
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL PROBABILISTIC LOGIC LEARNING FOR
KNOWLEDGE GRAPH REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge graph (KG) reasoning is a task that aims to predict unknown facts based
on known factual samples. Reasoning methods can be divided into two categories:
rule-based methods and KG-embedding based methods. The former possesses
precise reasoning capabilities but finds it challenging to reason efficiently over
large-scale knowledge graphs. While gaining the ability to reason over large-scale
knowledge graphs, the latter sacrifices reasoning accuracy. This paper aims to
design a reasoning framework called Neural Probabilistic Logic Learning(NPLL)
that achieves accurate reasoning on knowledge graphs. Our approach introduces
a scoring module that effectively enhances the expressive power of embedding
networks. We strike a balance between model simplicity and reasoning capabilities
by incorporating a Markov Logic Network based on variational inference. We
empirically evaluate our approach on several benchmark datasets, and the experi-
mental results validate that our method substantially enhances the accuracy and
quality of the reasoning results. paragraph.

1 INTRODUCTION

Knowledge representation has long been a fundamental challenge in artificial intelligence. Knowledge
graphs, a form of structured knowledge representation, have gained significant traction in recent years
due to their ability to capture rich semantics and facilitate reasoning over large-scale data. Compared
to conventional approaches such as semantic networks and production rules, knowledge graphs offer
a more expressive and scalable representation of entities and their relationships in a graph-based
formalism. This structured representation not only assists human comprehension and reasoning but
also enables seamless integration with machine learning techniques, facilitating a wide range of
downstream applications.

One prominent line of research in knowledge graph reasoning revolves around embedding-based
methods. These techniques aim to map the elements of a knowledge graph into a low-dimensional
vector space, capturing the underlying associations between entities and relations through numerical
representations. While this approach has demonstrated promising results, it suffers from inherent lim-
itations, including low interpretability, suboptimal performance on long-tail relations, and challenges
in capturing complex semantic information and logical relationships.

Alternatively, rule-based knowledge reasoning methods operate by extracting logical rules from
the knowledge graph, typically in the form of first-order predicate logic, and performing inference
based on these rules. However, these methods often face challenges stemming from the vast search
space and limited coverage of the extracted rules. Markov Logic Networks (MLNs) (Richardson
& Domingos, 2006) have been proposed as a principled framework for combining probabilistic
graphical models with first-order logic, enabling the effective integration of rules and embedding
methods for more accurate reasoning.

In this paper, we seek to develop a method that can better leverage the outputs of embedding networks
to support knowledge graph reasoning. To this end, we propose a novel reasoning framework called
Neural Probabilistic Logic Learning (NPLL). NPLL introduces a scoring module that efficiently
utilizes knowledge graph embedding data, enhancing the training process of the entire framework.
Our method, illustrated in Figure 1, makes the following key contributions:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Large-scale KG reasoning capability: NPLL effectively handles reasoning tasks in large-scale KGs.
Experimental results demonstrate its performance in knowledge bases containing millions of facts.

Efficient Reasoning and Learning: NPLL can be viewed as an inference network for MLNs,
extending MLN inference to larger-scale knowledge graph problems.

Tight Integration of Logical Rules and Data Supervision: NPLL can leverage prior knowledge
from logical rules and supervision from structured graph data.

Balance between Model Size and Reasoning Capability: Despite its compact architecture and
relatively fewer parameters, NPLL demonstrates remarkable reasoning capabilities, sufficient to
capture the intricate relationships and semantics within knowledge graphs. Even in data-scarce
scenarios where the available dataset size is relatively small, NPLL can achieve a high level of
reasoning performance, making it well-suited for practical applications with limited labeled data.

Figure 1: Visualization of Neural Probabilistic Logic Learning (NPLL)

2 RELATED WORK

One prominent category of methods for knowledge graph reasoning is rule-based approaches. These
methods leverage logical rules, generally defined as B→A, where A is the target fact, and B can be
considered a set of condition facts. Facts are composed of predicates and variables. To better utilize
these symbolic features, methods like AMIE(Galárraga et al., 2013), RuleN(Meilicke et al., 2018),
and RLvLR(Omran et al., 2019) employ rule mining tools to extract logical rules from knowledge
graphs for reasoning. Approaches like KALE(Guo et al., 2016), RUGE(Guo et al., 2018), and
IterE(Zhang et al., 2019b) started combining logical rules with embedding learning to construct
joint knowledge graph reasoning models. Additionally, NeuralLP(Yang et al., 2017) proposed an
end-to-end differentiable method to effectively learn the parameters and structures of logical rules
in knowledge graphs. NeuralLP-num-lp(Wang et al., 2019) combined summation operations and
dynamic programming with NeuralLP, which can be used to learn numerical regulations better. Simul-
taneously, DRUM(Sadeghian et al., 2019) introduced a rule-based end-to-end differentiable model.
Then, pLogicNet designed a probabilistic logic neural network (Qu & Tang, 2019), demonstrating
exemplary reasoning performance. Building on this, ExpressGNN(Zhang et al., 2020b) achieved
more efficient reasoning by fine-tuning the GNN model. DiffLgic(Shengyuan et al., 2024) designed
a differential framework to improve reasoning efficiency and accuracy for large knowledge graphs.
NCRL(Cheng et al., 2023) proposed an end-to-end neural method that recursively leverages the
compositionality of logical rules to enhance systematic generalization. In contrast to these approaches,
our proposed NPLL framework is significantly more effective for knowledge graph reasoning.

Another category of approaches for knowledge graph reasoning is embedding-based methods. These
techniques primarily represent entities and relations using vector embeddings. Knowledge graph
reasoning is achieved by defining various scoring functions to model different reasoning processes.
For instance, methods like TransE(Bordes et al., 2013), TransH(Wang et al., 2014), TransR(Lin
et al., 2015), TransD(Ji et al., 2016), TranSparse(Ji et al., 2015), TransRHS(Zhang et al., 2020a),
RotatE(Sun et al., 2019) project entities and relations into vector spaces, transforming computations
between facts into vector operations. The essential scoring function is the difference between the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

head entity-relation vector and the tail entity vector. Rescal(Nickel et al., 2011), DistMult(Yang
et al., 2014), ComplEx(Trouillon et al., 2016), HolE(Nickel et al., 2016), analog(Liu et al., 2017),
SimplE(Kazemi & Poole, 2018), QuatE(Zhang et al., 2019a), DualE(Cao et al., 2021), HopfE(Bastos
et al., 2021), LowFER(Amin et al., 2020), QuatRE(Nguyen et al., 2022) represent each fact in the
knowledge graph as a three-dimensional tensor, decomposed into a combination of low-dimensional
entity and relation vectors. They use vector matrices to represent the latent semantics of each entity
and relation. The primary scoring function is the product of the head entity, relation, and tail entity.
Methods like SME(Bordes et al., 2014), NTN(Socher et al., 2013), and NAM(Liu et al., 2016) employ
neural networks to encode entities and relations into high-dimensional spaces. ConvE(Dettmers et al.,
2018) first introduced 2D convolutional layers for reasoning. RGCN(Schlichtkrull et al., 2018), NBF-
net(Zhu et al., 2021), and RED-GNN(Zhang & Yao, 2022) use graph neural networks to aggregate
neighbor node information and decoders as scoring functions. However, these embedding-based
methods often sacrifice interpretability and prediction quality. In contrast, our proposed NPLL
framework significantly improves the quality of reasoning results while more properly handling
reasoning problems through the principled integration of logical rules.

3 PRELIMINARY

A knowledge graph is a graph-structured model composed of triplets, where the entities in the
triplets are nodes and the relations are edges. Given a known knowledge graph K = (E,L, F),
whereE = {e1, e2, . . . , eM} represents a set of M entities, with entities typically referring to person
names, objects, locations and proper nouns;L = {l1, l2, . . . , lN} represents a set of N relations;
F = {f1, f2, . . . , fS} represents a set of known facts involving entities from E and relations from L,
where fi can be described as fi = {eh, l, et}, eh, et ∈ E, l ∈ L, indicating eh has a relation l with et,
or can be written as l(eh, et), where l is treated as a predicate and eh and et as constants.

We now introduce the predicate logic representation, where each relation in the relation set is
represented as a function l(x, y), with x and y having the domain E, and l(x, y) being directed, so
l(x, y) and l(y, x) are different. For example, l(x, y) := S(Tom, basketball) (S denotes proficient
sport), indicates that Tom’s proficient sport is basketball, which clearly cannot be expressed as
S(basketball, Tom).

Using the predicate logic representation, new facts can be inferred through logical deduction, e.g.,
S (Tom, basketball) ∧ F (Tom, John) ⇒ S(John, basketball)(F denotes being friends). If
variables replace the constant entities in the above formula, it is called a rule, generally represented as:
Pred1 (x, y1) ∧ Pred2 (y1, y2) ∧ . . . P redn (yn−1, z) ⇒ Pred (x, z) n ≥ 1,where x,yi′,z are
all variables. Pred(A,B) is called an atom, with A and B being the subject and object or the head
and tail entities in the triplet. Pred(x, z) is the head atom; the rest are body atoms. After substituting
variables with constants, e.g. let C1, C2, C3 be constants, Pred1 (C1, C2) ∧ Pred2(C2, C3) ⇒
Pred3(C1, C3), which is called ground rule, and each atom with variables replaced by constants is
called a ground predicate, whose value is a binary truth value. For example, Pred1(C1, C2) = {0, 1}.
If Pred1(C1, C2) ∈ F , then Pred1(C1, C2) = 1. Therefore, the goal of knowledge reasoning is to
infer unknown facts U = {Uj} from the known facts F = {fi = 1}i=1,2,...

Inferring unknown facts from known facts is a generative problem, which requires building a joint
probability distribution model and maximizing the generation probability to obtain the unknown
facts. Hence, we must construct a suitable joint probability distribution model for the reasoning task.
Considering the above conditions, the knowledge graph can be modeled as a MLN, which combines
first-order predicate logic and probabilistic graphical models. Traditional methods employ first-order
predicate logic for deductive reasoning in a black-and-white manner. However, as the example
S (Tom, basketball) ∧ F (Tom, John) ⇒ S(John, basketball) shows, it is not necessarily
always true. MLN assign a weight ω to each rule, representing the probability of the event occurring,
thus transforming the hard conditions of predicate logic into probabilistic conditions. The rule
representation form in first-order predicate logic is converted to Conjunctive Normal Form (CNF) for
computational convenience.

S(A,B) ∧ F (A,C) ⇒ S(C,B) ⇔ ¬S(A,B) ∨ ¬ F (A,C) ∨ S(C,B)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Therefore, to construct a MLN from a knowledge graph, each ontology rule needs to be defined as a
network in the MLN, each having a weight ω. The probability calculation formula for MLN is

P (F,U |ω) = 1

Z(ω)

∏
r∈R

exp (ωrN(F,U)) , (1)

where F is the set of known facts, U is the set of unknown facts, R = {r} is the set of rules, ωr is the
weight of rule r, and N(F,U) is the number of ground rules satisfying rule r. Z(ω) is the partition
function, which is the sum of all possible ground rule cases for normalization

Z(ω) =
∑
F,U

∏
r∈R

exp(ωrN(F,U)). (2)

All ground rules of each rule form a clique in MLN, exp (ωrN (F,U)) is the potential function of
rule r, and each potential function expresses the situation of a clique. Generally, all ground rules
of one rule form a clique, where each primary node, i.e., fact, is treated as a basic atom. Each state
of MLN assigns different occurrence possibilities to all facts, representing a possible open world.
Each set of possible worlds combines {F,U,R} relations, jointly determining the truth values of
all basic atoms. After establishing the joint probability distribution, we infer the unknown facts U
from the known facts F by solving the posterior distribution P (U |F, ω), which can be viewed as an
approximate inference problem.

Unlike rule-based reasoning methods that evaluate rules holistically, knowledge embedding methods
mainly score facts, assigning higher scores to correct facts and lower scores to incorrect ones,
obtaining embedding vectors for different entities, and enabling inference of unknown facts.

4 MODEL

This section introduces a knowledge reasoning method that combines MLNs with embedding learning.
By utilizing MLN, which is trained with EM algorithm(Neal & Hinton, 1998), to establish a joint
probability distribution model of known facts and unknown facts, we decompose P (F |ω) to obtain
the following equation

logP (F |ω) = log[
P (F,U |ω)

Q(U)
]− log[

P (U |F, ω)
Q(U)

], (3)

where P (F,U |ω) is the joint probability distribution of known facts and unknown facts. In contrast,
P (U |F, ω) is the posterior distribution, and Q(U) is the approximate posterior distribution. Taking
the expectation of both sides of equation(3) with respect to Q(U), we can define logP (F |ω) as the
sum of the evidence lower bound(ELBO) and the Kullback-Leibler(KL) divergence

logP (F |ω) = ELBO +KL(q||p), (4)

where ELBO =
∑

U Q (U) log
(

P (F,U |ω)
Q(U)

)
, KL(q||p) = −

∑
U Q (U) log

(
P (U | F,ω)

Q(U)

)
.

When the approximate posterior distribution Q(U) is the same as the true posterior distribution, we
obtain the optimal result, at which point KL(q||p) is 0 and ELBO is maximized. Therefore, our
optimization objective becomes maximizing the ELBO value

dELBO(Q,P) =
∑
U

Q(U)logP (F,U |ω)−
∑
U

Q(U)logQ(U), (5)

the approximate posterior distribution Q(U) is the probability distribution of unknown facts based on
known facts.

Specifically, in the t-th iteration, the first step is to fix the rule weight ω as ωt, which is a constant.
We then update the probability set of each factor in all ground rules through the reasoning method
proposed in this paper and obtain the current approximate posterior probability distribution Q(U).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The second step substitutes the approximate posterior distribution into ELBO and updates ω by
maximizing ELBO

ω = argmaxω

∑
(Q(U)logP (F,U |ω)−Q(U)logP (U,F |ωt)), (6)

where the second term is independent of ω and can be treated as a constant. Therefore, to reduce
computation, we simplify the first step to fixing ω and computing the expectation of logP (F,U |ω)
concerning Q(U). The second step fixes the posterior distribution and updates ω, obtaining ωt+1 =
argmaxω

∑
U Q(U)logP (F,U |ω).

4.1 SCORING MODULE

The most crucial part of the entire reasoning architecture is generating the approximate posterior
probability. We design a scoring module to generate evaluation scores for facts. The generated
evaluation scores can be the approximate posterior probability to compute the KL divergence from
the actual posterior distribution. Additionally, they must satisfy the constraint that the loss for correct
facts is minimized while the loss for incorrect facts is maximized. Therefore, we use vectors eh and
et to represent the head and tail entity features in a fact while representing the relation using three
weight matrices.

Our scoring module consists of three parts. First, an embedding network initializes the vector features
for each entity. Then, a scoring function g(l, eh, et) computes the evaluation score for each fact.
Finally, the evaluation scores are processed to form the approximate posterior probability. For the
scoring function, the model computes the following function to represent the possibility of the head
and tail entities forming a valid fact under a given relation

g(l, eh, et) = uT
Rf(e

T
hWRet + VR

[
eh
et

]
+ bR), (7)

where f is a non-linear activation function. WR is a d ∗ d ∗ k dimensional tensor, and eThWRet results
from a bilinear tensor product, yielding a k-dimensional vector. VR is a k ∗ 2d dimensional tensor,

and VR

[
eh
et

]
is the result of a linear tensor product, also a k-dimensional vector. uR and bR are also

k-dimensional, so the final result is a scalar. We design the each parts as follows:

We set up initial vectors for entities in the knowledge graph separately. We then build a neural
network to update the vector features for all entities. The output of this part is the updated head and
tail entity vectors {eh, et} with dimension d.

We initialize a bilinear neural network layer WR and two linear neural network layers VR, uR. Taking
the head and tail entity vector features as input, we pass them through the scoring function g(l, eh, et)
to output the result and compute the evaluation scores for all known facts, unknown facts, and negative
sample facts.

We define the obtained evaluation scores as the approximate posterior probability for known and
unknown facts. Specifically, we process the evaluation scores using the sigmoid function to bound
them between 0 and 1, i.e., p = sigmod (g (l, eh, et)), where sigmod (.) = 1

1+exp (.) .

4.2 E-STEP

In the expectation step, to solve for the unknown facts in the knowledge graph based on the known
facts, we need to obtain the posterior distribution P (U |F, ω) of the unknown facts. This can be
achieved by minimizing the KL divergence between the approximate and true posterior distributions.
However, directly solving the joint probability distribution model established by MLN is highly
complex. Therefore, this paper randomly samples batches of ground rules to form datasets, wherein
the ground rules are approximately independent of each batch. By applying the mean-field theo-
rem(Neal & Hinton, 1998), we define the approximate posterior distribution as the product of the
probability distributions of the individual ground rules. The truth value of a ground rule is 1 when it
holds and 0 when it does not, and the truth value of each ground rule is jointly determined by the
truth values of its constituent facts. Therefore, we set the probability distribution of a ground rule

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

as the product of the probability distributions of its constituent facts. For example, for the ground
rule:R1 = ¬S(Tom, basketball)

∨
¬ F (Tom, John)

∨
S(John, basketball).

The truth value of the ground rule R1 is determined by its three constituent facts. Thus, we define

Q (U) =
∏

ug∈U

q (ug) =
∏

ug∈U

∏
uk∈ug

fk(uk), (8)

where uk represents the value of fact k, which is either 0 or 1, where 1 indicates the fact holds
and 0 indicates it does not. ug represents the set of all values of facts in an instance g that belong
to a rule and U is the set of unknown facts. Each fact probability distribution fk(uk) follows a
Bernoulli distribution, where the truth value is 1 when the fact occurs and 0 when it does not, i.e.,
fk(uk) = puk

k (1− pk)
(1−uk). The probability pk of the fact occurring is obtained from the scoring

module.

The truth value of each ground rule is jointly determined by the truth values of its constituent facts.
Therefore, the number of ground rules is represented as

N(F,U) =
∑

ug∈ur

∏
uk∈ug

uk, (9)

where ur represents the set of facts belonging to rule r. Thus, equation (1) can be defined as

P (F,U |ω) = 1

Z(ω)

∏
r∈R

exp

ωr

∑
ug∈ur

∏
uk∈ug

uk

 . (10)

Substituting equations (8) and (10) into the optimization function (5), the term Z(ω) can be treated
as a constant, leading to

LELBO =
∑
r∈R

ωr

∑
ug∈ur

∏
uk∈ug

pk −
∑
r∈R

∑
ug∈ur

∑
uk∈ug

((1− pk) log (1− pk) + pklogpk) . (11)

This paper constructs the score dfact of the known fact set F to add constraints.

dfact = −λ
∑
F

(log (1− pk) + log pk)) . (12)

We want the score dfact of the positive sample to be as small as possible. The final objective function
is defined as

L =
∑
r∈R

ωr

∑
ug∈ur

∏
uk∈ug

pk −
∑

ug∈ur

∑
uk∈ug

((1− pk) log (1− pk) + pklogpk)

+ dfact. (13)

4.3 M-STEP

In the M-step, we fix Q(U) and then update the weights ωr of the rule set R. At this point, the
partition function in equation (2) from the E-step is no longer a constant. Therefore, in the M-step,
we optimize the rule weights by minimizing the negative of the ELBO. However, when dealing with
large-scale knowledge graphs, the number of facts also becomes enormous, making it difficult to
optimize the ELBO directly. Consequently, we adopt the widely used pseudo-log-likelihood [39] as
an alternative optimization objective, defined as

P (F,U |ω) :=
∑

Q(U)

(∑
uk∈U

logP (uk|ω,MBk)

)
. (14)

MBk represents the Markov Blanket of an individual fact k in a ground rule. Therefore, following
existing studies (Qu & Tang, 2019)(Zhang et al., 2020b), for each grounding formula k connecting the
base predicate with its Markov Blanket, we optimize the weights using the gradient descent formula

∇ωk

∑
f (uk) (logP (uk|ω,MBk)) . (15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

We evaluate the NPLL method on seven benchmark datasets through the knowledge base completion
task and compare it with other state-of-the-art knowledge base completion methods. We show the
code in supplementary material.

Datasets. We evaluate our proposed model on seven widely used benchmark datasets. Specifically,
we use the YAGO3-10(Mahdisoltani et al., 2014) , YAGO37(Guo et al., 2018), Codex-L(Safavi &
Koutra, 2020), UMLS(Bodenreider, 2004), Kinship (Hinton, 1990), FB15k-237 (Toutanova & Chen,
2015),WN18RR(Dettmers et al., 2018). YAGO3-10 is a subset of YAGO3 (an extension of YAGO)
that contains entities associated with at least ten different relations. YAGO37 is also a variant of
YAGO dataset. Codex-L is a set of knowledge graph Completion Datasets Extracted from Wikidata
and Wikipedia. FB15k-237 and WN18RR are more challenging versions of the FB15K and WN18
datasets. The Unified Medical Language System (UMLS) is a comprehensive resource that integrates
and disseminates essential terminology, classification standards, and coding systems. The Kinship
dataset is a relational database consisting of 24 unique names in two families. Appendix A shows
details of datasets.

Evaluation metrics. Following existing studies(Bordes et al., 2013), we use the filtered setting
during evaluation. Mean Reciprocal Rank (MRR), Hit@10, Hit@3, and Hit@1 are treated as the
evaluation metrics.

Competitor methods: We compare knowledge graph embedding methods, rule-based methods,
and methods combining the two. For knowledge graph embedding methods, we select some of
the most classic distance translation and semantic matching algorithms, including TransE(Bordes
et al., 2013), DistMult(Yang et al., 2014), ComplEx (Trouillon et al., 2016), ConvE(Dettmers et al.,
2018), RotatE(Sun et al., 2019). For rule-based reasoning algorithms that integrate rules, we compare
with NeuralLP(Yang et al., 2017), DRUM(Sadeghian et al., 2019), pLogicNet(Qu & Tang, 2019),
ExpressGNN(Zhang et al., 2020b), DiffLogic(Shengyuan et al., 2024), NCRL(Cheng et al., 2023).
The comparative experiments are conducted under the same experimental conditions, selecting the
best training hyperparameters provided by the open-source codes of each algorithm.

Experimental setting: For the selection of logical rules across the seven benchmark datasets, we
first generated candidate rules using the Neural LP (Yang et al., 2017) method, a state-of-the-art rule
mining approach. We then preprocessed the candidate rules by removing self-reflective logical rules
and eliminating duplicates. Next, we applied a confidence score threshold, selecting all rules with
a confidence score greater than a predefined parameter α for the same target predicate. Using the
successive approximation method, we selected the optimal prior rules for each dataset, adjusting
the number of approximation iterations based on the volume of candidate rules. For instance, as
shown in Figure 2, we demonstrate the process of obtaining the optimal rules for the YAGO3-10
dataset through three rounds of approximation experiments, ultimately choosing a set of rules with
confidence scores exceeding 0.341.

Finally, we determined the most suitable logical rule set for each dataset through extensive exper-
iments. Based on the experimental results, we identified the optimal rule sets for each dataset as
follows: for the YAGO3-10 dataset, we selected rules with a confidence score greater than 0.341; for
the UMLS datasets, rules with a confidence score greater than 0; for the Codex-L dataset, rules with
a confidence score greater than 0.61; for the Fb15k-237 dataset, rules with a confidence score greater
than 0.87;for the YAGO37, Kinship and WN18RR datasets, rules with a confidence score greater
than 1.0. This systematic process of rule selection and empirical evaluation allowed us to identify the
most suitable logical rules for each knowledge graph, ensuring that our proposed method leverages
high-quality symbolic knowledge to enhance its reasoning capabilities.

General setting: All experiments are conducted on the same server with two GPUs (Nvidia RTX
3090, 24G), using Cuda version 11.8, Ubuntu 22.04.6 system, and Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz CPU.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Logic rule generation by successive approximation method

5.2 RESULTS

Large scale KG completion performance analysis. The experimental results are presented in
Tables 1. We have organized our findings based on the scale of the knowledge graphs under
investigation.Appendix A shows the experimental outcomes for three large-scale datasets: YAGO3-
10, YAGO37, and Codex-L. The first two datasets encompass millions of training facts, while Codex-L
comprises over 500,000 training instances.Our analysis reveals that both variants of the NPLL method
demonstrated robust performance across all datasets. Notably, NPLL-basic significantly outperformed
other baseline methods on large-scale datasets. The Hit@1 and Hit@3 scores for NPLL closely
approximate its Hit@10 score, indicating a substantial enhancement in the quality of inferred results.

Table 1: Results of large KG completion. We select the metrics provided in the papers for the
DiffLogic and NCRL algorithms from the rule-learning methods, as we could not find suitable open-
source codes for them. [NA] indicates that the model cannot finish inference in our machines.The red
numbers indicate the best performance achieved on a particular metric. Hit@K is in %.

Methods Models YAGO3-10 YAGO37 Codex-L
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

KGE

TransE 0.4216 65.19 52.16 28.39 0.4090 63.94 51.94 26.80 0.2097 39.78 29.09 9.24
DistMult 0.3330 52.80 32.21 24.15 0.4062 57.61 45.19 31.91 0.2578 36.18 28.32 20.17
ComplEx 0.3465 54.75 24.15 16.30 0.4247 58.11 46.91 34.37 0.2866 39.82 31.44 22.64

RotatE 0.4913 67.10 54.52 39.81 0.4361 61.29 48.16 34.62 0.2870 39.49 31.44 22.88

Rule-Learning

Neural LP NA NA NA NA NA NA NA NA 0.1244 16.12 13.13 10.16
pLogicNet 0.2984 27.36 33.02 25.17 0.1095 14.73 11.83 8.62 0.1093 20.26 12.04 6.25

ExpressGNN NA NA NA NA NA NA NA NA 0.0261 5.61 1.88 0.67
NCRL 0.3800 53.60 - 27.40 - - - - - - - -

DiffLogic 0.5130 67.40 - - - - - - 0.3370 46.00 - -

us NPLL-basic 0.8986 93.58 91.82 87.39 0.7023 74.81 71.43 67.72 0.7063 82.09 74.90 64.39
NPLL-GNN 0.6201 77.72 66.99 53.75 0.4379 55.64 47.25 37.41 0.4837 63.46 51.48 40.83

KG completion performance analysis. The experimental results are shown in Table 2. The NPLL-
basic and NPLL-GNN methods achieve good performance across all four datasets. On the FB15k-237
and UMLS datasets, the NPLL-basic method significantly outperforms other methods, achieving the
best results on all four metrics. On the WN18RR and Kinship dataset, NPLL-basic and NPLL-GNN
comprehensively outperform the data-driven embedding methods, while NPLL-basic achieve the best
results on the MRR, Hit@3, and Hit@1 metrics. This indicates that the reasoning effectiveness and
expressiveness of NPLL have been enhanced.

Ablation study. For our method, we consider two variants: NPLL-GNN, which utilizes a tunable
graph neural network(Zhang et al., 2020b) in the scoring module for training, and NPLL-basic, which
employs only a single-layer embedding network in the scoring module for training. We examine
how different representations of entities and relations affect the performance of our NPLL model.
By systematically varying the embedding strategies, we aim to understand their contributions to the
model’s inferential capabilities. Our comprehensive ablation analysis spans all datasets, allowing
us to draw robust conclusions about the relationship between embedding choices and predictive
accuracy. The comparative outcomes of two distinct embedding methodologies applied within
the NPLL framework are presented in Table 1 and Table 2, providing insights into their relative
effectiveness across various knowledge graph scenarios. Compared to other baseline methods, both
NPLL-basic and NPLL-GNN perform excellently across all datasets, with NPLL-basic generally
achieving better results. Only on the smaller UMLS datasets does NPLL-GNN score similarly or

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results of KG completion. We select the metrics provided in the papers for the DiffLogic
and NCRL algorithms from the rule-learning methods, as we could not find suitable open-source
codes for them. (The red numbers indicate the best performance achieved on a particular metric.)
Hit@K is in %.

Methods Models FB15k-237 WN18RR
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

KGE

TransE 0.33 52.71 29.28 18.93 0.2231 52.12 40.10 1.31
DistMult 0.2878 45.67 31.43 20.31 0.4275 50.71 44.01 38.21
ComplEx 0.3016 48.08 33.10 21.28 0.4412 51.03 46.11 41.01

ConvE 0.3251 50.11 35.68 23.80 0.4295 52.13 44.34 39.87
RotatE 0.3213 53.10 34.52 22.81 0.4714 55.71 47.29 42.87

Rule-Learning

Neural LP 0.1983 29.84 21.73 14.48 0.3800 40.79 38.81 36.80
DRUM 0.2430 36.39 21.91 17.43 0.3861 41.02 38.93 36.91

pLogicNet 0.3300 52.79 36.87 23.12 0.2300 53.09 41.48 1.5
ExpressGNN 0.4894 60.80 48.10 38.91 - - - -

NCRL 0.3000 47.30 - 20.90 0.6700 85.00 - 56.30
DiffLogic - - - - 0.5001 58.70 - -

us NPLL-basic 0.6223 68.57 64.52 58.63 0.7668 78.14 77.38 75.83
NPLL-GNN 0.5442 61.93 57.06 50.25 0.5282 61.52 55.50 48.17

Methods Models Kinship UMLS
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

KGE

TransE 0.3509 80.36 50.14 1.10 0.7806 99.13 96.05 59.56
DistMult 0.3925 77.86 42.68 23.73 0.4770 78.83 53.87 33.57
ComplEx 0.7201 95.91 80.86 59.73 0.8950 98.34 95.58 82.70

RotatE 0.4890 86.95 56.32 32.41 0.5884 83.41 68.33 44.23

Rule-Learning
Neural LP 0.5637 88.00 63.94 41.49 0.7312 91.29 84.70 59.37

DRUM 0.3312 70.15 48.23 25.67 0.5634 85.64 65.58 35.79
NCRL 0.6400 92.90 - 49.00 0.7800 95.10 - 65.90

us NPLL-basic 0.8663 92.68 87.91 83.55 0.9763 99.21 98.26 96.76
NPLL-GNN 0.7705 87.55 79.09 71.77 0.9754 99.05 98.66 96.45

Table 3: A comparison of the model parameter counts for NPLL-basic, NPLL-GNN, and ExpressGNN
methods on the FB15k-237 dataset

Models FB15k-237

Total params count(k)
ExpressGNN 251,337k
NPLL-basic 64,967k
NPLL-GNN 64,953k

slightly better on Hit@10, Hit@3, Hit@1 and MRR. This indicates that NPLL-GNN approaches
NPLL-basic in expressiveness on the UMLS dataset. We hypothesize that due to the characteristics of
the GNN network, it can better transmit information and extract features on complex networks. The
UMLS dataset has comprehensive logic rules, allowing the construction of information-rich Markov
logic networks, thereby enhancing the expressiveness of NPLL-GNN on such data.

Parameter counts. The terms of model parameter counts, we compare NPLL with the ExpressGNN
method, which has relatively high overall performance among the baseline methods on the FB15k-237
dataset. As shown in Table 3, the parameter count of our method is approximately one-fourth of
ExpressGNN.

Analysis of data efficiency. We investigate the data efficiency of NPLL-basic and NPLL-GNN,
and compare them with baseline methods. We divide the FB15k-237 knowledge base into
fact/train/valid/test files(Yang et al., 2017), and vary the size of the train set from 0% to 20%,
while providing the complete fact set to the models. The results can be seen in Table 4. In Figures 3,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results on the FB15k-237 dataset with various data sizes. Hit@K is in %

Models FB-0 FB-0.05

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

TransE 0.2412 42.71 26.39 16.10 0.2523 43.09 26.87 16.43
Neural LP 0.0128 1.75 0.73 0.41 0.1531 24.51 16.72 10.43
DistMult 0.2297 38.87 25.02 15.10 0.2317 39.28 25.13 15.25
CompIEx 0.2363 40.29 25.72 15.47 0.2395 40.70 25.98 15.75
ExpressGNN 0.4276 53.88 45.74 36.65 0.4187 54.24 44.89 35.50

NPLL-basic 0.5356 62.55 56.87 51.03 0.5384 63.09 57.84 51.38
NPLL-GNN 0.4989 58.78 52.95 44.88 0.4911 58.15 52.23 44.07

Models FB-0.1 FB-0.2

MRR MRR MRR MRR MRR Hit@10 Hit@3 Hit@1

TransE 0.2531 43.41 26.92 16.68 0.2533 43.92 27.13 16.81
Neural LP 0.1624 25.88 17.81 11.16 0.1699 26.79 18.53 11.86
DistMult 0.2333 39.47 25.36 15.37 0.2371 40.07 25.80 15.64
CompIEx 0.2409 40.74 26.24 15.89 0.2451 41.63 26.71 16.16
ExpressGNN 0.4226 55.30 45.49 35.91 0.4273 55.59 45.81 36.34

NPLL-basic 0.5466 63.40 57.20 51.93 0.5594 63.62 57.57 52.11
NPLL-GNN 0.5241 59.66 54.85 48.33 0.5307 60.55 55.69 48.91

the NPLL methods are shown as solid lines, while other methods are dashed lines. We can clearly
see that NPLL performs significantly better than the baselines with smaller training data. Even with
more training data for supervision, NPLL still exhibits excellent performance across all metrics. This
clearly demonstrates that NPLL can more accurately predict the correct answers and has outstanding
data utilization ability.

(a) MRR (b) Hit@10 (c) Hit@3 (d) Hit@1

Figure 3: Performance of KG completion vs sparsity ratio

6 CONCLUTION

In this paper, we study knowledge graph reasoning and propose a method called Neural Probabilistic
Logic Learning (NPLL), which effectively integrates logical rules with data embeddings. NPLL
utilizes neural networks to extract node features from the knowledge graph and then supports the
reasoning of Markov Logic Networks through a scoring module, effectively enhancing the model’s
expressiveness and reasoning capabilities. NPLL is a general framework that allows tuning the
encoding network to boost model performance.

REFERENCES

Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield, and Günter Neumann. Lowfer: Low-
rank bilinear pooling for link prediction. In International Conference on Machine Learning, pp.
257–268. PMLR, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Anson Bastos, Kuldeep Singh, Abhishek Nadgeri, Saeedeh Shekarpour, Isaiah Onando Mulang, and
Johannes Hoffart. Hopfe: Knowledge graph representation learning using inverse hopf fibrations. In
Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
pp. 89–99, 2021.

Olivier Bodenreider. The unified medical language system (umls): integrating biomedical terminology.
Nucleic acids research, 32(suppl_1):D267–D270, 2004.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching energy func-
tion for learning with multi-relational data: Application to word-sense disambiguation. Machine
learning, 94:233–259, 2014.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang. Dual quaternion
knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 6894–6902, 2021.

Kewei Cheng, Nesreen K Ahmed, and Yizhou Sun. Neural compositional rule learning for knowledge
graph reasoning. arXiv preprint arXiv:2303.03581, 2023.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie: association
rule mining under incomplete evidence in ontological knowledge bases. In Proceedings of the
22nd international conference on World Wide Web, pp. 413–422, 2013.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge graphs
and logical rules. In Proceedings of the 2016 conference on empirical methods in natural language
processing, pp. 192–202, 2016.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Knowledge graph embedding with
iterative guidance from soft rules. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Geoff Hinton. Kinship. 1990. DOI: https://doi.org/10.24432/C5WS4D.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph embedding
via dynamic mapping matrix. In Proceedings of the 53rd annual meeting of the association for
computational linguistics and the 7th international joint conference on natural language processing
(volume 1: Long papers), pp. 687–696, 2015.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Knowledge graph completion with adaptive sparse
transfer matrix. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
Advances in neural information processing systems, 31, 2018.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the AAAI conference on artificial
intelligence, volume 29, 2015.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. Analogical inference for multi-relational embeddings.
In International conference on machine learning, pp. 2168–2178. PMLR, 2017.

Quan Liu, Hui Jiang, Andrew Evdokimov, Zhen-Hua Ling, Xiaodan Zhu, Si Wei, and Yu Hu. Proba-
bilistic reasoning via deep learning: Neural association models. arXiv preprint arXiv:1603.07704,
2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Farzane Mahdisoltani, Joanna Biega, and Fabian M Suchanek. A knowledge base from multilingual
wikipedias–yago3. Technical report, Technical report, Telecom ParisTech, 2014.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner
Stuckenschmidt. Fine-grained evaluation of rule-and embedding-based systems for knowledge
graph completion. In The Semantic Web–ISWC 2018: 17th International Semantic Web Conference,
Monterey, CA, USA, October 8–12, 2018, Proceedings, Part I 17, pp. 3–20. Springer, 2018.

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, and Dinh Phung. Quatre: Relation-aware quaternions
for knowledge graph embeddings. In Companion Proceedings of the Web Conference 2022, pp.
189–192, 2022.

Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way model for collective learning
on multi-relational data. In Icml, volume 11, pp. 3104482–3104584, 2011.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. An embedding-based approach to rule
learning in knowledge graphs. IEEE Transactions on Knowledge and Data Engineering, 33(4):
1348–1359, 2019.

Meng Qu and Jian Tang. Probabilistic logic neural networks for reasoning. Advances in neural
information processing systems, 32, 2019.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62:107–136,
2006.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-end
differentiable rule mining on knowledge graphs. Advances in Neural Information Processing
Systems, 32, 2019.

Tara Safavi and Danai Koutra. Codex: A comprehensive knowledge graph completion benchmark.
arXiv preprint arXiv:2009.07810, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15,
pp. 593–607. Springer, 2018.

Chen Shengyuan, Yunfeng Cai, Huang Fang, Xiao Huang, and Mingming Sun. Differentiable neuro-
symbolic reasoning on large-scale knowledge graphs. Advances in Neural Information Processing
Systems, 36, 2024.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural tensor
networks for knowledge base completion. Advances in neural information processing systems, 26,
2013.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, pp. 57–66, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Po-Wei Wang, Daria Stepanova, Csaba Domokos, and J Zico Kolter. Differentiable learning of
numerical rules in knowledge graphs. In International Conference on Learning Representations,
2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. Advances in neural information processing systems, 30, 2017.

Fuxiang Zhang, Xin Wang, Zhao Li, and Jianxin Li. Transrhs: a representation learning method for
knowledge graphs with relation hierarchical structure. 2020a.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. Advances in
neural information processing systems, 32, 2019a.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein,
and Huajun Chen. Iteratively learning embeddings and rules for knowledge graph reasoning. In
The world wide web conference, pp. 2366–2377, 2019b.

Yongqi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In Proceed-
ings of the ACM web conference 2022, pp. 912–924, 2022.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, and Le Song. Efficient
probabilistic logic reasoning with graph neural networks. arXiv preprint arXiv:2001.11850, 2020b.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476–29490, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A DATASET DETAILS

To comprehensively evaluate the performance of our proposed method, we conducted extensive
comparative experiments across seven widely-adopted benchmark datasets: YAGO3-10, YAGO37,
Codex-L UMLS, Kinships, FB15k-237, and WN18RR. Additionally, to investigate the impact of
dataset size on reasoning performance, we performed a splitting operation on the FB15k-237 dataset,
creating four subsets: FB-0, FB-0.05, FB-0.1, and FB-0.2, where the Train file was divided into
varying proportions. The specific details and statistics of these datasets are provided in Table 5.

This diverse set of benchmark datasets allows for a comprehensive evaluation of our method’s
reasoning capabilities across varying dataset sizes, knowledge graph complexities. The YAGO3-10,
YAGO37 and Codex-L represent large scale knowledge graphs,The UMLS and Kinships datasets
represent domain-specific knowledge graphs, while FB15k-237 and WN18RR are more general-
purpose knowledge bases. By including both small-scale and large-scale datasets, we can thoroughly
assess the robustness, scalability, and generalization abilities of our proposed approach under a wide
range of conditions encountered in real-world knowledge graph reasoning tasks.

Table 5: Knowledge base completion datasets statistics

Dataset #Fact #Train #Test #Valid #Relation #Entity #Rules

YAGO3-10 809280 269760 4982 4978 37 123182 348
YAGO37 741849 247283 50000 50000 37 123189 115
Codex-L 413394 137799 30622 30622 69 77951 300
Fb15k-237 204087 68028 20466 17536 237 14541 516
Fb-0 204087 1 20466 17536 237 14541 516
Fb-0.05 204087 3401 20466 17536 237 14541 516
Fb-0.1 204087 6802 20466 17536 237 14541 516
Fb-0.2 204087 13605 20466 17536 237 14541 516
WN18RR 65127 21708 3134 3034 11 40943 33
Kinship 6375 2112 1100 1099 25 104 71
UMLS 4006 1321 633 569 46 135 1055

B TRAINING TIME DETAILS

Table 6 details more aspects of the training time.

Table 6: Total train time of KG completion

Models yago37 YAGO3-10 Codex-L FB15k-237 Kinship WN18RR UMLS

NPLL-basic 5214s 2301s 10282s 2690s 383s 198s 1816s

14

	Introduction
	Related Work
	Preliminary
	Model
	Scoring Module
	E-step
	M-step

	Experiment
	Experiment Settings
	Results

	Conclution
	Dataset Details
	Training time Details

