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Abstract
Recent advances in diffusion-based generative
modeling have demonstrated significant promise
in tackling long-horizon, sparse-reward tasks
by leveraging offline datasets. While these ap-
proaches have achieved promising results, their
reliability remains inconsistent due to the inherent
stochastic risk of producing infeasible trajectories,
limiting their applicability in safety-critical appli-
cations. We identify that the primary cause of
these failures is inaccurate guidance during the
sampling procedure, and demonstrate the exis-
tence of manifold deviation by deriving a lower
bound on the guidance gap. To address this chal-
lenge, we propose Local Manifold Approximation
and Projection (LoMAP), a training-free method
that projects the guided sample onto a low-rank
subspace approximated from offline datasets, pre-
venting infeasible trajectory generation. We val-
idate our approach on standard offline reinforce-
ment learning benchmarks that involve challeng-
ing long-horizon planning. Furthermore, we show
that, as a standalone module, LoMAP can be in-
corporated into the hierarchical diffusion planner,
providing further performance enhancements.

1. Introduction
Planning over long horizons is crucial for autonomous sys-
tems operating in real-world settings, where rewards are
sparse and actions often entail delayed consequences (Lee
et al., 2023a). When environment dynamics are fully known,
methods such as Model Predictive Control (Tassa et al.,
2012) and Monte Carlo Tree Search (Silver et al., 2016;
2017; Lee et al., 2018) have achieved remarkable success.
In most practical applications, however, the dynamics are
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not readily available and must be learned from data. Model-
based reinforcement learning (MBRL) (Sutton, 2018) ad-
dresses this by coupling learned dynamics models with plan-
ners, offering increased data-efficiency and the flexibility to
adapt across tasks. While MBRL offers a promising frame-
work, it is vulnerable to adversarial plan exploitation when
the learned model is imperfect (Talvitie, 2014; Asadi et al.,
2018; Luo et al., 2019; Janner et al., 2019; Voelcker et al.,
2022).

Recent progress in diffusion models provides an appealing
alternative for long-horizon planning. Originally introduced
as powerful generative models that iteratively reverse a mul-
tistep noising process (Ho et al., 2020; Song et al., 2021),
diffusion models have demonstrated state-of-the-art sample
quality across various domains (Nichol et al., 2022; Luo &
Hu, 2021; Li et al., 2022). Building upon these successes,
several works (Janner et al., 2022; Ajay et al., 2023; Liang
et al., 2023) have leveraged diffusion to model entire tra-
jectories in sequential decision-making tasks. By avoiding
step-by-step autoregressive prediction, these approaches re-
duce error accumulation and naturally capture long-range
dependencies. Moreover, by leveraging guided sampling
(Dhariwal & Nichol, 2021), diffusion planners can sample
trajectories biased toward high-return behaviors, achiev-
ing notable performance on standard offline reinforcement
learning (RL) benchmarks (Fu et al., 2020).

Despite these advantages, diffusion planners struggle to
guarantee reliable and feasible plans due to their inherent
stochasticity. Unlike deterministic models that produce
consistent outputs for a given input, diffusion models gen-
erate probabilistic trajectories. While this enables diverse
sampling, it introduces the risk of generating physically im-
plausible trajectories, which are referred to as artifacts in
vision domains (Bau et al., 2019; Shen et al., 2020). Fur-
thermore, the reward-guided sampling procedure used by
unconditional diffusion planners, which jointly defines the
sampling distribution and the energy function, can be hard
to estimate accurately (Lu et al., 2023b). This inaccuracy
may cause intermediate trajectory samples far away from
the underlying data manifold during denoising, ultimately
producing infeasible or low-quality trajectories and preclud-
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ing planners from being useful in safetycritical applications.
To address these limitations, recent works (Lee et al., 2023b;
Feng et al., 2024) introduced trajectory-refinement strate-
gies to enhance sample quality, though the challenge of
ensuring fully reliable plans remains an open problem.

In this paper, we demonstrate that manifold deviation occurs
during diffusion sampling by establishing a lower bound on
the guidance estimation error. To address this challenge, we
introduce Local Manifold Approximation and Projection
(LoMAP), a training-free method that projects guided sam-
ples back onto a low-rank subspace approximated from
offline datasets. LoMAP operates entirely at test time, re-
quiring no additional training. At each reverse-diffusion
step, it retrieves a few offline trajectories closest to the de-
noised version of the current sample, forward-diffuses these
neighbors, and applies principal component analysis (PCA)
to span a local low-dimensional subspace. The current
sample is then projected onto this subspace, thereby signifi-
cantly reducing off-manifold deviations and improving the
likelihood of generating valid behaviors. Because LoMAP
only adds a simple projection step after each reward-guided
update, it is easily integrated into existing diffusion planners
and effectively prevents manifold deviation.

Our main contributions are as follows: (1) We illustrate
the manifold deviation issue in diffusion planners by deriv-
ing a theoretical lower bound on the guidance estimation
error. (2) We propose Local Manifold Approximation and
Projection (LoMAP), a training-free, plug-and-play mod-
ule for diffusion planners that mitigates manifold deviation
through local low-rank projections. (3) We demonstrate the
effectiveness of LoMAP on standard offline RL benchmarks,
particularly in challenging AntMaze task.

2. Background
2.1. Problem Setting

We consider a Markov decision process (MDP) described
by the tuple ⟨S,A, P, r, γ⟩. Here, S is the state space, A
is the action space, P : S × A × S → [0,+∞) is the
transition model, r : S ×A → R is a reward function, and
γ ∈ [0, 1] is the discount factor. Given a planning horizon T ,
the objective of trajectory optimization is to find the action
sequence a∗

0:T that maximizes the expected return:

a∗
0:T = argmax

a0:T

J (τ ) = argmax
a0:T

T∑
t=0

γtr(st,at),

where τ = (s0,a0, s1,a1, . . . , sT ,aT ) is a trajectory, and
J (τ ) represents the expected return of the trajectory.

2.2. Planning with Diffusion Models

Diffusion planners (Janner et al., 2022) utilize diffusion
probabilistic models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) to model a trajectory distribution as a Markov chain
with Gaussian transitions:

pθ(τ
0) =

∫
p(τM )

M∏
i=1

pθ(τ
i−1|τ i) dτ 1:M (1)

where p(τM ) is a standard Gaussian prior, τ 0 is a noise-free
trajectory, and pθ(τ

i−1|τ i) is a denoising process which is
a learnable Gaussian transition:

pθ(τ
i−1|τ i) = N (τ i−1|µθ(τ

i),Σi). (2)

This reverse process inverts a forward process that incre-
mentally corrupts the data with Gaussian noise according to
a variance schedule {βi}Mi=1:

q(τ i|τ i−1) := N (τ i;
√

1− βiτ
i−1, βiI). (3)

One useful property is the ability to directly sample τ i from
τ 0 at any diffusion timestep i:

q(τ i | τ 0) = N (τ i;
√
αiτ

0, (1− αi)I), (4)

where αi :=
∏i

s=1(1 − βs). The variance schedule is
designed to respect αM ≈ 0 so that τM becomes close to
N (0, I).

During the training procedure, rather than directly param-
eterizing µθ, Diffuser trains noise-predictor model ϵθ to
predict the noise ϵ that was added to corrupt τ 0 into τ i (Ho
et al., 2020):

L(θ) := Ei,ϵ,τ0 [∥ϵ− ϵθ(τ
i)∥2], (5)

where τ i =
√
αiτ

0 +
√
1− αiϵ and ϵ ∼ N (0, I).

Trajectory optimization as guided sampling. To gen-
erate trajectories that have high returns, the energy-guided
sampling can be considered:

p̃θ(τ
0) ∝ pθ(τ

0) exp (J (τ 0)), (6)

Therefore, Diffuser trains a separate regression network Jϕ
that predicts the return J (τ 0) based on a noisily perturbed
version τ i. This is accomplished through the mean-square-
error (MSE) objective:

min
ϕ

Ei,ϵ,τ0

[
∥Jϕ(τ i)− J (τ 0)∥22

]
. (7)

During the sampling stage, a classifier guidance (Dhariwal
& Nichol, 2021) is employed, incorporating gradients of Jϕ
into the reverse diffusion process in Eq. (2). Specifically,
the mean is updated as follows:

p̃θ(τ
i−1|τ i) = N (τ i−1|µθ(τ

i) + ωΣig,Σi), (8)

where g = ∇τJϕ(τ )|τ=µθ(τ i) and ω is the guidance scale
that controls the strength of the guidance.
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Figure 1: A schematic overview of our approach, contrasted with Diffuser (Janner et al., 2022) and RGG (Lee et al., 2023b).
As described in Section 3.1, inexact guidance arises in high-dimensional settings, causing deviations from the data manifold.
RGG addresses this by refining samples via an OOD detection metric but relies on finely tuned guidance steps. In contrast,
our LoMAP framework projects guided samples back onto a local low-rank subspace (Section 3.2), ensuring that sampling
remains closer to the data manifold at each diffusion step.

2.3. Tweedie’s Formula for Denoising

When samples are perturbed by Gaussian noise τ̃ ∼
N (τ , σ2I), Tweedie’s formula (Robbins, 1992) provides a
Bayes-optimal denoised estimate for observations:

E[τ |τ̃ ] = τ̃ + σ2∇τ̃ log p(τ̃ ). (9)

where p(τ̃ ) :=
∫
p(τ̃ |τ )p(τ )dτ . If we consider a discrete-

time diffusion model with perturbation in Eq. (4), we can get
the posterior mean by rewriting Tweedie’s fomula (Chung
et al., 2023; 2022):

E[τ 0|τ i] =
1√
αi

(
τ i + (1− αi)∇τ i log p(τ i)

)
≈ 1√

αi

(
τ i −

√
1− αi ϵθ(τ

i)
)
,

(10)

where the scaled score function is estimated by ϵθ:
∇τ i log p(τ i) ≈ −ϵθ(τ i)/

√
1− αi.

2.4. Low-dimensional Manifold Assumption

High-dimensional trajectory often exhibits intrinsic low-
dimensional structure. We formalize this through the fol-
lowing assumption:
Assumption 2.1. (Low-dimensional Manifold Assumption).
The set of clean dataM0 lies on a k-dimensional subspace
Rk with k ≪ d.

Under this assumption, recent study (Chung et al., 2022) has
shown that the set of noisy data τ i is inherently concentrated
around a (d− k) dimensional manifoldMi.

3. Manifold-Aware Diffusion Planning

In this section, we formalize the phenomenon of manifold
deviation, a critical limitation of diffusion planners caused
by inexact guidance (Section 3.1), and propose Local Man-
ifold Approximation and Projection (LoMAP), a training-
free method to preserve trajectory feasibility (Section 3.2).

3.1. Manifold Deviation by Inexact Guidance

Recall from Equation (6) that diffusion planners aim to sam-
ple trajectories biased toward those that have high returns
by sampling from the following energy-guided distribution:

p̃θ(τ
0) ∝ pθ(τ

0) exp
[
J (τ 0)

]
,

where pθ(τ
0) is the learned trajectory distribution from

the diffusion model, and J (τ 0) is the (negative) energy or
return function to be maximized.

Following Theorem 3.1 in (Lu et al., 2023b), consider the
forward process q(τ i | τ 0). Then the marginal distribution
at diffusion timestep i is:

p̃θ(τ
i) =

∫
q(τ i|τ 0)p̃θ(τ

0) dτ 0

=

∫
q(τ i|τ 0)pθ(τ

0)
eJ (τ0)

Z
dτ 0

= pθ(τ
i)

∫
q(τ 0|τ i)

eJ (τ0)

Z
dτ 0

=
pθ(τ

i)Eq(τ0|τ i)

[
eJ (τ0)

]
Z

∝ pθ(τ
i) exp

[
logEq(τ0|τ i)

[
eJ (τ0)

]
︸ ︷︷ ︸

Jt(τ i)

]
.
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Algorithm 1 Manifold-Aware Diffusion Planning

1: Require Diffuser µθ, guide Jϕ, covariances Σi, scale ω,
offline dataset {τ 0

n}Nn=1, number of neighbors k
2: while not done do
3: Observe state s; initialize plan τN ∼ N (0, I)
4: for i = N, . . . , 1 do
5: // parameters of reverse transition

6: µ← µθ(τ
i)

7: // guide using gradients of return

8: τ i−1 ∼ N
(
µ+ ωΣi∇µJMSE

ϕ (µ), Σi
)

9: // manifold projection (LoMAP)

10: τ i−1 ← LoMAP
(
τ i−1; {τ 0

n}, k
)

11: // constrain first state of plan

12: τ i−1
s0
← s

13: end for
14: Execute first action of plan τ 0

a0

15: end while

Algorithm 2 LoMAP(τ i−1, {τ 0
n}, k)

1: Input: Noisy trajectory sample τ i−1, offline dataset
{τ 0

n}Nn=1, number of neighbors k
2: Output: Projected sample τ i−1

3: // denoise the current sample

4: τ̂ 0|(i−1) ← 1√
αi−1

(
τ i−1 −√1− αi−1 ϵθ(τ

i−1)
)

5: // k nearest neighbors

6: N ← TopKNeighbors
(
τ̂ 0|(i−1); {τ 0

n}, k
)

7: // forward-diffuse neighbors

8: for τ 0
(nj)
∈ N do

9: τ i−1
(nj)
← √αi−1 τ

0
(nj)

+
√
1− αi−1 ϵ(nj)

10: end for
11: // PCA on the local neighborhood

12: U ← PCA
(
{τ i−1

(nj)
}
)

13: // project onto local subspace

14: τ i−1 ← U U⊤ τ i−1

15: return τ i−1

Hence, the exact intermediate guidance at diffusion
timestep i is given by the gradient of

Jt(τ i) = log E q(τ0|τ i)

[
exp(J (τ 0))

]
.

By injecting this exact guidance into each reverse diffusion
step, the sampled τ 0 exactly follows the desired distribu-
tion Eq. (6) by rewriting the score of

∇τ i log p̃θ(τ
i) = ∇τ i log pθ(τ

i)︸ ︷︷ ︸
≈−ϵθ(τ i)/

√
1−αi

−∇τ iJt(τ i)︸ ︷︷ ︸
guidance

(11)

where the first term is approximated by the learned noise-
predictor model ϵθ.

Guidance Gap. In practice, however, many existing dif-
fusion planners (Janner et al., 2022; Liang et al., 2023;
Chen et al., 2024) learn an approximate guidance function
JMSE
ϕ (τ i) via mean-square-error (MSE) objective:

min
ϕ

Ei,ϵ,τ0

[
∥Jϕ(τ i)− J (τ 0)∥22

]
, (12)

where τ i =
√
αiτ

0 +
√
1− αiϵ and ϵ ∼ N (0, I).

However, with sufficient model capacity, the optimal Jϕ
under the MSE objective satisfies:

JMSE
ϕ (τ i) = E q(τ0 | τ i)

[
J (τ 0)

]
≤ logEq(τ0|τ i)

[
eJ (τ0)

]
= Jt(τ i),

where the inequality follows from Jensen’s inequality, im-
plying that JMSE

ϕ underestimates the desired quantity.

Definition 3.1. (Guidance gap). Let ∇τ i Jt
(
τ i
)

denote
the true intermediate guidance at diffusion step i, and let

∇τ i JMSE
ϕ

(
τ i
)

be the estimated guidance via an MSE-
based objective. We define the guidance gap at τ i by

∆guidance

(
τ i
)
=

∥∥∇τ i Jt
(
τ i
)
−∇τ i JMSE

ϕ

(
τ i
)∥∥

2
.

(13)

To study how inaccuracies in energy guidance grow with
dimensionality, we introduce the guidance gap in Eq. (13).
Proposition 3.2 shows that this gap has a lower bound on
the order of

√
d in high-dimensional regimes.

Proposition 3.2. (Dimensional scaling of guidance gap.)
Suppose J (τ 0) is not constant. Given the true guidance

∇τ i Jt(τ i) =
E q(τ0|τ i)

[
eJ (τ0)∇τ i log q(τ 0|τ i)

]
E q(τ0|τ i)

[
eJ (τ0)

] ,

and the MSE-based guidance

∇τ i JMSE
ϕ (τ i) = E q(τ0|τ i)

[
J (τ 0)∇τ i log q(τ 0|τ i)

]
,

there exists a choice of τ i such that∥∥∥∇τ i Jt(τ i)−∇τ i JMSE
ϕ (τ i)

∥∥∥
2
≥ c√

1− αi

√
d,

for some constant c > 0 that does not depend on d.

Proof Sketch. The difference between the true guidance and
the MSE-based guidance can be expressed as an expecta-

tion involving δ(τ 0) :=
(

eJ (τ0)

E[ eJ (τ0)]
− J (τ 0)

)
times the

forward-process noise ϵ. By Jensen’s inequality, δ(τ 0) has
positive mean, indicating that the MSE-based guidance un-
derestimates the exponential-weighted return. Exploiting
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the typical behavior ∥ϵ∥2 ≈
√
d in high dimensions and

choosing τ i so that δ aligns well with ϵ, we derive the guid-
ance gap scaling on the order of

√
d. For the complete proof,

see Appendix A.

Consequently, as indicated by Proposition 3.2, this issue
becomes more severe in scenarios involving long planning
horizons and high-dimensional state and action spaces. The
substantial guidance gap forces τ i−1 to drift from the inter-
mediate data manifoldMi−1, leading sampled trajectories
away from the feasible manifold a problem we refer to as
manifold deviation. Figure 4 provides empirical evidence
of this issue.

3.2. Local Manifold Approximation and Projection

As explained in Section 3.1, inaccuracies in the energy-
guided update can cause the sample τ i to deviate from
the underlying data manifold. To mitigate manifold devia-
tion caused by inexact guidance, we propose LoMAP - a
training-free method that projects guided samples back to
the data manifold through local low-rank approximations.
The key insight is that while intermediate diffusion samples
τ i may deviate from the manifold, their denoised estimates
can guide local manifold approximation using the offline
dataset.

Manifold-aware guidance. Given a trajectory sample τ i,
we sample τ i−1 with manifold-aware guidance in two steps:

τ i−1 ∼ N
(
µθ(τ

i) + ωΣi g, Σi
)
, (14)

τ i−1 ← PTτi−1 Mi−1

(
τ i−1

)
, (15)

where g = ∇τ i−1 JMSE
ϕ

(
τ i−1

)
is the gradient-based guid-

ance term, ω is the guidance scale, andPTτi−1 Mi−1
denotes

projection onto the local manifold. Eq. (14) applies a reward-
guided shift to sample τ i−1, while Eq. (15) projects τ i−1

onto the low-dimensional subspace derived from the offline
dataset, mitigating drift away from feasible trajectories.

Approximating the local manifold. We estimate
Tτ i−1Mi−1 using a local low-rank approximation from
the offline dataset of feasible trajectories. To mitigate noise,
we first form a denoised surrogate

τ̂ 0|i−1 =
1√
αi−1

(
τ i−1 −

√
1− αi−1 ϵθ(τ

i−1)
)
,

using Tweedie’s formula (Eq. 9), where ϵθ is the trained
noise-prediction network. We then retrieve k nearest
neighbors of τ̂ 0|i−1 from the clean offline trajectories,
{τ 0

(nj)
}kj=1, using cosine similarity in trajectory space fol-

lowing (Feng et al., 2024). Next, we forward diffuse these
clean neighbors to timestep i− 1:

τ i−1
(nj)

=
√
αi−1 τ

0
(nj)

+
√
1− αi−1 ϵ(nj), ϵ(nj) ∼ N (0, I).
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Figure 2: Artifact ratios on Maze2D-Medium (left) and
Maze2D-Large (right) as the number of sampled plans in-
creases. The y-axis denotes the fraction of trajectories that
pass through walls, making them infeasible. Across both
tasks, our LoMAP augmented DiffuserP consistently pro-
duces fewer artifact plans compared to Diffuser and RGG.

Because each τ i−1
(nj)

remains close to the manifold at
timestep i − 1, these k samples approximate the local
neighborhoodMi−1. We then perform a rank-r PCA on
{τ i−1

(nj)
}kj=1 to obtain an orthonormal basis U ∈ Rd×r. The

matrix U spans an r-dimensional subspace that approxi-
mates Tτ i−1Mi−1. Thus,

PTτi−1 Mi−1(z) = U U⊤ z,

which retains only the principal directions of variation sup-
ported by the offline data. In practice, r ≪ d, and we choose
r by retaining the principal components that explain at least
a fraction λ of the total variance. In practice, we find that
setting λ = 0.99 works well. Pseudocode for the manifold-
aware planning method is provided in Algorithm 1. Notably,
our LoMAP module is entirely training-free and can be
readily integrated into existing diffusion planners by simply
adding a manifold-projection step after each reward-guided
update. For implementation details, including efficient man-
ifold approximation and projection, see Appendix F.

4. Experiments
In this section, we present experimental results showing that
augmenting prior diffusion planners with LoMAP improves
planning performance across a variety of offline control
tasks. Specifically, we demonstrate (1) that LoMAP effec-
tively mitigates manifold deviation and filters out artifact
trajectories, (2) that it further enhances planning perfor-
mance when integrated into diffusion planner, and (3) that
LoMAP, as a plug-and-play module, can be seamlessly in-
corporated into hierarchical diffusion planners, enabling
successful planning in the challenging AntMaze domain.
Additional details regarding our experimental setup and
implementation are provided in Appendix E.

4.1. Mitigating Manifold Deviation

To investigate whether LoMAP effectively mitigates mani-
fold deviation in diffusion-based planners, we apply it to Dif-
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(a) Diffuser (b) RGG (c) DiffuserP (ours)

Figure 3: Visualization of 100 sampled trajectories from
Diffuser, RGG, and DiffuserP in Maze2D, under a specified
start and goal condition.

fuser (Janner et al., 2022) and refer to the resulting method
as DiffuserP . We conduct a quantitative evaluation of man-
ifold deviation in Maze2D tasks by leveraging an oracle
that identifies artifact plans, defined as trajectories that
pass through walls and are thus physically infeasible. We
compare DiffuserP against Diffuser and a baseline variant,
Restoration Gap Guidance (RGG) (Lee et al., 2023b), in
tasks where the planner is given only a start and goal loca-
tion. Specifically, we randomly select start and goal states
and generate trajectories under increasing sample sizes. For
each start-goal pair, if at least one sampled trajectory con-
tains invalid transitions through walls, we mark that pair as
exhibiting manifold deviation. As shown in Figure 2, Dif-
fuser produces some infeasible transitions, especially in the
more complex Maze2D-Large environment. Although RGG
partially alleviates this issue, DiffuserP demonstrates the
highest reliability, consistently generating valid trajectories
even when a larger number of plans are drawn.

This phenomenon is further illustrated in Figure 3. Although
RGG removes many artifact plans, it also reduces the di-
versity of solutions, clustering trajectories near a narrower
set of paths. By contrast, DiffuserP maintains high reliabil-
ity and diversity, producing physically feasible trajectories
without sacrificing coverage of the solution space.

4.2. Enhancing Planning Performance

Maze2D. To further demonstrate how LoMAP improves
planning performance, we evaluate it on Maze2D environ-
ments (Fu et al., 2020), which involve navigating an agent
to a target goal location through complex mazes requiring
long-horizon planning. Maze2D features two distinct tasks:
a single-task setup where the goal location is fixed, and a
multi-task variant (Multi2D) in which the goal is random-
ized at the start of each episode. We compare our methods
against the model-free offline RL algorithm IQL (Kostrikov
et al., 2022) and two trajectory-refinement approaches for
diffusion planners, RGG (Lee et al., 2023b) and TAT (Feng
et al., 2024).

As shown in Table 1, the model-free IQL suffers a notable
performance drop under multi-task conditions, likely due to
the challenges of credit assignment. By contrast, diffusion-
based planners perform well in both single-task and multi-

Table 1: Comparison on Maze2D for DiffuserP , Diffuser,
and prior methods. DiffuserP denotes Diffuser augmented
with LoMAP. We report the mean and the standard error
over 1000 planning seeds.

Environment IQL RGG TAT Diffuser DiffuserP

U-Maze 47.4 108.8 114.5 113.9 126.0±0.26

Maze2d Medium 34.9 131.8 130.7 121.5 131.0±0.46

Large 58.6 135.4 133.4 123.0 151.9±2.66

Single-task Average 47.0 125.3 126.2 119.5 136.3

U-Maze 24.8 128.3 129.4 128.9 133.1±0.41

Multi2d Medium 12.1 130.0 135.4 127.2 129.1±0.89

Large 13.9 148.3 143.8 132.1 154.7±2.79

Multi-task Average 16.9 136.4 136.2 129.4 138.9

task settings. LoMAP effectively reduces manifold devia-
tion (Section 4.1) and provides an additional performance
boost, with DiffuserP achieving the best results on 4 out of 6
tasks, showing especially strong improvements in Maze2D-
Large, which features more complex obstacle maps.

Locomotion. We next evaluate LoMAP-incorporated
planners on MuJoCo locomotion tasks (Fu et al., 2020),
a standard benchmarks for assessing performance on het-
erogeneous, varying-quality datasets. Our comparison in-
cludes model-free algorithms (CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022)), model-based algorithms
(MOPO (Yu et al., 2020), MOReL (Kidambi et al., 2020)),
and sequence modeling approaches (Decision Transformer
(DT) (Chen et al., 2021), Trajectory Transformer (TT) (Jan-
ner et al., 2021)). As baseline diffusion planners, we con-
sider Diffuser (Janner et al., 2022), RGG (Lee et al., 2023b),
TAT (Feng et al., 2024), and a conditional variant, Decision
Diffuser (DD) (Ajay et al., 2023).

As shown in Table 2, incorporating LoMAP consistently
boosts average returns of Diffuser across all tasks, with
particularly strong gains in the Medium dataset, which
poses a suboptimal and challenging distribution for learning
both the diffusion planner and return estimator. Moreover,
LoMAP-incorporated planners outperform other trajectory-
refinement methods, highlighting the benefits of addressing
manifold deviation during sampling.

4.3. Scaling to Hierarchical Planning in AntMaze

The AntMaze tasks (Fu et al., 2020) pose a substantial chal-
lenge due to high-dimensional state and action spaces, long-
horizon navigation objectives, and sparse rewards. Gener-
ating entire trajectories often results in infeasible plans in
these environments. A promising approach is to adopt a
hierarchical scheme, wherein a high-level diffusion planner
proposes subgoals and a low-level diffusion planner exe-
cutes short-horizon trajectories to move the agent from one
subgoal to the next.
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Table 2: Performance comparison of DiffuserP and various prior methods on MuJoCo locomotion tasks, reported as
normalized average returns with corresponding standard errors over 50 planning seeds.

Dataset Environment BC CQL IQL DT TT MOPO MOReL DD TAT RGG Diffuser DiffuserP

Med-Expert
HalfCheetah 55.2 91.6 86.7 86.8 95.0 63.3 53.3 90.6 92.5 90.8 88.9 91.1±0.23

Hopper 52.5 105.4 91.5 107.6 110.0 23.7 108.7 111.8 109.4 109.6 103.3 110.6±0.29

Walker2d 107.5 108.8 109.6 108.1 101.9 44.6 95.6 108.8 108.8 107.8 106.9 109.2±0.05

Medium
HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.3 42.1 49.1 44.3 44.0 42.8 45.4±0.13

Hopper 52.9 58.5 66.3 67.6 61.1 28.0 95.4 79.3 82.6 82.5 74.3 93.7±1.54

Walker2d 75.3 72.5 78.3 74.0 79.0 17.8 77.8 82.5 81.0 81.7 79.6 79.9±1.21

Med-Replay
HalfCheetah 36.6 45.5 44.2 36.6 41.9 53.1 40.2 39.3 39.2 41.0 37.7 39.1±0.99

Hopper 18.1 95.0 94.7 82.7 91.5 67.5 93.6 100 95.3 95.2 93.6 97.6±0.58

Walker2d 26.0 77.2 73.9 66.6 82.6 39.0 49.8 75 78.2 78.3 70.6 78.7±2.2

Average 51.9 77.6 77.0 74.7 78.9 42.1 72.9 81.8 81.3 81.2 77.5 82.8

Table 3: Performance comparison of DiffuserP , HDP , and
prior approaches on AntMaze tasks, reported as normalized
average returns with corresponding standard errors over 150
planning seeds.

Dataset Env DD RGG Diffuser DiffuserP HD HDP

Play Medium 8.0 17.3 6.7 40.7±4.3 42.0 92.7±7.32

Large 0.0 12.7 17.3 20.7±3.8 54.7 74.0±6.2

Diverse Medium 4.0 25.3 2.0 36.0±3.7 78.7 98.0±6.1

Large 0.0 17.3 27.3 39.3±2.5 46.0 82.0±5.3

Average 3.0 18.2 13.3 34.2 55.3 86.7

Building on this idea, we incorporate LoMAP into both
Diffuser (Janner et al., 2022) and Hierarchical Diffuser
(HD) (Chen et al., 2024), yielding DiffuserP and HDP .
In HDP , a high-level diffusion model augmented with
LoMAP generates subgoals for each trajectory segment.
Subsequently, a short-horizon diffusion model (Diffuser)
translates these subgoals into lower-level actions. We com-
pare DiffuserP and HDP against standard Diffuser (Janner
et al., 2022), Hierarchical Diffuser (HD) (Chen et al., 2024),
Restoration Gap Guidance (RGG) (Lee et al., 2023b), and
Decision Diffuser (DD) (Ajay et al., 2023).

As shown in Table 3, DiffuserP improves upon Diffuser
across all AntMaze tasks, demonstrating ability of LoMAP
to maintain manifold feasibility even in high-dimensional
continuous control. Notably, HDP achieves the best results
on every variant of AntMaze, substantially outperforming
the original HD. We attribute these gains largely to the cor-
rection of manifold deviation during high-level planning by
LoMAP. In standard HD, subgoals generated by the high-
level planner can sometimes lie off-manifold, forcing the
low-level planner to produce infeasible trajectories. As il-
lustrated in Figure 4, these subgoals frequently pass through
maze walls, leading to invalid paths. By applying LoMAP
to refine them, HDP ensures that each proposed subgoal is
more feasible for the low-level planner, thereby boosting
overall success rates. These improvements are especially

(a) HD (b) HDP (ours)

Figure 4: Visual comparison of generated plans on the
AntMaze environment. The goal is marked by a red sphere.
We plot 20 sampled plans in different colors. (a) shows
plans generated by Hierarchical Diffuser (HD) (Chen et al.,
2024), which often produces infeasible trajectories that pass
through walls. (b) demonstrates the results of HD aug-
mented with LoMAP, which respects the environment ge-
ometry and generates more reliable, feasible trajectories.

pronounced in larger mazes, where longer horizons and in-
tricate navigation paths make adherence to a valid manifold
particularly critical. Consequently, LoMAP serves as a plug-
and-play component that boosts planning performance even
in multi-level hierarchical settings.

4.4. Generating Minority Sample

The ability to generate minority data can be critical in
real-world scenarios where increasing the diversity of rare-
condition examples can improve predictive performance.
However, any minority samples must still align with the true
data distribution rather than represent artifacts. To explore
whether our method can facilitate the generation of feasible
minority samples in low-density regions, we adopt minor-
ity guidance (Um et al., 2024), which provides additional
guidance toward low-density regions.
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(a) Diffuser (b) Diffuser
+minority guidance

(c) DiffuserP (ours)
+minority guidance

Figure 5: Sampling from low-density regions in Maze2D
using minority guidance (Um et al., 2024), given a specified
start and goal condition.

As shown in Figure 5, Diffuser alone sometimes fails to
capture alternative feasible paths, leading to poor coverage
despite viable shortcuts. While minority guidance improves
coverage, it also tends to introduce infeasible trajectories.
In contrast, LoMAP mitigates this issue by refining these
trajectories and ensuring they remain on the valid mani-
fold. Consequently, combining LoMAP with minority guid-
ance can help uncover feasible yet unexplored solutions
that might otherwise remain inaccessible to standard diffu-
sion planners. Investigating how this approach can further
enhance planning is a promising direction for future work.

5. Related Work
Diffusion Planners in Offline Reinforcement Learning
Diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) have recently gained prominence in rein-
forcement learning (RL), particularly in the offline setting.
By iteratively denoising samples from noise, these models
learn the gradient of the data distribution (Song & Ermon,
2019), bridging connections to score matching (Hyvärinen
& Dayan, 2005) and energy-based models (EBMs) (Du &
Mordatch, 2019; Grathwohl et al., 2020). Their expres-
sive power in modeling complex, high-dimensional data has
led to applications as planners (Janner et al., 2022; Ajay
et al., 2023), policies (Wang et al., 2023), and data synthe-
sizers (Lu et al., 2023a; Wang et al., 2025).

Diffuser (Janner et al., 2022) pioneered the use of diffu-
sion models for planning by generating entire trajectories,
demonstrating notable flexibility in long-horizon tasks. Con-
cretely, an unconditional diffusion model is trained on of-
fline trajectories and paired with a separate network that
estimates returns; this network then guides trajectory sam-
ples toward high-return regions during inference (Dhariwal
& Nichol, 2021). Extending this framework, Decision Dif-
fuser (Ajay et al., 2023) applies classifier-free guidance,
conditioning the diffusion model directly on reward or con-
straint signals and thereby removing the need for a sepa-
rately trained reward function. Meanwhile, AdaptDiffuser
(Liang et al., 2023) progressively fine-tunes the diffusion
model with high-quality synthetic data, improving gener-
alization in goal-conditioned tasks. Beyond these efforts,
diffusion models have also been employed in hierarchical

planning (Li et al., 2023; Chen et al., 2024), multi-task
RL (He et al., 2023; Ni et al., 2023), and multi-agent set-
tings (Zhu et al., 2024).

Despite these advances, diffusion planners remain suscep-
tible to stochastic failures, occasionally producing trajec-
tories that deviate from the feasible manifold. Although
some works mitigate this issue by refining trajectories post
hoc (Lee et al., 2023b; Feng et al., 2024), a robust, training-
free approach to consistently maintain manifold adherence
throughout the sampling process has yet to be established.

Projections in Diffusion Models Several works in the
image-generation domain have introduced projection tech-
niques to mitigate off-manifold updates during diffusion
sampling. For instance, MCG (Chung et al., 2022) projects
measurement gradients onto the data manifold in inverse
problems, guided by Tweedie’s formula. DSG (Yang et al.,
2024) replaces the random Gaussian step with a determinis-
tic update constrained to a hypersphere. This avoids deviat-
ing from the intermediate diffusion manifold, allowing for
substantially larger guidance steps. Meanwhile, MPGD (He
et al., 2024) employs a pre-trained autoencoder to learn the
data manifold and projects the sample onto the tangent space
of the clean data manifold via a pre-trained autoencoder.
However, the performance of MPGD is heavily depends
on the expressive power of the autoencoder. As a result,
it is difficult to deploy MPGD in diverse offline RL tasks,
particularly where pre-trained autoencoders are unavailable.
In contrast, our proposed method is entirely training-free,
projecting samples onto both the clean and intermediate
diffusion manifolds using only local approximations from
the offline dataset.

6. Conclusion
In this work, we investigated the manifold deviation issue
that arises in diffusion-based trajectory planning, where
inaccurate guidance causes sampled trajectories to devi-
ate from the feasible data manifold. To address this, we
introduced Local Manifold Approximation and Projection
(LoMAP), a training-free method that employs local, low-
rank projections to constrain each reverse diffusion step
to the underlying data manifold. By ensuring that inter-
mediate samples remain close to this manifold, LoMAP
substantially reduces the risk of generating infeasible or
low-quality trajectories. Empirical results on various of-
fline RL benchmarks demonstrate the effectiveness of our
approach. Additionally, LoMAP can be incorporated into
hierarchical diffusion planning for more challenging tasks
such as AntMaze. Overall, our results establish LoMAP
as an easily integrable component for diffusion-based plan-
ners, empowering them to consistently remain on the data
manifold and thereby providing safer and more robust long-
horizon trajectories.
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A. Proofs
Proposition A.1. (Dimensional scaling of guidance gap.) Suppose J (τ 0) is not constant. Given the true guidance

∇τ i Jt(τ i) =
E q(τ0|τ i)

[
eJ (τ0)∇τ i log q(τ 0|τ i)

]
E q(τ0|τ i)

[
eJ (τ0)

] ,

and the MSE-based guidance

∇τ i JMSE
ϕ (τ i) = E q(τ0|τ i)

[
J (τ 0)∇τ i log q(τ 0|τ i)

]
,

there exists a choice of τ i such that∥∥∥∇τ i Jt(τ i)−∇τ i JMSE
ϕ (τ i)

∥∥∥
2
≥ c√

1− αi

√
d,

for some constant c > 0 that does not depend on d.

Proof. By the forward process at in Eq. (4),

τ i =
√
αi τ

0 +
√
1− αi ϵ, ϵ ∼ N (0, I),

We have,

q(τ 0|τ i) = N
( τ i

√
αi

,
1− αi

αi
Id

)
, ∇τ i log q(τ 0|τ i) = − 1√

1− αi
ϵ.

Let us abbreviate the distribution µ(τ 0) := q(τ 0|τ i). Then

∇τ i Jt(τ i) =
Eµ

[
eJ (τ0)∇τ i logµ(τ 0)

]
Eµ

[
eJ (τ0)

] , ∇τ i JMSE
ϕ (τ i) = Eµ

[
J (τ 0)∇τ i logµ(τ 0)

]
.

Subtracting these yields

∇τ i Jt(τ i)−∇τ i JMSE
ϕ (τ i) = Eµ

[( eJ (τ0)

Eµ[ eJ (τ0)]
− J (τ 0)

)
∇τ i logµ(τ 0)

]
.

Since ∇τ i logµ(τ0) = − 1√
1−αi

ϵ, we obtain

∇τ i Jt(τ i)−∇τ i JMSE
ϕ (τ i) = − 1√

1− αi
E
[
δ(τ 0) ϵ

]
.

By Jensen’s inequality, δ(τ 0) has positive mean whenever J is not constant. Furthermore, as d grows, we have ∥ϵ∥2 on the
order of

√
d. One can then choose a τ i so that δ(τ 0) remains well-aligned with ϵ, giving

∆guidance(τ
i) =

1√
1− αi

∥∥E[δ(τ 0) ϵ
]∥∥

2
≥ c√

1− αi

√
d.

for some constant c. Thus we can complete the proof.

B. Limitations
While LoMAP provides a simple yet effective approach for mitigating manifold deviations, it exhibits certain limitations.
First, the current implementation uses cosine distance for manifold approximation, which may not be optimal in very
high-dimensional state spaces, such as pixel-based observations. Developing more robust manifold approximation techniques
suitable for complex, high-dimensional environments remains an important direction for future research. For instance,
combining LoMAP with latent trajectory embeddings (Co-Reyes et al., 2018) could be a promising approach. Second, our
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method inherently encourages sampled trajectories to stay close to the offline data manifold, which may restrict exploration
of novel behaviors. While our primary focus in this work is ensuring safe and reliable trajectory generation—particularly
beneficial for safety-critical offline RL applications—addressing this exploration limitation remains crucial. Integrating
LoMAP with complementary methods such as trajectory stitching or data augmentation (Ziebart et al., 2008; Li et al.,
2024; Lee et al., 2024a; Yang & Wang, 2025), which generate diverse synthetic trajectories, could alleviate this issue and
is an interesting area for future study. Furthermore, exploring how LoMAP could be effectively extended to challenging
benchmarks that explicitly require stitching and long-horizon reasoning, such as OGBench (Park et al., 2025), represents an
intriguing future research direction.

C. Extended Related Work
Beyond hierarchical structures (Li et al., 2023; Chen et al., 2024), multi-agent setups (Zhu et al., 2024), and post-hoc
trajectory refinement methods (Lee et al., 2023b; Feng et al., 2024), recent diffusion planners have explored integrating
tree search methods (Yoon et al., 2025), refining trajectory sampling techniques (Dong et al., 2024a), examining critical
design choices to improve robustness (Lu et al., 2025), composing short segments into long-horizon trajectories at inference
time (Mishra et al., 2023; Luo et al., 2025), efficient latent diffusion planning (Li, 2024), and inference-time guided
generation (Wang et al., 2024; Lee et al., 2024b; Hao et al., 2024).

While diffusion models have achieved impressive performance on various generative tasks, effectively steering them toward
specific objectives remains challenging. Broadly, existing methods for aligning diffusion models can be categorized into
two groups: fine-tuning methods and guidance-based methods. Fine-tuning methods, such as reinforcement learning-based
tuning (Fan et al., 2023) or direct gradient optimization (Clark et al., 2024; Prabhudesai et al., 2024), directly update
model parameters to maximize target objectives. Despite their effectiveness, these methods tend to excessively focus on
reward optimization, often compromising the diversity and fidelity of generated outputs (Clark et al., 2024). Conversely,
guidance-based methods offer a simpler inference-time alternative that preserves the pretrained model distribution. Among
these, classifier guidance (Dhariwal & Nichol, 2021) involves training an auxiliary classifier to guide the sampling process
toward target conditions, but the additional training overhead can be costly. Recent training-free guidance approaches
circumvent this by directly utilizing pretrained classifiers or reward predictors via approximate inference (Chung et al., 2023;
Song et al., 2023; He et al., 2024). In particular, these methods commonly rely on Tweedie-based denoising (Robbins, 1992),
which provides predictions of clean data given noisy samples. However, inaccuracies inherent to Tweedie’s approximation
limit its effectiveness, especially in accurately aligning diffusion samples with target objectives. Sequential Monte Carlo
(SMC)-based approaches (Wu et al., 2023; Cardoso et al., 2024) address inaccuracies in guidance through principled
probabilistic inference. Although these methods provide asymptotic exactness, their practical efficiency under limited
sampling budgets remains a significant challenge.

D. Additional Results

Table 4: Comparison of Realism Scores on Maze2D
tasks. Higher realism scores indicate samples closer
to the true data manifold.

Environment Diffuser DiffuserP

Maze2D U-Maze 1.23 1.30
Maze2D Medium 1.40 1.56
Maze2D Large 1.36 1.47

Realism score evaluation. To further validate the effectiveness
of LoMAP, we compute the Realism Score (Kynkäänniemi et al.,
2019), which measures how closely generated trajectories lie to
the true manifold defined by the offline dataset. Specifically, we
approximate the true manifold using k-nearest neighbor (k-NN)
hyperspheres constructed from 20,000 offline trajectories, and
evaluate the average realism score over 100,000 sampled trajec-
tories. As shown in Table 4, applying LoMAP consistently yields
higher realism scores compared to diffusion sampling without
LoMAP, demonstrating that LoMAP effectively produces trajec-
tories closer to the true data manifold.

Dynamic consistency evaluation. Additionally, we assess trajectory feasibility for MuJoCo locomotion tasks using the
dynamic mean squared error (Dynamic MSE), defined as:

Dynamic MSE = ∥f∗(s,a)− s′∥22,
where f∗ represents the true environment dynamics. As shown in Table 5, LoMAP consistently achieves lower Dynamic
MSE compared to diffusion sampling without LoMAP, clearly indicating improved adherence to the true dynamics of the
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environment.

Table 5: Dynamic MSE comparison on MuJoCo locomotion tasks. Lower Dynamic MSE indicates better adherence to true
environment dynamics.

Environment Diffuser DiffuserP

halfcheetah-medium-expert 0.363 0.295
hopper-medium-expert 0.027 0.020
walker2d-medium-expert 0.391 0.293
halfcheetah-medium 0.352 0.285
hopper-medium 0.024 0.021
walker2d-medium 0.395 0.293
halfcheetah-medium-replay 0.710 0.555
hopper-medium-replay 0.049 0.045
walker2d-medium-replay 0.829 0.506

Additional comparison with inference-time guidance methods. We further provide comparative evaluations against re-
cent inference-time guidance methods, including stochastic sampling (Wang et al., 2024), constrained gradient guidance (Lee
et al., 2024b), and inpainting optimization (Hao et al., 2024).

For stochastic sampling (Wang et al., 2024), we adapted goal-conditioning via MCMC sampling, tuning the number of
sampling steps {2, 4, 6, 8}. To implement constrained gradient guidance (Lee et al., 2024b), we approximated maze walls as
multiple spherical constraints following Shaoul et al. (2024), defining a sphere-based cost:

Jc(τ ) =

M∑
m=1

H∑
t=1

max (r − dist(τt,pm), 0) ,

where H is the planning horizon, pm the center of sphere constraints, and r their radius. We tuned the guidance scale
within the range {0.001, 0.01, 0.05, 0.1}. To compare with inpainting optimization (Hao et al., 2024), we emulated
a vision-language model (VLM)-based keyframe generation by training a high-level policy using Hierarchical Implicit
Q-Learning (HIQL) (Park et al., 2023). The policy generated optimal subgoal sequences (keyframes), with k = 25 steps,
aligning with the official implementation provided by ogbench (Park et al., 2025).

Table 6 presents artifact ratio comparisons. LoMAP consistently achieves the lowest artifact ratio, significantly outperforming
all inference-time guidance baselines. Even the constrained gradient approach (Lee et al., 2024b), despite explicitly modeling
maze walls, performed worse, likely due to gradient-based projections struggling with nonconvex constraints. Both stochastic
sampling (Wang et al., 2024) and inpainting optimization (Hao et al., 2024) improved over Diffuser but still exhibited higher
artifact ratios than LoMAP.

Table 6: Artifact ratio comparison with inference-time guidance methods in Maze2D-Large. Lower values indicate fewer
infeasible trajectories.

# of Plans DiffuserP (LoMAP, ours) Diffuser (Wang et al., 2024) (Lee et al., 2024b) (Hao et al., 2024)

10 0.35 0.50 0.42 0.49 0.43
20 0.35 0.62 0.44 0.54 0.46
30 0.38 0.66 0.47 0.61 0.49

Visual comparisons. We provide additional rollout visualizations. Figure 6 depicts rollouts executed by Diffuser (Janner
et al., 2022) and our DiffuserP on the Hopper-Medium dataset, demonstrating effectiveness even in suboptimal and
challenging data distribution. Meanwhile, Figure 7 offers a side-by-side comparison of Diffuser and HDP on AntMaze-
Large-Diverse. We observe that, while standard Diffuser frequently produces trajectories that collide with maze walls or
fail to reach the goal, our hierarchical extension with LoMAP (i.e., HDP ) maintains more coherent routes and significantly
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increases the likelihood of reaching the target (marked by the red sphere). In both examples, projecting intermediate
diffusion steps onto a locally approximated manifold substantially mitigates stochastic failures, highlighting the effectiveness
of our approach for long-horizon, high-dimensional control tasks.

Diffuser (Janner et al., 2022) DiffuserP (ours)

Figure 6: Visual comparison of rollout trajectories from Diffuser and DiffuserP in the Hopper-Medium task.

E. Experimental Details
E.1. Environments

Maze2D. Maze2D environments (Fu et al., 2020) require an agent to undertake long-horizon navigation, moving toward a
distant goal location. The agent accrues no reward unless it successfully reaches the goal, at which point it receives a reward
of 1. The three available layouts—U-Maze, Medium, and Large—vary in complexity. Further, Maze2D features two distinct
tasks: a single-task variant with a fixed goal and a multi-task option (Multi2D), which randomizes the goal location at the
beginning of each episode. A summary of key details can be found in Table 7.

Table 7: Environment details for Maze2D experiments.

Maze2D-Large Maze2D-Medium Maze2D-UMaze

State space S R4 R4 R4

Action space A R2 R2 R2

Goal space G R2 R2 R2

Episode length 800 600 300

Locomotion. Gym-MuJoCo locomotion tasks (Fu et al., 2020) serve as widely recognized benchmarks for assessing
algorithm performance on heterogeneous datasets of varying quality. The Medium dataset consists of one million sam-
ples gathered from an SAC (Haarnoja et al., 2018) agent trained to roughly one-third of expert-level performance. The
Medium-Replay dataset contains all experiences accumulated throughout the SAC training process up to that same per-
formance threshold. Finally, the Medium-Expert dataset is created by combining expert demonstrations and suboptimal
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Diffuser (Janner et al., 2022) HDP (ours)

Figure 7: Visual comparison of rollout trajectories from Diffuser and HDP in the AntMaze-Large-Diverse task. We plot
each trajectory at 50-step intervals for clarity. The goal is marked by a red sphere, and 20 rollout trajectories are shown in
different colors.

data in equal amounts. Details on the state/action spaces and episode lengths can be found in Table 8.

Table 8: Environment details for Locomotion experiments.

Hopper-* Walker2d-* Halfcheetah-*

State space S R11 R17 R17

Action space A R3 R6 R6

Episode length 1000 1000 1000

AntMaze. AntMaze tasks (Fu et al., 2020) involve guiding an 8-DoF Ant robot through intricate maze layouts using
MuJoCo for physics simulation. The environment uses a sparse reward structure, granting a reward only upon reaching
the designated goal, thus posing a challenging long-horizon navigation problem. Further difficulty arises from the offline
dataset, which contains numerous trajectory segments that do not succeed in reaching the goal. We measure performance by
the success rate of the agent reaching the endpoint. A summary of the key environment details is provided in Table 9.

Table 9: Environment details for AntMaze experiments.

AntMaze-*

State space S R29

Action space A R8

Episode length 1000

E.2. Implementation Details

Below, we summarize the key implementation details and hyperparameters used throughout our experiments:

• Network architecture. We build on the Diffuser framework (Janner et al., 2022), employing a temporal U-Net with
repeated convolutional residual blocks to parameterize ϵθ.

• Planning horizons. For Maze2D and Multi2D tasks, the planning horizon is 128 in U-Maze, 256 in Medium, and 256
in Large. For MuJoCo locomotion tasks, the horizon is 32, and for AntMaze it is 64.

• Diffusion steps. We use 256 steps for the diffusion process in Maze2D//Multi2D Large and Medium, 128 in
Maze2D//Multi2D U-Maze, and 20 in other environments.
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• Guidance scales. For AntMaze tasks, we select the guidance scale ω from the set {5.0, 3.0, 1.0, 0.1, 0.01, 0.001}. In
MuJoCo locomotion tasks, we select ω from {0.3, 0.2, 0.1, 0.01, 0.001, 0.0001} during planning.

• Local manifold approximation. We tune the number of neighbors k ∈ {5, 10, 20} in our local manifold approximation
procedure.

• Hierarchical Diffuser in AntMaze. For the high-level and low-level planners, we follow Chen et al. (2024) and train
each component separately using trajectory segments randomly sampled from the D4RL offline dataset. Specifically,
the high-level planner generates state-space trajectories with a planning horizon of 226 and temporal jumps of 15.
During execution, the corresponding actions are inferred through a learned inverse dynamics model (Ajay et al., 2023).

F. Practical Implementation
Manifold approximation. A straightforward k-nearest-neighbor retrieval from the entire offline dataset at each diffusion
step can be prohibitively expensive. To mitigate this cost, we employ an inverted file (IVF) index from the Faiss library (Douze
et al., 2024), which partitions the dataset into a set of coarse centroids and restricts each query to only a few relevant clusters.

Concretely, IVF uses k-means to learn nlist centroids {c1, . . . , cnlist
} across the dataset of dimension d. Each data point

x is mapped to its nearest centroid, forming an inverted list. A query vector q is matched to its closest centroids, after
which the search proceeds solely within the corresponding clusters. This design significantly reduces the number of distance
computations relative to an exhaustive linear scan. Although coarse clustering can introduce minor inaccuracies, we have
found this approach to be effective in our experiments.

In LoMAP, the IVF-based approximate neighbor search operates on a denoised sample τ̂ 0|i, retrieving up to k neighbors from
the offline dataset. We then forward-diffuse these neighbors to timestep i and perform a rank-r principal-component analysis
to approximate the local manifold of feasible trajectories. Projecting τ i onto this manifold helps correct off-manifold drift
caused by inexact guidance. Crucially, limiting the search to relevant clusters enables LoMAP to handle large datasets and
high-dimensional state-action spaces, making it practical for long-horizon offline reinforcement-learning tasks.

Manifold projection. We observed that applying manifold projection selectively, rather than uniformly across all diffusion
steps, can significantly reduce computational costs and even enhance overall performance. Specifically, we found that
projection is particularly beneficial when applied during intermediate to later stages of the reverse diffusion process. We
hypothesize two main reasons for this phenomenon: first, Tweedie-based denoisers inherently exhibit biases toward majority
or high-density features, as noted by Um et al. (2024), making early stage projections less impactful. Second, the discrepancy
between the learned reverse transitions of the diffusion model and the true data distribution becomes most pronounced
at intermediate diffusion steps, consistent with observations reported in prior studies (Na et al., 2024). Consequently,
concentrating projection efforts on these critical stages not only improves computational efficiency but also effectively
mitigates manifold deviation, resulting in improved sampling quality.

G. Baseline Performance Sources
G.1. Maze2D

The reported IQL scores come from Table 1 in Janner et al. (2022), RGG scores from Table 2 in Lee et al. (2023b), and TAT
scores from Table 2 in Feng et al. (2024).

G.2. Locomotion

We obtain scores for BC, CQL, and IQL from Table 1 in Kostrikov et al. (2022); DT from Table 2 in Chen et al. (2021); TT
from Table 1 in Janner et al. (2021); MOPO from Table 1 in Yu et al. (2020); MOReL from Table 2 in Kidambi et al. (2020);
and Diffuser from Table 2 in Janner et al. (2022). Scores for RGG and TAT are drawn from Table 3 in Feng et al. (2024),
while DD scores come from Table 1 in Ajay et al. (2023).

G.3. AntMaze

Scores for DD in the AntMaze domain are taken from Table 1 in Dong et al. (2024b).
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