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Abstract

While general-purpose large language models (LLMs) demonstrate profi-
ciency on multiple tasks within the domain of translation, approaches based
on open LLMs are competitive only when specializing on a single task. In
this paper, we propose a recipe for tailoring LLMs to multiple tasks present
in translation workflows. We perform continued pretraining on a multi-
lingual mixture of monolingual and parallel data, creating TOWERBASE,
followed by finetuning on instructions relevant for translation processes,
creating TOWERINSTRUCT. Our model surpasses open alternatives on sev-
eral relevant tasks and is competitive with general-purpose closed LLMs.
We will release the TOWER models, our specialization dataset, an evalu-
ation framework for LLMs focusing on the translation ecosystem, and a
collection of model generations on our benchmark.

1 Introduction

Many important tasks within multilingual NLP, such as quality estimation, automatic post-
edition, or grammatical error correction, involve analyzing, generating or operating with
text in multiple languages, and are relevant to various translation workflows — we call these
translation-related tasks. Recently, general-purpose large language models (LLMs) chal-
lenged the paradigm of per-task dedicated systems, achieving state-of-the-art performance
on several recent WMT shared tasks (Kocmi et al., 2023; Freitag et al., 2023; Neves et al.,
2023). Unfortunately, strong capabilities for multiple translation-related tasks have so far
been exhibited by closed LLMs only (Hendy et al., 2023; Kocmi & Federmann, 2023; Fernan-
des et al., 2023; Raunak et al., 2023). Perhaps because most open LLMs are English-centric,
approaches leveraging these models still lag behind, having thus far achieved competitive
results only when specializing on a single task (Xu et al., 2024a; 2023; Iyer et al., 2023).

Figure 1: Illustration of our method for building TOWERBASE and TOWERINSTRUCT.

In this paper, we bridge this gap with a detailed recipe to develop an LLM for multiple
translation-related tasks. Our approach, illustrated in Figure 1 and inspired by Xu et al.
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Figure 2: Translation quality for TOWERINSTRUCT and a collection of open and closed
models. GPT models’ scale is unknown so we represent them with a horizontal line.
TOWERINSTRUCT outperforms larger open alternatives and is competitive with GPT models.

(2024a), relies on three steps. First, we extend LLaMA-2’s (Touvron et al., 2023b) multilingual
capabilities through continued pretraining, creating TOWERBASE (§2.1). Importantly,
while Xu et al. (2024a) exclusively employ monolingual data, we include parallel data
as an additional cross-lingual signal. Second, we curate a dataset to specialize LLMs for
translation-related tasks, TOWERBLOCKS (§2.2). Third, we perform supervised finetuning to
obtain an instruction-following model for the field of translation, TOWERINSTRUCT (§2.3).

We extensively evaluate all our models, comparing with open and closed alternatives on a
wide range of tasks (§3). TOWERINSTRUCT consistently achieves higher translation quality
than open alternatives and is competitive with the closed GPT-4 and GPT-3.5-turbo models —
see Figure 2. Additionally, TOWERINSTRUCT outperforms open models in automatic post-
edition, grammatical error correction, and named entity recognition. Careful ablations also
outline the influence of each element in our recipe (§4). We highlight the importance of
adding parallel data during continued pretraining for improved translation quality, and the
effectiveness of including conversational and coding data on TOWERBLOCKS.

Accompanying this work, we release 1) the TOWER family, comprising our TOWERBASE
and TOWERINSTRUCT models in the sizes of 7B and 13B; 2) our specialization dataset
TOWERBLOCKS; 3) TOWEREVAL, the evaluation framework for LLMs for translation-related
tasks that we used to perform all evaluations in this paper; and 4) a collection of model
generations for our benchmark to ensure reproducibility and encourage future exploration.1

2 TOWER: An Open Multilingual LLM for Translation-Related Tasks

Our backbone language model is LLaMA-2 (Touvron et al., 2023b), which is very competitive
on a wide range of tasks. Nevertheless, it was trained on relatively little non-English data,
limiting its potential for multilingual tasks. We alleviate this effect by continuing LLaMA-2’s
pretraining on a highly multilingual corpus (§2.1). Afterwards, we finetune our continued
pretrained model on a specialization dataset (§2.2), obtaining an instruction-following model
centered around translation (§2.3).

2.1 TOWERBASE: Extending the multilingual capabilities of LLaMA-2

We extend LLaMA-2’s training on a highly-multilingual dataset comprising 20 billion tokens
— measured with the model’s tokenizer — for 10 languages: English (en), German (de),
French (fr), Dutch (nl), Italian (it), Spanish (es), Portuguese (pt), Korean (ko), Russian (ru),

1Links for the TOWER models; TOWERBLOCKS; TOWEREVAL; Zeno (Cabrera et al., 2023) project
with model generations.

2

https://huggingface.co/collections/Unbabel/tower-659eaedfe36e6dd29eb1805c
https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1
https://github.com/deep-spin/tower-eval
https://hub.zenoml.com/project/fd13d5fe-ae80-434c-8bfe-87a80165ea21/Tower MT Generations
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Figure 3: Tasks included in our supervised finetuning dataset TOWERBLOCKS.

and Chinese (zh). While Xu et al. (2024b) exclusively leverage monolingual data, we draw
inspiration from work including parallel data during pretraining (Anil et al., 2023; Briakou
et al., 2023), and mix parallel sentences (one third) along with monolingual data (two thirds).
Our results show that this approach greatly benefits translation quality (§4).

Monolingual data. We sample uniformly across our languages from mC4 (Xue et al., 2021)
and apply standard cleaning (Wenzek et al., 2019; Touvron et al., 2023a): deduplication,
language identification, and perplexity filtering with KenLM (Heafield, 2011).

Parallel Data. We sample uniformly to-English (xx→en) and from-English (en→xx) lan-
guage pairs from public sources, removing translations below quality thresholds for Bi-
cleaner (Sánchez-Cartagena et al., 2018; Ramı́rez-Sánchez et al., 2020) as well as COMETKIWI-
22 (Rei et al., 2022b), which is shown to improve translation quality (Peter et al., 2023). We
include parallel data with the following template, calculating the loss on all tokens:

[source language]: [source]\n[target language]: [target]

Model Training. We train our models with a codebase based on Megatron-LLM (Cano
et al., 2023) on 8 A100-80GB GPUs, using an effective batch size of 1.57 million tokens per
gradient step and a cosine scheduler with initial and final learning rates of 3 × 10−5 and
3 × 10−6. We provide additional details on continued pretraining in Appendix D.1.

2.2 TOWERBLOCKS: A dataset to tailor LLMs for translation-related tasks

We build TOWERBLOCKS prioritizing data diversity and quality. Figure 3 illustrates all tasks
in the dataset. They include tasks important to translation workflows, applied before or after
translation, and datasets to improve multilingual understanding and instruction-following.

Diversity. We collect records from multiple datasets for each translation-related task —
datasets are detailed in Appendix E. Akin to Wei et al. (2022), we reformulate all records as
natural language instructions using multiple manually curated zero- and few-shot templates.
Following insights from Longpre et al. (2023), we create zero-shot instructions with 75% of
the records. For the remaining ones, we uniformly sample 1, 3, or 5 in-context examples
from the respective dataset. We also include paraphrasing, dialogues from UltraChat (Ding
et al., 2023), and code instructions from Glaive-Code-Assistant (Glaive AI, 2023).

Quality. Similarly to Xu et al. (2024a), we construct records from human-annotated
datasets,2 prioritizing validation and old test sets — we exclude datasets from 2023 onwards.

2For named entity recognition, we did not find a permissively licensed human-annotated dataset,
so we use MultiCoNER (Malmasi et al., 2022; Fetahu et al., 2023). For general translation, we include a
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For tasks with reference translations, such as translation and automatic post-edition, we
score references with XCOMET-QE-ENSEMBLE (Guerreiro et al., 2023) and discard records
with quality scores below 0.85. Additionally, we include only translation pairs in their
original direction. Finally, we adopt the UltraChat (Ding et al., 2023) dialogues filtered by
Tunstall et al. (2023) and further exclude records that contain translation requests, formatting
issues (e.g. instructions starting with punctuation), or assistant refusal cases.

2.3 TOWERINSTRUCT: Specializing TOWERBASE for translation-related tasks

As a final step, we obtain TOWERINSTRUCT by finetuning TOWERBASE on TOWERBLOCKS.

Dialog template. We format each dialog as a single tokenizable string using the chatml
template (Open AI, 2023). This template clearly separates between instructions and answers,
and allows for multi-turn dialog. The template has three special identifiers (control tokens)
to delimit messages: <|im start|>user and <|im start|>assistant precede the beginning
of a turn, and <|im end|> marks its end. We provide further details in Appendix F.1.

Model training. We finetune the model with the standard cross-entropy loss, enabling
bfloat16 mixed precision and packing (Raffel et al., 2020). We only calculate the loss on
target (answer) tokens. We train for 4 epochs using a low learning rate and a large batch
size — we detail all hyperparameters in Appendix F.2.

3 Experiments

3.1 Experimental Setup

Datasets and Tasks. We analyze machine translation (MT) on FLORES-200 (NLLB Team
et al., 2022), WMT23 (Kocmi et al., 2023), and TICO-19 (Anastasopoulos et al., 2020). Addi-
tionally, we examine three translation-related tasks. First, following Raunak et al. (2023), we
evaluate automatic post-edition (APE) by measuring translation quality after post-editing
NLLB-3.3B (NLLB Team et al., 2022) translations for WMT23. Second, we evaluate named
entity recognition (NER), useful for entity anonymization, using the test split from Multi-
CoNER 2023 (Fetahu et al., 2023).3 Third, we evaluate grammatical error correction (GEC),
which is held out from our training data and useful for correcting the source sentence before
translation. We test GEC on CoNLL-2014 (Ng et al., 2014) (English), COWSL2H (Yamada
et al., 2020) (Spanish), and mlconvgec2018 (Chollampatt & Ng, 2018) (German).

Baselines. We compare TOWER with the open LLaMA-2 70B (Touvron et al., 2023b)
and Mixtral-8x7B-Instruct (Jiang et al., 2024), and the closed GPT-3.5-turbo and GPT-
4.4 For MT, we also consider dedicated translation models NLLB-54B (NLLB Team
et al., 2022) and ALMA-R (Xu et al., 2024b). In Appendix G, we compare with the
open Gemma 7B (Gemma Team, 2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) and
Qwen1.5 72B (Bai et al., 2023).5 Model generations use greedy decoding — we explore
alternative decoding methods in Appendix A. We prompt TOWER and closed models in a
0-shot fashion and others with 5 examples randomly selected from the development set.

Evaluation. We evaluate translation quality with COMET-22 (Rei et al., 2022a) for both MT
and APE. For MT, we also report XCOMET (Guerreiro et al., 2023), COMETKIWI-22 (Rei et al.,
2022b), BLEURT (Sellam et al., 2020), and CHRF (Popović, 2015) in Appendix G.6 For GEC, we

small amount of parallel data from OPUS to cover all language pairs. Nevertheless, we apply Bicleaner
using a threshold of 0.85 followed by the quality filtering procedure described in this section.

3We uniformly sample 1000 of the more than 200k records due to the computational costs of
evaluating all models on the whole test set.

4We use gpt-3.5-turbo-0613 and gpt-4-0613 available from the official OpenAI API.
5TOWERINSTRUCT outperforms all these open alternatives.
6Performance trends largely hold across metrics. Yet, there is a significant quality gap between

ALMA-R and TOWER models in terms of CHRF — e.g., over 7 points in en→xx directions on WMT23.
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FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

Closed
GPT-3.5-turbo 88.95 2 88.14 3 85.56 2 83.48 2 87.36 2
GPT-4 89.13 1 88.42 1 86.01 1 83.69 1 87.52 1

Open
NLLB 54B 86.79 4 87.95 3 78.60 7 79.06 6 87.05 2
LLaMA-2 70B 87.82 4 88.19 2 82.95 6 82.56 4 86.46 4
Mixtral-8x7B-Instruct 87.76 3 88.17 2 83.60 5 82.84 3 86.60 4
ALMA-R 7B — — 83.40 5 82.39 4 —
ALMA-R 13B — — 84.46 3 83.03 3 —

TOWERINSTRUCT 7B 88.51 3 88.27 2 84.28 3 82.77 4 87.01 3
TOWERINSTRUCT 13B 88.88 2 88.47 1 85.14 2 83.18 2 87.32 2

Table 1: COMET-22 scores for translation test sets aggregated by language pairs. Models
with statistically significant performance improvements are grouped in quality clusters. We
highlight the best ranked models in bold and underline the best ranked open models.

Figure 4: Win rates margin of TOWERINSTRUCT-13B by tokenized source length on WMT23
en→xx (left) and xx→en (right) directions. We compare against GPT-4 (□) and ALMA-R (△).
We define a win if the sentence-level delta between two systems is above 1 COMET-22 point.

measure edit rate (ER) (Snover et al., 2006) and report ERRANT (Bryant et al., 2017; Felice
et al., 2016) in Appendix H. For NER, we measure sequence F1 score. We report performance
clusters based on statistically significant performance gaps at a 95% confidence threshold.7
We create per-language groups for systems with similar performance, following Freitag et al.
(2023), and obtain system-level rankings using a normalized Borda count (Colombo et al.,
2022), which is defined as an average of the obtained clusters. Note that a first cluster will
not exist if no model significantly outperforms all others on a majority of languages.

3.2 Translation

Table 1 reports aggregated results on translation test sets. Table 2 studies translation quality
on all training languages, considering en→xx and xx→en translation directions.

TOWERINSTRUCT 13B is the open system with highest translation quality. TOWERIN-
STRUCT 13B consistently outperforms both larger open LLMs and dedicated systems. On
FLORES-200, TOWERINSTRUCT 13B is often ranked first, and is close to GPT-4 performance

We posit that ALMA-R’s alignment process on translations preferred by COMETKIWI-XXL (Rei et al.,
2023) and XCOMET may inadvertently degrade performance on lexical metrics.

7For segment-level metrics, such as COMET-22, we perform significance testing at the segment
level. For corpus-level metrics, such as ER and Sequence F1, we consider 100 bootstrapped samples of
size 500, similar to Koehn (2004).
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FLORES-200 (en→xx)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 88.78 2 87.08 1 89.02 1 89.06 1 89.36 2 88.63 1 90.46 1 89.56 3 88.58 2
GPT-4 88.98 1 87.10 1 88.93 1 89.05 1 90.06 1 88.56 1 90.43 1 90.19 1 88.87 1

Open
NLLB 54B 87.18 5 85.92 4 87.71 3 88.10 3 89.00 3 87.33 3 88.72 5 88.89 4 78.26 7
LLaMA-2 70B 87.31 5 86.41 3 87.82 3 88.22 3 88.07 4 87.47 3 89.11 4 88.65 5 87.32 5
Mixtral-8x7B-Instruct 87.99 3 86.80 2 88.53 2 88.77 2 85.63 5 87.57 3 89.45 3 89.09 4 85.99 6

TOWERINSTRUCT 7B 87.82 4 86.76 2 88.44 2 88.73 2 89.41 2 88.38 2 89.60 3 89.53 3 87.90 4
TOWERINSTRUCT 13B 88.16 3 87.06 1 88.92 1 89.21 1 89.92 1 88.63 1 89.78 2 89.95 2 88.29 3

FLORES-200 (xx→en)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 89.60 2 87.26 3 89.46 3 88.03 3 87.83 3 87.71 2 89.78 3 86.69 4 86.92 2
GPT-4 89.76 1 87.57 1 89.61 1 88.21 2 88.58 1 87.88 1 89.94 2 86.94 2 87.29 1

Open
NLLB 54B 89.17 4 87.25 3 89.29 4 87.91 3 87.86 3 87.49 3 89.38 4 86.66 4 86.55 3
LLaMA-2 70B 89.44 3 87.49 2 89.55 2 88.18 2 87.91 3 87.52 3 89.84 2 86.87 2 86.91 2
Mixtral-8x7B-Instruct 89.57 2 87.65 1 89.56 2 88.44 1 87.37 4 87.54 3 89.73 3 86.81 3 86.88 2

TOWERINSTRUCT 7B 89.48 3 87.48 2 89.50 2 88.39 1 88.16 2 87.66 2 89.92 2 86.90 2 86.96 2
TOWERINSTRUCT 13B 89.61 2 87.62 1 89.67 1 88.42 1 88.48 1 87.92 1 90.07 1 87.20 1 87.27 1

Table 2: Translation quality (via COMET-22) on FLORES-200 by language pair. Models with
statistically significant performance are grouped in quality clusters. Best ranked models are
highlighted in bold and best ranked open models are underlined.

on WMT23 and TICO-19. Upon inspecting both systems’ outputs, we verified that the gap
between them increases with longer sentences, as is shown in Figure 4. Notably, this trend
vanishes when comparing TOWERINSTRUCT 13B to ALMA-R.8 We posit this difference stems
from a prevalence of shorter translations in the training data of both TOWERINSTRUCT 13B
and ALMA-R. In future work, we would like to explore how to better leverage longer
contexts, which can benefit instruction-following (Zhao et al., 2024).

TOWERINSTRUCT 13B achieves high translation quality across all language directions.
In Table 2, TOWERINSTRUCT 13B is ranked first for the majority of en→xx directions,
and is among the top performing models for all but one xx→en language pair. Notably,
TOWERINSTRUCT stands out as the best overall model — outperforming GPT-4 — for both
pt→en and ru→en directions. The improved performance on xx→en directions likely stems
from LLaMA-2’s English-centric pretraining. A longer, more expensive continued pretraining
might further improve performance on en→xx directions. In fact, we show in Section 4 that
the translation quality gains from LLaMA-2 are larger for en→xx language directions.

TOWERINSTRUCT 7B achieves a trade-off between performance and scale. The smaller
TOWERINSTRUCT 7B, although behind TOWERINSTRUCT 13B, is competitive with other
open systems and achieves GPT-3.5-turbo translation quality for some language pairs.
Importantly, it outperforms the only system of the same size, ALMA-R 7B.

8A similar domain-level analysis did not find any domain dissimilar from the others.
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APE (COMET-22)↑ GEC (ER)↓ NER (F1)↑
Models en→xx xx→en Multilingual Multilingual

Baseline (no edits) 76.80 79.99 16.66 —
Closed
GPT-3.5-turbo 81.47 4 78.68 5 15.06 2 50.22 4
GPT-4 85.20 1 84.30 1 15.08 2 59.88 3

Open
LLaMA-2 70B 78.34 5 81.03 4 21.74 5 44.62 5
Mixtral-8x7B-Instruct 82.64 3 82.81 2 17.10 4 41.77 6

TOWERINSTRUCT 7B 82.69 2 81.56 4 15.13 3 71.68 2
TOWERINSTRUCT 13B 83.31 2 82.26 2 15.68 2 74.70 1

Table 3: Results for translation-related tasks aggregated by language or language pair.
Models with statistically significant performance improvements are grouped in quality
clusters. We highlight the best ranked models in bold and underline the best ranked open
models. Since GEC is a held out task, we evaluate all models with 5 in-context examples.
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Figure 5: Left: Comparison between NLLB 3.3B original translation quality and TOWERIN-
STRUCT 13B post-edition quality on WMT23 zh→en. Marker size and hue represent the
translation quality difference. Right: Post-edition quality difference on WMT23 zh→en
when only TOWERINSTRUCT 13B edits (⋄), only GPT-4 edits (◦), or both models edit (□).
The bar to the right represents the percentage of instances corresponding to each case.

3.3 Translation-Related Tasks

Table 3 reports aggregated results for all translation-related tasks.9

TOWERINSTRUCT is an effective translation post-editor. TOWERINSTRUCT outperforms
open models and GPT-3.5-turbo on APE, consistently and significantly improving the
quality of NLLB 3.3B translations. However, GPT-4 is still the top performer on this task.
Yet it also has a higher edit rate, shown in Figure 5: while TOWERINSTRUCT edits 30% of
the instances, GPT-4 edits almost 90%. This tendency suggests that GPT-4 is over-editing,
which we further analyze in Appendix B. We posit that TOWERINSTRUCT edits less due to
the prevalence of unedited segments in TOWERBLOCKS — roughly 38%.

There is room for improvement on grammatical error correction. On this task, no model
significantly outperforms the others on a majority of languages. We hypothesize that TOW-
ERINSTRUCT’s average performance is caused by the absence of GEC data in TOWERBLOCKS.

9Appendix H details evaluated languages and provides further results for APE and GEC. Ap-
pendix C contains preliminary results for MT evaluation.
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Figure 7: Translation quality on FLORES-200 for continue pretraining data recipes. The
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“Parallel only” recipe only processed 8 billion tokens due to compute constraints.

TOWERINSTRUCT can identify named entities. TOWERINSTRUCT 13B shows promising
performance on NER, surpassing GPT-4 by about 15 F1 points. Similar to APE, TOWERIN-
STRUCT 7B reflects most of these improvements, highlighting its capabilities at a smaller
scale. Other open models do not perform well on this task, even with 5 in-context examples.
We hypothesize these results stem from NER being a token-level classification task, as
opposed to a generative one. While the models learn the output format from the examples
or task description, they struggle to grasp the classification function itself. Conversely,
TOWERINSTRUCT learns the task from the NER data in TOWERBLOCKS.

4 Dissecting the training recipe

We performed multiple ablations to provide insights on the impact of the several design
choices made in the development of the TOWER models.

Continued pretraining and supervised finetuning yield independent performance gains.
The two leftmost plots of Figure 6 illustrate translation quality after continued pretraining
and supervised finetuning. Both steps bring performance improvements at both model
scales. Remarkably, TOWERBASE 7B and TOWERINSTRUCT 7B outperform LLaMA-2 13B,
and TOWERINSTRUCT 7B outperforms TOWERBASE 13B. The two rightmost plots analyze
APE. For this task, while supervised finetuning yields better performance, continued pre-
training — and in particular parallel data — does not improve performance as observed
for translation. In future work, we would like to explore additional training signals during
continued pretraining to increase performance on translation-related tasks.
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MT↑ APE↑ GEC↓ NER↑
Models en→xx xx→en en→xx xx→en Multilingual Multilingual

LLaMA-2 7B 84.23 87.10 76.56 79.91 15.95 20.09
TOWERBASE 7B 87.46 88.02 76.79 79.83 15.41 20.51
Supervised Finetuning
+ MT 88.45 88.28 79.19 79.36 54.76 0.00
+ Pre-MT + Post-MT 87.92 87.96 81.95 81.73 17.44 74.92
+ General-Purpose 88.51 88.27 82.69 81.56 15.13 71.68

Table 4: Ablation results for the components of TOWERBLOCKS. Results for pretrained
models are obtained with 5 in-context examples while results for supervised models are
obtained in a 0-shot setup. We consider FLORES-200 to evaluate translation quality.

Parallel data during continued pretraining improves translation quality. Figure 7 re-
ports 5-shot translation quality on FLORES-200 for multiple continued pretraining data
recipes. Mixing monolingual and parallel data achieves the highest quality, outperforming
both monolingual-only and parallel-only data mixes. In general, improvements are more
noticeable on en→xx directions, likely due to the English-centric nature of LLaMA-2’s
training. Nevertheless, while monolingual-only data improves over the base LLaMA-2 by
0.1 COMET-22 points on xx→en directions, our recipe gains nearly a full point.10

Parallel data during continued pretraining is sample efficient, but quality continues to
improve with more tokens. At the 2 billion token mark, combining parallel sentences
with monolingual data (i) yields more than 50% of the improvement over the base model,
and (ii) surpasses the recipe leveraging solely monolingual data. Additionally, although
training on more tokens has diminishing returns — 85% of the total performance gains
appear by the 5 billion token mark — it continues to improve translation quality.

Transfer/interference relations between tasks are complex. Table 4 ablates the compo-
nents of TOWERBLOCKS, comparing finetuning on translation data, translation-related tasks
including pre- and post-translation, and the full dataset with general-purpose tasks. While
adding translation-related tasks improves their performance, it decreases translation quality.
Remarkably, introducing general-purpose instructions recovers translation quality. In future
work, we would like to explore transfer/interference between tasks using scaling laws.

The TOWER recipe generalizes to other model families. When newer LLMs become
available, opportunities for improving TOWER naturally arise. In Table 5 we compare
Mistral 7B against LLaMA-2 as a backbone for TOWER. Notably, applying the TOWER recipe
to Mistral outperforms starting from LLaMA-2 7B across the board and is competitive with
using the larger LLaMA-2 13B, showcasing the generalizability of the recipe.11

5 Related Work

Adapting open models to single tasks within the field of machine translation is competitive
with closed models or dedicated systems (Xu et al., 2024a; 2023; Iyer et al., 2023). Notably,
Xu et al. (2024a) adapt LLaMA-2 for translation with continued pretraining on monolingual
data and finetuning on high quality parallel data. Our work adopts a similar approach,
but introduces parallel data during continued pretraining and leverages LLMs’ instruction-
following capabilities to build a system supporting multiple translation-related tasks.

10While 0.1 COMET-22 points translates to 54.9% human agreement, one COMET-22 point translates
to 90.9% (Kocmi et al., 2024).

11We also release our TOWER models based on Mistral.
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MT↑ APE↑ GEC↓ NER↑
Backbone Models en→xx xx→en en→xx xx→en Multilingual Multilingual

LLaMA-2 7B 88.51 88.27 82.69 81.54 15.13 71.68
LLaMA-2 13B 88.88 88.47 83.31 82.26 15.68 74.70
Mistral 7B 88.98 88.44 83.05 81.95 14.70 72.54

Table 5: Results for translation-related tasks aggregated by language or language pair
among different backbone models trained on the TOWER recipe. We consider FLORES-200
to evaluate translation quality.

Multilinguality in LLMs. Previous work building more multilingual LLMs either trains a
new model “from scratch” (Üstün et al., 2024; Faysse et al., 2024; Wei et al., 2023), or extends
the pretraining of an existing model, possibly with vocabulary extension (Cui et al., 2023; Xu
et al., 2024a; Pires et al., 2023). Building upon the effectiveness of pretraining on parallel data
(Anil et al., 2023; Wei et al., 2023), we include parallel sentences during continued pretraining.
We do not extend the vocabulary, as preliminary experiments yielded negative results.

Specialization of LLMs. Recent research on specializing LLMs on closely-related tasks
leverages domain-specific data to train new models “from scratch” (Taylor et al., 2022;
Wu et al., 2023), extend the pretraining of existing models (Lewkowycz et al., 2022; Chen
et al., 2023), perform supervised finetuning (Yue et al., 2024), or a combination of the last
two (Rozière et al., 2023; Liu et al., 2023). Our specialization approach is broadly inspired by
instruction tuning (Wei et al., 2022; Sanh et al., 2022; Wang et al., 2023; Zhou et al., 2023),
which finetunes language models on tasks formatted as natural language instructions.

6 Conclusion

We propose a new recipe for specializing LLMs on multiple translation-related tasks. First,
we expand LLaMA-2’s multilingual capabilities with continued pretraining on a highly
multilingual corpus. Then, we finetune on a dataset of high-quality and diverse instructions
for translation-related tasks. Our final model consistently outperforms open alternatives on
multiple translation-related tasks, and is competitive with closed models such as GPT-4.
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A Analysis of alternative decoding strategies

FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

GPT-3.5-turbo 77.08 78.12 72.06 72.50 75.91
GPT-4 77.26 78.51 72.54 72.91 76.16

TOWERINSTRUCT 13B
Greedy 76.89 78.67 70.87 71.75 75.40
Beam 77.40 78.87 71.31 71.88 75.66
MBR 77.79 78.96 72.29 72.36 76.13

Table 6: Impact of beam search and minimum Bayes risk (MBR) decoding in translation
quality for TOWERINSTRUCT 13B. In bold, we highlight systems in the first quality cluster.
For TICO-19 there is no first cluster since no model significantly outperforms the others on
a majority of the language pairs.

In this section, we analyse the performance of TOWERINSTRUCT 13B with beam-
search (Reddy, 1977) using beam size of 5 and minimum Bayes risk (MBR) decoding (Eikema
& Aziz, 2020; Fernandes et al., 2022; Freitag et al., 2022) with 20 hypotheses and COMET-22 as
an utility function. We generate hypotheses using temperature and nucleus sampling (Holtz-
man et al., 2020), with t = 0.9 and p = 0.6. We avoid “optimizing” the evaluation metric
(Fernandes et al., 2022) by measuring translation quality with BLEURT.

Table 6 reports translation quality across all test sets. Both decoding strategies consistently
improve translation quality over greedy decoding, with MBR decoding achieving higher
quality. Additionally, for both WMT23 and TICO-19, decoding strategies close the gap to
GPT-4. Notably, on FLORES-200, TOWERINSTRUCT 13B appears isolated in the first cluster.

B Further analysis on TOWERINSTRUCT and GPT-4 editing tendencies

Figure 8 shows that differences between GPT-4 and TOWERINSTRUCT edit rates are not
strongly correlated to differences in COMET-22 (0.34 Spearman ρ). This means that GPT-
4 edits often do not correspond to gains in performance. This finding, allied with the
discussion in Section 3.3 about GPT-4 editing considerably more than TOWERINSTRUCT,
suggests that GPT-4 may be editing too much.
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Figure 8: Difference between TOWERINSTRUCT 13B and GPT-4 edit rate (compared to the
original NLLB translation) (x-axis), and difference between TOWERINSTRUCT 13B and GPT-4
post-edition COMET-22 (y-axis). The correlation between the two variables is 0.34 Spearman
ρ. Similar patterns are observed for other language pairs.
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WMT23
Models en→de zh→en

COMET-22 0.3819 0.2731

TOWER 0.3994 0.3292

Table 7: Kendall τ correlation of reference-based MT evaluation metrics with human judge-
ments on WMT23 data.

C TOWERINSTRUCT as an evaluator of translation quality.

We included evaluation data in TOWERBLOCKS to induce positive transfer to machine
translation. Nevertheless, recent work has shown that LLMs can also function as estimators
translation quality (Kocmi & Federmann, 2023; Fernandes et al., 2023). Table 7 shows
preliminary experiments where the evaluation data in TOWERBLOCKS is improved. Notably,
this version of TOWER is competitive with COMET-22 on en→de and zh→en, suggesting that
the TOWER recipe can be used to create models to evaluate translation quality. In the future,
we intend to further explore how to improve evaluation capabilities of TOWERINSTRUCT.

D Details of continued pretraining

This section contains some details on the continued pretraining process used to obtain
TOWERBASE. Training time was 10 and 20 days for the 7B and 13B models, respectively.

D.1 Filtering thresholds

In Table 8, we report the perplexity floors and ceilings used to filter the monolingual data in
the continued pretraining corpus, as well as the Bicleaner and CometKiwi-22 thresholds
used to filter the parallel data.

D.2 Parallel data sources

Parallel data was obtained from the sources listed in Table 9.

en de fr nl es pt ru zh ko

Min. perplexity ∗ 50 50 50 50 50 50 50 50 50
Max. perplexity ∗ 516 611 322 649 275 257 334 2041 198
Bicleaner † - 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5
COMETKIWI-22 † - 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Table 8: Quality filtering thresholds applied on monolingual data (∗) and parallel data (†)
by language. On the latter, the to-English language pair’s threshold is the same as the
corresponding from-English one.
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Dataset Version

Europarl (Koehn, 2005) v8
ParaCrawl (Esplà et al., 2019) v9
MultiParaCrawl (Esplà et al., 2019) v7.1
CCMatrix (Schwenk et al., 2020) v1
CCAligned (El-Kishky et al., 2020) v1
MultiCCAligned (El-Kishky et al., 2020) v1
WikiTitles (Tiedemann, 2012) v2014
WikiMatrix (Schwenk et al., 2019) v1
News-Commentary (Tiedemann, 2012) v16
OPUS100 (Zhang et al., 2020) v1
TildeModel (Rozis & Skadiņš, 2017) v2018
Bible (Mayer & Cysouw, 2014) v1
Ubuntu (Tiedemann, 2012) v14.10
Tatoeba (Tiedemann, 2012) v2
GNOME (Tiedemann, 2012) v1
GlobalVoices (Tiedemann, 2012) v2018q4
KDE4 (Tiedemann, 2012) v2
KDE-Doc (Tiedemann, 2012) v1
PHP (Tiedemann, 2012) v1
Wikipedia (Wołk & Marasek, 2014) v1.0
Wikimedia (Tiedemann, 2012) v20210402
JRC (Tiedemann, 2012) v3.0
DGT (Tiedemann, 2012) v2019
EuroPat (Europat) v3
EUbookshop (Tiedemann, 2012) v2
EMEA (Tiedemann, 2012) v3
EUConst (Tiedemann, 2012) v1
tico-19 (Anastasopoulos et al., 2020) v20201028
ECB (Tiedemann, 2012) v1
Elitr-ECA (Williams & Haddow, 2021) v1
MultiUN (Eisele & Chen, 2010) v1
OpenOffice (Tiedemann, 2012) v3
Ada83 (Tiedemann, 2012) v1
infopankki (Tiedemann, 2012) v1
Scielo (Soares et al., 2018) v1
giga-fren (Tiedemann, 2012) v2
UNPC (Ziemski et al., 2016) v1.0

Table 9: The various data sources used to create the parallel data with the number of
available language pairs.
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E Details of TOWERBLOCKS

This appendix details all datasets utilized in TOWERBLOCKS:

• WMT14 to WMT2112 — Evaluation sets for the general machine translation shared task;
• WMT22 with quality-shots (Hendy et al., 2023) — Evaluation set from WMT23 with

high quality in-context examples;
• NTREX (Federmann et al., 2022) — Professional translations of the WMT19 test set;
• FLORES-200 (NLLB Team et al., 2022) — Development set of the FLORES-200 dataset for

all languages included in training;
• FRMT (Riley et al., 2022) — Human translations of English Wikipedia sentences into

regional variants;
• OPUS (Tiedemann, 2012) — Parallel corpora from which we sampled very high-quality

samples for all language pairs;

• QT21 (Specia et al., 2017) and ApeQuest13 — Translation data with post-edits utilized for
general translation and automatic post-editing;

• MT-GenEval (Currey et al., 2022) — Gender translation benchmark which we leveraged
for general translation and context-aware translation;

• WMT20 to WMT22 Metrics MQM14 — MT evaluation data annotated with multidi-
mensional quality metrics (Lommel et al., 2014) that we used to perform error span
detection;

• WMT17 to WMT22 Metrics DAs15 — MT evaluation data annotated with direct assesse-
ments (DAs) (Graham et al., 2013) which we utilized for translation ranking.

• WMT21 Terminology16 — Development set for the WMT21 terminology task;
• Tatoeba (Tiedemann, 2020) — Development set of the Tatoeba dataset which we used to

generate translations in different languages for the same source — we identified this task
as multi-reference translation;

• MultiCoNER 2022 and 2023 (Malmasi et al., 2022; Fetahu et al., 2023) — Development
sets of the named entity recognition MultiCoNER datasets. For MultiCoNER 2023, we
adopted the coarse-grained entity categorization;

• PAWS-X (Yang et al., 2019) — Development set of the PAWS-X dataset which we used as
paraphrase generation;

• UltraChat (Ding et al., 2023) — Filtered version of the UltraChat dataset used in Tunstall
et al. (2023);

• Glaive Code Assistant (Glaive AI, 2023) — Coding questions and answers across a wide
range of programming languages.

12https://www2.statmt.org/wmt23/translation-task.html
13https://apequest.wordpress.com/
14https://www.statmt.org/wmt22/results.html
15https://www.statmt.org/wmt22/results.html
16https://www.statmt.org/wmt21/terminology-task.html
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F Details of TOWERINSTRUCT

This appendix further details the supervised finetuning procedure to train TOWERINSTRUCT.

F.1 Chat Template

We finetuned TOWERINSTRUCT with the chatml template (Open AI, 2023). Table 10 provides
an example of an interaction using the aforementioned template.

User <s><|im start|>user
Translate the following text from Portuguese into English.
Portuguese: Ontem, a minha amiga foi ao supermercado mas estava fechado. Queria
comprar legumes e fruta.
English: <|im end|>
<|im start|>assistant

Model Yesteday, my friend went to the supermarket but it was closed. She wanted to buy
vegetables and fruit.<|im end|>

User <|im start|>user
Can you now translate it into Spanish? <|im end|>
<|im start|>assistant

Model Ayer mi amiga fue al supermercado, pero estaba cerrado. Querı́a comprar verduras y
fruta.<|im end|>

Table 10: Example of a dialogue with TOWERINSTRUCT’s user and model control tokens.

We avoid the separation of <|im start|> and <|im end|> into multiple tokens by extending
the tokenizer for TOWERINSTRUCT with two dedicated tokens. We do not explicitly add new
tokens for user and assistant, as both strings already have dedicated tokens. Additionally,
we overwrite the end-of-sequence token with the <|im end|> token.

F.2 Hyperparameters

Table 11 details the hyperparameter configuration for TOWERINSTRUCT’s training. We also
utilized bfloat16 mixed precision and packing.

Global train batch size 256
Number of Epochs 4
Learning rate 7e-6
LR Scheduler cosine
Warmup Steps 500
Weight Decay 0.01
Optimizer Adam (Kingma & Ba, 2015)
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8
Maximum Sequence Length 2048

Table 11: Hyperparameter configuration to finetune TOWERINSTRUCT on TOWERBLOCKS.
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G Translation full results

Tables 12, 13, 14 and 15 report translation quality on all test sets using various metrics:
XCOMET, COMETKIWI-22, BLEURT, and CHRF. Tables 16, 17, 18 and 19 analyse translation
quality for our languages, considering en→xx and xx→en translation directions, for the
same metrics. On Tables 20, 21, and 22, we present translation results for a wider variety
of models, broken down by language pair. Importantly, quality trends hold across metrics.
TOWERINSTRUCT 13B is the open system with highest translation quality and is competitive
with the closed model GPT-4.

FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

Closed
GPT-3.5-turbo 94.41 2 95.54 1 88.99 2 89.75 2 91.19 2
GPT-4 94.75 1 96.01 1 89.46 1 90.28 1 91.38 2

Open
NLLB 54B 90.04 4 93.78 4 78.99 6 81.38 6 90.11 3
LLaMA-2 70B 92.80 4 94.15 4 84.85 6 87.21 5 89.02 5
Mixtral-8x7B-Instruct 91.90 3 94.40 3 85.67 6 87.81 4 89.30 4
ALMA-R 7B — — 86.50 4 87.67 4 —
ALMA-R 13B — — 88.88 2 88.97 3 —

TOWERINSTRUCT 7B 93.85 2 94.67 3 87.20 4 87.88 4 90.56 3
TOWERINSTRUCT 13B 94.80 1 95.22 2 88.71 2 88.65 3 91.30 2

Table 12: Translation quality on WMT23 and TICO-19 by language pair measured by
XCOMET. Models with statistically significant performance are grouped in quality clusters.
Best performing models are in bold and best performing open models are underlined.

FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

Closed
GPT-3.5-turbo 86.25 2 85.64 2 80.82 2 80.35 2 85.65 2
GPT-4 86.42 1 85.77 1 81.20 1 80.54 1 85.79 2

Open
NLLB 54B 82.93 5 84.89 4 70.96 6 76.69 5 85.16 3
LLaMA-2 70B 85.30 4 84.97 4 78.43 5 79.36 4 84.66 5
Mixtral-8x7B-Instruct 85.24 3 85.32 3 79.01 5 79.82 3 84.81 4
ALMA-R 7B — — 79.25 4 79.79 4 —
ALMA-R 13B — — 80.12 3 80.21 2 —

TOWERINSTRUCT 7B 85.96 3 85.41 3 79.80 4 79.95 3 85.32 3
TOWERINSTRUCT 13B 86.19 2 85.51 2 80.57 2 80.25 2 85.59 2

Table 13: Translation quality on WMT23 and TICO-19 by language pair measured by
COMETKIWI-22. Models with statistically significant performance are grouped in qual-
ity clusters. Best performing models are in bold and best performing open models are
underlined.
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FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

Closed
GPT-3.5-turbo 77.08 1 78.12 3 72.06 2 72.50 1 75.91 2
GPT-4 77.26 1 78.51 2 72.54 1 72.91 1 76.16 2

Open
NLLB 54B 74.29 3 77.99 3 62.73 6 66.46 5 75.49 2
LLaMA-2 70B 75.04 4 78.28 2 68.03 5 71.01 3 74.00 4
Mixtral-8x7B-Instruct 74.78 3 78.10 2 68.81 5 71.32 3 74.22 4
ALMA-R 7B — — 68.64 5 70.66 4 —
ALMA-R 13B — — 70.09 4 71.47 3 —

TOWERINSTRUCT 7B 76.10 3 78.26 2 69.77 4 71.11 3 74.83 4
TOWERINSTRUCT 13B 76.89 2 78.67 1 70.87 2 71.75 2 75.40 3

Table 14: Translation quality on WMT23 and TICO-19 by language pair measured by
BLEURT. Models with statistically significant performance are grouped in quality clusters.
Best performing models are in bold and best performing open models are underlined.

FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

Closed
GPT-3.5-turbo 58.20 1 63.75 3 56.38 1 60.92 2 64.18 2
GPT-4 58.61 1 64.35 2 56.94 1 61.33 1 64.34 2

Open
NLLB 54B 54.70 4 63.87 2 42.98 6 52.08 6 63.84 2
LLaMA-2 70B 55.19 4 64.15 2 52.31 4 59.66 2 61.65 4
Mixtral-8x7B-Instruct 54.50 4 63.38 3 51.22 4 58.63 4 61.34 4
ALMA-R 7B — — 45.20 7 57.33 4 —
ALMA-R 13B — — 46.52 6 58.37 3 —

TOWERINSTRUCT 7B 56.16 3 64.08 2 52.25 4 58.88 4 62.07 4
TOWERINSTRUCT 13B 57.19 2 64.79 1 54.10 3 59.78 2 62.81 3

Table 15: Translation quality on WMT23 and TICO-19 by language pair measured by CHRF.
Models with statistically significant performance are grouped in quality clusters. Best
performing models are in bold and best performing open models are underlined.
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FLORES-200 WMT 23 TICO 19
Models en→xx xx→en en→xx xx→en en→xx

Closed
GPT-3.5-turbo 94.41 2 95.54 1 88.99 2 89.75 2 91.19 2
GPT-4 94.75 1 96.01 1 89.46 1 90.28 1 91.38 2

Open
NLLB 54B 90.04 4 93.78 4 78.99 6 81.38 6 90.11 3
LLaMA-2 70B 92.80 4 94.15 4 84.85 6 87.21 5 89.02 5
Mixtral-8x7B-Instruct 91.90 3 94.40 3 85.67 6 87.81 4 89.30 4
ALMA-R 7B — — 86.50 4 87.67 4 —
ALMA-R 13B — — 88.88 2 88.97 3 —

TOWERINSTRUCT 7B 93.85 2 94.67 3 87.20 4 87.88 4 90.56 3
TOWERINSTRUCT 13B 94.80 1 95.22 2 88.71 2 88.65 3 91.30 2

Table 16: Translation quality on FLORES-200 by language pair measured by XCOMET.
Models with statistically significant performance are grouped in quality clusters. Best
performing models are in bold and best performing open models are underlined.

FLORES-200 (en→xx)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 85.15 2 87.04 1 87.18 1 87.47 1 86.92 3 86.88 1 85.69 2 85.58 2 84.37 2
GPT-4 85.27 1 87.07 1 87.25 1 87.51 1 87.47 1 86.90 1 85.68 2 85.99 1 84.68 1

Open
NLLB 54B 82.59 6 85.18 4 85.23 4 85.66 4 86.11 4 84.71 4 83.45 5 83.56 4 69.88 7
LLaMA-2 70B 84.19 5 86.40 3 86.68 3 86.77 3 85.46 5 85.87 3 84.57 4 84.59 3 83.13 5
Mixtral-8x7B-Instruct 84.72 3 86.74 2 87.04 2 87.18 2 83.49 6 85.95 3 84.99 3 84.78 3 82.30 6

TOWERINSTRUCT 7B 84.41 4 86.77 2 87.08 2 87.31 2 86.70 3 86.48 2 85.57 2 85.50 2 83.78 4
TOWERINSTRUCT 13B 84.73 3 86.94 1 87.18 1 87.45 1 87.22 2 86.60 2 85.85 1 85.68 2 84.09 3

FLORES-200 (xx→en)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 84.64 2 86.27 2 86.48 1 86.84 2 85.69 2 86.18 2 85.31 1 84.59 2 84.76 2
GPT-4 84.71 1 86.39 1 86.50 1 86.95 1 86.15 1 86.25 1 85.31 1 84.75 1 84.92 1

Open
NLLB 54B 84.09 5 85.51 5 86.04 3 86.06 4 85.13 4 85.59 5 84.45 4 83.95 4 83.18 6
LLaMA-2 70B 84.29 4 85.78 4 86.05 3 86.38 3 84.45 6 85.56 5 84.87 3 83.77 4 83.57 5
Mixtral-8x7B-Instruct 84.45 3 86.07 3 86.34 2 86.78 2 84.74 5 85.78 4 85.13 2 84.45 3 84.14 4

TOWERINSTRUCT 7B 84.41 3 86.12 3 86.35 2 86.79 2 85.21 4 85.98 3 85.17 2 84.47 2 84.16 4
TOWERINSTRUCT 13B 84.44 3 86.09 3 86.39 2 86.83 2 85.47 3 86.04 3 85.17 2 84.69 1 84.47 3

Table 17: Translation quality on FLORES-200 by language pair measured by COMETKIWI-22.
Models with statistically significant performance are grouped in quality clusters. Best
performing models are in bold and best performing open models are underlined.
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FLORES-200 (en→xx)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 79.09 1 76.75 1 79.54 1 79.83 2 69.39 2 77.79 1 80.31 1 77.31 2 73.69 2
GPT-4 79.13 1 76.64 1 79.29 1 80.00 2 70.31 1 77.58 2 80.22 1 78.16 1 73.98 1

Open
NLLB 54B 77.71 3 75.37 4 77.96 3 79.26 3 68.95 2 76.47 3 77.80 4 76.81 3 58.32 6
LLaMA-2 70B 76.75 4 75.28 5 76.96 4 78.70 4 67.01 3 75.98 4 77.50 4 75.79 4 71.41 4
Mixtral-8x7B-Instruct 77.73 3 76.08 3 78.39 3 79.57 3 61.77 4 76.35 3 78.14 3 76.06 4 68.94 5

TOWERINSTRUCT 7B 77.61 3 75.71 4 78.03 3 79.58 3 69.25 2 77.73 1 78.43 3 77.02 2 71.53 4
TOWERINSTRUCT 13B 78.15 2 76.42 2 78.96 2 80.39 1 70.53 1 77.93 1 78.78 2 77.97 1 72.85 3

FLORES-200 (xx→en)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 80.38 2 77.27 3 80.55 3 77.91 3 75.22 3 77.02 2 80.86 3 77.73 3 76.12 2
GPT-4 80.74 1 77.61 2 80.72 2 78.14 2 76.51 1 77.23 1 81.11 2 78.02 2 76.54 1

Open
NLLB 54B 80.12 3 77.09 3 80.64 2 77.79 3 75.32 2 76.99 2 80.81 3 77.95 2 75.19 4
LLaMA-2 70B 80.38 2 77.65 1 80.79 2 78.05 2 75.58 2 76.77 3 81.16 2 78.18 2 75.96 2
Mixtral-8x7B-Instruct 80.40 2 77.79 1 80.75 2 78.53 1 74.15 4 76.87 2 80.85 3 78.02 2 75.57 3

TOWERINSTRUCT 7B 80.17 3 77.47 2 80.67 2 78.40 1 75.62 2 76.96 2 81.30 2 78.10 2 75.68 3
TOWERINSTRUCT 13B 80.55 1 77.65 1 81.03 1 78.54 1 76.53 1 77.22 1 81.51 1 78.51 1 76.46 1

Table 18: Translation quality on FLORES-200 by language pair measured by BLEURT. Models
with statistically significant performance are grouped in quality clusters. Best performing
models are in bold and best performing open models are underlined.
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FLORES-200 (en→xx)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 67.22 2 57.39 1 72.79 1 60.67 1 35.49 2 59.57 2 72.96 1 58.48 2 39.21 1
GPT-4 67.89 1 57.13 2 72.89 1 60.60 1 37.18 1 59.97 1 72.98 1 59.50 1 39.32 1

Open
NLLB 54B 63.18 5 55.30 5 70.25 3 58.83 3 36.54 1 56.99 5 68.19 4 57.28 3 25.73 5
LLaMA-2 70B 63.43 5 55.39 5 69.54 4 58.20 3 32.07 3 56.53 5 69.61 2 56.58 4 35.38 3
Mixtral-8x7B-Instruct 64.14 4 56.14 4 70.91 2 59.01 2 27.54 4 56.22 6 69.43 2 56.07 4 31.01 4

TOWERINSTRUCT 7B 63.87 4 56.04 4 70.23 3 59.45 2 35.44 2 58.16 4 68.74 4 57.77 3 35.78 3
TOWERINSTRUCT 13B 65.16 3 56.58 3 71.26 2 60.32 1 37.10 1 59.04 3 69.06 3 58.77 2 37.40 2

FLORES-200 (xx→en)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 69.31 2 60.46 3 69.54 2 62.76 3 57.50 3 60.75 2 72.56 3 62.80 3 58.07 2
GPT-4 69.74 1 61.09 2 69.94 1 62.75 3 59.55 1 60.88 2 72.91 2 63.40 2 58.87 1

Open
NLLB 54B 68.54 3 60.72 2 69.70 2 62.95 3 58.55 2 60.67 2 72.26 3 62.66 3 58.83 1
LLaMA-2 70B 69.22 2 61.34 1 70.08 1 63.51 2 57.82 2 60.90 2 72.96 2 63.61 2 57.94 2
Mixtral-8x7B-Instruct 69.00 2 61.29 1 69.32 2 63.38 2 55.56 4 59.98 3 72.18 4 62.77 3 56.97 3

TOWERINSTRUCT 7B 68.94 2 61.39 1 69.56 2 63.59 2 58.48 2 60.65 2 73.00 2 63.37 2 57.79 2
TOWERINSTRUCT 13B 69.39 1 61.50 1 70.07 1 64.06 1 59.81 1 61.40 1 73.54 1 64.41 1 58.90 1

Table 19: Translation quality on FLORES-200 by language pair measured by CHRF. Models
with statistically significant performance are grouped in quality clusters. Best performing
models are in bold and best performing open models are underlined.
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FLORES-200 (en→xx)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 88.78 87.08 89.02 89.06 89.36 88.63 90.46 89.56 88.58
GPT-4 88.98 87.10 88.93 89.05 90.06 88.56 90.43 90.19 88.87

Open
NLLB 54B 87.18 85.92 87.71 88.10 89.00 87.33 88.72 88.89 78.26
LLaMA-2 7B 84.03 84.37 85.18 85.18 80.20 84.48 87.01 85.09 82.50
LLaMA-2 13B 85.60 85.45 86.74 87.02 84.22 86.11 88.33 87.02 84.83
LLaMA-2 70B 87.31 86.41 87.82 88.22 88.07 87.47 89.11 88.65 87.32
Mistral-7B-Instruct-v0.2 84.27 84.87 86.16 85.86 79.20 84.43 87.53 85.78 82.41
Mixtral-8x7B 87.95 86.64 88.39 88.44 85.72 87.26 89.34 88.89 86.23
Mixtral-8x7B-Instruct 87.99 86.80 88.53 88.77 85.63 87.57 89.45 89.09 85.99
Qwen1.5 72B 87.20 86.46 87.78 88.19 87.64 87.40 89.13 88.41 88.85
Gemma 7B 86.13 85.84 87.09 87.03 84.89 86.03 88.60 87.24 85.75
COMMAND R 87.60 86.95 87.90 88.93 89.19 87.80 89.74 89.55 88.30
COMMAND R+ 88.87 87.45 89.13 89.46 90.25 88.67 90.44 90.57 89.18
ALMA-PRETRAIN 7B 86.47 83.18 84.23 83.59 68.06 81.05 84.80 87.96 85.80
ALMA-PRETRAIN 13B 87.07 84.90 86.05 86.09 77.10 84.36 87.47 88.91 86.58

TOWER
TOWERBASE 7B 86.91 85.95 87.76 87.93 86.55 87.37 89.47 88.72 86.48
TOWERBASE 13B 87.21 86.01 88.34 88.25 88.78 87.52 89.36 88.30 87.14
TOWERINSTRUCT 7B 87.82 86.76 88.44 88.73 89.41 88.38 89.60 89.53 87.90
TOWERINSTRUCT 13B 88.16 87.06 88.92 89.21 89.92 88.63 89.78 89.95 88.29

FLORES-200 (xx→en)
Models de es fr it ko nl pt ru zh

Closed
GPT-3.5-turbo 89.60 87.26 89.46 88.03 87.83 87.71 89.78 86.69 86.92
GPT-4 89.76 87.57 89.61 88.21 88.58 87.88 89.94 86.94 87.29

Open
NLLB 54B 89.17 87.25 89.29 87.91 87.86 87.49 89.38 86.66 86.55
LLaMA-2 7B 88.47 86.63 88.78 87.48 85.52 86.67 88.98 85.87 85.53
LLaMA-2 13B 89.01 86.98 89.14 87.87 86.95 87.23 89.26 86.37 86.35
LLaMA-2 70B 89.44 87.49 89.55 88.18 87.91 87.52 89.84 86.87 86.91
Mistral-7B-Instruct-v0.2 88.83 87.07 88.81 87.69 85.16 86.93 89.05 86.21 85.65
Mixtral-8x7B 89.55 87.57 89.58 88.35 87.03 87.54 89.80 86.79 86.63
Mixtral-8x7B-Instruct 89.57 87.65 89.56 88.44 87.37 87.54 89.73 86.81 86.88
Qwen1.5 72B 89.67 87.66 89.58 88.41 88.42 87.72 89.88 87.13 87.94
Gemma 7B 89.17 87.09 89.12 87.81 87.28 87.23 89.48 86.59 86.59
COMMAND R 89.15 87.51 88.91 88.05 88.29 87.49 89.47 86.65 87.10
COMMAND R+ 89.07 87.87 89.67 88.53 88.82 87.10 90.15 87.32 87.91
ALMA-PRETRAIN 7B 89.23 86.84 89.01 87.68 83.35 86.92 89.05 86.81 86.59
ALMA-PRETRAIN 13B 89.81 87.42 89.42 88.18 86.26 87.59 89.70 87.23 87.16

TOWER
TOWERBASE 7B 89.26 87.15 89.47 88.14 87.80 87.45 89.77 86.41 86.72
TOWERBASE 13B 89.54 87.42 89.55 88.11 88.24 87.61 89.71 86.18 87.02
TOWERINSTRUCT 7B 89.48 87.48 89.50 88.39 88.16 87.66 89.92 86.90 86.96
TOWERINSTRUCT 13B 89.61 87.62 89.67 88.42 88.48 87.92 90.07 87.20 87.27

Table 20: COMET-22 on FLORES-200 for a wide variety of models.
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WMT23
Models en→de en→ru en→zh de→en ru→en zh→en

Closed
GPT-3.5-turbo 84.61 85.38 86.70 85.91 83.02 81.52
GPT-4 84.89 86.07 87.08 86.17 83.63 81.27

Open
NLLB 54B 77.40 83.91 74.48 80.06 80.52 76.60
LLaMA-2 7B 75.02 77.87 79.16 83.36 80.58 77.40
LLaMA-2 13B 78.29 80.44 81.30 83.92 81.54 78.73
LLaMA-2 70B 81.62 83.04 84.19 85.12 82.84 79.73
Mistral-7B-Instruct-v0.2 76.78 80.27 81.26 84.18 81.52 79.11
Mixtral-8x7B 81.92 83.39 83.81 85.04 82.70 79.50
Mixtral-8x7B-Instruct 83.07 83.79 83.94 85.45 83.02 80.04
Qwen1.5 72B 81.44 83.31 86.48 85.54 83.01 80.60
Gemma 7B 79.56 82.20 83.56 84.60 82.14 79.24
COMMAND R 83.29 84.96 84.92 84.66 82.29 79.61
COMMAND R+ 84.85 86.22 86.31 84.82 83.38 80.59
ALMA-PRETRAIN 7B 80.20 83.01 82.68 83.51 81.82 78.66
ALMA-PRETRAIN 13B 81.18 83.72 83.83 84.32 82.71 79.22
ALMA-R 7B 82.41 84.28 83.51 84.55 82.50 80.13
ALMA-R 13B 83.59 85.37 84.43 85.39 83.23 80.48

TOWER
TOWERBASE 7B 81.03 83.25 84.00 84.09 80.08 78.92
TOWERBASE 13B 81.18 83.46 84.03 83.89 80.03 78.94
TOWERINSTRUCT 7B 83.22 84.73 84.89 85.24 82.94 80.13
TOWERINSTRUCT 13B 83.98 85.51 85.92 85.62 83.21 80.72

Table 21: COMET-22 on WMT23 for a wide variety of models.

WMT23
Models en→es en→fr en→pt en→ru en→zh

Closed
GPT-3.5-turbo 88.67 81.86 90.30 87.88 88.09
GPT-4 88.76 81.85 90.30 88.36 88.32

Open
NLLB 54B 88.74 82.01 89.84 88.67 85.97
LLaMA-2 7B 85.77 78.08 86.97 82.99 81.86
LLaMA-2 13B 86.94 79.83 88.48 85.44 84.89
LLaMA-2 70B 87.84 80.67 89.24 87.12 87.44
Mistral-7B-Instruct-v0.2 86.25 79.18 87.87 84.35 84.13
Mixtral-8x7B 88.12 81.15 89.27 87.14 86.58
Mixtral-8x7B-Instruct 88.23 81.39 89.48 87.04 86.84
Qwen1.5 72B 86.08 80.32 88.20 80.53 86.68
Gemma 7B 87.30 78.20 88.66 86.16 86.78
COMMAND R 88.35 81.41 89.62 88.65 86.43
COMMAND R+ 88.99 82.07 90.30 89.06 88.28
ALMA-PRETRAIN 7B 84.42 76.74 84.92 86.53 85.27
ALMA-PRETRAIN 13B 86.17 79.09 87.56 87.27 86.54
ALMA-R 7B 84.63 76.02 82.92 87.80 85.41
ALMA-R 13B 85.93 79.90 87.41 88.58 86.22

TOWER
TOWERBASE 7B 87.90 81.20 89.45 86.94 86.97
TOWERBASE 13B 87.90 81.48 89.54 87.26 87.57
TOWERINSTRUCT 7B 88.34 81.60 89.38 88.11 87.63
TOWERINSTRUCT 13B 88.63 81.82 89.48 88.49 88.20

Table 22: COMET-22 on TICO-19 for a wide variety of models.

32



Published as a conference paper at COLM 2024

H Translation-related tasks full results

H.1 Languages considered

For APE, on Table 3, we consider 4 language pairs: en→de, en→zh, de→en, and ru→en.
We leave out en→ru and zh→en, because we had no post editions to serve as fewshot
examples for LLaMA-2 and Mixtral-8x7B-Instruct. Nevertheless, we provide results for
TOWERINSTRUCT, GPT-3.5-turbo, and GPT-4 on the 6 language pairs in Table 23.

For NER, we consider English, German, French, Spanish, Italian, Portuguese, Russian, and
Chinese. Finally, we evaluate GEC on English, German, and Spanish. For this task, besides
the results in Table 3, we also measure ERRANT in Table 24.

Results broken down by language are in Tables 25, 26, and 27.

APE
Models en→xx xx→en

Baseline (no edits) 78.84 4 78.80 4

GPT-3.5-turbo 82.32 3 77.91 5
GPT-4 85.52 1 83.12 1

TOWERINSTRUCT 7B 83.10 3 80.19 3
TOWERINSTRUCT 13B 83.65 2 80.89 2

Table 23: APE results for the 6 WMT23 LPs considered. NLLB corresponds to the translations
that were subject to editing, so their quality serves as the baseline for the task. Table 3 did
not include zh-en and en-ru to guarantee a fair comparison with open models — there were
no fewshot examples available for these LPs.

GEC
Models Multilingual

Closed
GPT-3.5-turbo 0.49 1
GPT-4 0.48 3

Open
LLaMA-2 70B 0.43 4
Mixtral-8x7B-Instruct 0.43 4

TOWERINSTRUCT 7B 0.42 4
TOWERINSTRUCT 13B 0.43 4

Table 24: GEC ERRANT results.
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WMT23
Models en→de en→ru en→zh de→en ru→en zh→en

Baseline (no edits) 77.87 82.93 75.72 79.92 80.05 76.44

Closed
GPT-3.5-turbo 80.67 84.03 82.27 78.48 78.88 76.37
GPT-4 84.65 86.15 85.75 85.39 83.21 80.75

Open
GPT-3.5-turbo 80.67 84.03 82.27 78.48 78.88 76.37
GPT-4 84.65 86.15 85.75 85.39 83.21 80.75
LLaMA-2 70B 78.49 — 78.20 81.30 80.76 —
Mixtral-8x7B-Instruct 82.12 — 83.15 83.40 82.22 —

TOWER
TOWERINSTRUCT 7B 81.86 83.92 83.52 82.29 80.82 77.45
TOWERINSTRUCT 13B 82.03 84.34 84.59 83.22 81.30 78.15

Table 25: APE COMET-22 results by language pair.

Models en de es

Baseline (no edits) 13.75 18.23 18.00

Closed
GPT-3.5-turbo 14.71 13.19 17.29
GPT-4 16.48 12.89 15.86

Open
LLaMA-2 70B 17.46 20.67 27.09
Mixtral-8x7B-Instruct 16.44 15.38 19.47

TOWER
TOWERINSTRUCT 7B 13.39 14.77 17.23
TOWERINSTRUCT 13B 13.13 14.42 19.48

Table 26: GEC edit rate results by language.

Models en de es fr it pt zh

Closed
GPT-3.5-turbo 55.43 60.12 56.82 53.34 55.46 52.57 17.82
GPT-4 63.61 66.58 65.24 58.72 63.39 61.74 39.88

Open
LLaMA-2 70B 46.34 48.79 50.69 47.50 53.96 45.60 19.44
Mixtral-8x7B-Instruct 45.74 46.94 46.03 46.11 50.86 40.21 16.51

TOWER
TOWERINSTRUCT 7B 75.09 78.01 74.89 70.35 76.39 73.88 53.13
TOWERINSTRUCT 13B 77.52 79.73 76.69 74.55 80.36 77.47 56.57

Table 27: NER F1 results by language.
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