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Abstract

Visual instruction tuning is a key training stage001
of large multimodal models (LMMs). Neverthe-002
less, the common practice of indiscriminately003
mixing instruction-following data from various004
tasks may result in suboptimal overall perfor-005
mance due to different instruction formats and006
knowledge domains across tasks. To mitigate007
this issue, we propose a novel Comprehensive008
Task Balancing (CoTBal) algorithm for multi-009
task visual instruction tuning of LMMs. To010
our knowledge, this is the first work that ex-011
plores multi-task optimization in visual instruc-012
tion tuning. Specifically, we consider two key013
dimensions for task balancing: (1) Inter-Task014
Contribution, the phenomenon where learning015
one task potentially enhances the performance016
in other tasks, attributable to the overlapping017
knowledge domains, and (2) Intra-Task Diffi-018
culty, which refers to the learning difficulty019
within a single task. By quantifying these two020
dimensions with performance-based metrics,021
task balancing is thus enabled by assigning022
more weights to tasks that offer substantial con-023
tributions to others, receive minimal contribu-024
tions from others, and also have great intra-task025
difficulties. Experiments show that our CoT-026
Bal leads to superior overall performance in027
multi-task visual instruction tuning.028

1 Introduction029

Large multimodal models (LMMs) such as GPT-030

4V (Yang et al., 2023) and Gemini (Team et al.,031

2023) have attracted emerging attention for their032

ability to comprehend and reason across both vi-033

sual and textual modalities. A key advancement034

in this field is visual instruction tuning (Liu et al.,035

2023b), which integrates visual encoders with large036

language models (LLMs) through specialized vi-037

sual instructions and alignment modules. This in-038

novative technique expands the inherent general-039

purpose capacities of LLMs to encompass the vi-040

sual modality, significantly enhancing the training041

Visual Question AnsweringDetailed Image Captioning

In the center of the image, ... 
The containers, two in pink and two in 
yellow, are arranged in a 2x2 grid. ... 

Pink and yellow

What color are the dishes? What do you see happening in this image?

(a) Inter-Task Contribution

intra-task difficulty

intra-task difficulty
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(b) Intra-Task Difficulty

Figure 1: Schematic illustrations of inter-task contribu-
tions and intra-task difficulties. (a) The red words indi-
cate the overlapping knowledge domains among tasks,
thereby enabling inter-task contributions. (b) The dif-
ferent curves correlating performance with training data
amount reveal varying degrees of intra-task difficulties.

efficiency and effectiveness of LMMs. Approaches 042

such as LLaVA (Liu et al., 2023b,a) and MiniGPT-4 043

(Zhu et al., 2023) have shown remarkable achieve- 044

ments through visual instruction tuning. 045

Typically, instruction-following data from var- 046

ious tasks are indiscriminately mixed for visual 047

instruction tuning. However, simultaneous opti- 048

mization across multiple tasks can lead to gradi- 049

ent conflicts (Yu et al., 2020) due to different in- 050

struction formats and knowledge domains across 051

tasks, resulting in suboptimal overall performance. 052

To magnitude this issue, based on the mixture of 053

LoRA experts, Gou et al. (2023) utilizes distinct 054

experts to learn conflicting tasks, which seems to 055

be the unique work for multi-task visual instruc- 056
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tion tuning. Note that multi-task learning (MTL)057

is mainly explored by designing model structures058

or optimization algorithms in previous works (Liu059

et al., 2019). The work of Gou et al. (2023) clearly060

falls into the first category of MTL. In contrast,061

we concentrate on applying the second category of062

MTL to visual instruction tuning in this paper.063

Specifically, we propose a Generic Task Weight-064

ing (GTW) paradigm where losses are task-specific065

weighted and averaged at the token level. Based066

on the paradigm, we devise Comprehensive Task067

Balancing (CoTBal), a novel algorithm that bal-068

ances multi-task visual instruction tuning according069

to both the inter-task contribution and the intra-task070

difficulty. On one hand, Figure 1(a) exemplifies071

that different tasks have overlapping knowledge072

domains, so that learning one task potentially en-073

hances the performance in other tasks. The extent074

of this overlap varies, leading to differing degrees075

of inter-task contributions, which are quantified by076

the normalized validation performance of a model077

trained on one task and applied to others. On the078

other hand, Figure 1(b) shows that tasks exhibit079

distinct patterns of performance improvement with080

increasing training data amount. Tasks achieving081

near-optimal performance with a limited dataset082

are relatively simpler, while those requiring the083

full dataset for optimal performance have greater084

inherent learning difficulties. These intra-task dif-085

ficulties are measured by the normalized valida-086

tion performance gap between models trained on087

the full dataset and those trained on a mini subset088

of the same task. To achieve comprehensive task089

balancing for visual instruction tuning, we thus090

propose to assign more weights to three types of091

tasks: (1) tasks offering substantial contributions092

to others, (2) tasks receiving minimal contributions093

from others, and (3) tasks having great difficulties.094

These criteria are employed together in our CoTBal095

to obtain more balanced overall performance.096

Briefly, our main contributions are three-fold:097

(1) We propose the Generic Task Weighting (GTW)098

paradigm for multi-task visual instruction tuning.099

This is the first work that explores multi-task opti-100

mization in visual instruction tuning.101

(2) We devise the Comprehensive Task Balancing102

(CoTBal) algorithm, which balances multi-task vi-103

sual instruction tuning based on both the inter-task104

contribution and the intra-task difficulty.105

(3) Experiments show that CoTBal outperforms106

existing methods, significantly improving overall107

performance while ensuring task balance.108

2 Related Work 109

Multi-Task Learning. The purpose of Multi-task 110

Learning (MTL) is jointly training a single model 111

that can perform multiple tasks (Caruana, 1998; 112

Ruder, 2017; Zhang and Yang, 2021; Vandenhende 113

et al., 2021). Research in MTL is broadly divided 114

into two categories: the first learns the correlations 115

among tasks through model structures (Misra et al., 116

2016; Ma et al., 2018; Liu et al., 2019), and the sec- 117

ond balances the joint training process of all tasks 118

through optimization algorithms (Kendall et al., 119

2018; Lin et al., 2022; Sener and Koltun, 2018; Liu 120

et al., 2021; Navon et al., 2022; Dai et al., 2023b). 121

These two approaches are not mutually exclusive 122

and can effectively complement each other (Liu 123

et al., 2019). In this paper, we primarily focus on 124

the multi-task optimization algorithm, which in- 125

volves summing weighted losses or aggregating 126

update gradients of all tasks. 127

Visual Instruction Tuning. Instruction tuning 128

(Wei et al., 2021) is first explored in natural lan- 129

guage processing, enabling large language models 130

(LLMs) to follow textual instructions and accom- 131

plish unseen tasks (Zhang et al., 2023a; Ouyang 132

et al., 2022; Wang et al., 2022). To extend the 133

powerful capabilities of LLMs into multimodal do- 134

main, Liu et al. (2023b) introduces visual instruc- 135

tion tuning. This technique integrates visual en- 136

coders (Dosovitskiy et al., 2020) with LLMs (Tou- 137

vron et al., 2023a,b) through specialized visual in- 138

structions and alignment modules, effectively con- 139

structing large multimodal models (LMMs) that 140

can engage with vision-language information. Sub- 141

sequently, a range of advanced approaches show 142

robust performance on various visual tasks, focus- 143

ing on two components: (1) training setting, which 144

encompasses the selection of the alignment mod- 145

ule (Zhu et al., 2023; Dai et al., 2023a; Bai et al., 146

2023) and the determination of trainable modules 147

(Liu et al., 2023a; Ye et al., 2023), and (2) training 148

data, characterized by its larger scale (Zhao et al., 149

2023), increased versatility (Zhang et al., 2023b; Li 150

et al., 2023), and superior quality (Chen et al., 2023; 151

Wang et al., 2023). However, Gou et al. (2023) 152

observes that diverse tasks for visual instruction 153

tuning focus on different perspectives, resulting in 154

conflicts when trained together. To mitigate this, 155

they propose the mixture of LoRA experts. In this 156

paper, we tackle this challenge from a different an- 157

gle by employing multi-task optimization, which 158

assigns specific weights to each task. 159
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3 Methodology160

In this section, we start with a Generic Task Weight-161

ing (GTW) paradigm tailored for multi-task visual162

instruction tuning. Base on this paradigm, we elab-163

orate on two key dimensions for task balancing:164

inter-task contribution balancing and intra-task dif-165

ficulty balancing. These two dimensions are then166

integrated to formulate the final Comprehensive167

Task Balancing (CoTBal) algorithm.168

3.1 Generic Task Weighting Paradigm169

In current works involving visual instruction tun-170

ing, instruction-following data from various tasks171

are typically indiscriminately mixed for fine-tuning172

LMMs. The training loss is obtained by averaging173

the cross-entropy losses calculated across all valid174

tokens, as represented by the following formula:175

L =

∑N
i=1

∑Si
j=1

∑Tij

k=1− log(p(tijk))∑N
i=1

∑Si
j=1 Tij

, (1)176

where N is the total number of tasks, Si is the177

number of samples for Task i, Tij is the number of178

valid tokens in the jth sample for Task i, and tijk179

is the kth valid token in the jth sample for Task i.180

However, this approach is incompatible with the181

task weighting paradigm of traditional multi-task182

optimization algorithms, where single-task losses183

are individually computed and aggregated through184

weighted summation to get the total loss. Therefore,185

we introduce the GTW paradigm, specifically tai-186

lored for multi-task visual instruction tuning. The187

training loss of GTW is defined as:188

LGTW =

∑N
i=1

∑Si
j=1

∑Tij

k=1−λi log(p(tijk))∑N
i=1

∑Si
j=1 λiTij

,

(2)189

where λi denotes the weight of Task i. The losses190

are assigned task-specific weights and aggregated191

at the token level rather than at the sample or task192

level. GTW allows for more equitable considera-193

tion of each valid token, ensuring that the model is194

not biased towards certain tasks due to variations195

in sample sequence length or data amount across196

tasks. Besides, we also perform weighting in the197

denominator to enable a fair comparison with the198

indiscriminate data mixing approach (see Equa-199

tion 1), where the weights are uniformly set to 1.200

The GTW paradigm is employed in our CoTBal201

algorithm, while also laying a solid foundation for202

subsequent studies.203

3.2 Inter-Task Contribution Balancing 204

Although the focal points of distinct tasks vary in 205

multi-task visual instruction tuning, a key shared 206

objective exists: achieving more accurate compre- 207

hension and reasoning of visual information. As 208

shown in Figure 1(a), the data of detailed image 209

captioning on ShareGPT-4V (Chen et al., 2023) 210

and visual question answering on VQAv2 (Goyal 211

et al., 2017) both involve color information (pink 212

and yellow dishes) in the image, which exemplifies 213

the overlapping knowledge domains among tasks. 214

Therefore, it is reasonable to hypothesize that dif- 215

ferent visual tasks could potentially provide mutual 216

enhancement in their performance, which can be 217

defined as the inter-task contribution. The extent of 218

the overlapping knowledge domains varies, leading 219

to differing degrees of inter-task contributions. 220

In practice, the inter-task contribution of Task i 221

to Task j can be quantified by the validation per- 222

formance for Task j of the model trained on Task i, 223

which is normalized by the validation performance 224

for Task j of the model trained on Task j itself. 225

However, a model trained exclusively on one task 226

may struggle to adhere to the instruction demands 227

of other tasks. To address this, we incorporate mini 228

subsets from all tasks into the training set, enabling 229

the model to understand the instruction demands 230

of each task. Therefore, the inter-task contribution 231

of Task i to Task j can be calculated as: 232

Cij =
Vj(i+mini)− Vj(mini)

Vj(j +mini)− Vj(mini)
, (3) 233

where Vj(i+mini) represents the validation per- 234

formance for Task j of a model trained on the full 235

dataset from Task i alongside mini subsets from 236

other tasks, and Vj(mini) signifies the validation 237

performance for Task j of a model trained on mini 238

subsets from all tasks. In the formula, Vj(mini) is 239

subtracted from both the numerator and the denom- 240

inator to mitigate the impact of incorporating mini 241

subsets from all tasks into the training set on the 242

validation performance for Task j. 243

Furthermore, based on the accurate quantifica- 244

tion of the inter-task contribution, we propose two 245

task weighting strategies for inter-task contribution 246

balancing. Firstly, we examine the average inter- 247

task contribution of one given task to all other tasks 248

as Cone2all, representing the extent to which this 249

task assists all other tasks. The greater the assis- 250

tance provided by one task to all other tasks, the 251

more substantial its overall contribution to the en- 252

tire training process of multi-task visual instruction 253
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tuning. Therefore, tasks that have greater Cone2all254

should be assigned more weights to enhance overall255

performance. The specific task weights λone2all256

can be computed as:257

Cone2all,i =
1

N − 1

∑
j ̸=i

Cij , (4)258

259

λone2all = N × softmax(
Cone2all

T
), (5)260

where Cone2all,i signifies Cone2all for Task i and261

Cone2all represents the N -dimensional vector of262

Cone2all for all tasks. T denotes the temperature263

hyperparameter that controls the degree of smooth-264

ness in the weight vector. Secondly, we consider265

the average inter-task contribution of all other tasks266

to one given task as Call2one, denoting the degree267

to which this task receives benefits from all other268

tasks. If one task receives minimal benefits from269

other tasks, it tends to exhibit poorer performance270

compared to tasks that receive greater benefits. To271

maintain balanced overall performance, such type272

of tasks that have lower Call2one should also be273

assigned more weights. The specific task weights274

λall2one can be computed as:275

Call2one,i =
1

N − 1

∑
j ̸=i

Cji, (6)276

277

λall2one = N × softmax(−Call2one

T
), (7)278

where Call2one,i signifies Call2one for Task i and279

Call2one represents the N -dimensional vector of280

Call2one for all tasks. T denotes the same tempera-281

ture hyperparameter in Equation 5. Subsequently,282

we integrate the aforementioned two strategies to283

formulate the task weighting strategy for inter-task284

contribution balancing, where the task weights λC285

can be calculated as:286

λC =
1

2
(λone2all + λall2one). (8)287

3.3 Intra-Task Difficulty Balancing288

In addition to the inter-task contribution, another289

critical aspect in multi-task visual instruction tun-290

ing is the intra-task difficulty, which refers to the291

inherent learning difficulty within each task. Tasks292

that achieve near-optimal performance with a lim-293

ited dataset are considered to have poor intra-task294

difficulties. Conversely, tasks that require the full295

dataset to reach optimal performance are deemed296

to have great intra-task difficulties. As illustrated297

in Figure 1(b), different tasks exhibit distinct pat- 298

terns of performance improvement with increas- 299

ing training data amount. Arranged by increasing 300

intra-task difficulty, the sequence of these three 301

tasks is as follows: visual question answering on 302

VQAv2 (Goyal et al., 2017), detailed image cap- 303

tioning on ShareGPT-4V (Chen et al., 2023) and 304

visual grounding on RefCOCO (Kazemzadeh et al., 305

2014; Mao et al., 2016). 306

Practically, the intra-task difficulty for Task i is 307

measured by the validation performance gap be- 308

tween a model trained on the full dataset and that 309

trained on a mini subset from Task i, which is 310

normalized by the validation performance of the 311

former model. This metric offers a precise measure 312

of potential performance degradation when using 313

the mini subset of training data, thereby reflecting 314

the inherent learning difficulty of the task. Notably, 315

to ensure a fair measurement across each task, the 316

ratio between the number of samples in the mini 317

subset and the total number of samples in the full 318

dataset should be kept consistent. 319

However, training extra models using both the 320

full dataset and the mini subset from each task is 321

necessary to obtain the intra-task difficulty, which 322

will require additional time comparable to the train- 323

ing time of the final model. To alleviate this, we re- 324

purpose the models trained for computing inter-task 325

contributions. Specifically, we substitute the model 326

trained on the mini subset from Task i with that 327

trained on mini subsets from all tasks, and replace 328

the model trained solely on the full dataset from 329

Task i with that trained on the full dataset from Task 330

i alongside mini subsets from other tasks. Due to 331

the minimal inter-task contributions of others tasks 332

to Task i when compared to the contribution from 333

Task i to Task i itself, the impact of mini subsets 334

from other tasks on the validation performance for 335

Task i is negligible. Therefore, this approach sig- 336

nificantly reduces training time with minimal error. 337

The intra-task difficulty for Task i is calculated as: 338

Di = 1− Vi(mini)

Vi(i+mini)
, (9) 339

where Vi(mini) represents the validation perfor- 340

mance for Task i of a model trained on mini subsets 341

from all tasks, and Vi(i+mini) denotes the vali- 342

dation performance for Task i of a model trained 343

on the full dataset from Task i coupled with mini 344

subsets from other tasks. 345

Moreover, owing to the varying intra-task dif- 346

ficulties across different tasks, treating each task 347
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Algorithm 1 Overall Training Process of CoTBal

Input: N visual tasks, a pretrained LMM.
Output: a fine-tuned LMM.

1: Trained a model on mini subsets from all tasks;
2: for i = 1 to N do
3: Trained a model on the full dataset from

Task i and mini subsets from other tasks;
4: end for
5: for each Task i do
6: for each other Task j do
7: Compute inter-task contribution Cij ;
8: end for
9: end for

10: for each Task i do
11: Compute outwards contribution Cone2all,i;
12: Compute inwards contribution Call2one,i;
13: end for
14: Compute task weights λC using Cone2all and

Call2one for inter-task contribution balancing;
15: for each Task i do
16: Compute intra-task difficulty Di;
17: end for
18: Compute task weights λD using D for intra-

task difficulty balancing;
19: Combine λC and λD to get final task weights

λCoTBal for comprehensive task balancing;
20: Apply λCoTBal to fine-tune the final LMM

using the GTW paradigm.

equally during the training process may result in348

underfitting of the more challenging tasks, despite349

the simpler ones being adequately trained or even350

overfitted. Therefore, we propose a weighting strat-351

egy that assigns more weights to tasks with greater352

intra-task difficulties. The task weights λD can be353

calculated as:354

λD = N × softmax(
D

T
), (10)355

where D represents the N -dimensional vector of356

intra-task difficulties for all tasks, and T is the same357

temperature hyperparameter used in Section 3.2.358

3.4 Comprehensive Task Balancing359

After individually establishing the strategies for360

inter-task contribution balancing and intra-task dif-361

ficulty balancing, the final step involves integrating362

them to create the CoTBal algorithm. The algo-363

rithm is designed to synergistically leverage the364

strengths of both two balancing methods, thereby365

ensuring a more comprehensive and effective multi-366

task optimization process in visual instruction tun- 367

ing. The specific task weights λCoTBal for com- 368

prehensive task balancing can be calculated as: 369

λCoTBal = αλC + (1− α)λD, (11) 370

where α is a hyperparameter that controls the rela- 371

tive influence of inter-task contribution balancing 372

and intra-task difficulty balancing. The training 373

process of CoTBal is summarized in Algorithm 1. 374

4 Experiments 375

4.1 Experimental Setup 376

Datasets. The training data of CoTBal includes 377

a variety of datasets: ShareGPT4V (Chen et al., 378

2023), VQAv2 (Goyal et al., 2017), GQA (Hud- 379

son and Manning, 2019), ChartQA (Masry et al., 380

2022), OCRVQA (Mishra et al., 2019), RefCOCO 381

(Kazemzadeh et al., 2014; Mao et al., 2016) and 382

ShareGPT (sha, 2023). The aforementioned visual 383

datasets have various image domains and task types. 384

Therefore, we treat each visual dataset as a distinct 385

task, except for the RefCOCO dataset, which is 386

bifurcated into two tasks: RefCOCO-caption and 387

RefCOCO-grounding. The former generates de- 388

scriptions for image regions defined by bounding 389

boxes (bbox), while the latter produces bbox cor- 390

responding to described image regions. Besides, 391

the ShareGPT dataset, only containing language 392

conversation data, is also used as a training task to 393

mitigate the phenomenon of model forgetting its in- 394

herent general language conversation capabilities. 395

Inspired by Liu et al. (2023a), we incorporate 396

response format instructions into the data to clarify 397

task requirements for the model and employ mul- 398

tiple data processing strategies to reduce training 399

costs and ensure fairness, detailed as follows: 400

(1) For ShareGPT4V, the data is randomly parti- 401

tioned into a validation set of 2k and a test set of 402

2k, with the remainder designated for training. 403

(2) For all VQA datasets and RefCOCO, data from 404

the same training image are shuffled and merged 405

into a single conversation. 406

(3) For RefCOCO, training conversations are seg- 407

mented into parts, each with fewer than 10 turns. 408

(4) For OCRVQA, 80k conversations are sampled 409

from the training set. 410

(5) For VQAv2, GQA and OCRVQA, 20k data are 411

sampled from the validation set. 412

(6) For ShareGPT, invalid conversations are filtered 413

out as Zheng et al. (2023), while long conversations 414

that surpass 2048 tokens are truncated. 415
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Tasks Data Sizes Response Format Instructions

ShareGPT 41k –
ShareGPT-4V 98k

VQAv2 83k Answer the question using a single
GQA 72k word or phrase.
ChartQA 18k
OCRVQA 80k

RefCOCO-caption 41k Provide a short description for this
region.

RefCOCO-bbox 41k Provide the bounding box coordinate
of the region this sentence describes.

Total 475k

Table 1: Summary of training data sizes and response
format instructions for each task.

The training data sizes and response format instruc-416

tions for each task are presented in Table 1.417

Evaluation Metrics. In the experiments, we first418

report the common evaluation metrics for each task:419

CIDEr (Vedantam et al., 2015) for image caption-420

ing tasks, Exact Match (EM) for visual question421

answering tasks, and Intersection over Union (IoU)422

for visual grounding tasks. Moreover, since multi-423

task visual instruction tuning aims to jointly im-424

prove performance across all tasks, we consider425

two metrics to comprehensively evaluate the effec-426

tiveness of methods: (1) ∆I%, the average per-task427

improvement, and (2) ∆E%, the average per-task428

error in test performance compared with models429

trained on individual tasks. These two metrics can430

be calculated as:431

Ii =
1

Ki

Ki∑
j=1

(−1)δij
Me,ij −Mb,ij

Mb,ij
, (12)432

433

∆I% =
1

N

N∑
i=1

Ii, (13)434

435

∆E% =
1

N

N∑
i=1

min(0, Ii), (14)436

where N is the total number of tasks, Ii is the test437

performance improvement for Task i, Ki is the438

number of evaluation metrics for Task i, Me,ij is439

the value on the jth metric for Task i of the model440

trained by the evaluated method and Mb,ij is that441

of the baseline model trained individually on Task442

i. δij is an indicator function that is set to 0 if a443

higher value is better on the k-th metric for Task444

i, and 1 otherwise. The metric ∆E% serves as an445

indicator of imbalance in model performance by fo-446

cusing on the negative aspects of the performance447

improvement, i.e., where there is no improvement448

or even a decline in performance compared to base- 449

line models. By aggregating these negative impacts 450

across all tasks, ∆E% provides a concise measure 451

of how the method may disproportionately benefit 452

some tasks at the expense of others, thus revealing 453

the degree of performance imbalance. 454

Compared Methods. We compare the following 455

methods: (1) our CoTBal algorithm; (2) Single- 456

Task Learning (STL) baseline, training and test- 457

ing independent models for each task; (3) Equal 458

Weighting (EW), the indiscriminate data mixing 459

approach which minimizes the loss in Equation 1 460

without task weighting; (4) Task-Level Aggrega- 461

tion (TLA), which averages the losses of valid to- 462

kens within each task, then calculates the mean 463

loss across all tasks; (5) Random Loss Weighting 464

(RLW) (Lin et al., 2021), which randomly assigns 465

task weights; (6) Dynamic Weight Average (DWA) 466

(Liu et al., 2019), which assigns more weights to 467

tasks with less descending rates of training loss; (7) 468

Improvable Gap Balancing version 1 (IGBv1) (Dai 469

et al., 2023b), which assigns more weights to tasks 470

with greater training losses. Method (5)-(7) are op- 471

timization algorithms in the traditional MTL frame- 472

work, dynamically updating task weights in each 473

training iteration. We apply the GTW paradigm to 474

them for multi-task visual instruction tuning. 475

Note that we have not compared traditional gradi- 476

ent aggregation multi-task optimization algorithms. 477

Such algorithms require computing update gradi- 478

ents via backpropagation for each task separately 479

in each iteration, followed by the aggregation of 480

gradients across all tasks. In multi-task visual in- 481

struction tuning, the large number of tasks and the 482

massive volume of model parameters make this pro- 483

cess impractical and excessively time-consuming. 484

Implementation Details. In the experiments, we 485

fine-tune the pretrained LLaVA-v1.5-7B model on 486

8×A100 (80G) GPUs using the same training set- 487

ting and code as Liu et al. (2023a). For our CoTBal 488

algorithm, we perform task balancing across all 489

seven visual instruction-following tasks, while di- 490

rectly assigning a weight of 1.0 to ShareGPT. The 491

mini subset from each task is obtained by randomly 492

sampling 1/32th of the full dataset from that task. 493

Both the temperature hyperparameter T and the 494

control hyperparameter α are set to 0.5. 495

4.2 Multi-Task Evaluations 496

Table 2 presents the comparative results for multi- 497

task instruction tuning. With the same foundational 498

models and training data, CoTBal achieves the op- 499
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Methods
ShareGPT4V RefCOCO-caption VQAv2 GQA ChartQA OCRVQA RefCOCO-bbox

∆I% ↑ ∆E% ↓test Ref-test Ref-testB Refg-test test-dev test-bal test test Ref-test Ref-testB Refg-test
CIDEr↑ CIDEr↑ EM↑ EM↑ EM↑ EM↑ IoU↑

STL 0.1285 0.4330 0.4658 0.6019 77.73 61.23 17.76 68.22 65.02 51.58 50.78

EW 0.1411 0.4738 0.5591 0.5937 78.27 62.20 19.60 67.73 76.05 61.63 62.80 7.30 0.10
TLA 0.1144 0.5083 0.5770 0.5327 77.72 60.42 22.36 67.80 71.79 56.58 58.40 4.94 1.85
RLW 0.1388 0.4810 0.5571 0.5538 77.28 60.61 18.20 66.73 70.78 55.86 57.01 3.44 0.54
DWA 0.1225 0.4659 0.5470 0.6006 78.28 61.82 19.88 67.87 76.74 61.12 63.88 5.35 0.74
IGBv1 0.1349 0.4267 0.4824 0.6017 77.00 60.92 17.20 65.96 70.39 55.47 55.99 0.92 1.13
CoTBal 0.1437 0.4649 0.5724 0.5874 77.99 61.81 20.16 67.48 82.62 67.38 69.19 9.45 0.15

Table 2: Comparative results for multi-task visual instruction tuning. ↑ (↓) indicates that the higher (lower) the
result, the better the performance. Ref-test and Ref-testB represent two test sets of Kazemzadeh et al. (2014), and
Refg-test denotes the test set of Mao et al. (2016).

0.1411

0.1437

0.4738

0.4649

0.55910.5724

0.5937
0.5874

78.27 77.99

62.20

61.81

19.60

20.16

67.73
67.48

76.05
82.62

61.63

67.38

62.80

69.19

Figure 2: Performance comparison radar chart of the
CoTBal method and the EW method.

timal average per-task performance improvement500

(∆I%), alongside maintaining the near-lowest aver-501

age per-task performance error (∆E%). As shown502

in Figure 2, compared to the most commonly em-503

ployed EW method, CoTBal significantly enhances504

the performance on ShareGPT4V, ChartQA and505

RefCOCO-bbox tasks while keeping competitive506

performance on other tasks. This validates the ef-507

fectiveness of our algorithm in terms of both overall508

performance and the degree of performance imbal-509

ance. Specifically, as depicted in Figure 3, CoTBal510

effectively captures the variances in mutual con-511

tributions and inherent learning difficulties among512

these visual tasks, thereby providing appropriate513

task weights for the final model training, which514

maximally mitigates task conflicts.515

Besides, we observe that TLA is significantly516

inferior to EW in both ∆I% and ∆E%. TLA guar-517

antees equality for each task in the final loss com-518

putation. However, variations in sample sequence519

length and data amount across different tasks may520

implicitly assign inappropriate task weights to the521

losses of valid tokens. The implicit weight is in-522

versely related to the total number of valid tokens523

(a) Heatmap of inter-task contributions.

(b) Histogram of intra-task difficulties.

Figure 3: Numerical visualizations of inter-task contri-
butions and intra-task difficulties in the training process
of the CoTBal algorithm.

in each task, leading to poorer overall performance 524

and a marked performance imbalance. This indi- 525

cates that maintaining equality at the token level 526

is more logical than preserving it at the task level, 527

thereby demonstrating the viability of the GTW 528

paradigm in multi-task visual instruction tuning. 529

As for the compared traditional multi-task op- 530

timization algorithms (RLW, DWA and IGBv1), 531

directly applying them to visual instruction tuning 532

yields suboptimal results in both ∆I% and ∆E%. 533

We contend that assigning task weights based on 534
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Methods ∆I% ↑ ∆E% ↓

EW 7.30 0.10

CoTBal (T =2.0) 8.25 0.12
CoTBal (T =1.0) 8.41 0.11
CoTBal (T =0.5) 9.45 0.15

CoTBal (λone2all) 7.87 0.10
CoTBal (λall2one) 7.05 0.05
CoTBal (λC) 7.09 0.06
CoTBal (λD) 10.39 0.30
CoTBal (λCoTBal) 9.45 0.15

CoTBal (precise Difficulty) 9.20 0.16
CoTBal (real Difficulty) 9.45 0.15

Table 3: Ablation results for multi-task visual instruc-
tion tuning. T is the temperature hyperparameter, CoT-
Bal (λ) denotes the exclusive use of the specific λ for
task weighting, and CoTBal (precise / real Difficulty)
signifies the employment of the precise or real calcula-
tion approach for the intra-task difficulty.

training losses is imprecise, because the fine-tuning535

losses in large models fails to accurately reflect536

training progress. This is also the reason why both537

the inter-task contribution and the intra-task diffi-538

culty are quantified by performance-based metrics539

in our CoTBal algorithm.540

4.3 Ablation Studies541

As shown in Table 3, we analyze the impact of dif-542

ferent training settings on model performance from543

three aspects: the temperature hyperparameter con-544

figuration, the task weighting strategy selection545

and the calculation approach for intra-task difficul-546

ties. The complete ablation results are presented547

in Appendix A. The compared methods include:548

EW; CoTBal (T =2.0/1.0/0.5) where the temper-549

ature hyperparameter T is set to 2.0, 1.0 or 0.5;550

CoTBal (λone2all/λall2one/λC/λD/λCoTBal)551

where task weights are set as λone2all, λall2one,552

λC , λD or λCoTBal; and CoTBal (precise / real553

Difficulty) where the precise or real calculation554

approach for the intra-task difficulty is employed.555

Specifically, the precise calculation approach trains556

extra models using the full dataset and the mini557

subset from each task, while the real calculation558

approach repurposes the models trained for com-559

puting inter-task contributions to reduce additional560

training time.561

In terms of the temperature hyperparameter562

configuration: CoTBal consistently outperforms563

EW in ∆I%, maintaining its superiority across564

all T values and enhancing its advantage as T de-565

creases. The degree of task balancing increases as 566

T decreases, leading to an improved ∆I%, which 567

demonstrates the efficacy of comprehensive task 568

balancing. Conversely, CoTBal exhibits a slight 569

increase in ∆E% as T decreases. When the de- 570

gree of non-smoothness in task weights becomes 571

excessive, tasks with significantly smaller weights 572

inevitably underperform, resulting in the slight im- 573

balance in performance. 574

In terms of the task weighting strategy se- 575

lection: On the one hand, compared to the EW 576

method, CoTBal (λone2all) enhances ∆I% while 577

maintaining ∆E% constant, due to its preference 578

for tasks that offer substantial contributions to other 579

tasks. On the other hand, CoTBal (λall2one) signif- 580

icantly reduces ∆E%, mitigating the performance 581

imbalance issue by prioritizing tasks that receive 582

minimal benefits from other tasks. CoTBal (λC) in- 583

tegrates the aforementioned two strategies, achiev- 584

ing more balanced ∆I% and ∆E%. Moreover, 585

CoTBal (λD) markedly enhances ∆I% by assign- 586

ing more weights to tasks that have greater learn- 587

ing difficulties, yet concurrently exacerbates the 588

performance imbalance issue. Finally, CoTBal 589

(λCoTBal) integrates all three strategies to maxi- 590

mize overall performance while mitigating the per- 591

formance imbalance issue. 592

In terms of the calculation approach for the 593

intra-task difficulty: The precise approach and the 594

real approach exhibit similar levels of performance, 595

with the real one even marginally surpassing the 596

precise one in both ∆I% and ∆E%. When cal- 597

culating the intra-task difficulty of Task i, training 598

with mini subsets from any other tasks has negli- 599

gible impact on performance in Task i, hence our 600

CoTBal algorithm employs the real calculation ap- 601

proach to significantly reduce training time while 602

ensuring performance. 603

5 Conclusion 604

In this paper, we devise Comprehensive Task Bal- 605

ancing (CoTBal), the first multi-task optimiza- 606

tion algorithm tailored for visual instruction tun- 607

ing of LMMs. Specifically, we first propose the 608

Generic Task Weighting (GTW) paradigm. Based 609

on this paradigm, we then design three task weight- 610

ing strategies according to the inter-task contri- 611

bution and the intra-task difficulty. Our experi- 612

ments demonstrate that CoTBal outperforms ex- 613

isting methods, including the indiscriminate data 614

mixing approach, significantly improving overall 615

performance while ensuring task balance. 616
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Limitations617

Although the proposed CoTBal algorithm en-618

hances the performance of multi-task visual in-619

struction tuning, it still presents two small draw-620

backs. Firstly, CoTBal necessitates extra time for621

the computation of the inter-task contribution and622

the intra-task difficulty. Specifically, the extra time623

is approximately (1 + (N − 1)/32) times the du-624

ration needed to train the final model, where N is625

the number of tasks. Secondly, the measurement626

of the inter-task contribution and the intra-task dif-627

ficulty could be further improved. It is rather an628

indirect metric assessed through validation perfor-629

mance, which may introduce slight noise. In our630

ongoing research, we will make further efforts on631

multi-task visual instruction tuning to overcome632

these drawbacks.633
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A Complete Results of Ablation Studies843

We report the complete results of ablation studies844

for multi-task visual instruction tuning in Table 4.845

Methods
ShareGPT4V RefCOCO-caption VQAv2 GQA ChartQA OCRVQA RefCOCO-bbox

∆I% ↑ ∆E% ↓test Ref-test Ref-testB Refg-test test-dev test-bal test test Ref-test Ref-testB Refg-test
CIDEr↑ CIDEr↑ EM↑ EM↑ EM↑ EM↑ IoU↑

EW 0.1411 0.4738 0.5591 0.5937 78.27 62.20 19.60 67.73 76.05 61.63 62.80 7.30 0.10

CoTBal (T =2.0) 0.1433 0.4540 0.5642 0.5973 78.10 62.08 20.16 67.67 78.01 63.06 64.73 8.25 0.12
CoTBal (T =1.0) 0.1369 0.4605 0.5752 0.5948 78.15 62.09 20.32 67.71 80.61 65.00 66.78 8.41 0.11
CoTBal (T =0.5) 0.1437 0.4649 0.5724 0.5874 77.99 61.81 20.16 67.48 82.62 67.38 69.19 9.45 0.15

CoTBal (λone2all) 0.1448 0.4528 0.5763 0.6036 78.34 62.16 19.52 67.72 77.59 61.81 63.47 7.87 0.10
CoTBal (λall2one) 0.1333 0.4617 0.5520 0.5961 78.25 62.12 20.20 68.00 76.98 62.61 64.12 7.05 0.05
CoTBal (λC) 0.1340 0.4645 0.5626 0.5934 78.39 62.27 20.04 67.92 77.46 61.92 63.67 7.09 0.06
CoTBal (λD) 0.1455 0.4783 0.5706 0.5963 77.46 61.30 20.08 67.04 85.13 71.52 72.88 10.39 0.30
CoTBal (λCoTBal) 0.1437 0.4649 0.5724 0.5874 77.99 61.81 20.16 67.48 82.62 67.38 69.19 9.45 0.15

CoTBal (precise Difficulty) 0.1345 0.4767 0.5604 0.5952 78.00 61.87 21.04 67.46 82.06 67.83 69.08 9.20 0.16
CoTBal (real Difficulty) 0.1437 0.4649 0.5724 0.5874 77.99 61.81 20.16 67.48 82.62 67.38 69.19 9.45 0.15

Table 4: Complete results of ablation studies for multi-task visual instruction tuning. ↑ (↓) indicates that the higher
(lower) the result, the better the performance. Ref-test and Ref-testB represent two test sets of Kazemzadeh et al.
(2014), and Refg-test denotes the test set of Mao et al. (2016).
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