
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review for LMRL Workshop at ICLR 2025

PROTRIEVER: END-TO-END DIFFERENTIABLE PROTEIN
HOMOLOGY SEARCH FOR FITNESS PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieving homologous protein sequences is essential for a broad range of protein
modeling tasks such as fitness prediction, protein design, structure modeling, and
protein-protein interactions. Traditional workflows have relied on a two-step pro-
cess: first retrieving homologs via Multiple Sequence Alignments (MSA), then
training models on one or more of these alignments. However, MSA-based re-
trieval is computationally expensive, struggles with highly divergent sequences and
complex insertions/deletions, and operates independently of downstream model-
ing. We introduce Protriever, an end-to-end differentiable framework that unifies
retrieval and task modeling. Focusing on protein fitness prediction, we show that
Protriever achieves performance on par with the most sensitive MSA-based tools
while being orders of magnitude faster at retrieval, as it relies on efficient vector
search. Protriever is both architecture- and task-agnostic, and can flexibly adapt to
different retrieval strategies and protein databases at inference – offering a scalable
alternative to alignment-centric approaches.

Proteins evolve under strict constraints that preserve their function, creating specific mutation
landscapes (Göbel et al., 1994). Understanding these landscapes is vital for biological discovery and
applications like enzyme and antibody design. Homologous proteins are particularly informative, as
their shared evolutionary origin reveals fundamental sequence constraints. This makes homology
crucial for various protein modeling tasks, from mutation impact prediction (Frazer et al., 2021)
to protein design (Russ et al., 2020) and structure prediction (Jumper et al., 2021). Traditional
approaches use Multiple Sequence Alignment (MSA) based models trained on homolog families
(Krogh, 1998; Hopf et al., 2014; Frazer et al., 2021). While effective, these methods struggle with
shallow or inaccurate MSAs, significant insertions/deletions, and non-alignable sequences (Riley
et al., 2023). They also require new MSAs and models for each protein family. Recent Protein
Language Models (pLMs) offer alignment-free approaches that leverage diverse protein sequences
(Elnaggar et al., 2021; Lin et al., 2023; Nijkamp et al., 2023). However, these single-sequence models
often underperform family-specific methods, particularly for specialized proteins (Notin et al., 2023).
Hybrid approaches like MSA Transformer (Rao et al., 2021), Tranception (Notin et al., 2022), and
PoET (Truong Jr & Bepler, 2023) combine family-specific context with broader modeling, but current
retrieval frameworks remain static and cannot optimize their retrieval choices.

In this work, we propose Protriever, a retrieval-based protein language model that provides fast
homology retrieval through a learned vector database and integrates these retrieved sequences to yield
accurate zero-shot fitness predictions. Our contributions are as follows:

• We introduce an efficient mechanism, based on the Fusion-in-Decoder (Izacard & Grave,
2021), to extend off-the-shelf single-sequence autoregressive pLMs by allowing them to
condition their predictions on relevant homologous sequences (§ 2.1);

• We introduce Protriever, a novel approach for end-to-end differentiable retrieval and sequence
modeling, enabling the model to learn which sets of homologous sequences are most
informative to decode a given target protein, and to adaptively refine its retrieval embeddings
(§ 2.2);

• We demonstrate the value of Protriever for protein fitness prediction, across an extensive
number of Deep Mutational Scanning (DMS) assays from the ProteinGym benchmark
(Notin et al., 2023) (§ 3).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review for LMRL Workshop at ICLR 2025

Retriever Reader

M QS HI

Query sequence
M QS HI

M QS HI

M QS HI

Reconstructed query

M K S AT R

TM SI
M SY RT
M DT LL
M QS HI

Retrieved sequences

Retriever
encoder

Vector similarity search

Protein database
(e.g., UniRef50)

Database
embeddings

Query
embedding

Query
sequence

Reader
encoder

Reader
decoder

Autoregressive
decoding of

Cross-attention
to retrieved
embeddings

Reader loss

Retriever loss

Hybrid lossIndex

Figure 1: Protriever. The Protriever framework is composed of three parts: a learned retriever,
index, and a reader. The two neural networks work together to produce a conditional sequence
likelihood. The Retriever selects a set of sequences DK = {dk}1,...,K to be passed on to the reader,
using similarity search of the query to the embeddings of protein sequences in the index . This
set of sequences is then passed on to the Reader, that learns to reconstruct the query from just the
conditioning set DK . During training, the reader calculates the relevance score of each document
pLM (q | dk), and these relevance scores are then used to train the retriever.

Protriever addresses a key limitation in protein sequence modeling by making homology sets dynamic
and learnable, rather than static, allowing adaptation to new evolutionary insights while avoiding
MSA constraints.

1 RELATED WORK

Evolutionary sequence models Evolutionary models analyze protein families by first retrieving
homologs, aligning them in Multiple Sequence Alignments (MSAs), and fitting statistical models to
these alignments. Approaches range from site-independent models to those capturing co-evolving
positions Hopf et al. (2017) and higher-order correlations using variational autoencoders Riesselman
et al. (2018); Frazer et al. (2021). While effective, these alignment-based methods must be retrained
per family and struggle with extensive insertions, gaps, and novel indels not present in reference
alignments. These challenges can significantly distort biological interpretations derived from the
data.

Protein language models (pLMs) pLMs use self-supervised learning on massive protein databases
to learn evolutionary constraints that generalize across families. These models are typically trained to
predict masked or next amino acids in sequences, learning the underlying patterns and dependencies
that characterize functional proteins. Following UniRep’s Alley et al. (2019) pioneering LSTM-
based approach, Transformer-based architectures emerged, including GPT-based models (ProGen,
Tranception, ProtGPT2) Madani et al. (2020); Notin et al. (2022); Ferruz et al. (2022), BERT-based
models (PRoBERTa, ESM) Nambiar et al. (2020); Rives et al. (2021), and others Raffel et al. (2023);
Elnaggar et al. (2021). While versatile, these models often underperform family-specific approaches
and require significant computational resources.

Conditional pLMs Conditional pLMs bridge unconditional and family-specific approaches, com-
bining language model capabilities with evolutionary insights from homologous sequences. Trancep-
tion Notin et al. (2022) merges predictions from an unconditional language model with MSA-derived
frequencies through a learned weighting scheme, but remains constrained by MSA limitations. MSA
Transformer Rao et al. (2021) learns directly from aligned sequences using axial attention Ho et al.
(2019), while PoET Truong Jr & Bepler (2023) and ProtMamba Sgarbossa et al. (2024) eliminate
alignment requirements by modeling homologous sequence sets through order-invariant mechanisms.
However, these approaches rely on predefined homology sets using traditional sequence similarity

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review for LMRL Workshop at ICLR 2025

metrics, rather than leveraging the model’s learned representations to identify the most informative
sequences for prediction - a limitation we address with Protriever’s trainable retrieval mechanism.

1.1 RETRIEVAL

Retrieval refers to searching a reference database and extracting useful information for the task of
interest. In NLP, retrieval has been used for open-domain question answering Robertson & Zaragoza
(2009); Grave et al. (2017); Wang et al. (2018); Karpukhin et al. (2020); Khandelwal et al. (2019)
and more recently generative language models have been augmented with knowledgebases to answer
highly specific questions Lee et al. (2019). The latter make use of a ‘retriever’, which retrieves useful
context, and a ‘reader’, which conditions on both the query and the context to generate an answer.
Going further than question-answering, methods such as REALM Guu et al. (2020) and RAG Lewis
et al. (2020) introduced the concept of retrieval-augmented pre-training, where the model retrieves
document chunks from a large corpus at both training and inference time in order to predict following
tokens. In particular, REALM showed that it was possible to train both the retriever and reader
models in an end-to-end differentiable fashion.

MSA generation is sometimes framed as a retrieval process (and has been used to augment pLMs as
in the conditional pLMs section). Some work has also focused on differentiable or protein language
model-based MSA generation Hong et al. (2021); Petti et al. (2023); Llinares-López et al. (2023).
Closest to our retrieval-augmented methods are AIDO.RAG Li et al. (2024) and RSA Ma et al. (2024).
AIDO.RAG trains a retriever to generate UniClust30 IDs, which are then used to generate better
MSAs for structure prediction, and then retrains an encoder model on top of these MSAs. RSA is
probably closest to RAG: it uses a frozen pretrained ESM-1b encoder as retriever and fine-tunes a
reader model on a property prediction task. However, no one has yet integrated an end-to-end joint
training of sequence retrieval and generation for protein sequence modeling, as we present here.

2 METHODS

2.1 PROTRIEVER FRAMEWORK

The Protriever framework is composed of three different components, the Retriever model, the
Index, and the Reader model (shown in Fig. 1). The query sequence is passed through the retriever,
which performs a similarity search against a fixed index of sequence embeddings. The reader model
is then tasked with reconstructing the query sequence from the set of retrieved sequences. During
training, the reader model learns which sequences provide useful context for reconstruction, providing
feedback to the retriever that adjusts sequence relationships in embedding space given their utility for
the task.

Retriever model We use an ESM-2 (Lin et al., 2023) encoder architecture as our retriever model,
initialized with pre-trained weights (35M parameters). Average pooling is applied over the outputs of
the last layer to obtain one 480-dimensional vector representation per sequence. A similarity score
between the query q and each other sequence d is then obtained by computing the cosine similarity
s(d,q) between their corresponding embeddings.

Index The retriever encoder is used to score all sequences in our database, constituting an index of
UniRef50 (Suzek et al., 2015) sequences, which is searchable at very high speed using Faiss (Johnson
et al., 2021), a k-nearest neighbor vector similarity search method. While previous work has shown
benefits from periodically updating the index during training to maintain consistency with the evolving
retriever (Izacard et al., 2022), we adopt a computationally efficient strategy of maintaining a static
index during training and generating a final updated index for inference with the trained retriever. This
approach significantly reduces computational overhead while still capturing the learned embedding
space in the final model.

Reader model For the reader, we use the Fusion-in-Decoder model introduced in Izacard & Grave
(2021) which was shown to be effective for retrieval methods in NLP (Izacard et al., 2022). The model
is an encoder-decoder model, where each sequence is encoded independently from other sequences
by an encoder. The decoder then attends to the concatenation of the resulting representations of all
retrieved sequences. The model thus performs evidence fusion in the decoder only, and is therefore

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review for LMRL Workshop at ICLR 2025

Model type Model name # Params Spearman by MSA depth (↑)
Low Medium High All

Encoders

ESM2-S 35M 0.239 0.271 0.453 0.321
ESM2-M 150M 0.306 0.358 0.500 0.388
ESM2-L 650M 0.335 0.406 0.517 0.419
ESM2-XL 3B 0.348 0.415 0.491 0.418

Decoders
Tranception-S 85M 0.258 0.295 0.321 0.291
Tranception-M 300M 0.293 0.349 0.382 0.341
Tranception-L 700M 0.358 0.371 0.417 0.382

FiD
FiD + MSA 150M 0.352 0.411 0.498 0.420
FiD + frozen Protriever 150M 0.287 0.354 0.386 0.342
FiD + trained Protriever 150M 0.365 0.401 0.483 0.416

Table 1: Zero-shot substitution DMS benchmark by MSA depth. Average Spearman’s rank
correlation between model scores and experimental measurements by MSA depth on the ProteinGym
substitution benchmark. Tranception models are without inference-time MSA retrieval. Alignment
depth is defined by the ratio of the effective number of sequences Neff in the MSA, following Hopf
et al. (2017), by the length covered L (Low: Neff/L <1; Medium: 1< Neff/L <100; High: Neff/L
>100). The All column is the average across the three depths.

referred to as Fusion-in-Decoder (FiD). This architecture offers significant computational advantages
over a standard decoder that processes all sequences simultaneously. In a standard decoder model,
processing k sequences each of length l with a query sequence also of length l, the self-attention
mechanism must compute attention scores between all positions across all sequences, resulting in a
complexity of O(((k + 1)l)2) for the attention matrix computation. In contrast, FiD first processes
each sequence independently through the encoder, then only computes cross-attention between the
query sequence and the encoded representations of the conditioning sequences. This results in a
complexity of O(kl2 + l2k) where the first term represents the independent encoding of k sequences,
and the second term represents the cross-attention computation in the decoder of lk hidden states
by query sequence of length l . The cross-attention complexity scales linearly with the number
of sequences k in the conditioning set compared to quadratic scaling in decoder-only models (see
Appendix B for more details).

2.2 TRAINING LOSSES FOR THE RETRIEVER

We evaluate two loss functions for training the retriever, building on approaches benchmarked in
Atlas (Izacard et al., 2022) for end-to-end text retrieval. These loss functions are compatible with
efficient attention mechanisms like Flash Attention 2 (Dao, 2023) as they don’t require explicit
attention scores.

Our approach leverages the language model’s performance to guide retriever training. Specifically,
if a homologous protein proves valuable for the reader’s sequence modeling task, the retriever is
encouraged to rank it closer to the query sequence in embedding space. This differs from traditional
NLP retrieval, where document relevance is typically scored based on its utility for question answering.
Adopting notation commonly used in the NLP literature, we denote the retrieved homologous proteins
as d (documents).

The initial relevance score of a protein sequence d to a query sequence q is

pRETR(d | q) = exp(s(d,q)/θ)∑K
k=1 exp (s (dk,q) /θ)

(1)

where s(d,q) represents the dot product of query sequence and retrieved sequences. Note the
sum is over DK = {dk}1,...,K of top-K retrieved sequences. This formulation approximates the
true relevance score over the entire index while maintaining computational tractability by limiting
backpropagation to only K sequences.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review for LMRL Workshop at ICLR 2025

Model Model name # Params Spearman by Function Type (↑)
type Activity Binding Expression Organismal StabilityFitness

Encoders

ESM2-S 35M 0.314 0.291 0.343 0.217 0.439
ESM2-M 150M 0.391 0.326 0.402 0.305 0.510
ESM2-L 650M 0.425 0.337 0.415 0.368 0.523
ESM2-XL 3B 0.417 0.321 0.403 0.378 0.509

Decoders
Tranception-S 85M 0.288 0.286 0.349 0.321 0.27
Tranception-M 300M 0.349 0.284 0.406 0.364 0.342
Tranception-L 700M 0.401 0.288 0.413 0.387 0.381

FiD
FiD + MSA 150M 0.411 0.311 0.426 0.390 0.452
FiD + frozen Protriever 150M 0.362 0.242 0.380 0.327 0.379
FiD + trained Protriever 150M 0.406 0.308 0.418 0.384 0.436

Table 2: Zero-shot substitution separated by function type. Average Spearman’s rank correlation
between model scores and experimental measurements on the ProteinGym substitution benchmark,
separated into five functional categories (Activity, Binding, Organismal Fitness, Stability, and Expres-
sion), as defined in the benchmark. Tranception models are without inference-time MSA retrieval.

End-to-end training of Multi-Document Reader and Retriever (EMDR) We first implement
the approach introduced by Sachan et al. (2021), which is inspired by the expectation-maximization
(EM) algorithm. In this approach, retrieved sequences are treated as latent variables. Given a query q,
and the set DK of top-K retrieved sequences with the current retriever, the EMDR retriever loss is
defined as:

LEMDR = − log

[
K∑

k=1

pLM (q | dk) pRETR (dk | q)

]
where pRETR represents the probability distribution over the top-K retrieved sequences, as defined by
Eq. (1). During optimization, we apply a stop-gradient operator to pLM, ensuring updates are limited
to the retriever parameters. The theoretical optimum of this loss function is a degenerate distribution
that assigns all probability mass to the single sequence maximizing the language model’s likelihood
of generating the correct output.

Perplexity Distillation (PDist) The second approach, introduced by Izacard et al. (2022), trains the
retriever to predict the degree to which each sequence improves the language model’s perplexity of
the reconstructed query sequence. To that end, we minimize the KL-divergence between the relevance
score for the retrieved sequence (Eq. (1)), and the posterior distribution of retrieved sequence scores
based on the language model:

pk =
exp (log pLM (q | dk))∑K
i=1 exp (log pLM (q | di))

2.3 VECTOR SIMILARITY SEARCH

Our implementation leverages Faiss for GPU-accelerated vector similarity search (Johnson et al.,
2021; Douze et al., 2024). The retrieval index is initialized with embeddings from the pre-trained
retriever encoder before model training begins. For efficient search at scale, we use an inverted
file index (IVF), where the database of protein sequence embeddings is clustered using a k-means
algorithm (also know as applying a coarse quantizer). At retrieval time, a query is compared to
the resulting KIVF centroids, where the nearest PIVF centroids’ associated vectors are searched
exhaustively. To optimize memory usage and computation speed, we apply product quantization
(PQ) to compress the database vectors while maintaining retrieval accuracy. The process of training
the quantizers for rapid indexing is known as training the index. Due to the size of UniRef50 (≈ 64
million sequences) and the associated embeddings, the index is divided into partitions which are
distributed across available GPUs. Queries are processed independently on each partition, with
results aggregated to produce the final retrieval set. Detailed specifications of the indexing and search
approach are provided in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review for LMRL Workshop at ICLR 2025

Training strategies EMDR PDist
Pretrained reader 0.347 0.347
+retriever training on fixed BLAST sets 0.379 0.376
+retriever training on ESM sets 0.385 0.380
+retriever and reader training on ESM sets 0.404 0.397

Table 3: Spearman on validation set for different training strategies and losses. We evaluate the
FiD model with retrieved sets, sampled with the Distance + Uni90 scheme, using a retriever trained
with each strategy. Each strategy allows the retriever to adjust relevance scores to return relevant
sequences, subsequently increasing the validation performance, indicating that we are adapting our
framework for the retrieval evaluation. EMDR performs slightly better than the PDist loss.

2.4 SEQUENCE GENERATION AND SCORING

Protriever is an autoregressive model, trained to predict the next token in a sequence of amino acids
given retrieved sequences as context. The standard autoregressive factorization of the probability of a
sequence of l amino acids is as follows:

P (x) = P (xi | x1, . . . , xi−1) =

l∏
i=1

P (xi | x<i)

In our retrieval framework, we extend this by conditioning on a set of K retrieved sequences
DK = TopK(PRETR(d|x)), yielding the full probability:

P (x) = PRETR(DK |x)
l∏

i=1

PLM(xi|x<i,DK),

Following (Frazer et al., 2021; Notin et al., 2022), we evaluate the fitness of a mutated protein
sequence xmut via its log-likelihood ratio with respect to the wild-type sequence xwt:

log
P (xmut)

P (xwt)
= log

PLM (xmut|DK)

PLM (xwt|DK)
(2)

In practice, if both xmut and xwt are close in sequence space (e.g., differ by a handful of mutated
positions), they will share the same conditioning set DK .

3 RESULTS

3.1 PRETRAINED READER MODEL ARCHITECTURE AND TRAINING

We first pre-trained a reader model composed of an ESM encoder (35M parameters) and a Tranception
decoder (85M parameters). Using the Fusion-in-Decoder approach, we add cross-attention layers
to the encoder, attending to the last-layer hidden state of the ESM encoder model. This results in
a model with 150M parameters. This approach is agnostic to the particular choice of encoder and
decoder architectures, requiring only a projection layer to ensure that the encoder and decoder have
the same hidden dimension as the cross-attention layer. We pre-train the FiD model on the same
dataset used for training PoET, composed of 32 millions BLAST clusters (see Appendix D). We refer
to this baseline architecture as FiD.

3.2 FITNESS PREDICTION PERFORMANCE ON PROTEINGYM

We evaluate the Protriever framework on ProteinGym (Notin et al., 2023), a large-scale benchmark for
evaluating the zero-shot fitness prediction performance of protein sequence models. The benchmark
contains more than 250 deep mutational scanning (DMS) experiments probing the natural function
of many protein variants. An effective generative model of protein sequences would be expected to
capture evolutionary constraints and thus perform well at mutational effect prediction.

We first establish baseline performance using our FiD architecture with traditional MSA inputs
(Table 1, row FiD + MSA). This evaluation explores context sizes k of 10, 25, and 50, across the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review for LMRL Workshop at ICLR 2025

Val Set Spearman’s Closest Closest Distance Distance
+ Random + Uni90 + Random + Uni90

Protriever (Frozen Retriever) 0.310 0.324 0.339 0.347
Protriever (Trained Retriever) 0.372 0.378 0.391 0.404

Table 4: We test four different strategies of sampling UniRef100 sequences for conditioning with
either the frozen or trained retriever. We see that the Distance + Uni90 sampling strategy yields the
best results for either retrieval type, indicating that the initial frozen ESM retrieval already captures
some notion of homology, which we are able to maintain and improve by training the retriever.

same five similarity thresholds used in PoET. The FiD architecture outperforms comparable models
of similar size, achieving an average Spearman correlation of 0.420 compared to 0.388 for ESM-2
(150M parameters) and 0.341 for Tranception (300M parameters) across MSA depths.

To assess the impact of learned retrieval, we first evaluate FiD with a frozen retriever using pre-trained
ESM embeddings (FiD + frozen Protriever). Despite optimizing the inference strategy through
distance-based filtering and UniRef90 sampling (detailed in Section 3.4), this direct substitution
of MSA sequences with retrieved sequences substantially degrades performance compared to the
MSA-based approach. However, with end-to-end training of the retriever (FiD + trained Protriever),
we achieve comparable performance to that of the MSA-based model (0.416 vs. 0.420). Notably, the
trained retriever shows particular strength in low MSA depth regimes, outperforming the MSA-based
approach (0.365 vs. 0.352). The following sections detail the training and inference strategies that
enable this performance.

3.3 RETRIEVAL AT TRAINING STRATEGIES

We investigated three training strategies for the Protriever framework, evaluating their performance
on both retrieved sequence sets and MSA set conditioning. When evaluating the retrieved sets, we
sample them according to the inference scheme Distance + Uni90 described in the next section.
The results of these different approaches are shown in Section 3.1. We evaluated different training
strategies, starting with fixing the reader model and only training the retriever.

• Fixed BLAST sets: In this strategy, we only train the retriever and fix the reader (the reader
at this point is still an external pre-trained decoder model). We rely on a precomputed
all-vs.-all BLAST dataset as our retrieval method at this stage. These sets represent good
ground-truth sequences similar to the query, and the frozen reader model is used to provide
training signal for the retriever.

• ESM sets: Here, we use the index search based on pre-trained embeddings, but still keep
the reader fixed. As the retriever weights are updated, the query embedding will change,
resulting in different sets potentially being selected. This makes this strategy closer to
end-to-end training than the fixed BLAST sets.

• Joint training: Finally, we end-to-end train the retriever and reader. The retriever selects for
each query what sequences to condition on, based on closest similarity embeddings in the
index, and the reader learns how to use the retrieved sequences for sequence reconstruction.

For all retrieval methods, we used a consistent training configuration of 50,000 steps with a fixed
retrieval size of k = 10, selecting the closest homologous sequences in the UniRef50 index. We
applied separate learning rates of 4× 10−4 for the reader and 5× 10−5 for the retriever, using linear
learning rate decay with 500 warm-up steps and a batch size of 16.

Each method was initialized from the checkpoint of the previous method. We compare in Section 3.1
the performance of all three approaches, trained with the two proposed retriever losses, EMDR and
the PDist, along with a baseline using the pre-trained reader evaluated on the frozen retriever. We
iteratively improve inference prediction with the three retrieval strategies and observe better results
with the EMDR loss function on the validation set, which was subsequently used in the retriever
configuration which scored all assays in Tables 1 and 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review for LMRL Workshop at ICLR 2025

3.4 RETRIEVAL AT INFERENCE STRATEGIES

Prior to inference, we calculate an index of all UniRef50 sequences (either with a frozen ESM as
encoder or with our trained retriever). This process includes calculating embeddings for all sequences
in UniRef50, which takes a few hours (≈ 4 hours on four A100s). We then train the Faiss index using
these embeddings which takes a few minutes (Table 5). The embedding generation, while expensive,
is cached for any follow-up query, and the index can be exported, as it is only a few gigabytes of
VRAM (see Fig. 3 for breakdown of memory use by parameters) for subsequent use. At inference
time, we test different strategies for the selection of conditioning sets for zero-shot fitness estimation:

• We take the K closest UniRef50 clusters given query/embedding similarities, where K
is set to the number of sequences we can put in our conditioning set. We then sample a
corresponding UniRef100 sequence, either randomly (Closest + Random) or inversely
proportional to the size of corresponding UniRef90 (Closest + Uni90).

• We sample from larger set of closest N = 300 UniRef50 clusters, weighted by distance to
the query, and sample a corresponding UniRef100 sequence randomly (Distance + Random)
or inversely proportional to the size of corresponding UniRef90 (Distance + Uni90).

We also follow the experimental results from PoET and sample over multiple conditioning sets k,
with k set to 10, 25, and 50. We do not sample over multiple similarity thresholds, as in PoET
although later work will look into establishing similarity thresholds based on cosine similarities.

1 100
Number of queries

10 2

10 1

100

101

Ti
m

e
pe

r
qu

er
y

(s
)

0.014

0.005

0.475 0.372

6.4
4.2

17.3 19.3

Faiss (IVFPQ96x8)
MMseqs2-GPU

BLASTP
MMseqs2 (k-mer)

Figure 2: Retrieval time per query
sequence using embedding similarity
search with our approach (details in Ap-
pendix C) against BLASTP, MMseqs2,
and GPU-accelerated MMseqs2, taken
from Kallenborn et al. (2025). De-
spite the significant improvement with
MMseqs2-GPU, our approach is still or-
ders of magnitude faster.

As shown in Section 3.3, we evaluate these different strate-
gies on the validation set of ProteinGym and observe a
consistent increase in predictive performance going from
left to right, for both a frozen and trained retriever. We
therefore use the best parameter combination, Distance +
Uni90, to generate the results in Tables 1 and 2.

4 DISCUSSION

The key advantage of Protriever is the replacement of
MSA-based retrieval with vector similarity search. Given
the pre-trained index, retrieval is rapid, lightweight, and
scalable as shown in Appendix C. The MSA sequences
used by methods such as EVE Frazer et al. (2021) rely
on sensitive retrieval tools such as JackHMMER (Johnson
et al., 2010), which can take hours or days to complete for
a given query sequence. Other retrieval routines such as
BLAST (Altschul et al., 1990) or MMseqs2 (Steinegger &
Söding, 2017) can offer speed-ups but at the cost of lower
retrieval precision. In contrast, our approach is 30-100x
faster than even recent MMseqs2-GPU implementation
(Kallenborn et al., 2025), as shown in Fig. 2, allowing
large efficiency gains when predicting at scales of the
entire proteome.

A significant benefit of using a vector database for retrieval is that it is dynamic, allowing an inference
dataset to be different than the trained one. This allows us to limit the inference dataset to specialized
databases like GISAID (Shu & McCauley, 2017) for targeted downstream tasks, particularly useful
in the case of proprietary or sensitive biological sequences.

The framework is model-agnostic: while we demonstrate it with an encoder-decoder reader, it can
be adapted to decoder-only architectures like PoET and MSAGPT Chen et al. (2024), or alternative
retrieval encoders such as structure-aware models (help address the stability prediction gap observed
in Table 2). This flexibility, combined with the interpretability gained from analyzing retrieved
sequences, opens promising directions for future research.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review for LMRL Workshop at ICLR 2025

MEANINGFULNESS STATEMENT

Understanding a protein’s evolutionary context through homology is crucial for meaningful biological
representations. While Multiple Sequence Alignments have been the standard approach for capturing
evolutionary relationships, they rely on rigid sequence similarity heuristics. Protriever reimagines this
paradigm through end-to-end learned homology search, where the model discovers which sequences
are truly informative for understanding protein function. By jointly optimizing retrieval and sequence
reconstruction, we uncover subtle functional relationships often missed by traditional alignment
methods. This creates a more nuanced and dynamic view of protein sequence space, bridging modern
language models with evolutionary insights while maintaining biological interpretability through
explicit sequence relationships

REFERENCES

Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M. Church.
Unified rational protein engineering with sequence-based deep representation learning. Nature
Methods, pp. 1–8, 2019.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, October 1990. ISSN 0022-2836. doi:
10.1016/S0022-2836(05)80360-2.

Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, and Le Song. MSAGPT: Neural Prompting
Protein Structure Prediction via MSA Generative Pre-Training, October 2024. URL http:
//arxiv.org/abs/2406.05347. arXiv:2406.05347 [q-bio].

Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning, July 2023.
URL http://arxiv.org/abs/2307.08691. arXiv:2307.08691 [cs].

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The Faiss library, September 2024. URL
http://arxiv.org/abs/2401.08281. arXiv:2401.08281 [cs].

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Wang Yu, Llion Jones, Tom
Gibbs, Tamas B. Fehér, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
Rost. ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep
Learning and High Performance Computing. IEEE transactions on pattern analysis and machine
intelligence, PP, 2021.

Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised language model
for protein design. Nature Communications, 13, 2022.

Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K. Min, Kelly P. Brock, Yarin
Gal, and Debora S. Marks. Disease variant prediction with deep generative models of evolutionary
data. Nature, 2021.

Edouard Grave, Moustapha M Cisse, and Armand Joulin. Unbounded cache model for online
language modeling with open vocabulary. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/f44ee263952e65b3610b8ba51229d1f9-Abstract.html.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval Augmented
Language Model Pre-Training. In Proceedings of the 37th International Conference on Machine
Learning, pp. 3929–3938. PMLR, November 2020. URL https://proceedings.mlr.
press/v119/guu20a.html. ISSN: 2640-3498.

Ulrike Göbel, Chris Sander, Reinhard Schneider, and Alfonso Valencia. Correlated muta-
tions and residue contacts in proteins. Proteins: Structure, Function, and Bioinformatics,
18(4):309–317, 1994. ISSN 1097-0134. doi: 10.1002/prot.340180402. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/prot.340180402. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.340180402.

9

http://arxiv.org/abs/2406.05347
http://arxiv.org/abs/2406.05347
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2401.08281
https://proceedings.neurips.cc/paper/2017/hash/f44ee263952e65b3610b8ba51229d1f9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f44ee263952e65b3610b8ba51229d1f9-Abstract.html
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340180402
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340180402

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review for LMRL Workshop at ICLR 2025

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial Attention in Multidimen-
sional Transformers. ArXiv, abs/1912.12180, 2019. URL https://api.semanticscholar.
org/CorpusID:209323787.

Liang Hong, Siqi Sun, Liangzhen Zheng, Qingxiong Tan, and Yu Li. fastMSA: Accelerating
Multiple Sequence Alignment with Dense Retrieval on Protein Language, December 2021. URL
https://www.biorxiv.org/content/10.1101/2021.12.20.473431v1. Pages:
2021.12.20.473431 Section: New Results.

Thomas A Hopf, Charlotta P I Schärfe, João P G L M Rodrigues, Anna G Green, Oliver Kohlbacher,
Chris Sander, Alexandre M J J Bonvin, and Debora S Marks. Sequence co-evolution gives 3D
contacts and structures of protein complexes. eLife, 3:e03430, September 2014. ISSN 2050-084X.
doi: 10.7554/eLife.03430. URL https://doi.org/10.7554/eLife.03430. Publisher:
eLife Sciences Publications, Ltd.

Thomas A. Hopf, John B. Ingraham, Frank J. Poelwijk, Charlotta P. I. Schärfe, Michael Springer,
Chris Sander, and Debora S. Marks. Mutation effects predicted from sequence co-variation. Nature
Biotechnology, 35(2):128–135, February 2017. ISSN 1546-1696. doi: 10.1038/nbt.3769.

Gautier Izacard and Edouard Grave. Leveraging Passage Retrieval with Generative Models for
Open Domain Question Answering, February 2021. URL http://arxiv.org/abs/2007.
01282. arXiv:2007.01282 [cs].

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot Learning with
Retrieval Augmented Language Models, November 2022. URL http://arxiv.org/abs/
2208.03299. arXiv:2208.03299 [cs].

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-Scale Similarity Search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, July 2021. ISSN 2332-7790. doi: 10.1109/TBDATA.2019.
2921572. URL https://ieeexplore.ieee.org/document/8733051. Conference
Name: IEEE Transactions on Big Data.

L. Steven Johnson, Sean R. Eddy, and Elon Portugaly. Hidden Markov model speed heuristic and iter-
ative HMM search procedure. BMC Bioinformatics, 11(1):431, August 2010. ISSN 1471-2105. doi:
10.1186/1471-2105-11-431. URL https://doi.org/10.1186/1471-2105-11-431.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen
Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli,
and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, July
2021.

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product Quantization for Nearest Neighbor
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, January
2011. ISSN 1939-3539. doi: 10.1109/TPAMI.2010.57. URL https://ieeexplore.ieee.
org/document/5432202. Conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Felix Kallenborn, Alejandro Chacon, Christian Hundt, Hassan Sirelkhatim, Kieran Didi, Sooy-
oung Cha, Christian Dallago, Milot Mirdita, Bertil Schmidt, and Martin Steinegger. GPU-
accelerated homology search with MMseqs2, January 2025. URL https://www.biorxiv.
org/content/10.1101/2024.11.13.623350v3. Pages: 2024.11.13.623350 Section:
New Results.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, Online, November

10

https://api.semanticscholar.org/CorpusID:209323787
https://api.semanticscholar.org/CorpusID:209323787
https://www.biorxiv.org/content/10.1101/2021.12.20.473431v1
https://doi.org/10.7554/eLife.03430
http://arxiv.org/abs/2007.01282
http://arxiv.org/abs/2007.01282
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
https://ieeexplore.ieee.org/document/8733051
https://doi.org/10.1186/1471-2105-11-431
https://ieeexplore.ieee.org/document/5432202
https://ieeexplore.ieee.org/document/5432202
https://www.biorxiv.org/content/10.1101/2024.11.13.623350v3
https://www.biorxiv.org/content/10.1101/2024.11.13.623350v3

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review for LMRL Workshop at ICLR 2025

2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL
https://aclanthology.org/2020.emnlp-main.550/.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through Memorization: Nearest Neighbor Language Models. In International Conference on
Learning Representations, 2019.

Anders Krogh. An introduction to hidden Markov models for biological sequences. In Steven L.
Salzberg, David B. Searls, and Simon Kasif (eds.), New Comprehensive Biochemistry, vol-
ume 32 of Computational Methods in Molecular Biology, pp. 45–63. January 1998. doi:
10.1016/S0167-7306(08)60461-5. URL https://www.sciencedirect.com/science/
article/pii/S0167730608604615.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent Retrieval for Weakly Supervised
Open Domain Question Answering. In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 6086–6096, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1612. URL https://aclanthology.org/P19-1612/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 9459–9474. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

Pan Li, Xingyi Cheng, Le Song, and Eric Xing. Retrieval Augmented Protein Language Mod-
els for Protein Structure Prediction, December 2024. URL https://www.biorxiv.org/
content/10.1101/2024.12.02.626519v1. Pages: 2024.12.02.626519 Section: New
Results.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, March 2023. doi:
10.1126/science.ade2574. URL https://www.science.org/doi/10.1126/science.
ade2574. Publisher: American Association for the Advancement of Science.

Felipe Llinares-López, Quentin Berthet, Mathieu Blondel, Olivier Teboul, and Jean-Philippe Vert.
Deep embedding and alignment of protein sequences. Nature Methods, 20(1):104–111, January
2023. ISSN 1548-7105. doi: 10.1038/s41592-022-01700-2. URL https://www.nature.
com/articles/s41592-022-01700-2. Publisher: Nature Publishing Group.

Chang Ma, Haiteng Zhao, Lin Zheng, Jiayi Xin, Qintong Li, Lijun Wu, Zhihong Deng, Yang Young
Lu, Qi Liu, Sheng Wang, and Lingpeng Kong. Retrieved Sequence Augmentation for Protein Rep-
resentation Learning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 1738–1767, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.104. URL https://aclanthology.org/2024.emnlp-main.104/.

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R. Eguchi,
Po-Ssu Huang, and Richard Socher. ProGen: Language Modeling for Protein Generation, 2020.
eprint: 2004.03497.

Ananthan Nambiar, Maeve Heflin, Simon Liu, Sergei Maslov, Mark Hopkins, and Anna Ritz.
Transforming the Language of Life: Transformer Neural Networks for Protein Prediction Tasks. In
Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics, BCB ’20, pp. 1–8, New York, NY, USA, November 2020. Association
for Computing Machinery. ISBN 978-1-4503-7964-9. doi: 10.1145/3388440.3412467. URL
https://dl.acm.org/doi/10.1145/3388440.3412467.

11

https://aclanthology.org/2020.emnlp-main.550/
https://www.sciencedirect.com/science/article/pii/S0167730608604615
https://www.sciencedirect.com/science/article/pii/S0167730608604615
https://aclanthology.org/P19-1612/
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://www.biorxiv.org/content/10.1101/2024.12.02.626519v1
https://www.biorxiv.org/content/10.1101/2024.12.02.626519v1
https://www.science.org/doi/10.1126/science.ade2574
https://www.science.org/doi/10.1126/science.ade2574
https://www.nature.com/articles/s41592-022-01700-2
https://www.nature.com/articles/s41592-022-01700-2
https://aclanthology.org/2024.emnlp-main.104/
https://dl.acm.org/doi/10.1145/3388440.3412467

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review for LMRL Workshop at ICLR 2025

Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. ProGen2: Exploring
the boundaries of protein language models. Cell Systems, 14(11):968–978.e3, November 2023.
ISSN 2405-4712, 2405-4720. doi: 10.1016/j.cels.2023.10.002. URL https://www.cell.
com/cell-systems/abstract/S2405-4712(23)00272-7. Publisher: Elsevier.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan Gomez, Debora S.
Marks, and Yarin Gal. Tranception: protein fitness prediction with autoregressive transformers
and inference-time retrieval, May 2022. URL http://arxiv.org/abs/2205.13760.
arXiv:2205.13760 [cs].

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko
Franceschi, Yarin Gal, and Debora Marks. ProteinGym: Large-Scale Benchmarks for Protein
Fitness Prediction and Design. Advances in Neural Information Processing Systems, 36:64331–
64379, December 2023. URL https://papers.nips.cc/paper_files/paper/
2023/hash/cac723e5ff29f65e3fcbb0739ae91bee-Abstract-Datasets_
and_Benchmarks.html.

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas, Juannan Zhou,
Alexander M Rush, Peter Koo, and Sergey Ovchinnikov. End-to-end learning of multiple sequence
alignments with differentiable Smith–Waterman. Bioinformatics, 39(1):btac724, January 2023.
ISSN 1367-4811. doi: 10.1093/bioinformatics/btac724. URL https://doi.org/10.1093/
bioinformatics/btac724.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer, September 2023. URL http://arxiv.org/abs/1910.10683.
arXiv:1910.10683 [cs].

Roshan M. Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. MSA Transformer. In Proceedings of the 38th International Conference on
Machine Learning, pp. 8844–8856. PMLR, July 2021. URL https://proceedings.mlr.
press/v139/rao21a.html. ISSN: 2640-3498.

Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models of genetic
variation capture the effects of mutations. Nature Methods, 15(10):816–822, 2018. Publisher:
Nature Publishing Group.

Andrew C. Riley, Daniel A. Ashlock, and Steffen P. Graether. The difficulty of aligning in-
trinsically disordered protein sequences as assessed by conservation and phylogeny. PLOS
ONE, 18(7):e0288388, July 2023. ISSN 1932-6203. doi: 10.1371/journal.pone.0288388.
URL https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0288388. Publisher: Public Library of Science.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, and others. Biological structure and function emerge
from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15), 2021. Publisher: National Acad Sciences.

Stephen Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond.
Found. Trends Inf. Retr., 3(4):333–389, April 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
URL https://doi.org/10.1561/1500000019.

William P. Russ, Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich, Peter
Kast, Donald Hilvert, Rémi Monasson, Simona Cocco, Martin Weigt, and Rama Ranganathan. An
evolution-based model for designing chorismate mutase enzymes. Science, 369:440 – 445, 2020.
URL https://api.semanticscholar.org/CorpusID:220714458.

Devendra Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping, William L. Hamilton,
and Bryan Catanzaro. End-to-End Training of Neural Retrievers for Open-Domain Question
Answering. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International

12

https://www.cell.com/cell-systems/abstract/S2405-4712(23)00272-7
https://www.cell.com/cell-systems/abstract/S2405-4712(23)00272-7
http://arxiv.org/abs/2205.13760
https://papers.nips.cc/paper_files/paper/2023/hash/cac723e5ff29f65e3fcbb0739ae91bee-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2023/hash/cac723e5ff29f65e3fcbb0739ae91bee-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2023/hash/cac723e5ff29f65e3fcbb0739ae91bee-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1093/bioinformatics/btac724
https://doi.org/10.1093/bioinformatics/btac724
http://arxiv.org/abs/1910.10683
https://proceedings.mlr.press/v139/rao21a.html
https://proceedings.mlr.press/v139/rao21a.html
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288388
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288388
https://doi.org/10.1561/1500000019
https://api.semanticscholar.org/CorpusID:220714458

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review for LMRL Workshop at ICLR 2025

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6648–6662,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
519. URL https://aclanthology.org/2021.acl-long.519/.

Damiano Sgarbossa, Cyril Malbranke, and Anne-Florence Bitbol. ProtMamba: a homology-aware
but alignment-free protein state space model, May 2024. URL https://www.biorxiv.org/
content/10.1101/2024.05.24.595730v2. Pages: 2024.05.24.595730 Section: New
Results.

Yuelong Shu and John McCauley. GISAID: Global initiative on sharing all influenza data – from
vision to reality. Eurosurveillance, 22(13):30494, March 2017. ISSN 1560-7917. doi: 10.
2807/1560-7917.ES.2017.22.13.30494. URL https://www.eurosurveillance.org/
content/10.2807/1560-7917.ES.2017.22.13.30494. Publisher: European Centre
for Disease Prevention and Control.

Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature Biotechnology, 35(11):1026–1028, November 2017.
ISSN 1546-1696. doi: 10.1038/nbt.3988. URL https://www.nature.com/articles/
nbt.3988. Publisher: Nature Publishing Group.

Baris E. Suzek, Yuqi Wang, Hongzhan Huang, Peter B. McGarvey, and Cathy H. Wu. UniRef
clusters: a comprehensive and scalable alternative for improving sequence similarity searches.
Bioinformatics, 31(6):926–932, March 2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btu739. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375400/.

Timothy Truong Jr and Tristan Bepler. PoET: A generative model of protein families as sequences-
of-sequences. Advances in Neural Information Processing Systems, 36:77379–77415, De-
cember 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/
f4366126eba252699b280e8f93c0ab2f-Abstract-Conference.html.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerald
Tesauro, Bowen Zhou, and Jing Jiang. R3: reinforced ranker-reader for open-domain question
answering. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, pp. 5981–5988,
New Orleans, Louisiana, USA, February 2018. AAAI Press. ISBN 978-1-57735-800-8.

A APPENDIX

B FUSION IN DECODER ARCHITECTURE

The Fusion-in-Decoder (FiD) model integrates multiple passages by independently encoding each
one and concatenating their hidden representations along the sequence dimension prior to decoding.
Formally, given a batch size B and N passages per example, each passage pi is encoded to produce
hidden states Hi ∈ RB×Le×dmodel , where Le is the encoder sequence length and dmodel is the model’s
hidden dimension. These are concatenated to form Henc = [H1;H2; . . . ;HN] ∈ RB×NLe×dmodel .

During decoding, the cross-attention mechanism computes attention weights using queries Q ∈
RB×Ld×dk derived from the decoder’s hidden states through a linear projection with weights WQ ∈
Rdmodel×dk . The keys K ∈ RB×NLe×dk and values V ∈ RB×NLe×dv are obtained by linearly
projecting the concatenated encoder outputs Henc using weights WK ∈ Rdmodel×dk and WV ∈
Rdmodel×dv , respectively. The attention is then computed as:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V,

where Ld is the decoder sequence length, dk is the dimensionality of the keys and queries, and
dv is the dimensionality of the values. This process allows the decoder to attend over all passages
simultaneously, effectively fusing their information.

13

https://aclanthology.org/2021.acl-long.519/
https://www.biorxiv.org/content/10.1101/2024.05.24.595730v2
https://www.biorxiv.org/content/10.1101/2024.05.24.595730v2
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.13.30494
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.13.30494
https://www.nature.com/articles/nbt.3988
https://www.nature.com/articles/nbt.3988
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375400/
https://papers.nips.cc/paper_files/paper/2023/hash/f4366126eba252699b280e8f93c0ab2f-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/f4366126eba252699b280e8f93c0ab2f-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review for LMRL Workshop at ICLR 2025

Regarding computational complexity, compared to conditioning on a single passage (N = 1), the
cross-attention per layer increases linearly with N , as its complexity scales with O(Ld ×NLe ×
dmodel).

C VECTOR SIMILARITY SEARCH WITH FAISS

We rely on Faiss for GPU-accelerated vector similarity search (Johnson et al., 2021; Douze et al.,
2024), whose terminology we adopt. The vector similarity search is facilitated with an index, whose
task it is to search a large database of vectors, d and return the K most similar ones to the query, q,
given a similarity metric.

The most simple index is a flat index, where the query is compared to all database entries. With the
commonly used maximum inner product similarity measure, this reduces to computing q · dT and
extracting the K largest entries. While this search is exact, it is both slow and requires storing all
database vectors in memory which is prohibitively expensive. For fast search, an inverted file index
(IVF) can be used. Prior to searching the index, all entries are clustered using a ”coarse quantizer”,
e.g., a k-means clustering algorithm, given some predefined number of centroids, KIVF. At search
time, the query q is compared to all KIVF centroids, of which the PIVF most similar centroids, often
referred to as the number of probes, are searched, reducing the number of comparisons from N to

Ncomparisons = KIVF + PIVF
N

KIVF
,

as per equation 18 in Douze et al. (2024). While using an IVF index reduces search time, it still
requires storing the full database in memory, which for the ≈ 64 million UniRef50 sequences requires
> 110 GB of memory, given the 480 dimensional mean-pooled ESM-2 35M embeddings. To
overcome this major challenge, further quantization is required. We rely on a product quantizer (PQ)
to effectively reduce the dimensionality of each vector (Jégou et al., 2011). The product quantizer
partitions each vector into M sub-vectors, where each sub-vector is further separately quantized
using a k-means clustering. Defining the product quantizer requires setting two parameters: the code
size, M, and the number of bits with which to represent each sub-vector, where either 8 or 10 are
commonly used.

Using a product quantizer dramatically reduces the index size. The memory requirement of in-
dexing UniRef50 using three different code sizes and using a flat IVF index can be seen in Fig. 3.
IVFPQ32x8 refers to product-quantized IVF index, where each vector is divided into M = 32
sub-vectors, each of which is represented by 8 bits. The shown memory uses are solely for storing
the index in memory. Using a quantizer such as PQ is therefore necessary in order to additionally
store and train the Protriever model.

The process of preparing the coarse and product quantizers, e.g., by running k-means algorithms to
facilitate fast search is called training the index.

C.1 DISTRIBUTED INDEX

We use Protriever in a distributed setting using NGPU GPUs via the implementation in Izacard et al.
(2022). We shard our dataset into NGPU equal-sized partitions and train separate indices, where each
index is responsible for Nindex = N/NGPU sequences. At search time, the query is used to search
each index, the results of which are aggregated. We let NGPU = 4.

C.2 CHOOSING INDEX PARAMETERS

We need to select a number of index parameters, namely the number of centroids for the coarse
quantizer, KIVF, the number of probes, PIVF, the code size M, and the number of bits for the product
quantizer. We have three main considerations: memory, speed, and accuracy. Given the memory uses
shown Fig. 3, we now focus on gauging accuracy and speed.

C.2.1 RECALL

We measure search accuracy using recall by randomly sampling Nsample = 10000 UniRef50 sequences
as queries and investigating whether the query sequences are returned when searching the index.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review for LMRL Workshop at ICLR 2025

IVFPQ32x8 IVFPQ48x8 IVFPQ96x8 IVFFlat
0

20

40

60

80

100

120

140

M
em

or
y

(G
iB

)

8.9 9.8 12.6

133.9

Figure 3: Index memory use. IVFPQ32x8 refers to product-quantized IVF index, where each vector
is divided into M = 32 sub-vectors, each of which is represented by 8 bits, while IVFFlat refers
to an IVF index with no further quantization. Using a product quantizer dramatically reduces the
memory use, potentially at the cost of search quality.

We investigate code sizes of 32, 48, and 96 (the embedding dimension needs to be divisible by the
code size), as coarser quantization led to poor performance. We experiment with three different
centroid counts, determined by database size: KIVF ∈ {

√
Nindex, 4

√
Nindex, 8

√
Nindex}. We fix the

number of probes to PIVF = 2048, which is the upper limit in the Faiss GPU implementation and for
simplicity, we fix the number of bits per sub-vector to 8. This leads to three indices IVFPQ32x8,
IVFPQ48x8, and IVFPQ96x8, with KIVF = {3941, 15764, 31528} (as Nindex ≈ 15.5 million).
We use the 10000 sampled queries to search across the nine index configurations, retrieving the
K = 2048 nearest neighbors and calculating the average recall rate at powers of 2. The results can be
seen in Fig. 4. The code size has a significant impact on search quality, where M = 32 fails to reach

1 2 4 8 16 32 64 128 256 512 1024 2048
k

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Index
IVFPQ32x8
IVFPQ48x8
IVFPQ96x8
KIVF

3941
15764
31528

Figure 4: Recall rate vs. neighborhood sizes for IVFPQ indices at different quantization levels
and centroids counts. 10.000 UniRef50 sequences are randomly sampled and used as queries. For
each query sequence, the 2048 nearest neighbors are found. The recall indicates whether the query
sequence was successfully recovered. Decreasing the quantization from 48 sub-vectors to 96 sub-
vectors leads to a significant increase in recall, while doubling the number of centroids per index
from KIVF = 15764 to KIVF = 31528 only has a marginal performance increase.

recall rates above 0.9 for K = 2048. Increasing the code size to M = 96 massively increases the
recall rates, where the majority of the single-nearest neighbors return the query sequence. The search
performance is less sensitive to the number of centroids, where recall increases with centroid count.
For M = 96, we observe a persistent performance gap when using KIVF = 4

√
Nindex = 15764,

particularly for the lower neighbor counts.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review for LMRL Workshop at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

IVFPQ32x8 IVFPQ48x8 IVFPQ96x8

KIVF

3941
15764
31528

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Ti

m
e

pe
r

qu
er

y
(s

)

KIVF

3941
15764
31528

1 10 100
Number of queries

0

50

100

150

200

250

300

Q
ue

ri
es

 p
er

 s
ec

on
d

(Q
PS

)

1 10 100
Number of queries

1 10 100
Number of queries

KIVF

3941
15764
31528

Figure 5: Impact of parameter settings on search time metrics (total time, time per query, and queries
per second) across 9 configurations with varying number of queries. Results show longer search
times with fewer centroids, higher per-query costs for single queries due to batch optimization, and
QPS improvements that scale with number of queries..

C.2.2 SEARCH SPEED

We investigate the impact of parameter settings on search speed by measuring it over a range of
scenarios. For each of the nine parameter configurations, we search using 1, 10, and 100 queries,
repeating each five times. We can then visualize the search time (averaged over repeats), the time per
query, and the queries per second (QPS) for each configuration. These results can be seen in Fig. 5.
We see that, as expected, the search time increases with the number of queries. Using a low number
of centroids (shown in blue) consistently leads to longer search times. While the search process has
fewer comparisons to centroids initially, this is not outweighed by the correspondingly larger clusters.
In the second row of Fig. 5 we observed that the search time per query is longer when using only a
single query. This is expected as Faiss is optimized for batched searches. We also observe that using
code sizes 48 and 96 approximately takes the same search time per input query. In the last row we
observe that the queries per second (QPS) generally increases with the number of queries and for
code size 96 appears to near a saturation point.

C.2.3 INDEX TRAINING TIME

We lastly examine how long it takes to train the index with the different parameter configurations. We
train each of the nine configurations on Nindex ≈ 15.5 million UniRef50 sequences a total of three
times. The average training time in seconds and standard error can be seen in Table 5. The training
time is not sensitive to the code size but appears to linearly scale with number of centroids.

D TRAINING DETAILS ON HOMOLOGOUS DATABASE SETS FROM POET

We reuse the newest version of the Homologous database sets as was obtained by PoET,
done over the UniRef50 version 2021/03 Suzek et al. (2015). The data was given
to use from the PoET team and thank them for this great resource. The data was
obtained by running an all vs all search of UniRef50 using Diamond, using the fol-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review for LMRL Workshop at ICLR 2025

Training time [s]
KIVF = 3941 KIVF = 15764 KIVF = 31528

M = 32 39.00± 1.36 80.63± 0.47 190.13± 0.38
M = 48 40.33± 0.52 82.89± 0.73 191.72± 1.59
M = 96 47.03± 0.60 89.98± 0.84 200.13± 1.69

Table 5: Index training times. Average index training times (and standard error) for different
parameter configurations. Each index covers Nindex ≈ 15.5 million UniRef50 sequences. The
indexing time only slightly decreases with increased quantization. The number of centroids has a
large impact on indexing time which appears to scale linearly.

lowing command, diamond blastp -q uniref50.fasta -d diamond/uniref50
-f 6 {header -k 200000 {max-hsps 1 -e 0.001 -p 96 -o output.tab. The
command returns, for each sequence in UniRef50, a set containing all its putative homologs in
UniRef50. Diamond was used over other homology search tools due to its high performance (>100x
speed of BLAST). The distribution of UniRef50 clusters sizes can be seen in Fig. 6.

Following PoET’s methodology, we retain only clusters with more than 10 members, yielding 32
million clusters. During training, we sample UniRef50 clusters with weight inversely proportional
to the size of the UniRef50 cluster, in order to not overly represent large clusters (see Fig. 6
for an overview of cluster sizes). We then replace each UniRef50 sequence, whether query or
cluster member, with a UniRef100 sequence with weight inversely proportional to the size of the
corresponding UniRef90 cluster. As a form of data augmentation, we randomly reverse query
sequences during training (with 50% probability), allowing reconstruction from either N-terminus to
C-terminus, or vice versa. At inference time, we score sequences in both directions, a strategy shown
to improve predictive performance Notin et al. (2022).

0 25000 50000 75000 100000 125000 150000 175000
UniRef50 cluster size

100

101

102

103

104

105

106

107

108

C
ou

nt

Figure 6: Distribution over cluster sizes of UniRef50.

E SOFTWARE

We make our code available at https://anonymous.4open.science/r/anon-FBE3/.

17

https://anonymous.4open.science/r/anon-FBE3/

	Related work
	Retrieval

	Methods
	Protriever Framework
	Training losses for the retriever
	Vector similarity search
	Sequence generation and scoring

	Results
	Pretrained reader model architecture and training
	Fitness prediction performance on ProteinGym
	Retrieval at training strategies
	Retrieval at inference strategies

	Discussion
	Appendix
	Fusion in Decoder architecture
	Vector similarity search with Faiss
	Distributed index
	Choosing index parameters
	Recall
	Search speed
	Index training time

	Training details on homologous database sets from PoET
	Software

