A all layers are float 32 77.37 93.55 0.91 N/A
resnet101 baseline: int§ N/A all layers are int 8 77.21 93.51 0.92 N/A
resnet101 1.3 5,6,7,8 76.96 93.42 0.92 0.22
resnet101 1.5 2,5,6,7,8 59.23 81.74 1.83 0.24
resnet101 MixQuant 1.7 2,3,4,5,6,7,8 58.86 81.05 1.86 0.30
resnet101 1.8 2,3,5,6,7 52.32 75.61 2.25 0.33
resnet101 1.9 2,4,5,6,7 49.36 72.63 2.44 0.34
resnet152 baseline: 32 N/A all layers are float 32 78.31 94.05 0.88 N/A
resnet152 baseline: int8 N/A all layers are int 8 78.31 94.02 0.88 N/A
resnet152 1.1 7,8 78.20 94.01 0.88 0.20
resnet152 1.3 6,7,8 78.15 94.01 0.89 0.20
resnet152 MixQuant 1.5 5,6,7,8 77.58 93.76 0.91 0.23
resnet152 1.7 3,5,6,7,8 70.68 90.11 1.22 0.28
resnet152 1.8 2,5,6,7 71.48 90.16 1.19 0.31
resnet152 1.9 2,4,5,6,7 62.99 85.01 1.66 0.32
resnext50_32x4d baseline: 32 N/A all layers are float 32 77.62 93.70 0.94 N/A
resnext50_32x4d baseline: int§ N/A all layers are int 8 77.40 93.63 0.95 N/A
resnext50-32x4d 1.3 7,8 77.43 93.52 0.95 0.19
resnext50_32x4d 1.5 6,7,8 77.21 93.51 0.95 0.20
resnext50_32x4d MixQuant 1.7 5,6,7,8 76.93 93.29 0.98 0.27
resnext50_32x4d 1.8 5,6,7 75.43 92.60 1.05 0.30
resnext50_32x4d 1.9 5,6,7 75.43 92.60 1.05 0.30
resnext50_32x4d 2 4,5,6,7 72.60 90.79 1.18 0.30
resnext101_32x8d baseline: 32 N/A all layers are float 32 79.31 94.53 0.93 N/A
resnext101_32x8d baseline: int§ N/A all layers are int 8 79.11 94.51 0.93 N/A
resnext101_32x8d 1.1 7,8 79.12 94.51 0.93 0.31
resnext101_32x8d 1.3 4,6,7,8 76.61 93.26 1.04 0.33
resnext101_32x8d MixQuant 1.5 2,4,5,6,7,8 59.91 81.46 2.05 0.39
resnext101_32x8d 1.7 2,4,5,6,7,8 37.65 59.52 3.84 0.46
resnext101_32x8d 1.8 2,3,4,5,6,7 26.14 45.57 5.02 0.49

5 <y Uy

accuracy and lowering the quantization bit-width. For example, the highlighted lines in Table [3]
satisfy the requirement of selecting the minimum quantization bit-widths such that the model top-1

accuracy degradation is < 3%.

Runtime Analysis Table 4| reports the runtime in seconds of MixQuant for various ResNet archi-
tectures, where MixQuant considers the bit-widths of 8, 7, 6, 5, 4, 3, and 2, and one or ten different
QEMs. It can be observed that the runtime grows with the number of layers since higher number
of layers imply a larger search space. For one QEM, the MixQuant search takes between 0.1 and
0.5 seconds. If it is combined with asymmetric per-layer quantization using the optimal bit-widths

Under review as a conference paper at ICLR 2023

returned by the search, it takes between 1.0 and 3.2 seconds. If the number of QEMs is increased
from one to ten the MixQuant search takes between 0.9 and 5.5 seconds, which represents a linear
increase in runtime.

6 QUANTIZATION SENSITIVITY OF WEIGHTS ABLATION STUDIES

To demonstrate that quantizing DNN weights warrants a search for optimal bit-widths as opposed to
uniform precision quantization, we perform two ablation studies to show that different weight layers
have different sensitivity to quantization based on their type and position.

Weights Quantization Sensitivity by Layer Type First, we investigate if different layer types
have different sensitivity to quantization. We consider four layer types in the ResNet architecture:
(1) first conv layer, (2) conv layers with a 3x3 kernel, (3) conv layers with a 1x1 kernel, and (4)
final fully connected layer. For each type of layer, we perform asymmetric quantization and vary
its bit-width while keeping the bit-width of all other layer types constant at int§. We calculate the
model accuracy, loss, and quantization error for the following quantization bit-widths: 8, 7, 6, 5, 4,
3, and 2.

In Figure |1} we show the impact of varying the bit-width of one layer type at a time on the model
top-1 accuracy. Lowering the quantization bit-width of conv layers with a 3x3 kernel has the most
adverse impact on top-1 accuracy in shallower ResNet architectures, while in deeper ones it is the
conv layers with a 1x1 kernel followed by conv layers with a 3x3 kernel that impacts model accu-
racy the most. The first conv layer and conv layers with a 1x1 kernel have approximately the same
sensitivity to varying bit-width in the shallower architectures. Finally, the quantization bit-width
of the final fully connected layer has the smallest impact on model accuracy for all ResNet archi-
tectures. In general, starting at 5 bits the model accuracy begins to degrade; however, the deeper
architectures are less sensitive to decreasing bit-width. While the reason that the conv layers with
a 3x3 kernel and 1x1 kernel are the most sensitive is the fact that those layer types account for the
highest number of layers in ResNet, we can still conclude that different layer types have different
sensitivity to quantization bit-width measured as the impact on the overall model quality. Therefore,
different layer types will benefit from different quantization bit-widths, which motivates MixQuant.
Similar results can also be found by measuring layer type sensitivity using the model average loss
and quantization mean squared error (Figures [2]and [3]in Appendix).

Weights Quantization Sensitivity by Layer Position In addition to the layer type, we investigate
if the position of a layer has an impact on quantization sensitivity of weights. We measure the
relative quantization error (RQE) of individual layers for the following bit-widths: 8, 7, 6, 5, 4, 3,
2, and define the RQE as RQF = avg((fS_i w — dequantized w)/f3§ w), where 0 is the weights
vector and the avg operation returns a scalar that represents the mean of all elements in a vector.

Table [5]identifies the most sensitive layers across various bit-widths and architectures, where layers
are indexed from O through n, and n equals is the total number of layers in an architecture minus
one. For example, for int8, it is the 1st layer in resnetl8 that has the highest relative quantization
error compared to all other resnet18 layers while for resnet50 it is the 46th layer. We can see that
the quantization bit-width has a significant impact on the position of the most sensitive layer with
the exception of ResNet50. While ResNet50’s most sensitive layer is located towards the end of

Table 4: Runtime of MixQuant search and MixQuant combined with asymmetric quantization re-
ported in seconds for (a) 1 QEM and (b) 10 QEMs

(@) (®)
Architecture search search + quantization Architecture search search+quantization
resnetl8 0.1s Is resnetl8 09s 1.8s
resnet34 0.2s 1.1s resnet34 1.5s 2.5s
resnet50 02s 1.3s resnet50 2s 3.1s
resnet101 04s 1.7s resnet101 3.6s 49s
resnetl152 05s 2s resnet152 52s 6.8s
resnext50_32x4d 0.2s 14s resnext50_32x4d 2s 3.2s
resnext101_32x8d 0.5 s 32s resnext101_32x8d 5.5 s 8.2s

Under review as a conference paper at ICLR 2023

resnetts . resnet 134 resnetso

P / o
Sa0 y 8o A S40
/ < 2
20 / 20 20
Y
o 0 0
2 3 . s B 7 s 2 B o s . 7 s 2 3 . s . B
Layer 8t width Layer 8it widt Layer 8it widtn
o b e ayerconinl b percom3ia b [yer bt com oy s e ayer conviel b~ yer convit | layer b s conv —— per B e —— fyer convixd s
(a) ResNetl8 (b) ResNet34 (c) ResNet50
resnetl01 resnetl52
80 — 80 —
/| /|
60 / 60 /
- / — /
/ /
®40 v ®40 7
S M
< / < /
20 / 20 /
/ /
/
0 A — 0 L
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Layer Bit Width Layer Bit Width
layer_bits_first_conv layer_bits fc —— layer_conv1xl_bits layer_conv3x3_bit layer_bits_first_conv layer _bits_fc —— layer_conv1xl_bits layer_conv3x3_bit
(d) ResNet101 (e) ResNet152

resnext50_32x4d resnext101_32x8d

— 80

60 60 /
o o /
Qa0 / Qa0 /
g 3 /

20 / 20 //

/
0 0 /
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Layer Bit Width Layer Bit Width
layer_bits_first_conv layer_bits fc —— layer_convixl_bits layer_conv3x3_bit layer_bits_first_conv layer_bits_fc —— layer_conv1x1_bits layer_conv3x3_bit
(f) ResNeXt50_32x4d (g) ResNeXt101_32x8d

Figure 1: Sensitivity of different layer types to quantization measured as quantized model top-1
accuracy with respect to varying bit-width of one type of layer while holding all other layer types
bit-widths constant at int8

Table 5: The most sensitive layer positions in a DNN measured as a relative quantization error with
respect to varying quantization bit-width

Most sensitive layer position at various quantization bit-widths

Architecture int 8 int 7 int 6 int 5 int 4 int3 int 2
resenet18 1 1 1 17 17 17 16
resnet34 1 1 20 20 20 33 35
resnet50 46 46 46 46 46 47 44
resnet101 6 6 6 6 97 97 99
resnet152 1 45 45 148 148 148 152
resnext50_32x4d 1 1 1 52 45 45 45
resnext101_32x8d 1 1 49 49 49 96 96

the network for all quantization bit-widths, other architectures’s most sensitive layer position varies
based on the bit-width. For higher bit-widths 8, 7, and 6 it is located at the beginning while for lower
bit-widths 2, 3, and 4 it is at the end. The most sensitive layers of ResNet34 and ResNeXt101_32x8d
at bit-widths 4, 5, and 6 are positioned in the middle of the network. Based on these experiments,
we can conclude that different layer positions have different sensitivity to varying bit-width. Ad-
ditionally, we can see that the position of sensitive layers depends on the bit-width and network
architecture.

7 CONCLUSION

In this paper we propose MixQuant, a search algorithm that finds the optimal quantization bit-width
for each layer weight and can be combined with any quantization method as a form of pre-processing
optimization. We show that combining MixQuant with BRECQ (Li et al.| [2021)), a state-of-the-art
quantization method, yields better quantized model accuracy than BRECQ alone. Additionally, we
combine BREQ with asymmetric quantization (Jacob et al., [2018)) to show that MixQuant has the
potential to optimize the performance of any quantization technique. Our code is open-sourced and
available at: https://anonymous.4open.science/r/gantizedImagenet—43C5.

https://anonymous.4open.science/r/qantizedImagenet-43C5

Under review as a conference paper at ICLR 2023

REFERENCES

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. In NeurIPS, 2019.

Burak Bartan and Mert Pilanci. Training quantized neural networks to global optimality via semidef-
inite programming. In ICML, 2021.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer.
Zeroq: A novel zero shot quantization framework. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 13166-13175, 2020.

Ting Chen and Yizhou Sun. Differentiable product quantization for end-to-end embedding com-
pression. In ICML, 2020.

Yoni Choukroun, Eli Kravchik, and Pavel Kisilev. Low-bit quantization of neural networks for
efficient inference. 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pp. 3009-3018, 2019.

Ahmed T. Elthakeb, Prannoy Pilligundla, and Hadi Esmaeilzadeh. Divide and conquer: Leveraging
intermediate feature representations for quantized training of neural networks. In ICML, 2020.

Yonggan Fu, Qixuan Yu, Meng Li, Vikas Chandra, and Yingyan Lin. Double-win quant: Aggres-
sively winning robustness of quantized deep neural networks via random precision training and
inference. In ICML, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. ArXiv, abs/2103.13630,
2022.

Suyog Gupta, Ankur Agrawal, K. Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In ICML, 2015.

Qingchang Han, Yongmin Hu, Fengwei Yu, Hailong Yang, Bing Liu, Peng Hu, Ruihao Gong, Yanfei
Wang, Rui Wang, Zhongzhi Luan, and Depei Qian. Extremely low-bit convolution optimization
for quantized neural network on modern computer architectures. 49th International Conference
on Parallel Processing - ICPP, 2020.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. ArXiv,
abs/1609.07061, 2017.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post training
neural quantization: Layer-wise calibration and integer programming. ArXiv, abs/2006.10518,
2020.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In ICML, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2704-2713, 2018.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. I-bert: Integer-
only bert quantization. In ICML, 2021.

Eliska Kloberdanz, Kathrin Kloberdanz, and Wei Le. Deepstability: A study of unstable numerical
methods and their solutions in deep learning. 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE), pp. 586-597, 2022.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. In ICLR, 2020.

10

Under review as a conference paper at ICLR 2023

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. ArXiv,
abs/2102.05426, 2021.

Lingyan Liang. Post training mixed-precision quantization based on key layers selection. In ECCV
Workshops, 2020.

Darryl Dexu Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point quantization of
deep convolutional networks. ArXiv, abs/1511.06393, 2016.

Xingchao Liu, Mao Ye, Dengyong Zhou, and Qiang Liu. Post-training quantization with multiple
points: Mixed precision without mixed precision. In AAAI, 2021.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or down? adaptive rounding for post-training quantization. ArXiv, abs/2004.10568, 2020.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alexander M.
Bronstein, and Avi Mendelson. Loss aware post-training quantization. Mach. Learn., 110:3245—
3262, 2021.

Shyam A. Tailor, Javier Ferndndez-Marqués, and Nicholas D. Lane. Degree-quant: Quantization-
aware training for graph neural networks. ArXiv, abs/2008.05000, 2021.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization with mixed precision. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8604-8612, 2019.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In ICML, 2020.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Péter Vajda, and Kurt Keutzer.
Mixed precision quantization of convnets via differentiable neural architecture search. ArXiv,
abs/1812.00090, 2018.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. ArXiv, abs/1606.06160,
2016.

A APPENDIX

11

Under review as a conference paper at ICLR 2023

resnet1s resnet3a

resnets0
250]
125
0 200 -
o o 9100 S
H Z1s0 g L
100 5 8 s <
H §100 g N
I s S 5o .
s0
25 —
ol = o T—— ==
2 3 4 s 6 7 8 2 3 4 s 6 7 s 2 3 4 s 7 s
Layer Bit Width Layer Bit Width Layer Bit Width
— layer b frston — layerbis e — layer_convixl_bis Tayer_convia_bR [layerbits fist_conv — fayer bt fc_ — layer convIx(_bits loyer_convaxo bt [loyer bis firsconv — layer it fe_— layer_convix1_bis Tayer_convaa bt

(a) Resnet18 (b) Resnet34 (c) Resnet50

resnet101

resnet152
30
15
2 220
s 10 g
ml m‘
3 8
25 <10
1 0
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Layer Bit Width Layer Bit Width
— layer_bits_first_conv —— layer_bits fc —— layer_convlxL_bits layer_conv3x3_bit |—— layer bits first conv —— layer_bits_fc —— layer_convixl_bits layer_conv3x3_bit
(d) Resnet101 (e) Resnet152
resnext50_32x4d resnext101_32x8d
1250 600
1000
o o
3 750 2400
g 500 g
2 2200
250
0 — — 0 ——
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Layer Bit Width Layer Bit Width
—— layer_bits first_conv —— layer_bits fc —— layer_conv1xl_bits layer_conv3x3_bit | —— layer_bits_first_conv —— layer_bitsfc —— layer_convixl_bits layer_conv3x3_bit

(f) Resnet50_32x4d (g) Resnet101_32x8d

Figure 2: Sensitivity of different layer types to quantization by architecture measured as quantized

model average loss with respect to varying bit-width of one type of layer while holding all other
layer types bit-widths constant at int 8

resnet18 resnet34

resnets0

error_MSE

Lquant

quant
2

/

total
|

total
/
/
[

total_quant_error_ MSE
_error_MSE
. /

4 5 8 2 3 4 5 6 7 8 2 3 5 6
Layer Bit Width Layer Bit Width Layer Bit Width
—— layer_bits_first conv —— layer_bits fc — layer_convixl_bits layer_convaxa_bit | — layer_bits_first conv —— layer_bits_fc —— layer_convxl_bits layer_convax3_bit | — layer_bits_first conv — layer_bitsfc —— layer_convixl_bits

(a) Resnet18 (b) Resnet34 (c) Resnet50

layer_conv3x3_bit

resnet101 resnet152
w — w —
Hho7 S $o7 S —
Z‘ — Z‘
506 506
3,05 3,05
504 504
S
<03 \\\ =03 \\\
202 = So2 —=
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Layer Bit Width Layer Bit Width
—— layer_bits first conv —— layer_bits fc —— layer_convixl_bits layer_conv3x3_bit |—— layer_bits first conv —— layer_bits fc —— layer_convix1_bits layer_conv3x3_bit
(d) Resnet101 (e) Resnet152
resnext50_32x4d resnext101_32x8d
Bo7 T U —
) — =07
+'0.6 !
< <
05 506
S04 <05
: — :
10.3 10.4
E T g
o2 = o3
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Layer Bit Width Layer Bit Width
—— layer bits first conv. —— layer bits fc —— layer_convix1_bits layer_conv3x3_bit «—— layer_bits first conv. —— layer bits fc —— layer_convix1_bits layer_conv3x3_bit

(f) Resnet50_32x4d (g) Resnet101_32x8d
Figure 3: Sensitivity of different layer types to quantization by architecture measured as quantized

model total quantization mean squared error with respect to varying bit-width of one type of layer
while holding all other layer types bit-widths constant at int 8

12

Under review as a conference paper at ICLR 2023

o o o -
I o © <)

Relative Quantization Error
o
N

o — 3 6 — 9
— 1 — 4 7 —
2 — 5 8 —

— 12 — 15 18
10 — i3 — 16 — 19
11 — 14 — 17 — 20

Figure 4: Resnet18 layer sensitivity with respect to quantization bit-width

resnet18

Normalized Values

200 225 250 275 3.00 325 350 375 4.00
Quantization Error Multiplier

— Normalized Average Loss

—— Normalized Average Accuracy
—— Normalized Quantization MSE

(a) Resnet18

resnet101
o
v 0.04
2
)
=>0.03
el
9
No.02
©
§0.01
=
0.00
1.0 1.5 2.0 25 . 35 4.0
Quantization Error Multiplier
—— Normalized Average Loss
—— Normalized Average Accuracy
—— Normalized Quantization MSE
(d) Resnet101
resnext50_32x4d
0 0.03
[
=
o
>
50.02
@
N
©
0.01
£
o
=
0.00 S
1.0 15 2.0 25 3.0 3.5 4.0

Quantization Error Multiplier

—— Normalized Average Loss
—— Normalized Average Accuracy
—— Normalized Quantization MSE

(f) Resnet50_32x4d

resnet34

200 225 250 275 3.00 325 350 3.75 4.00
Quantization Error Multiplier

— Normalized Average Loss

—— Normalized Average Accuracy
—— Normalized Quantization MSE

(b) Resnet34

resnet50

°
8

o
8

°
2

Normalized Values

~

°
g
g

2.00 225 2.50 275 300 325 350 375 4.00
Quantization Error Multiplier

— Normalized Average Loss

~—— Normalized Average Accuracy
—— Normalized Quantization MSE

(c) Resnet50

resnet152

« 0.03

4]

2

]

20.02

kel

9

L

©

£ 0.01

£

S

=

0.00
1.0 15 2.0 25 . 4.0
Quantization Error Multiplier
—— Normalized Average Loss
—— Normalized Average Accuracy
—— Normalized Quantization MSE
(e) Resnet152
resnext101_32x8d

£0.04

=

Lo.03

K

N 0.02

©

Eoo1

o

=

0.00
1.0 15 2.0 25 3.0 3.5 4.0

Quantization Error Multiplier
—— Normalized Average Loss

—— Normalized Average Accuracy
—— Normalized Quantization MSE

(g) Resnet101_32x8d

Figure 5: Relationship between quantization error multiplier (QEM) and model accuracy by archi-

tecture

13

Under review as a conference paper at ICLR 2023

Table 6: MixQuant results for ResNet18, ResNet34 and ResNet50: individual layer quantization bit-
width assignments, quantized model accuracy, loss and quantization mean squared error for various
quantitative error multipliers

arch QEM layers_bit_widths Acc@1 Acc@5 loss.avg QMSE
resnetl8 N/A all layers are float 32 69.76 89.08 1.25 N/A
resnet18 N/A all layers are int 8 69.63 89.07 1.25 N/A
resnetl§ 2 6,6,7,7,7,7,7,7,7,7,7,7,7,7,7, 6820 88.30 1.31 0.23
7,7,7,7,7,7]
resnetl8§ 3 [5,5,6,6,6,6,6,6,6,6,6,6,6,6,6, 6396 85.58 1.51 0.36
6,6,6,6,6,7]
resnetl8 3.25 [5,5,6,6,6,6,6,6,6,6,6,6,6,6,6, 64.00 85.54 1.51 0.37
6,6,6,6,06, 6]
resnetl8 3.3 [4,5,6,6,6,6,6,6,6,6,6,6,6,6,6, 61.29 83.81 1.64 0.37
6,6,6,6,06, 6]
resnetl8 3.5 [4,4,6,6,6,6,6,6,6,6,6,6,6,6,6, 53.67 71.78 2.04 0.38
6,6,0,0,6, 6]
resnet34 N/A all layers are float 32 73.31 91.42 1.08 N/A
resnet34 N/A all layers are int 8 73.24 91.39 1.08 N/A
resnet34 2 6,6,7,7,7,7,7,7,7,7,7,7,7,7,7, 72.35 90.91 1.12 0.24
7,1,17,1,7,1,7,1,7,7,7,7,7,7,7, 7,
7,7,7,1,7,7]
resnet34 3 [4,5,6,6,6,6,6,6,6,6,6,6,6,6,6, 61.21 82.93 1.70 0.39
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,7]
resnet34 3.25 [4,4,6,6,6,6,6,6,6,6,6,6,6,6,6, 6136 83.05 1.68 0.40
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,06,06]
resnet34 3.3 [4,4,6,6,6,6,6,6,6,6,6,6,6,6,6, 61.36 83.05 1.68 0.40
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,06, 6]
resnet5S0 N/A all layers are float 32 76.13 92.86 0.96 N/A
resnet50 N/A all layers are int 8 75.99 92.81 0.97 N/A
resnet50 2 [7,6,6,6,6,6,7,7,7,7,7,7,7,6,6, 75.18 92.52 1.00 0.28
6,7,7,7,7,1,7,1,7,71,7,71,7,7,7,17,
7,7,11,1,1,7,17,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7]
resnet50 3 [6,5,5,4,5,5,6,6,6,6,6,6,6,5,5, 70.58 90.04 1.19 0.43
5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,06,
6,6,6,6,6,6,6]
resnet50 3.25 [6,5,4,4,4,4,6,5,6,6,6,6,6,5,4, 50.13 74.29 2.30 0.45
5,6,5,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,60,2,
6,6,6,6,6,06,6]
80 s, uge |, 15.0
0 80 R 125
. 1 60 . 2100 s o =
geo g g 75 IS A
g . S0 8 .
20 o N . . " 50 .
0 e .wlo o 0 L) .o.«mmo - P N s et .e::':."‘"" .

02 Qitiation Bror 0 Qrumtontwor 02 Qintiation Bror
(a) Top 1 accuracy as a function (b) Top 5 accuracy as a function (c) Average model loss as a
of mean squared quantization of mean squared quantization function of mean squared

error error quantization error

Figure 6: Relationship between quantization error and model accuracy & loss

14

Under review as a conference paper at ICLR 2023

Table 7: MixQuant results for ResNet101 and ResNet152: individual layer quantization bit-width

assignments, quantized model accuracy, loss and quantization mean squared error for various quan-

titative error multipliers

QMSE
N/A
N/A
022

loss_avg

0.91
0.92
0.92

Acc@5

93.55

Acc@1

layers_bit_widths

QEM
N/A
N/A

1.3

arch

all layers are float 32

all layers are int 8

resnet101
resnet101
resnet101

93.51

93.42

76.96

[7.6,7,8,7,6,5.7,8,8,8,8,8,8,8,8,8,7,8,8,8,8,8,8,8,8,8,8,

,8,8,8,8,8,8,8,8,
,8,8,8,8,8,8,8,8,
8]

7,6,7,7,6,5,2,6,7,7,8,8,8,7,7,7,8,6,7,8,8,8,8,8,8,8,7,7,

7,8,7,7,8,7,8,8,7,8,8,7,8,8,7,8,8,8,

8,8,8,8,8,
8,8,8,8,8

8.
8
8,

1.83 0.24

81.74

59.23

1.5

resnet101

,8,8,8,8,8,8,8,8,8,

8,8,8,8
8,8,8,8,
8,8,8,8,8,8,8,8,8,8]

8,8,8,8,8,8,8,8,8,

8,8,8,8,8,8,8,8,8,

8,8,8,8,8,

8,
.8,

81.05 1.86 0.30

58.86

1.7

resnet101

[6,5,6,7,6,4,2,3,7,7,7,8,8,7,7,7,7,5,7,7,7,7,8,7,8,8,7,7,

8,7,7
7,8,8

75.61 225 0.33

52.32

1.8

resnet101

2.44 0.34

72.63

49.36

19

resnet101

N/A
N/A

0.20

0.88
0.88
0.89

94.05

78.31

N/A
N/A

1.3

resnet152
resnet152
resnet152

all layers are float 32
all layers are int 8

94.01

78.15

[7.6,7,7,7,7,7.8,7,7,8,8,8,8,8,8,8,8,7,7,8,8,8,8,8,8,8,7,

,8,8,8,8,8,8
,8,8,8,8,8,8
,8,8,8,8,8,8
,8,8,8,8,8,8,

8
8
8
8

8.8,8.8,8]
6,5.6,7,6,6,7,7,7,7,8,7,7.7,7,7,7.7,7.7,7. 7,7, 8.7, 7.7, 7,

0.91 0.23

93.76

77.58

1.5

resnet152

6,7,7,7,8,8,8,7,8,8,7,7,7,8,7,7,8,7,7,8,7,8,8,8,8,8,7,8,

90.11 1.22 0.28

[6.3,5,6,5,6,6,7,6,7,7,7,7,7,7,7,7,7,7,6,7,7,7,7,7,7,7,7, 70.68

1.7

resnet]52

1.19 0.31

90.16

71.48

1.8

resnet152

1.66 0.32

85.01

62.99

6,4,5,6,6,6,6,7,7,7,7,7,7,7,6,6,6,7,7,6,7,7,6,7, 6,

5711117,16,71111717,6,7,7,6,7,7,6,7,7,7,7,7,7,7,
,71,1,7,1,1,1,7,71,7,1,7,7,7,7,71,7,7,7,7,7,7,7,7,7,7, 7,7,

1.9

resnet152

,1,7,7,1,1,7,1,7,7,7,7,7,7,7,7,

7
7

,7,1,7,7,1,7,7,7,71,7,7,7,7,7,7,7,
,7,7,7,7]

15

Under review as a conference paper at ICLR 2023

Table 8: MixQuant results for ResNeXt50_32x4d and ResNeXt101_32x8d: individual layer quanti-
zation bit-width assignments, quantized model accuracy, loss and quantization mean squared error
for various quantitative error multipliers

arch QEM layers_bit_widths Acc@1 Acc@5 loss_avg QMSE

;‘;S:fgtso N/A all layers are float 32 77.62 93.70 0.94 N/A

resnext50 .

30x4d N/A all layers are int 8 77.40 93.63 0.95 N/A

el s (8.7.7,7.7,7,7,7.8,7,8,8,8,8,8,8,8.8,8,8,8,8,8,8,8,8,8,8 7743 93.52 0.95 0.19

: 8, 8, 8]

resnext50

et 15 [8,6,6,7,7,6,6,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 7721 93.51 0.95 0.20

: 8, 8, 8]

;"‘25::;“50 17 [7.6,6,6,6,5.6,6,7,7,7,7.7,7,7,7.7,7,7,8.7,8,7,7.8,8,7.7, 7693 93.29 0.98 0.27
7,7,7,7.8,7.8,8.7,8.8,8,7,7,7,7,7,7.7,8.8,8,7,7,7, 8]

resnext50

et 1.8 [7.5,5.6,6,5,5,6,7,6,7,7,7,7,7,7,7,7.7,7,7,7,7,7.7.7,7,7, 7543 92.60 1.05 0.30

; 7,1,7,1,,1,1,1,,1,,1,,1,,1,,7,7,7, 7,7, 7,7, 7, 7]

?2‘“::;“50 19 [7.5.5.6,6,5.5.6,7,6,7.7,7,7.7.7.7.7,7.7.7.1.7.7.1. 7. 7.7, 7543 92.60 1.05 0.30

: 7,1,7,1,7,71,,1,,7,7,71,,1,,1,7,7, 7,7, 7,7, 7,7, 7, 7]

resnext50

et 2 [7,4,5,6,6,4,5,6,7,6,7,7,7,7,7,,7,7,7,1,7, 7,7, 1, 1,7, 7,7, 72.60 90.79 1.18 0.30

; 7,1,7,1,7,1,1,1,1,1,7,1,,1,,1,,1,,,,,7,7.7, 7]

resnext10

32x8d N/A all layers are float 32 79.31 94.53 0.93 N/A

resnext101 .

32x8d N/A all layers are int 8 79.11 94.51 0.93 N/A

?25:;;‘“0] 1.1 [8,7,7,8,8,8,7,8,8,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 79.12 94,51 0.93 031

: 8,8
8,8,8,8,8,8,8,8,8,8,8,8,88,8,8,8,8,8,8,8,8,8,8,8,8,8,8
8, 8]

g‘(‘;ﬁ”m 13 [7.4,6,7,7,6,6,7,6,6,7,8,8,8,8,8,7,7,8,7,8,8,7,8,8,8,8,8, 76,61 93.26 1.04 033
8,8,8,8,78,8,78,8,7,8,8,8,8,8,7,8,8,7,8,8,7,8,8,8,8,8,
8,
8,8]

2?353‘”01 L5 [6,2,4,7,6,5,5,6,5,5,7,7,7,8,8,7,6,7,7,7,7,7,7,7,8,8,8,8, 5991 81.46 2.05 0.39
7,1,1,1,1,1,1,1,1,71,,1,1,7,7,7,7,7,7,7. 7,7, 7, 7,7, 7.7, 7,
7,7.7,1.7,7.7,7.7,7.7,8,7.8,8.7,8,7,7.8,8,7,8,8.8,8,8, 7,
8.8.8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8, 8]

;ezsrsegum 17 [5.2,2,6,5,4,4,6,5,4,6,7,7,7.7,7.6,6,7,6,7,7,6,7,7.7,7.7, 37.65 59.52 3.84 0.46

? 7,7.7,6.6,7.7,6,7,7,6,7,7,7,7.7,6,7,7,6,6,6,6,7,7,6,7, 7,
7,1,1111111111711171711111717.1,1,7,7,
7,1,1,7,1,1,71,7,7,71,7,7,7,7,7,8,7,8,8,7, 8]

ge;:;gnm 18 [5.2,2,6,5,2,3,5,4,3,6,7,7,7.7,7,6,6,7,6,7,7.6,7,7,7,7,7, 26.14 4557 5.02 0.49
6,6,7,6,6,6,7,6,6,6,6,6,7,6,7,7,6,6,6,6,6,6,6,6,7,6,7,7,
6,7,7,6,7,7,6,7,7,7,7,7,1,7,7,7,7,7,7,7,7.7,7.7. 7,7, 7. 7,
7.7,7,1,7,1,7.1,7.7,7.7.7,7,7,7,7,7,7,7,7)

16

	Introduction
	Related Work
	Quantization and Numerical Instability
	MixQuant
	Results
	Quantization Sensitivity of Weights Ablation Studies
	Conclusion
	Appendix

