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ABSTRACT

We aim to overcome the limitations of Kullback-Leibler (KL) divergence-based
variational inference (VI) used in Bayesian Neural Networks (BNNs), which
stem from the lack of boundedness of KL-divergence. These limitations include
unstable optimization, poor approximation, and difficulties in approximating light-
tailed posteriors, which are well documented in the literature. To overcome these
limitations, we propose two novel loss functions for BNNs based on Jensen-
Shannon (JS) divergences, which are more general, and one of them is bounded.
We employ a constrained optimization framework to formulate these loss functions
due to the intractability of the JS divergence-based VI. Further, we show that
the two loss functions presented here generalize the conventional KL divergence-
based loss function for BNNs. In addition to establishing stability in optimization,
we perform rigorous theoretical analysis, and empirical experiments to evaluate
the performance of the proposed loss functions. The empirical experiments are
performed on the Cifar-10 data set with various levels of added noise and a highly
biased histopathology data set. Our analysis and experiments suggest that the
proposed losses perform better than the KL divergence-based loss and significantly
better than their deterministic counterpart. Similar improvements by the present
approach are also observed on the Cifar-100 data set. We also perform experiments
on six other regression datasets and compare the performance with the existing VI
approaches for BNNs.

1 INTRODUCTION

Despite the widespread success of deep neural networks (DNNs) and convolutional neural networks
(CNNs) in numerous applications (Samarasinghel [2016; [L1 et al., [2021), they suffer from overfitting
when the data set is small, noisy, or biased (Buda et al.l 2018} |Thiagarajan et al.| [2021). Further,
due to deterministic parameters, CNNs cannot provide a robust measure of uncertainty. Without
a measure of uncertainty in the predictions, erroneous predictions by these models may lead to
catastrophic failures in applications that necessitate high accuracy such as autonomous driving and
medical diagnosis. Several methods were developed to provide prediction intervals as a measure of
uncertainty in neural networks (Kabir et al.l 2018). Amongst these, Bayesian methods have gained
eminence due to their rigorous mathematical foundation for uncertainty quantification through their
stochastic parameters (Jospin et al., 2022} |Kabir et al., [2018]).

A Bayesian neural network (BNN) has stochastic parameters whose posterior distribution is learned
through the Bayes rule (Tishby et al.l [1989; |Denker & LeCun, |1990; |Goan & Fookes| 2020; |Gall
2016). Since the posterior distribution of parameters is intractable, the two most commonly used
techniques to approximate them are the Variational Inference (VI) (Hinton & Van Camp, {1993} Barber
& Bishopl 1998} |Graves, [201 1; [Hernandez-Lobato & Adams) [2015) and the Markov Chain Monte
Carlo Methods (MCMC) (Neal, 2012; [Welling & Teh, 2011). MCMC methods comprise a set of
algorithms to sample from arbitrary and intractable probability distributions. Inference of posterior
using MCMC algorithms can be very accurate but they are computationally demanding (Robert et al.|
2018). An additional limitation of MCMC algorithms is that they do not scale well with the model
size.

The VI is a technique to approximate an intractable posterior distribution by a tractable distribution
called the variational distribution. The variational distribution is learned by minimizing an objective
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function derived from its dissimilarity with respect to the true posterior (Blundell et al., 2015). VI
methods are efficient and they scale well for larger networks and have gained significant popularity.
Most of the VI techniques in the literature use the KL divergence as a measure of the aforementioned
dissimilarity. However, the KL divergence is unbounded which may lead to failure during training
as reported in [Hensman et al.| (2014); [Dieng et al| (2017); [Deasy et al.| (2020). In addition, KL
divergence is asymmetric and thus it does not qualify as a metric. Therefore, it is imperative to
explore alternative divergences for VI that can alleviate these limitations.

In regards to exploring alternate divergences, Renyi’s a-divergences have been introduced for VI
in|Li & Turner| (2016)). They proposed a family of variational methods that unified various existing
approaches. A y-divergence-based VI has been proposed in Dieng et al.| (2017) that provides an
upper bound of the model evidence. Additionally, their results have shown better estimates for the
variance of the posterior. Along these lines, an f-Divergence based VI has been proposed in Wan
et al.| (2020) to use VI for all f-divergences that unified the Reyni divergence (Li & Turner, 2016) and
x divergence (Dieng et al., 2017) based VIs. While these recent works (L1 & Turner, 2016; |Dieng
et al., 2017;Wan et al 2020) mainly focused on obtaining a generalized/unified VI framework, the
present work specifically attempts to alleviate the limitations (unboundedness and asymmetry) of
the KL divergence-based VI through the Jensen-Shanon (JS) divergence. As a result, two novel loss
functions are proposed, which outperform the KL loss in applications that require regularization. A
modification to the skew-geometric Jensen-Shanon (JS) divergence has been proposed in [Deasy et al.
(2020) to introduce a new loss function for Variational Auto Encoders (VAEs), which has shown a
better reconstruction and generation as compared to existing VAEs.

1.1 KEY CONTRIBUTIONS

In the present work, we propose two novel loss functions for BNNs, which are based on: 1) the
skew-geometric JS divergence (denoted as JS-G) and 2) a novel modification to the generalized JS
divergence (denoted as JS-A). The primary contribution of this work is that it resolves the unstable
optimization issue by leveraging the boundedness of the novel JS-A divergence. We show that these
JS divergence-based loss functions are generalizations of the state-of-the-art KL divergence-based
ELBO loss function. In addition to addressing the stability of the optimization, through rigorous
analysis we explain why these loss functions should perform better. In addition, we derive the
conditions under which the proposed skew-geometric JS divergence-based loss function regularises
better than that of the KL divergence. Further, we show that the loss functions presented in this
work perform better for image classification problems where the data set has noise or is biased
towards a particular class. In our work, we provide both closed-form and MC-based algorithms for
implementing the two JS divergences. The MC implementation can include priors of any family.

The present work is different from the existing work on JS divergence-based VI Deasy et al.|(2020) for
the following reasons: (i) The JS-G divergence proposed in the previous work is unbounded like KL,
which is resolved by the JS-A divergence proposed in this work. (ii) Deasy et al.[(2020) introduced the
JS-G divergence-based loss for variational autoencoders (VAEs). In the present work, the distributions
of parameters of BNNs are learned, which are numerous, as opposed to a small number of latent
factors typically found in VAEs. (iii) The previous work is restricted to Gaussian priors due to the
closed-form implementation, which this work overcomes through MC implementation.

2 MATHEMATICAL BACKGROUND

2.1 BACKGROUND: KL AND JS DIVERGENCES

The KL divergence between two random variables P and Q on a probability space €2 is defined as
KL[p || q] = [, p(x)log [p(x)/q(x)] dx, where p(x) and q(z) are the probability distributions of P
and Q respectively.

The KL divergence is widely used in literature to represent the dissimilarity between two probability
distributions for applications such as VI. However, it has limitations such as the asymmetric property,
i.e. KL[p || ¢] # KL|q || p], and unboundedness, i.e. the divergence is infinite when ¢(z) = 0 and
p(z) # 0. These limitations may lead to difficulty in approximating light-tailed posteriors as reported
in|Hensman et al.|(2014).
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To overcome these limitations a symmetric JS divergence can be employed which is defined as
IS[p |l q] = sKL[p||(p+ q)/2] + 3KL[q||(p + q)/2]. It can be further generalized as,

ISt [plq] = (1 = )KL (p || Aa) + aKL(q || Aa) Q)

where, A, is the weighted arithmetic mean of p and ¢ defined as A, = (1 — a)p + ag. Although
this JS divergence is symmetric and bounded, unlike the KL divergence its analytical expression
cannot be obtained even when p and g are Gaussians. To overcome this difficulty a generalization of
the JS divergence using the geometric mean was proposed in Nielsen| (2019). By using the weighted
geometric mean G, (z,y) = z'~%y*, where a € [0, 1], for two real variables z and y, they proposed
the following family of skew geometric divergence

1% [p |l g} = (1 = a)KL (p || Ga(p, q)) + oKL (¢ || Ga(p, q)) )

The parameter « called a skew parameter, controls the divergence skew between p and gq. However, the
skew-geometric divergence in Eq. [2|fails to capture the divergence between p and ¢ and becomes zero
for & = 0 and o = 1. To resolve this issue, |Deasy et al.|(2020) used the reverse form of geometric
mean G/, (z,y) = z%y' =%, with o € [0,1] for JS divergence to use in variational autoencoders.
Henceforth, only this reverse form is used for the geometric mean. The JS divergence with this
reverse of the geometric mean is given by

IS-Glpll gl = (1—a)KL (p|| G, (p,q)) + aKL (¢ || G, (p, q)) 3)

This yields KL divergences in the limiting values of the skew parameter. Note that for o € [0, 1],
IS-G(p||9)|le = IS-G(p||¢)|1—a which is not symmetric. However, for « = 0.5, the JS-G is
symmetric with JS-G(p||¢)|a=0.5 = JS-G(p||q)|a=0.5. The geometric JS divergences, JS® and
JS-G given in Eq.[2]and Eq. [3|respectively, have analytical expressions when p and ¢ are Gaussians.
However, they are unbounded like the KL divergence. Whereas, the generalized JS divergence JS4«
in Eq.[I)is both bounded and symmetric.

2.2 BACKGROUND: VARIATIONAL INFERENCE

Given a set of training data D = {x;,y;}; and test input, x € RP, we learn a data-driven model
(e.g a BNN) to predict the probability P(y|x,D) of output y € Y, where T is the output space. The
posterior probability distribution (P(w|D)) of the parameters (w) of BNN, can be obtained using the
Bayes’ rule: P(w|D) = P(D|w)P(w)/P(D).

Where P(D|w) and P(w) are the likelihood term and the prior distribution respectively. The term
P(]D)), called the evidence, involves marginalization over the distribution of weights: P(D) =
fQ P(D|w)P(w)dw. Using the posterior distribution of weights, the predictive distribution of the

output can be obtained by marginalizing the weights as P(y|x, D) fQ (y|x, w)P(w|D)dw

The term P (D) in the Bayes’ rule is intractable due to marginalization over w, which in turn makes
P(w|D) intractable. To alleviate this difficulty, the posterior is approximated using variational
inference.

In variational inference, the unknown intractable posterior P(w|D) is approximated by a known
simpler distribution ¢(w|@) called the variational posterior having parameters 6. The set of parameters
0 for the model weights are learned by minimizing the divergence (e.g. KL divergence) between
P(w|D) and ¢g(w|@) as shown in Blundell et al.| (2015).

0 — argmeinKL[q(WW) || P(w|D)] = arg msin/q(w|0) {logp(‘;](;tng)?hv) +log P(D)| dw
“)

Note that the term log P(ID) in Eq. 4|is independent of € and thus can be eliminated. The resulting
loss function F (D, @), which is to be minimised to learn the optimal parameters 8* is expressed as:
FrL(D,0) =KL [q(w|0) || P(W)] — Eq(w|e) [log P(D|w)] ®)

This loss is known as the variational free energy or the evidence lower bound (ELBO) (Graves| 2011}
Blundell et al.|2015)).
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3 METHODS

In this section, we provide a modification to the generalized JS divergence, formulations of JS
divergence-based loss functions for BNNs, and insights into the advantages of the proposed loss.

3.1 PROPOSED MODIFICATION TO THE GENERALIZED JS DIVERGENCE

The generalised JS divergence given in Eq. || fails to capture the divergence between p and g in the
limiting cases of « since,

I8 (@1l 9)] ey =0 Is*(pllq)],_, =0 ©)
To overcome this limitation we propose to modify the weighted arithmetic mean as A, = ap + (1 —
a)q, a € [0, 1] which modifies the generalized JS divergence as,

IS-Alp |l q] = (1 = )KL (p|| A) + oKL (¢ || A7) ©)
Hence, this yields KL divergences in the limiting cases of « as,
IS-Ap [ 9)]a=o = KL(p [l 9) IS-A(p [l 9)]a=1 = KL(g [ p) ®)

Eq.[7] ensures that JS(P||g) = 0 if and only if P = g, Vo € [0,1]. This is necessary since the
divergence is a metric to represent statistical dissimilarity.

Theorem 1: Boundedness of the modified generalized JS divergence
For any two distributions P, (t) and Py(t), t € §), the value of the JS-A divergence is bounded such
that,

IS-A(P(8)||P2(t)) < —(1 — a)loga — alog(1l — «), fora € (0,1) 9

The proof of Theorem 1 is presented in App. [B] Due to this boundedness property of the JS-A
divergence, the ensuing loss functions overcome the instability in optimization that is encountered in
the KL divergence-based loss. We provide a comparison of symmetry (at o = 0.5) and boundedness
for divergences used in this work in Table[T]and in App.[A]and[B]

Table 1: Properties of various divergences

Divergence Bounded Symmetric Analytical expression

KL X X v
JS-A v v X
IS-G X v v

3.2 INTRACTABILITY OF THE JS DIVERGENCE-BASED LOSS FUNCTIONS FORMULATED
THROUGH THE VARIATIONAL INFERENCE APPROACH

In this subsection, we demonstrate that the JS divergence-based variational inference is intractable. If
the JS-G divergence is used instead of the KL divergence in the VI setting (see Eq.[), the optimization
problem becomes,

6" = argminJS-Gg(wl6) || P(w|D)] (10)

The loss function can then be written as,
Fisa(D,0) =1S-Glg(w|6) || P(w|D)] = (1 — )KL (¢ || G, (g, P)) + oKL (P || G, (g, P))
1

@
Where, G, (¢, P) = q(w|0)*P(w|D)~*), Rewriting the first and the second term in Eq. |1 1as,
q(w|6) 2 P(wD)
T1:1—012/qwelog{ dw; Th,=o? | P(w|D)log dw  (12)
(1= [ a(wl0)log | £ (wID) log |
A detailed derivation of terms 77 and 7% is given in App.[C| Term T is equivalent to the loss function
in Eq. [ multiplied by a constant (1 — a)2.

The term P(w|D) in 7% is intractable as explained in section[2.2] Therefore the JS-G divergence-based
loss function given in Eq.[IT]cannot be used to find the optimum parameter 8* which contrasts the KL
divergence-based loss function in Eq.[5] Similarly, the JS-A divergence-based loss function obtained
through VI is also intractable. We address this issue of intractability in the following subsection.
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3.3 PROPOSED JS DIVERGENCE-BASED LOSS FUNCTIONS FORMULATED THROUGH A
CONSTRAINED OPTIMIZATION APPROACH

To overcome the intractability of the variational inference, we propose to use a constrained optimiza-
tion framework, following |[Higgins et al.|(2017); |Deasy et al.|(2020), to derive JS divergence-based
loss functions for BNNs. We also show that such a loss function is a generalization of the loss
function obtained through the variational inference.

Given a set of training data D, we are interested in learning the probability distribution ¢(w|@) of
network parameters such that, the likelihood of observing the data given the parameters is maximized.
Thus, the optimization problem can be written as

max Eq(w|e) [log P(D|w)] (13)

Where 6 is a set of parameters of the probability distribution ¢(w|@). This optimization is constrained
to make ¢(w|@) similar to a prior P(w). This leads to a constrained optimization problem as given
below:

max Eq(w|e) [log P(D|w)] subject to D(g(w|0) || P(w)) < € (14)
where € is a real number that determines the strength of the applied constraint and D is a divergence

measure. Following the KKT approach, the Lagrangian function corresponding to the constrained
optimization problem can be written as

L = Eq(wie) [log P(D|w)] — A(D(g(w|0) [| P(w)) — €) (15)
Since € is a constant it can be removed from the optimization. Also changing the sign of the above
equations leads to the following loss function that needs to be minimized.

Fp = AD(q(w]0) || P(w)) — Eq(wie) [log P(D|w)] (16)

This loss function reproduces the ELBO loss (Blundell et al.,[2015) when KL divergence is used and
A is taken as 1.

In the following, we obtain loss functions for two JS divergences, namely, the geometric JS divergence,
and the modified generalised JS divergence.

3.3.1 GEOMETRIC JS DIVERGENCE

Using the modified skew-geometric JS divergence (JS-G) as the measure of divergence in Eq.[16]
leads to the following loss function:

Frsa = AIS-G(q(w|0) || P(w)) — Eq(wje) [log P(D|w)] (17a)
=M1 - ) KL(¢ || G, (g, Pw)) +AaKL(P, || G, (¢, Pw)) — Eqwle) [log P(D|w)]
(17b)
Note,
, _ q(w|@) _ q(w[6)
KL(¢ || G\(q. Pu)) = / a(wl0) log gy dW = (1 = ) / a(w16) log p<w> aw
P(w) (w)
( w H Ga q, P, w /P log |9)O‘P(W dW = Oz/P ‘e)dw

Hence, the loss function can be written as,

~ 0 P
-FJSG = )\(l—oz)QEq(w‘g) [log q](DV(VW)):l —|—>\042Ep(w) [log q(V(VWVG))] —Eq(ww) [log P(D|W)] (18)

In Eq. the first term is the the mode seeking reverse KL divergence KL(g(w|0)||P(w)) and
the second term is the mean seeking forward KL divergence KL(P(w)||q(w|@)). Therefore, the
proposed loss function offers a weighted sum of the forward and reverse KL divergences in contrast to
only the reverse KL divergence in ELBO. Whereas the likelihood part remains identical. The relative
weighting between the forward and the reverse KL divergences can be controlled by the parameter a.
The proposed loss function would ensure better regularisation by imposing stricter penalization if the
posterior is away from the prior distribution which will be demonstrated in detail in Sec.[3.4.T} The
parameters A E] and « can be used to control the amount of regularisation.

! The constrained optimization approach-based loss functions are marked by an overhead tilde.
2)\ is taken as 1 for F. 75 in this work unless otherwise stated.
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3.3.2 MODIFIED GENERALISED JS DIVERGENCE

Using the modified Generalised JS divergence (JS-A) as the measure of divergence in Eq.[T6]leads to
the following loss function:

Frsa = AIS-A(g(w]0) || P(w)) — Eq(wjo) [log P(D|w)]

(19)
= M1 —a)KL(q || A4 (g, Pw)) + A KL(P, || AL (g, Puw)) — Eq(wle) [log P(D|w)]
Where, A/ (¢, P,y) = ag + (1 — a) P,,. The above equation, Eq. can be expanded as,
= q(w|6) P(w)
Frsa= A1~ Q)Eq(w\e) [log m + AaEp(w) |log m —Eq(wlo) [log P(D|w)]
(20)

Note that the proposed loss functions in Eq. [I8and Eq. 20]yield the ELBO loss for « = 0 and A = 1.
The minimization algorithms for the loss functions Eq.[I8| and Eq. 20| are given in the App.

3.4 INSIGHTS INTO THE PROPOSED JS DIVERGENCE-BASED LOSS FUNCTIONS

To better understand the proposed JS divergence-based loss functions, we use a contrived example
to compare them against the conventional KL divergence-based loss function. In the following, we
explore the regularization ability of the proposed loss functions. Further insights on Monte Carlo
estimates are given in App.

3.4.1 REGULARISATION PERFORMANCE OF JS DIVERGENCES

Let two Gaussian distributions ¢ = N (pg,02) and P = N (up, 07) represent the posterior and
the prior distribution of a parameter in a BNN. The KL, JS-A, and JS-G divergences are evaluated
by varying the mean and variance of the distribution ¢g. This emulates the learning of the network
parameter during training. Fig.[T|shows that as the posterior distribution (¢) moves away from the
prior distribution (P), the JS divergences increase more rapidly than the KL divergence. In the case
of the JS-A divergence in Fig[Tbland[Id] this is achieved by a higher value of A. This implies that a
greater penalization is offered by JS divergences than the KL divergence as the posterior deviates
away from the prior. Thus, by assuming small values for the means of prior distributions we can
regularize better by the proposed JS divergences. In practice, zero mean Gaussian priors are widely
accepted for BNNs. For such priors, higher penalization of the loss function implies pushing the
parameters’ mean closer to zero while learning the complexity of the data. In doing this, we can
achieve better regularization. This regularization process requires finding optimal values of o and
A through hyperparameter optimization. In the following subsection, we theoretically analyze the
regularization performance of the JS-G divergence.

) 1
15 proeqe— 03 [eKL

S Aac04 rci oJSAa=04, A=l
° ® leJS-A 0 =04, A=10 8 8 [2US-Aa=0.4, A-10
2 2107 lousAa-04 A-20 o2 g [+JS-A.a=0.4, A=20
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Figure 1: Comparison of the KL and the JS divergences of distributions P and q. (a) and (b) ag, s 012,
are fixed and p is varied. (c) and (d) g, tp, 012] are fixed and 03 is varied. The fixed values of the
parameters are y, = 0.1,07 = 0.01, y1, = 0,02 = 0.1

3.4.2 CONDITION FOR BETTER REGULARISATION OF Fj5q

The above example shows that the JS-G divergence is greater than the KL for the given Gaussian
distributions. To generalize it further, we propose the following theorems that hold for any two
arbitrary distributions.
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Theorem 2. For any two arbitrary distributions P and q such that P # q, f 7sc > Fir if and only

: 2 KL(q||P)
ifo > mmaiea € (0.0)

Proof: Assuming, ]-'J5G — Fkr > 0 and from Eq.and Eq. we have,
(1 - @)’KL(q||P) + a”’KL(P||g) — KL(q||P) > 0
(a® — 20)KL(q|[P) + a>KL(P]|q) > 0
This leads to,
. 2KLgP)
KL(q[|P) + KL(P|q)

% . The converse can be proved similarly.

This proves that if F 7sa > Fip then a >
A detailed proof is shown in the App. [F]

Theorem 3. If P = N (u,,07) and q = N(pq,07) are Gaussian distributions and P # q, then

2 KL(q||P) . . 2 2
W(ZKL(PH@ <1 lfandonly;fap >Uq .

< 1, we get
KL(P||g) > KL(q||P) 2D
Since P = N (pup, 07) and ¢ = N(pq, 02), Eq. can be written as,

. . 2KL(q|| P)
Proof: Assuming W(JKL(W

o2 o2+ 2 2 424 N2
ln—g+M_l>ln%+M_l
Tp 9q 9q Ip
2
Denoting v = % we get,
1 1 — Uy 2 _ 2
'y—f—i-lnf—lnfy—k(uq 2#1) _(#p gq) >0
v o2 o
1 1 — 2 1
or, In {2 exp <’y — ﬂ + M <1 — > >0 (22)
v v o2 v
This condition Eq. 22| is satisfied only when > 1, which implies 02 > o2. Thus if

2 KL(q||P) 2 2 . . . .
R P)+KL(PTlg) < 1 then o; > oy . This result is also observed in Fig. The converse can be

proved similarly as shown in App.

Corollary: From Theorem 2 and 3: F s > Fip if o2 > o2 and Vo € (0,1] such that v >

2KL(q||P)

REQIP)RLPT) Where, P and q are Gaussians and P # gq.

4 EXPERIMENTS

In order to demonstrate the advantages of the proposed losses in comparison to the KL loss, we
performed experiments. We have implemented the divergence part of the JS-G loss and the JS-A loss
via a closed-form expression and a Monte-Carlo method respectively, in these experiments.

4.1 DATA SETS

The following experiments were performed on two data sets: the Cifar-10 data set (Krizhevsky et al.|
2009) and a histopathology data set (Janowczyk & Madabhushi, 2016} |Cruz-Roa et al.,|2014; [Paul
Mooney, |2017). To demonstrate the effectiveness of regularisation, varying levels of Gaussian noise
were added to the normalized Cifar-10 data set for training, validation, and testing. We also used a
histopathology data set which is highly biased towards one class. Further details on these data sets
and the pre-processing steps used here are provided in App.
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4.2 HYPERPARAMETER OPTIMISATION AND NETWORK ARCHITECTURE

Hyperparameters for all the networks considered here are chosen through hyperparameter optimiza-
tion. A Tree-structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) is used which is a
sequential model-based optimization approach. A python library Hyperopt (Bergstra et al., [2013))
is used to implement this optimization algorithm over a given search space. An optimization is per-
formed to maximize the validation accuracy for different hyperparameter settings of the network. The
results of the hyperparameter optimization are given in App.[ll The architecture of all the networks
used in this work follows the ResNet-18 V1 model (He et al.,[2016) without the batch normalization
layers. The network parameters are initialized with the weights of ResNet-18 trained on the Imagenet
data set(Krizhevsky et al., [2012).

5 RESULTS AND DISCUSSIONS

This section presents the classification results and the performance comparison between the KL
loss and the proposed JS losses. Performance evaluations on the Cifar-100 dataset along with the
comparison between the proposed losses and deterministic networks, AKL loss, and unaltered versions
of JS divergences are provided in App.[J]] Computational costs of the losses are compared in App. K]

5.1 TRAINING AND VALIDATION

Three Bayesian CNNs were trained by minimizing the KL loss and the proposed JS losses. Training
of the networks is done until the loss converges or the validation accuracy starts to decrease. Training

wwwww
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= ‘Q-E—E--ﬂ--ﬂ—ﬁ--ﬂ--ﬂ-E-G--B-B-E—-E--B-E—E-'E

0.2 [F¥" [+Training: JS-G  +Training: KL _ *Training: JS-A 0.9 ¢
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Figure 2: Training and validation of (a) Cifar-10 with added Gaussian noise (b) histopathology data
set with bias.

of the Cifar-10 data set is performed with varying levels of noise intensity. Accuracy of training and
validation sets for noise N'( = 0,0 = 0.9) is presented for both KL loss and the proposed JS losses
in Fig. [2a] For the histopathology data set, a learning rate scheduler is used during training in which
the learning rate is multiplied by a factor of 0.1 in the 4th, 8th, 12th, and 20th epochs. Fig. |7_5| shows
the accuracy of training and validation of the histopathology set for the KL loss and the proposed JS
losses. It is evident that the KL loss learns the training data too well and fails to generalize for the
unseen validation set on both data sets. Whereas, the proposed JS losses regularise better and provide
more accurate results for the validation set.

5.2 TESTING

Results obtained on the test sets of the Cifar-10 data set and the histopathology data set are presented
in this section. The test results correspond to the epoch in which the validation accuracy was
maximum. Five runs were performed with different mutually exclusive training and validation tests
to compare the results of the KL loss and the proposed JS losses. The accuracy of the noisy Cifar-10
test data set at varying noise levels is presented in Fig. [3aJand Fig.[3b] It is evident that the accuracy
of both the proposed JS losses is better than KL for all the noise level cases. Further, the difference in
accuracy between KL loss and the JS losses shows an increasing trend with increasing noise levels.
This demonstrates the regularising capability of the proposed JS losses. The results of the five runs
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Figure 3: Accuracy on (a) and (b) the Cifar-10 test data at different noise levels (c) histopathology test
data. Each box chart displays the median as the center line, the lower and upper quartiles as the box
edges, and the minimum and maximum values as whiskers. (d) ROC curves and (e)-(g) Confusion
matrices for different losses for the histopathology data set.

of the KL loss and the proposed JS losses on the biased histopathology data set are compared in
Fig.[3c| It is evident that both the proposed JS losses perform better than the KL loss in all five runs
with different training and validation sets. Since this data set is biased toward the negative class, the
improvement in performance shown by the proposed JS losses is attributed to better regularisation
and generalization capabilities of the loss functions. The receiver operating characteristic (ROC)
curve is plotted in Fig. [3d]for the classification of the histopathology data set. The proposed JS losses
perform better than the KL loss in terms of the area under the curve (AUC).

The confusion matrices in Fig[3e}3g|show that in addition to improving the accuracy of predictions,
the proposed JS-G and the JS-A losses reduce the number of false negative predictions by 11.7% and
12.8% respectively, as compared to the KL loss. Given that the data set is biased towards the negative
class, this is a significant achievement.

6 LIMITATIONS

The proposed loss functions have two additional hyperparameters that need to be optimized to realize
their full potential, which increases computational expenses. Whenever such expenses can not be
afforded, the parameters can be set to the fixed values o = 0 and A = 1 to recover the KL loss.

7 CONCLUSIONS

We summarize the main findings of this work in the following. Firstly, the bounded JS-A divergence
introduced in this work resolves the issue of unstable optimization associated with KL divergence-
based loss functions. Secondly, we introduced two novel loss functions for Bayesian neural networks
utilizing JS divergences through a rigorous theoretical formulation. The proposed loss functions
encompass the KL divergence-based loss and extend it to a wider class of symmetric and bounded
divergences. Thirdly, better regularization performance by the proposed loss functions compared
to the state-of-the-art is established analytically and numerically. Fourthly, empirical experiments
on standard data sets having bias or with various degrees of added noise, demonstrate performance
enhancement by the proposed loss functions in comparison to the existing methods.
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A DIVERGENCES
Two distributions, P(z) = N(0,1) and g(x) = N(1, 1) are shown in Fig.[d|along with the divergence

as a function of x. The area under the curve shown as a shaded region is the area to be integrated to
obtain the divergence.
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Figure 4: Depiction of KL, JS-G, and JS-A divergences for two Gaussian distributions. The area
under the curves is the value of the divergences.

B PROOF OF THEOREM 1

Theorem 1: Boundedness of the modified generalized JS divergence
For any two distributions P (t) and Py(t), t € §), the value of the divergence JS-A is bounded such
that,

IS-A(P1(1)||P2(t) < —=(1 — @) loga — alog(1l — «), fora € (0,1)
Proof:

P
IS-A(P||P2) = (1 — «) /Pllog—dt—l-a/Pglog—dt

A/
Py
= A [(1—a)=—1o 1
J =g o s

/QA; [(1; )01‘421 (1 goj 1oga> + (1f‘a) (1_,42)]32 (1og(1;1?‘)P2—1og(1—a)>} dt

(03

= [ -(1-a)P, logadtf/ aPylog(l —a) dt —
Q

/QA’“[(l_a)H(ﬁ'Dl)+< ()
E ;loga—alog(l—a) 1

e

loga — alog(l — «)

Where, H(f(t)) = —f(t)log f(t) and H = [,, A, [“%_;’)H (Ojf) + i H (“;@PZ)} dt
Note, H(f(t)) > 0; Vf(t) € [0,1]. Therefore, H > 0; VYt e Q

The unboundedness of the KL and the JS-G divergences is depicted through a contrived example in
Fig.[5] The distribution g, where ¢ = A (0, o), is assumed to be a Gaussian with varying o. The
distribution P, where P = U(—5,5), is assumed to be a uniform distribution with support (-5,5).
The distributions g and p are shown in Fig. @ The KL, the JS-A, and the JS-G divergence of the two
distributions g and P are evaluated using 50,000 Monte Carlo samples each. The value of the KL and
the JS-G divergence explodes to infinity when the distribution p is zero for a non-zero ¢ due to the
effect of log(¢q/P). In contrast, the JS-G divergence is always bounded. This can be seen in Fig.

Numerical examples depicting Theorem-1 are shown in Fig. @ Two distribution ¢ = M (p, 1) and
P = N(0,1) are considered. The JS-A divergence is evaluated for varying u. The value of the

12
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Figure 5: Depiction of the unboundedness of the KL and JS-G divergence and the boundedness of
the JS-A divergence.
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JS-A divergence increases with increasing  until the upper bound is reached and it remains constant

henceforth as seen in Fig. [6]

C INTRACTABILITY OF JS-BASED VI

The JS-G loss is given as
Frsa(D,0) = IS-G[q(w]0) || P(w|D)]

23
~ (1 @KL (g || G, (4. P)) + oKL (P | G, (g, P)) =
Where, G, (¢, P) = q(w|0)*P(w|D)1~),
Rewriting the first term in Eq.[23]as,
Ty = (1 - )KL (¢ G, (g, P))
= (1 —a)K L[g(w|6)||a(w|6)* P(w|D)" ]
q(w|0) ]
=(1-« / w|0) lo [ dw
(=) Jatvi®os | ooyig)Pwiby—=
12 q(w|6)
=(1-a) /q(w|0) log |:P(W]D)) dw (24)
Similarly rewriting the second term in Eq.[23]as,
T, = oKL (P || G, (g, P))
= aKL[P(w|D)||q(w|6)* P(w|D)" ]
P(wD)
= P(w|D) I d
o f Potoos | ey |
P(w|D)
=a? [ P(w|D)l 2
o [ PwiD)log | T es)
The term T3 is intractable due to the posterior distribution P(w|D).
D MINIMISATION OF THE PROPOSED LOSS FUNCTIONS
The proposed loss functions are of the form:
Fisa = AIS-G(g(w0) [| P(w)) — Eq(we) [log P(D|w)] (26)
w0 P(w
= A(1 = a)’Ey(wlo) [log q](D (W))] + A’Ep(w) [log q(V(VB))] — Ey(w|o) [log P(D|w)]
27)
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and,
Frsa = AIS-Alq(w|0) || P(W)) — Eq(we) [log P(D|w)] (28)

0 P
= )\(1 — a)Eq(w‘g) |:10g A?oé((v(;ljgl)] + )\OéEp(w) |:10g /%Z(C(L%:l — Eq(w|9) [lOg P(D‘W)]
(29)

Where, A/ (q, P,y) = ag+ (1 — a)P,,.

Note that when training using mini-batches, the divergence part of the loss function is normalized by
the size of the minibatch (M). Therefore, loss for the minibatch ¢ = 1,2, 3, ..., M can be written as,
A

Fi = 57 D(a(w]6) || P(w)) — Ey(wjo) [log P(Di|w)] (30)

D.1 EVALUATION OF THE JS-G DIVERGENCE IN A CLOSED-FORM

Algorithm 1 Minimization of the JS-G loss function: Closed-form evaluation of the divergence

Initialize p, p
Evaluate JS-G term of Eq.[26]analytically using Eq.
Evaluate (o) [log P(D|w)] term of Eq.
Sample g; ~ N (0,1);4 = 1, ..., No. of samples
w; < p+log(l 4 exp(p)) o &;.
fi & 32, log P(Dlw;)
Loss:

F« \SG— f

Gradients:
F F F
o0 L o
5~ L b T 9
Update
B =B p—2p gj

In this subsection, we describe the minimization of the JS-G divergence-based loss function by
evaluating the divergence in closed form for Gaussian priors. Assuming the prior and the likelihood are
Gaussians, the posterior will also be a Gaussian. Let the prior and posterior be diagonal multivariate
Gaussian distributions denoted by Py (w|6) = N (u2, £3) and gy (W) = N (p1, 29) respectively
Pl The closed-form expression of the JS-G divergence between gy (w) and Py (w|6) can be written

as,
RS (1 - a)af; + ags; (00:)
JS‘G(QNHPN):§Z o2 +10gm
i=1 o O1i 02 (31)
(o — mi)® | oy, — p2i)®
+(1-a) (o )2 + CAE -1

3 Where the subscript () v indicates Gaussian distribution. g1 and g are n-dimensional vectors and X2,

32 are assumed to be diagonal matrices such that g1 = [p11, p12, ...pln]T and X% = diag(a%h 02,, ..,Ufn)
(similarly for po and X3).
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where,
2 2

2 _ 71:09; . _ 2 i 1—a)pa;
(0hi)* = ot s = (0 [+ U]
Therefore, the divergence term of the proposed loss function, the first term in Eq.[26] can be evaluated
by this closed-form expression given in Eq.[31} The expectation of the log-likelihood, the second
term in Eq. can be approximated by a Monte-Carlo sampling ﬂ The details of the minimization
process are given in Algorithm|[I] Note, for sampling w; the reparametrization trick is used to separate
the deterministic and the stochastic variables.

D.2 EVALUATION OF DIVERGENCES VIA A MONTE CARLO SAMPLING

Algorithm 2 Minimization of the JS-G and JS-A loss functions: Monte Carlo approximation of the
divergence

Initialize u, p

Approximate E,,|g) terms of Eq.[27 or Eq.
Sample €/ ~ N(0,1);i = 1,...,No. of samples
w! <+ p+log(l+ exp(p))oel.

Evaluate first and third terms of Eq.
f1 < Y c1logg(wl|0) — c1log P(w]) —log P(D|w])
where, ¢; = A\(1 — a)?

(or)
Evaluate first and third terms of Eq.
fi 32 cilogq(w]|0) — c1log Ao (W) — log P(D|w{)
where, ¢c; = A(1 — «

Approximate Ep ., terms of Eq.[27 or Eq.
Sample w¥ ~ P(w); j = 1,...,No. of samples

Evaluate second term of Eq.
fo 32, c2log P(WF) — c2log g(w?|6)
where, c; = Aa?

(or)

Evaluate second term of Eq.
Jo = 32, ealog AL (W) — c5log g(w”|6)
where, c; = Aa?

Loss:
F« fi+fo
Gradients:
oF - oF n oFr
o - owl O
oF oF € oF

_ % _
op - owl 1+ exp(—p) + Op
Update:

OF
uﬁu—ﬂ@, p%p—ﬁafp

*The approximations to the loss functions are denoted by F
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In this subsection, we describe the minimization of the JS divergence-based loss functions by
evaluating the divergences using the Monte Carlo sampling technique. The algorithm provided in
this subsection is more general as it is applicable to both the JS-G and the JS-A divergences with no
restrictions on the priors. The loss functions given in Eq.[27)and Eq.[29)can be approximated using
Monte Carlo samples from the corresponding distributions as shown in Algorithm 2}

E INSIGTHS INTO MONTE CARLO ESTIMATES

A closed-form solution does not exist for KL and JS divergences for most distributions. In cases
where such a closed-form for the divergence is not available for a given distribution, we resort to
Monte Carlo (MC) methods. However, the estimation of the loss function using MC methods is
computationally more expensive than the closed-form evaluation as shown in[7] In addition, for
networks with a large number of parameters, the memory requirement increases significantly with
the number of MC samples. Therefore, utilizing the closed-form solution when available can save
huge computational efforts and memory.

To estimate the number of MC samples required to achieve a similar level of accuracy of the closed-
form expression, JS-G divergence of two Gaussian distributions A (5, 1) and A/ (0, 1) are evaluated
and compared with its closed form counterpart. Fig. [7]shows the results of the comparison. It is seen
that at least 600 samples are required to estimate the JS-G divergence within 5% error. This implies
evaluating the loss function 600 times for a given input and back-propagating the error which requires
huge computational efforts.

;MC estimate
10 —Closed form
- 5% error
()
2 | '
(0] i -H- e 3
= “ m JM]) "i HIV.‘IAH. “I\‘m 0Ll AL B A | b A G s L b
q>) ‘ |’||'\ ‘“H '1 I ‘| ' " | LIy Bl !]HY ' 4] N \ || \ Wi
ko] st Jufhi - - ‘ L e I L O -
Q
n
r)
7 B
0 200 400 600 800 1000

MC samples

Figure 7: Comparison of MC estimates and the closed form solution of JS-G divergence demonstrating
the benefit of closed form solution.

F DETAILED PROOF OF THEOREM 2

Theorem 2. For any two arbitrary distributions P and q such that P # g, fJ-SG > Fir if and

. 2 KL(q||P)

Proof:
Assuming,

Frsc — Fxr >0
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From Eq.(5) and Eq.(18) from the main text we have,
(1 - a)’KL(ql|P) + a’KL(P||g) — KL(q||P) > 0
(a — 20)KL(gl|P) + a’KL(P]|q) > 0
This leads to,

2KL(¢||P)

~ KL(q[[P) + KL(P||q)

2 KL(q||P)
KL(q[[P)+KL(P][q) *

This proves that if fJSG > Fkr then o >

2KL(q||P)

Conversely, assuming o > r, where r = RE(IIP)+RL(PTq)» e get
o [KL(g||P) + KL(P||q)] — 2KL(g]|P) > r [KL(gl|P) + KL(P[lg)] — 2KL(g||P)  (since a > 1)
o [KL(q||P) + KL(P||¢)] — 2KL(q||P) > 0 (substituting r on the right hand side)
o? [KL(q||P) + KL(P||q)] — 2a KL(q||P) > 0 (since o > 0)

(e — 2a)KL(q||P) + o*KL(P||q) > 0
(1 — )®KL(q||P) + o®KL(P||q) — KL(q||P) > 0

Frsa — Fxr >0

2KL(q||P)

REQIIP) KL P9 then F;sc > Fir. Hence the theorem is proved.

This proves that if o >

Note that, since KL divergence is always non-negative for any distributions and P # ¢, we have

2KL(q]|P)
RL(a1P)+KL(PTg) > ©

G DETAILED PROOF OF THEOREM 3

Theorem 3. If P = N (up,03) and q = N (g, 0;) are Gaussian distributions and P # q, then

2 KL(q||P) . .
W(II(L(PH(]) < 11fand0nlylf0§ >0'3.

Proof:
Assuming,
2 KL(q]|P)
KL(q||P) + KL(P|q)
‘We have,

KL(Pllq) > KL(q|[P) (33)

Since P and g be Gaussian distributions with P = N (1, O’%) and ¢ = N (g, 03), Eq. can be
written as,

op oyt (g — pp)? oy ox+ (up — p1g)?
q P q P P q P q
p q q p
2 2 2 2
% %1 W) a0 ()
o2 o2 o2 o2 o2 o2
a P a P q P
2
Denoting v = _%, we get,
2 2
’Y**Jrlnf—ln'er(uq 2#13) (1p élq) >0
q V04
1 — 2 1
e Bl (1Y
oF ~y
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or,

)2
In {12 exp (’y - 1)} + 7(% 2#1)) (1 - 1) >0 (34)
v v o v

q

The second term of Eq.[34]is greater than 0 only when v > 1. Consider the first term,

1 1
In {2exp (’y—)] >0
Y Y

1 1
—exply——-|>1
g v

1

5z €xp (’y — %) = 1 for v = 1 and it is a monotonically increasing function for v > 1. This can be

or,

seen from its positive slope

Lo (-0 = e (- 0) < (1) - Sew (o)

— | > ex —— || ==& - = — | — < ex - =

dy [ 2 v v? v 72 73 ¥
1

>0 fory #1

Therefore, the first term of Eq. [34]is greater than 0 only when y > 1. Thus, the condition in Eq. [34]is
satisfied only when v > 1, which implies

05 > Uq2 35)
: 2KL(q||P) 2 2
Thus if KL(qHP)fKL(PHq) < ltheno, >0y .

Conversely, assuming o7 > o2, i.e. v > 1 consider,
1 1 — 1) 1
In [Qexp (’y—)] —&-M (1—) >0
v v o2 v

KL(P||q) > KL(¢||P) (following the steps as above)

Which leads to,

or,

KL(Pllg) + KL(¢||P) > KL(q||P) + KL(q||P)
2KL(q||P)

KL(P[lg) + KL(q|P) ~

Thus if ag > 02 then 2 KL(q|| P) 5 < 1. Hence the theorem is proved.

KL(¢||P)+KL(P[lq

Corollary: From Theorem 2 and 3: Frsa > Fxr if 012, > 03 and Vo € (0,1] such that o >

2KL(q||P) .
RLQ[P)+RL(PIg) " Wherf, P and g are Gaussians and P # q.
Fig. @ shows the sign of F;5a — Fk, for various values of o and 0, —0,. Two Gaussian distributions

P = N(0,1) and ¢ = N(0, 52) are considered for this purpose. It is evident that at least one value
of « exists such that F, 7s¢ — Frr > 0 when 0, > o0,. In addition, for o« = 0 or 0, = 0oy,
Fisa = FKL-
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+ve

Figure 8: The sign of F 75c¢ — FK 1 is plotted for various values of o and o, — 0.

H DATA SETS

H.1 CIFAR-10

The Cifar-10 data set|Krizhevsky et al.[{(2009) consists of 60,000 images of size 32 x 32 x 3 belonging
to 10 mutually exclusive classes. This data set is unbiased, with each of the 10 classes having 6,000
images.

Images were resized to 3 x 224 x 224 pixels and normalized using the min-max normalization
technique. The training data set was split into 80% 20% for training and validation respectively.

H.2 HISTOPATHOLOGY

The histopathology data set Janowczyk & Madabhushi| (2016)); |Cruz-Roa et al.[(2014) is publicly
available under a CCO license at|Paul Mooney| (2017). The data set consists of images containing
regions of Invasive Ductal Carcinoma. The original data set consisted of 162 whole-mount slide
images of Breast Cancer specimens scanned at 40x. From the original whole slide images, 277,524
patches of size 50 x 50 x 3 pixels were extracted (198,738 negatives and 78,786 positives), labeled
by pathologists, and provided as a data set for classification.

The data set consists of a positive (1) and a negative (0) class. 20% of the entire data set was used as
the testing set for our study. The remaining 80% of the entire data was further split into a training
set and a validation set (80%-20% split) to perform hyperparameter optimization. The images were
shuffled and converted from uint8 to float format for normalizing. As a post-processing step, we
computed the complement of all the images (training and testing) and then used them as inputs to the
neural network. The images were resized to 3 x 224 x 224 pixel-wise normalization and complement
were carried out as p, = (255 — p)/255. p is the original pixel value and p,, is the pixel value after
normalization and complement.
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I RESULTS OF HYPERPARAMETER OPTIMIZATION

Results of the hyperparameter optimization for the two data sets are presented in Tables. [2]and [3] In
Table. 2] Div denotes the divergence measure and LR is the learning rate. X is taken as 1 for the JS-G
divergence-based loss function throughout this work.

Table 2: Cifarl0 data set
Noise level (o)

Div  Parameter
0.1 0.2 0.3 04 0.5
KL LR le—4 le—4 le—4 le—3 le—3
1S-G « 0.004 0.1313 0.2855 0.3052 0.2637
LR le—4 le—4 le—4 le—4 le—5
A 1000 1000 1000 1000 1000
JS-A « 0.7584 0.6324 0.1381 0.6286 0.1588
LR le—4 le—4 le—4 le—3 le—4
Div  Parameter Noise level (o)
0.6 0.7 0.8 0.9
KL LR le—3 le—3 le—3 le—3
1S-G « 0.2249 0.3704 0.3893 0.7584
LR le—4 le—4 le—5 le—3
A 100 1000 led leb
JS-A « 0.4630 0.1220 0.2282 0.5792
LR le—3 le—4 le—5 le—5

Table 3: Histopathology data set

Divergence o A Learning rate
KL - - le—4
JS-G 0.0838 1 le—4
JS-A 0.0729 100 le—4

J  ADDITIONAL EXPERIMENTS

We performed additional experiments to evaluate the performance of the proposed loss functions
against various baselines. The results of these experiments are presented here.

J.1 DETERMINISTIC NETWORKS

Bayesian CNNs with the proposed loss functions are compared with a deterministic CNN of the same
architecture and the results are presented in Fig.[9] The deterministic CNN significantly overfits the
training data and hence generalizes poorly for the validation dataset. Whereas, the Bayesian CNNs
with their stochastic parameters can regularize much better than their deterministic counterparts. The
validation accuracy of the deterministic CNN is about 8% lower than the proposed BNNs and 5%
lower than the KL-based BNN. The difference between the training and validation accuracies are
63% and 86% less in KL- and JS-based BNNs respectively compared to the DNN, affirming greater
generalization by KL- and JS-based BNNs.
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Figure 9: Performance of a deterministic CNN on Cifar-10 dataset with added Gaussian noise
Np=0,0=0.9).

J.2  UNMODIFIED JS DIVERGENCES

The unmodified JS divergences in Eq. [I] and Eq. [2] fail to capture the dissimilarity between two
distributions in the limiting cases of « as explained in the main text. However, we implemented these
unmodified JS divergences in the loss function in Eq.[T6and compared their performance with the
modified versions for completeness. From Fig. [I0]it is evident that the modified JS divergences-based
losses outperform the unmodified JS divergences-based losses on the histopathology dataset. The
validation accuracy is less by about 3% and 2% for the unmodified JS divergences in Eq.[T]and Eq.2]
as compared to the modified ones respectively.

1
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Figure 10: Performance of unmodified divergences (UJS) on histopathology

J.3 X\ KL BASELINE

Implementing KL divergence in the constrained optimization framework (Eq. [T6) yields a loss
function which is henceforth called the AKL baseline. We performed hyperparameter optimization on
this baseline to tune the hyperparameters. The results of the AKL baseline with the best-performing
hyperparameters are presented in Fig. [T} We found that the maximum validation accuracy is 40.12%
for this baseline on the Cifar-10 images with sigma=0.9. This validation accuracy is higher than the
ELBO loss, which is 39.72 %, which corresponds to lambda=1. However, it is still less than the
proposed JS loss, which has a maximum validation accuracy of 41.78%. In addition, for the lambda
KL baseline, the regularization performance improves with lambda=68.9 although there are broad
regions (between 20 to 90 epochs) where the network overfits.

The improved performance of JS divergences is a result of optimal penalization when the posterior
is away from the prior. The functional form of the regularization term is now changed since the JS
divergence is a weighted average of forward and reverse KL divergences. Through the alpha term
of JS divergence, we can choose the optimal weights between the forward and reverse KL which is
not present in the standard KL divergence. This combination of forward and reverse KL divergence
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allows us to alter the shape of the multi-dimensional regularization term by adapting to the data,
which is not possible to achieve by scalar multiplication of the regularization term.

Accuracy
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% Training: KL ‘B Validation: JS-A

1 1 1 1 1 1 1
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Figure 11: Performance of the A KL baseline for A = 68.9.

J.4 CIFAR-100 DATASET

The Cifar-100 data set |[Krizhevsky et al.| (2009) consists of 60,000 images of size 32 x 32 x 3
belonging to 100 mutually exclusive classes. Experiments on this dataset were carried out to evaluate
the performance of the loss functions. The images were normalized using the min-max normalization
technique and the training data set was split into 80% 20% for training and validation respectively.
For this dataset, a ResNet18-V1 type architecture without the batch norm layers was used where the
first two layers ( convolution and max pooling layer) are replaced with a single convolution layer
with 3x3 kernel and 1x1 stride.

The results of the experiment are presented in Fig.[T2] The test accuracies of KL, JS-G, and JS-A
divergence-based losses were 22.81 %, 24.51 %, and 24.02 % respectively. Both the proposed JS
divergence-based losses perform better than the KL loss in terms of test and validation accuracies. The
regularization performance of the JS-A divergence was better than KL for this noise level. However,
in terms of regularization the KL divergence performs better than the JS-G divergence for this dataset
at the given noise level.
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Figure 12: Performance comparison of the KL, JS-G, and JS-A divergence-based loss functions with
Cifar-100 dataset with added Gaussian noise N' (¢ = 0,0 = 0.5).

J.5 UNCERTAINTY QUANTIFICATION

We performed UQ on the histopathology images by the standard BNN and proposed JS divergence-
based BNNs. The means of the total uncertainties quantified by the JS-G and JS-A divergence-based
BNNSs are 74% and 29% greater than the KL-based BNN. However, these results need to be further
analyzed to study the difference between the two.
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Figure 13: Comparison of the evolution of training loss for the histopathology dataset

K COMPUTATIONAL COST

All the convolutional neural networks presented in the paper were built on Python 3 using Apache
MXNet with CUDA 10.2. Training, validation, and testing of all the networks were performed using
the Nvidia Tesla V100 32GB GPUs.

A comparison of the computational time per epoch during training of the histopathology dataset is
provided for the three loss functions in Table.[d The number of MC samples for the KL divergence
and JS-A divergence-based loss functions was taken as 1. Thus, the computational effort is almost
equal for the MC sampled KL divergence and the closed-form evaluated JS-G divergence. Whereas,
to evaluate the JS-A divergence both the prior and the posterior distributions of the parameters
need to be sampled. Due to this, there is an increased computational effort to evaluate the JS-A
divergence-based loss function which is reflected in the increased computational time in Table.

Table 4: A Comparison of computational time for the three loss functions.

Divergence Training Time per epoch (s)

KL 1140
JS-G 1168
JS-A 1856

L EVOLUTION OF THE LOSS FUNCTIONS

The evolution of the divergence and negative log-likelihood part of the loss function during optimiza-
tion is shown in Fig. [I3]for the histopathology dataset. It is to be noted that the values are normalized
by the number of test samples. The results are aligned with the theoretical results that the JS-G
divergence penalizes higher than the KL divergence when the distribution q is farther from p. It is
also seen that the negative log-likelihood is higher for the JS-G divergence as compared to the KL,
divergence in training. However, for the test dataset, the negative log-likelihood is lower for the JS
divergences than the KL divergence which is desirable.

M OTHER PERFORMANCE EVALUATION METRIC

In this section, we compare the Test NLL, Test loss, and expected calibration error for the three losses
for the histopathology dataset. From Table. [5]It is observed that the proposed JS divergences perform
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better in terms of both ECE and negative log-likelihood than the KL divergence for the histopathology
dataset. Note that the test loss and test NLL are normalized by the number of test samples. The JS-A
loss is significantly higher because of the value of A = 100.

Table 5: Performance comparison for the three loss functions.
Divergence Test NLL. Testloss ECE

KL 0.0810 177.6 0.0323
JIS-G 0.0706 201.2 0.0158
JS-A 0.0689 15151.3  0.0091

N EXPERIMENTS ON REGRESSION

Regression experiments on multiple datasets are conducted following the framework of (Wan et al.|
2020; |L1 & Turner, |2016). The network architecture is a single layer with 50 hidden units and ReLU
activation function. We assume the priors to be Gaussians p ~ N(0, I) and 100 MC approximations
are used to calculate the NLL part of the loss function for the KL and JS-G divergence-based losses,
and 10 MC samples are used to evaluate the JS-A divergence based loss. The likelihood function
is Gaussian with noise parameter o which is also learned along with the parameters of the network.
Six datasets (Airfoil, Aquatic, Building, Concrete, Real Estate, and Wine) are evaluated and they are
split into 90% and 10% for training and testing respectively. 20 trails are performed for each of these
datasets and the average test root mean squared error and average negative log-likelihood for the JS
divergences are compared with those models tested in (Wan et al., [2020). The results are provided in
Table [6]and [7]

Table 6: Average root mean squared error. Except JS-G and JS-A all other values are taken from
(Wan et al.| [2020)

Dataset IS-G JS-A KL-VI x-VI

Airfoil 222425 232419 2.16+.07 236+.14
Aquatic 1.63£.19  1.13£.13  1.12+.06  1.20+.06
Boston 3.34+88 291+0.73 2.76£.36  2.99+.37
Concrete 5.10£.67 4.88+£.63  540+.24  3.32+.34
Real Estate  6.77+£1.08 7.37£2.33 7.48+1.41 7.51£1.44
Yacht 0.82+£0.35 0.69+.25 0.78+.12 1.18+.18

Dataset a-Vi TV-VI fa-VI fe2-VI

Airfoil 2.30+.08  2.47+£.15  2.34£.09  2.16+.09
Aquatic 1.14£.07 1.23£.10 1.14£.06 1.14£.06
Boston 2.86+.36 296+.36 2.87£36  2.89+.38
Concrete 5.32+£.27 527£24  5.26£.21 5.32+.24
Real Estate 7.46+£1.42 8.02£1.58 7.52£1.40 7.99+£1.55
Yacht 0.99+£.12 1.03+.14 1.00£.18  0.82+.16
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Table 7: Average negative log-likelihood. Except JS-G and JS-A all other values are taken from (Wan
et al.| [2020)

Dataset IS-G JS-A KL-VI x-VI

Airfoil 222+£.09 2.724+.10 2.17+£.03 2.27+.03
Aquatic 1.94£.13 1.78+.23 1.54+.04 1.60+.08
Boston 2.69£.31 33£1.12 249+.08 2.54+.18
Concrete 3.1+.17  3.11+£20 3.10£.04 2.61+.18
Real Estate  3.49+.06 3.56+.20 3.60+.30 3.70+.45
Yacht 1.51£.15 1.43+0.09 1.70+£.02 1.79+.03

Dataset a-Vi TV-VI fe-VI fea-VI

Airfoil 2.26+.02 228+.04 2.29+.02 2.18+.03
Aquatic 1.54£.07 1.56+.07 1.54+£.06 1.55%+.04
Boston 248+.13 251418 249+.13 2.51+.10
Concrete  3.09+.04 3.10£.05 3.09+£.03 3.10+.04
Real Estate 3.59+.32 3.86+.52 3.62+.33 3.74+.37
Yacht 1.82+.01 1.78+£.02 2.05+.01 1.86+.02
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