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ABSTRACT

Knowledge graph (KG) reasoning is a task that aims to predict unknown facts based
on known factual samples. Reasoning methods can be divided into two categories:
rule-based methods and KG-embedding based methods. The former possesses
precise reasoning capabilities but finds it challenging to reason efficiently over
large-scale knowledge graphs. While gaining the ability to reason over large-scale
knowledge graphs, the latter sacrifices reasoning accuracy. This paper aims to
design a reasoning framework called Neural Probabilistic Logic Learning(NPLL)
that achieves accurate reasoning on knowledge graphs. Our approach introduces
a scoring module that effectively enhances the expressive power of embedding
networks. We strike a balance between model simplicity and reasoning capabilities
by incorporating a Markov Logic Network based on variational inference. We
empirically evaluate our approach on several benchmark datasets, and the experi-
mental results validate that our method substantially enhances the accuracy and
quality of the reasoning results. paragraph.

1 INTRODUCTION

Knowledge representation has long been a fundamental challenge in artificial intelligence. Knowledge
graphs, a form of structured knowledge representation, have gained significant traction in recent years
due to their ability to capture rich semantics and facilitate reasoning over large-scale data. Compared
to conventional approaches such as semantic networks and production rules, knowledge graphs offer
a more expressive and scalable representation of entities and their relationships in a graph-based
formalism. This structured representation not only assists human comprehension and reasoning but
also enables seamless integration with machine learning techniques, facilitating a wide range of
downstream applications.

One prominent line of research in knowledge graph reasoning revolves around embedding-based
methods. These techniques aim to map the elements of a knowledge graph into a low-dimensional
vector space, capturing the underlying associations between entities and relations through numerical
representations. While this approach has demonstrated promising results, it suffers from inherent lim-
itations, including low interpretability, suboptimal performance on long-tail relations, and challenges
in capturing complex semantic information and logical relationships.

Alternatively, rule-based knowledge reasoning methods operate by extracting logical rules from
the knowledge graph, typically in the form of first-order predicate logic, and performing inference
based on these rules. However, these methods often face challenges stemming from the vast search
space and limited coverage of the extracted rules. Markov Logic Networks (MLNs) (Richardson
& Domingos, 2006) have been proposed as a principled framework for combining probabilistic
graphical models with first-order logic, enabling the effective integration of rules and embedding
methods for more accurate reasoning.

In this paper, we seek to develop a method that can better leverage the outputs of embedding networks
to support knowledge graph reasoning. To this end, we propose a novel reasoning framework called
Neural Probabilistic Logic Learning (NPLL). NPLL introduces a scoring module that efficiently
utilizes knowledge graph embedding data, enhancing the training process of the entire framework.
Our method, illustrated in Figure 1, makes the following key contributions:
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Large-scale KG reasoning capability: NPLL effectively handles reasoning tasks in large-scale KGs.
Experimental results demonstrate its performance in knowledge bases containing millions of facts.

Efficient Reasoning and Learning: NPLL can be viewed as an inference network for MLNs,
extending MLN inference to larger-scale knowledge graph problems.

Tight Integration of Logical Rules and Data Supervision: NPLL can leverage prior knowledge
from logical rules and supervision from structured graph data.

Balance between Model Size and Reasoning Capability: Despite its compact architecture and
relatively fewer parameters, NPLL demonstrates remarkable reasoning capabilities, sufficient to
capture the intricate relationships and semantics within knowledge graphs. Even in data-scarce
scenarios where the available dataset size is relatively small, NPLL can achieve a high level of
reasoning performance, making it well-suited for practical applications with limited labeled data.

Figure 1: Visualization of Neural Probabilistic Logic Learning (NPLL)

2 RELATED WORK

One prominent category of methods for knowledge graph reasoning is rule-based approaches. These
methods leverage logical rules, generally defined as B→A, where A is the target fact, and B can be
considered a set of condition facts. Facts are composed of predicates and variables. To better utilize
these symbolic features, methods like AMIE(Galárraga et al., 2013), RuleN(Meilicke et al., 2018),
and RLvLR(Omran et al., 2019) employ rule mining tools to extract logical rules from knowledge
graphs for reasoning. Approaches like KALE(Guo et al., 2016), RUGE(Guo et al., 2018), and
IterE(Zhang et al., 2019b) started combining logical rules with embedding learning to construct
joint knowledge graph reasoning models. Additionally, NeuralLP(Yang et al., 2017) proposed an
end-to-end differentiable method to effectively learn the parameters and structures of logical rules
in knowledge graphs. NeuralLP-num-lp(Wang et al., 2019) combined summation operations and
dynamic programming with NeuralLP, which can be used to learn numerical regulations better. Simul-
taneously, DRUM(Sadeghian et al., 2019) introduced a rule-based end-to-end differentiable model.
Then, pLogicNet designed a probabilistic logic neural network (Qu & Tang, 2019), demonstrating
exemplary reasoning performance. Building on this, ExpressGNN(Zhang et al., 2020b) achieved
more efficient reasoning by fine-tuning the GNN model. DiffLgic(Shengyuan et al., 2024) designed
a differential framework to improve reasoning efficiency and accuracy for large knowledge graphs.
NCRL(Cheng et al., 2023) proposed an end-to-end neural method that recursively leverages the
compositionality of logical rules to enhance systematic generalization. In contrast to these approaches,
our proposed NPLL framework is significantly more effective for knowledge graph reasoning.

Another category of approaches for knowledge graph reasoning is embedding-based methods. These
techniques primarily represent entities and relations using vector embeddings. Knowledge graph
reasoning is achieved by defining various scoring functions to model different reasoning processes.
For instance, methods like TransE(Bordes et al., 2013), TransH(Wang et al., 2014), TransR(Lin
et al., 2015), TransD(Ji et al., 2016), TranSparse(Ji et al., 2015), TransRHS(Zhang et al., 2020a),
RotatE(Sun et al., 2019) project entities and relations into vector spaces, transforming computations
between facts into vector operations. The essential scoring function is the difference between the
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head entity-relation vector and the tail entity vector. Rescal(Nickel et al., 2011), DistMult(Yang
et al., 2014), ComplEx(Trouillon et al., 2016), HolE(Nickel et al., 2016), analog(Liu et al., 2017),
SimplE(Kazemi & Poole, 2018), QuatE(Zhang et al., 2019a), DualE(Cao et al., 2021), HopfE(Bastos
et al., 2021), LowFER(Amin et al., 2020), QuatRE(Nguyen et al., 2022) represent each fact in the
knowledge graph as a three-dimensional tensor, decomposed into a combination of low-dimensional
entity and relation vectors. They use vector matrices to represent the latent semantics of each entity
and relation. The primary scoring function is the product of the head entity, relation, and tail entity.
Methods like SME(Bordes et al., 2014), NTN(Socher et al., 2013), and NAM(Liu et al., 2016) employ
neural networks to encode entities and relations into high-dimensional spaces. ConvE(Dettmers et al.,
2018) first introduced 2D convolutional layers for reasoning. RGCN(Schlichtkrull et al., 2018), NBF-
net(Zhu et al., 2021), and RED-GNN(Zhang & Yao, 2022) use graph neural networks to aggregate
neighbor node information and decoders as scoring functions. However, these embedding-based
methods often sacrifice interpretability and prediction quality. In contrast, our proposed NPLL
framework significantly improves the quality of reasoning results while more properly handling
reasoning problems through the principled integration of logical rules.

3 PRELIMINARY

A knowledge graph is a graph-structured model composed of triplets, where the entities in the
triplets are nodes and the relations are edges. Given a known knowledge graph K = (E,L, F ),
whereE = {e1, e2, . . . , eM} represents a set of M entities, with entities typically referring to person
names, objects, locations and proper nouns;L = {l1, l2, . . . , lN} represents a set of N relations;
F = {f1, f2, . . . , fS} represents a set of known facts involving entities from E and relations from L,
where fi can be described as fi = {eh, l, et}, eh, et ∈ E, l ∈ L, indicating eh has a relation l with et,
or can be written as l(eh, et), where l is treated as a predicate and eh and et as constants.

We now introduce the predicate logic representation, where each relation in the relation set is
represented as a function l(x, y), with x and y having the domain E, and l(x, y) being directed, so
l(x, y) and l(y, x) are different. For example, l(x, y) := S(Tom, basketball) (S denotes proficient
sport), indicates that Tom’s proficient sport is basketball, which clearly cannot be expressed as
S(basketball, Tom).

Using the predicate logic representation, new facts can be inferred through logical deduction, e.g.,
S (Tom, basketball) ∧ F (Tom, John) ⇒ S(John, basketball)(F denotes being friends). If
variables replace the constant entities in the above formula, it is called a rule, generally represented as:
Pred1 (x, y1) ∧ Pred2 (y1, y2) ∧ . . . P redn (yn−1, z) ⇒ Pred (x, z) n ≥ 1,where x,yi′,z are
all variables. Pred(A,B) is called an atom, with A and B being the subject and object or the head
and tail entities in the triplet. Pred(x, z) is the head atom; the rest are body atoms. After substituting
variables with constants, e.g. let C1, C2, C3 be constants, Pred1 (C1, C2) ∧ Pred2(C2, C3) ⇒
Pred3(C1, C3), which is called ground rule, and each atom with variables replaced by constants is
called a ground predicate, whose value is a binary truth value. For example, Pred1(C1, C2) = {0, 1}.
If Pred1(C1, C2) ∈ F , then Pred1(C1, C2) = 1. Therefore, the goal of knowledge reasoning is to
infer unknown facts U = {Uj} from the known facts F = {fi = 1}i=1,2,...

Inferring unknown facts from known facts is a generative problem, which requires building a joint
probability distribution model and maximizing the generation probability to obtain the unknown
facts. Hence, we must construct a suitable joint probability distribution model for the reasoning task.
Considering the above conditions, the knowledge graph can be modeled as a MLN, which combines
first-order predicate logic and probabilistic graphical models. Traditional methods employ first-order
predicate logic for deductive reasoning in a black-and-white manner. However, as the example
S (Tom, basketball) ∧ F (Tom, John) ⇒ S(John, basketball) shows, it is not necessarily
always true. MLN assign a weight ω to each rule, representing the probability of the event occurring,
thus transforming the hard conditions of predicate logic into probabilistic conditions. The rule
representation form in first-order predicate logic is converted to Conjunctive Normal Form (CNF) for
computational convenience.

S(A,B) ∧ F (A,C) ⇒ S(C,B) ⇔ ¬S(A,B) ∨ ¬ F (A,C) ∨ S(C,B)
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Therefore, to construct a MLN from a knowledge graph, each ontology rule needs to be defined as a
network in the MLN, each having a weight ω. The probability calculation formula for MLN is

P (F,U |ω) = 1

Z(ω)

∏
r∈R

exp (ωrN(F,U)) , (1)

where F is the set of known facts, U is the set of unknown facts, R = {r} is the set of rules, ωr is the
weight of rule r, and N(F,U) is the number of ground rules satisfying rule r. Z(ω) is the partition
function, which is the sum of all possible ground rule cases for normalization

Z(ω) =
∑
F,U

∏
r∈R

exp(ωrN(F,U)). (2)

All ground rules of each rule form a clique in MLN, exp (ωrN (F,U)) is the potential function of
rule r, and each potential function expresses the situation of a clique. Generally, all ground rules
of one rule form a clique, where each primary node, i.e., fact, is treated as a basic atom. Each state
of MLN assigns different occurrence possibilities to all facts, representing a possible open world.
Each set of possible worlds combines {F,U,R} relations, jointly determining the truth values of
all basic atoms. After establishing the joint probability distribution, we infer the unknown facts U
from the known facts F by solving the posterior distribution P (U |F, ω), which can be viewed as an
approximate inference problem.

Unlike rule-based reasoning methods that evaluate rules holistically, knowledge embedding methods
mainly score facts, assigning higher scores to correct facts and lower scores to incorrect ones,
obtaining embedding vectors for different entities, and enabling inference of unknown facts.

4 MODEL

This section introduces a knowledge reasoning method that combines MLNs with embedding learning.
By utilizing MLN, which is trained with EM algorithm(Neal & Hinton, 1998), to establish a joint
probability distribution model of known facts and unknown facts, we decompose P (F |ω) to obtain
the following equation

logP (F |ω) = log[
P (F,U |ω)

Q(U)
]− log[

P (U |F, ω)
Q(U)

], (3)

where P (F,U |ω) is the joint probability distribution of known facts and unknown facts. In contrast,
P (U |F, ω) is the posterior distribution, and Q(U) is the approximate posterior distribution. Taking
the expectation of both sides of equation(3) with respect to Q(U), we can define logP (F |ω) as the
sum of the evidence lower bound(ELBO) and the Kullback-Leibler(KL) divergence

logP (F |ω) = ELBO +KL(q||p), (4)

where ELBO =
∑

U Q (U) log
(

P (F,U |ω)
Q(U)

)
, KL(q||p) = −

∑
U Q (U) log

(
P (U | F,ω)

Q(U)

)
.

When the approximate posterior distribution Q(U) is the same as the true posterior distribution, we
obtain the optimal result, at which point KL(q||p) is 0 and ELBO is maximized. Therefore, our
optimization objective becomes maximizing the ELBO value

dELBO(Q,P ) =
∑
U

Q(U)logP (F,U |ω)−
∑
U

Q(U)logQ(U), (5)

the approximate posterior distribution Q(U) is the probability distribution of unknown facts based on
known facts.

Specifically, in the t-th iteration, the first step is to fix the rule weight ω as ωt, which is a constant.
We then update the probability set of each factor in all ground rules through the reasoning method
proposed in this paper and obtain the current approximate posterior probability distribution Q(U).
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The second step substitutes the approximate posterior distribution into ELBO and updates ω by
maximizing ELBO

ω = argmaxω

∑
(Q(U)logP (F,U |ω)−Q(U)logP (U,F |ωt)), (6)

where the second term is independent of ω and can be treated as a constant. Therefore, to reduce
computation, we simplify the first step to fixing ω and computing the expectation of logP (F,U |ω)
concerning Q(U). The second step fixes the posterior distribution and updates ω, obtaining ωt+1 =
argmaxω

∑
U Q(U)logP (F,U |ω).

4.1 SCORING MODULE

The most crucial part of the entire reasoning architecture is generating the approximate posterior
probability. We design a scoring module to generate evaluation scores for facts. The generated
evaluation scores can be the approximate posterior probability to compute the KL divergence from
the actual posterior distribution. Additionally, they must satisfy the constraint that the loss for correct
facts is minimized while the loss for incorrect facts is maximized. Therefore, we use vectors eh and
et to represent the head and tail entity features in a fact while representing the relation using three
weight matrices.

Our scoring module consists of three parts. First, an embedding network initializes the vector features
for each entity. Then, a scoring function g(l, eh, et) computes the evaluation score for each fact.
Finally, the evaluation scores are processed to form the approximate posterior probability. For the
scoring function, the model computes the following function to represent the possibility of the head
and tail entities forming a valid fact under a given relation

g(l, eh, et) = uT
Rf(e

T
hWRet + VR

[
eh
et

]
+ bR), (7)

where f is a non-linear activation function. WR is a d ∗ d ∗ k dimensional tensor, and eThWRet results
from a bilinear tensor product, yielding a k-dimensional vector. VR is a k ∗ 2d dimensional tensor,

and VR

[
eh
et

]
is the result of a linear tensor product, also a k-dimensional vector. uR and bR are also

k-dimensional, so the final result is a scalar. We design the each parts as follows:

We set up initial vectors for entities in the knowledge graph separately. We then build a neural
network to update the vector features for all entities. The output of this part is the updated head and
tail entity vectors {eh, et} with dimension d.

We initialize a bilinear neural network layer WR and two linear neural network layers VR, uR. Taking
the head and tail entity vector features as input, we pass them through the scoring function g(l, eh, et)
to output the result and compute the evaluation scores for all known facts, unknown facts, and negative
sample facts.

We define the obtained evaluation scores as the approximate posterior probability for known and
unknown facts. Specifically, we process the evaluation scores using the sigmoid function to bound
them between 0 and 1, i.e., p = sigmod (g (l, eh, et)), where sigmod (.) = 1

1+exp (.) .

4.2 E-STEP

In the expectation step, to solve for the unknown facts in the knowledge graph based on the known
facts, we need to obtain the posterior distribution P (U |F, ω) of the unknown facts. This can be
achieved by minimizing the KL divergence between the approximate and true posterior distributions.
However, directly solving the joint probability distribution model established by MLN is highly
complex. Therefore, this paper randomly samples batches of ground rules to form datasets, wherein
the ground rules are approximately independent of each batch. By applying the mean-field theo-
rem(Neal & Hinton, 1998), we define the approximate posterior distribution as the product of the
probability distributions of the individual ground rules. The truth value of a ground rule is 1 when it
holds and 0 when it does not, and the truth value of each ground rule is jointly determined by the
truth values of its constituent facts. Therefore, we set the probability distribution of a ground rule
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as the product of the probability distributions of its constituent facts. For example, for the ground
rule:R1 = ¬S(Tom, basketball)

∨
¬ F (Tom, John)

∨
S(John, basketball).

The truth value of the ground rule R1 is determined by its three constituent facts. Thus, we define

Q (U) =
∏

ug∈U

q (ug) =
∏

ug∈U

∏
uk∈ug

fk(uk), (8)

where uk represents the value of fact k, which is either 0 or 1, where 1 indicates the fact holds
and 0 indicates it does not. ug represents the set of all values of facts in an instance g that belong
to a rule and U is the set of unknown facts. Each fact probability distribution fk(uk) follows a
Bernoulli distribution, where the truth value is 1 when the fact occurs and 0 when it does not, i.e.,
fk(uk) = puk

k (1− pk)
(1−uk). The probability pk of the fact occurring is obtained from the scoring

module.

The truth value of each ground rule is jointly determined by the truth values of its constituent facts.
Therefore, the number of ground rules is represented as

N(F,U) =
∑

ug∈ur

∏
uk∈ug

uk, (9)

where ur represents the set of facts belonging to rule r. Thus, equation (1) can be defined as

P (F,U |ω) = 1

Z(ω)

∏
r∈R

exp

ωr

∑
ug∈ur

∏
uk∈ug

uk

 . (10)

Substituting equations (8) and (10) into the optimization function (5), the term Z(ω) can be treated
as a constant, leading to

LELBO =
∑
r∈R

ωr

∑
ug∈ur

∏
uk∈ug

pk −
∑
r∈R

∑
ug∈ur

∑
uk∈ug

(( 1− pk) log (1− pk) + pklogpk) . (11)

This paper constructs the score dfact of the known fact set F to add constraints.

dfact = −λ
∑
F

(log (1− pk) + log pk)) . (12)

We want the score dfact of the positive sample to be as small as possible. The final objective function
is defined as

L =
∑
r∈R

ωr

∑
ug∈ur

∏
uk∈ug

pk −
∑

ug∈ur

∑
uk∈ug

((1− pk) log (1− pk) + pklogpk)

+ dfact. (13)

4.3 M-STEP

In the M-step, we fix Q(U) and then update the weights ωr of the rule set R. At this point, the
partition function in equation (2) from the E-step is no longer a constant. Therefore, in the M-step,
we optimize the rule weights by minimizing the negative of the ELBO. However, when dealing with
large-scale knowledge graphs, the number of facts also becomes enormous, making it difficult to
optimize the ELBO directly. Consequently, we adopt the widely used pseudo-log-likelihood [39] as
an alternative optimization objective, defined as

P (F,U |ω) :=
∑

Q(U)

(∑
uk∈U

logP (uk|ω,MBk)

)
. (14)

MBk represents the Markov Blanket of an individual fact k in a ground rule. Therefore, following
existing studies (Qu & Tang, 2019)(Zhang et al., 2020b), for each grounding formula k connecting the
base predicate with its Markov Blanket, we optimize the weights using the gradient descent formula

∇ωk

∑
f (uk) (logP (uk|ω,MBk)) . (15)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

We evaluate the NPLL method on seven benchmark datasets through the knowledge base completion
task and compare it with other state-of-the-art knowledge base completion methods. We show the
code in supplementary material.

Datasets. We evaluate our proposed model on seven widely used benchmark datasets. Specifically,
we use the YAGO3-10(Mahdisoltani et al., 2014) , YAGO37(Guo et al., 2018), Codex-L(Safavi &
Koutra, 2020), UMLS(Bodenreider, 2004), Kinship (Hinton, 1990), FB15k-237 (Toutanova & Chen,
2015),WN18RR(Dettmers et al., 2018). YAGO3-10 is a subset of YAGO3 (an extension of YAGO)
that contains entities associated with at least ten different relations. YAGO37 is also a variant of
YAGO dataset. Codex-L is a set of knowledge graph Completion Datasets Extracted from Wikidata
and Wikipedia. FB15k-237 and WN18RR are more challenging versions of the FB15K and WN18
datasets. The Unified Medical Language System (UMLS) is a comprehensive resource that integrates
and disseminates essential terminology, classification standards, and coding systems. The Kinship
dataset is a relational database consisting of 24 unique names in two families. Appendix A shows
details of datasets.

Evaluation metrics. Following existing studies(Bordes et al., 2013), we use the filtered setting
during evaluation. Mean Reciprocal Rank (MRR), Hit@10, Hit@3, and Hit@1 are treated as the
evaluation metrics.

Competitor methods: We compare knowledge graph embedding methods, rule-based methods,
and methods combining the two. For knowledge graph embedding methods, we select some of
the most classic distance translation and semantic matching algorithms, including TransE(Bordes
et al., 2013), DistMult(Yang et al., 2014), ComplEx (Trouillon et al., 2016), ConvE(Dettmers et al.,
2018), RotatE(Sun et al., 2019). For rule-based reasoning algorithms that integrate rules, we compare
with NeuralLP(Yang et al., 2017), DRUM(Sadeghian et al., 2019), pLogicNet(Qu & Tang, 2019),
ExpressGNN(Zhang et al., 2020b), DiffLogic(Shengyuan et al., 2024), NCRL(Cheng et al., 2023).
The comparative experiments are conducted under the same experimental conditions, selecting the
best training hyperparameters provided by the open-source codes of each algorithm.

Experimental setting: For the selection of logical rules across the seven benchmark datasets, we
first generated candidate rules using the Neural LP (Yang et al., 2017) method, a state-of-the-art rule
mining approach. We then preprocessed the candidate rules by removing self-reflective logical rules
and eliminating duplicates. Next, we applied a confidence score threshold, selecting all rules with
a confidence score greater than a predefined parameter α for the same target predicate. Using the
successive approximation method, we selected the optimal prior rules for each dataset, adjusting
the number of approximation iterations based on the volume of candidate rules. For instance, as
shown in Figure 2, we demonstrate the process of obtaining the optimal rules for the YAGO3-10
dataset through three rounds of approximation experiments, ultimately choosing a set of rules with
confidence scores exceeding 0.341.

Finally, we determined the most suitable logical rule set for each dataset through extensive exper-
iments. Based on the experimental results, we identified the optimal rule sets for each dataset as
follows: for the YAGO3-10 dataset, we selected rules with a confidence score greater than 0.341; for
the UMLS datasets, rules with a confidence score greater than 0; for the Codex-L dataset, rules with
a confidence score greater than 0.61; for the Fb15k-237 dataset, rules with a confidence score greater
than 0.87;for the YAGO37, Kinship and WN18RR datasets, rules with a confidence score greater
than 1.0. This systematic process of rule selection and empirical evaluation allowed us to identify the
most suitable logical rules for each knowledge graph, ensuring that our proposed method leverages
high-quality symbolic knowledge to enhance its reasoning capabilities.

General setting: All experiments are conducted on the same server with two GPUs (Nvidia RTX
3090, 24G), using Cuda version 11.8, Ubuntu 22.04.6 system, and Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz CPU.
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Figure 2: Logic rule generation by successive approximation method

5.2 RESULTS

Large scale KG completion performance analysis. The experimental results are presented in
Tables 1. We have organized our findings based on the scale of the knowledge graphs under
investigation.Appendix A shows the experimental outcomes for three large-scale datasets: YAGO3-
10, YAGO37, and Codex-L. The first two datasets encompass millions of training facts, while Codex-L
comprises over 500,000 training instances.Our analysis reveals that both variants of the NPLL method
demonstrated robust performance across all datasets. Notably, NPLL-basic significantly outperformed
other baseline methods on large-scale datasets. The Hit@1 and Hit@3 scores for NPLL closely
approximate its Hit@10 score, indicating a substantial enhancement in the quality of inferred results.

Table 1: Results of large KG completion. We select the metrics provided in the papers for the
DiffLogic and NCRL algorithms from the rule-learning methods, as we could not find suitable open-
source codes for them. [NA] indicates that the model cannot finish inference in our machines.The red
numbers indicate the best performance achieved on a particular metric. Hit@K is in %.

Methods Models YAGO3-10 YAGO37 Codex-L
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

KGE

TransE 0.4216 65.19 52.16 28.39 0.4090 63.94 51.94 26.80 0.2097 39.78 29.09 9.24
DistMult 0.3330 52.80 32.21 24.15 0.4062 57.61 45.19 31.91 0.2578 36.18 28.32 20.17
ComplEx 0.3465 54.75 24.15 16.30 0.4247 58.11 46.91 34.37 0.2866 39.82 31.44 22.64

RotatE 0.4913 67.10 54.52 39.81 0.4361 61.29 48.16 34.62 0.2870 39.49 31.44 22.88

Rule-Learning

Neural LP NA NA NA NA NA NA NA NA 0.1244 16.12 13.13 10.16
pLogicNet 0.2984 27.36 33.02 25.17 0.1095 14.73 11.83 8.62 0.1093 20.26 12.04 6.25

ExpressGNN NA NA NA NA NA NA NA NA 0.0261 5.61 1.88 0.67
NCRL 0.3800 53.60 - 27.40 - - - - - - - -

DiffLogic 0.5130 67.40 - - - - - - 0.3370 46.00 - -

us NPLL-basic 0.8986 93.58 91.82 87.39 0.7023 74.81 71.43 67.72 0.7063 82.09 74.90 64.39
NPLL-GNN 0.6201 77.72 66.99 53.75 0.4379 55.64 47.25 37.41 0.4837 63.46 51.48 40.83

KG completion performance analysis. The experimental results are shown in Table 2. The NPLL-
basic and NPLL-GNN methods achieve good performance across all four datasets. On the FB15k-237
and UMLS datasets, the NPLL-basic method significantly outperforms other methods, achieving the
best results on all four metrics. On the WN18RR and Kinship dataset, NPLL-basic and NPLL-GNN
comprehensively outperform the data-driven embedding methods, while NPLL-basic achieve the best
results on the MRR, Hit@3, and Hit@1 metrics. This indicates that the reasoning effectiveness and
expressiveness of NPLL have been enhanced.

Ablation study. For our method, we consider two variants: NPLL-GNN, which utilizes a tunable
graph neural network(Zhang et al., 2020b) in the scoring module for training, and NPLL-basic, which
employs only a single-layer embedding network in the scoring module for training. We examine
how different representations of entities and relations affect the performance of our NPLL model.
By systematically varying the embedding strategies, we aim to understand their contributions to the
model’s inferential capabilities. Our comprehensive ablation analysis spans all datasets, allowing
us to draw robust conclusions about the relationship between embedding choices and predictive
accuracy. The comparative outcomes of two distinct embedding methodologies applied within
the NPLL framework are presented in Table 1 and Table 2, providing insights into their relative
effectiveness across various knowledge graph scenarios. Compared to other baseline methods, both
NPLL-basic and NPLL-GNN perform excellently across all datasets, with NPLL-basic generally
achieving better results. Only on the smaller UMLS datasets does NPLL-GNN score similarly or
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Table 2: Results of KG completion. We select the metrics provided in the papers for the DiffLogic
and NCRL algorithms from the rule-learning methods, as we could not find suitable open-source
codes for them. (The red numbers indicate the best performance achieved on a particular metric.)
Hit@K is in %.

Methods Models FB15k-237 WN18RR
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

KGE

TransE 0.33 52.71 29.28 18.93 0.2231 52.12 40.10 1.31
DistMult 0.2878 45.67 31.43 20.31 0.4275 50.71 44.01 38.21
ComplEx 0.3016 48.08 33.10 21.28 0.4412 51.03 46.11 41.01

ConvE 0.3251 50.11 35.68 23.80 0.4295 52.13 44.34 39.87
RotatE 0.3213 53.10 34.52 22.81 0.4714 55.71 47.29 42.87

Rule-Learning

Neural LP 0.1983 29.84 21.73 14.48 0.3800 40.79 38.81 36.80
DRUM 0.2430 36.39 21.91 17.43 0.3861 41.02 38.93 36.91

pLogicNet 0.3300 52.79 36.87 23.12 0.2300 53.09 41.48 1.5
ExpressGNN 0.4894 60.80 48.10 38.91 - - - -

NCRL 0.3000 47.30 - 20.90 0.6700 85.00 - 56.30
DiffLogic - - - - 0.5001 58.70 - -

us NPLL-basic 0.6223 68.57 64.52 58.63 0.7668 78.14 77.38 75.83
NPLL-GNN 0.5442 61.93 57.06 50.25 0.5282 61.52 55.50 48.17

Methods Models Kinship UMLS
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

KGE

TransE 0.3509 80.36 50.14 1.10 0.7806 99.13 96.05 59.56
DistMult 0.3925 77.86 42.68 23.73 0.4770 78.83 53.87 33.57
ComplEx 0.7201 95.91 80.86 59.73 0.8950 98.34 95.58 82.70

RotatE 0.4890 86.95 56.32 32.41 0.5884 83.41 68.33 44.23

Rule-Learning
Neural LP 0.5637 88.00 63.94 41.49 0.7312 91.29 84.70 59.37

DRUM 0.3312 70.15 48.23 25.67 0.5634 85.64 65.58 35.79
NCRL 0.6400 92.90 - 49.00 0.7800 95.10 - 65.90

us NPLL-basic 0.8663 92.68 87.91 83.55 0.9763 99.21 98.26 96.76
NPLL-GNN 0.7705 87.55 79.09 71.77 0.9754 99.05 98.66 96.45

Table 3: A comparison of the model parameter counts for NPLL-basic, NPLL-GNN, and ExpressGNN
methods on the FB15k-237 dataset

Models FB15k-237

Total params count(k)
ExpressGNN 251,337k
NPLL-basic 64,967k
NPLL-GNN 64,953k

slightly better on Hit@10, Hit@3, Hit@1 and MRR. This indicates that NPLL-GNN approaches
NPLL-basic in expressiveness on the UMLS dataset. We hypothesize that due to the characteristics of
the GNN network, it can better transmit information and extract features on complex networks. The
UMLS dataset has comprehensive logic rules, allowing the construction of information-rich Markov
logic networks, thereby enhancing the expressiveness of NPLL-GNN on such data.

Parameter counts. The terms of model parameter counts, we compare NPLL with the ExpressGNN
method, which has relatively high overall performance among the baseline methods on the FB15k-237
dataset. As shown in Table 3, the parameter count of our method is approximately one-fourth of
ExpressGNN.

Analysis of data efficiency. We investigate the data efficiency of NPLL-basic and NPLL-GNN,
and compare them with baseline methods. We divide the FB15k-237 knowledge base into
fact/train/valid/test files(Yang et al., 2017), and vary the size of the train set from 0% to 20%,
while providing the complete fact set to the models. The results can be seen in Table 4. In Figures 3,
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Table 4: Results on the FB15k-237 dataset with various data sizes. Hit@K is in %

Models FB-0 FB-0.05

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

TransE 0.2412 42.71 26.39 16.10 0.2523 43.09 26.87 16.43
Neural LP 0.0128 1.75 0.73 0.41 0.1531 24.51 16.72 10.43
DistMult 0.2297 38.87 25.02 15.10 0.2317 39.28 25.13 15.25
CompIEx 0.2363 40.29 25.72 15.47 0.2395 40.70 25.98 15.75
ExpressGNN 0.4276 53.88 45.74 36.65 0.4187 54.24 44.89 35.50

NPLL-basic 0.5356 62.55 56.87 51.03 0.5384 63.09 57.84 51.38
NPLL-GNN 0.4989 58.78 52.95 44.88 0.4911 58.15 52.23 44.07

Models FB-0.1 FB-0.2

MRR MRR MRR MRR MRR Hit@10 Hit@3 Hit@1

TransE 0.2531 43.41 26.92 16.68 0.2533 43.92 27.13 16.81
Neural LP 0.1624 25.88 17.81 11.16 0.1699 26.79 18.53 11.86
DistMult 0.2333 39.47 25.36 15.37 0.2371 40.07 25.80 15.64
CompIEx 0.2409 40.74 26.24 15.89 0.2451 41.63 26.71 16.16
ExpressGNN 0.4226 55.30 45.49 35.91 0.4273 55.59 45.81 36.34

NPLL-basic 0.5466 63.40 57.20 51.93 0.5594 63.62 57.57 52.11
NPLL-GNN 0.5241 59.66 54.85 48.33 0.5307 60.55 55.69 48.91

the NPLL methods are shown as solid lines, while other methods are dashed lines. We can clearly
see that NPLL performs significantly better than the baselines with smaller training data. Even with
more training data for supervision, NPLL still exhibits excellent performance across all metrics. This
clearly demonstrates that NPLL can more accurately predict the correct answers and has outstanding
data utilization ability.

(a) MRR (b) Hit@10 (c) Hit@3 (d) Hit@1

Figure 3: Performance of KG completion vs sparsity ratio

6 CONCLUTION

In this paper, we study knowledge graph reasoning and propose a method called Neural Probabilistic
Logic Learning (NPLL), which effectively integrates logical rules with data embeddings. NPLL
utilizes neural networks to extract node features from the knowledge graph and then supports the
reasoning of Markov Logic Networks through a scoring module, effectively enhancing the model’s
expressiveness and reasoning capabilities. NPLL is a general framework that allows tuning the
encoding network to boost model performance.
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APPENDIX

A DATASET DETAILS

To comprehensively evaluate the performance of our proposed method, we conducted extensive
comparative experiments across seven widely-adopted benchmark datasets: YAGO3-10, YAGO37,
Codex-L UMLS, Kinships, FB15k-237, and WN18RR. Additionally, to investigate the impact of
dataset size on reasoning performance, we performed a splitting operation on the FB15k-237 dataset,
creating four subsets: FB-0, FB-0.05, FB-0.1, and FB-0.2, where the Train file was divided into
varying proportions. The specific details and statistics of these datasets are provided in Table 5.

This diverse set of benchmark datasets allows for a comprehensive evaluation of our method’s
reasoning capabilities across varying dataset sizes, knowledge graph complexities. The YAGO3-10,
YAGO37 and Codex-L represent large scale knowledge graphs,The UMLS and Kinships datasets
represent domain-specific knowledge graphs, while FB15k-237 and WN18RR are more general-
purpose knowledge bases. By including both small-scale and large-scale datasets, we can thoroughly
assess the robustness, scalability, and generalization abilities of our proposed approach under a wide
range of conditions encountered in real-world knowledge graph reasoning tasks.

Table 5: Knowledge base completion datasets statistics

Dataset #Fact #Train #Test #Valid #Relation #Entity #Rules

YAGO3-10 809280 269760 4982 4978 37 123182 348
YAGO37 741849 247283 50000 50000 37 123189 115
Codex-L 413394 137799 30622 30622 69 77951 300
Fb15k-237 204087 68028 20466 17536 237 14541 516
Fb-0 204087 1 20466 17536 237 14541 516
Fb-0.05 204087 3401 20466 17536 237 14541 516
Fb-0.1 204087 6802 20466 17536 237 14541 516
Fb-0.2 204087 13605 20466 17536 237 14541 516
WN18RR 65127 21708 3134 3034 11 40943 33
Kinship 6375 2112 1100 1099 25 104 71
UMLS 4006 1321 633 569 46 135 1055

B TRAINING TIME DETAILS

Table 6 details more aspects of the training time.

Table 6: Total train time of KG completion

Models yago37 YAGO3-10 Codex-L FB15k-237 Kinship WN18RR UMLS

NPLL-basic 5214s 2301s 10282s 2690s 383s 198s 1816s
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