Published as a conference paper at ICLR 2022

POLICY GRADIENTS INCORPORATING THE FUTURE

David Venuto!??, Elaine Lau?, Doina Precup'?3, Ofir Nachum*
'Mila, 2McGill University, *DeepMind, *Google Brain
david.venuto@mail.mcgill.ca

ABSTRACT

Reasoning about the future — understanding how decisions in the present time
affect outcomes in the future — is one of the central challenges for reinforcement
learning (RL), especially in highly-stochastic or partially observable environments.
While predicting the future directly is hard, in this work we introduce a method that
allows an agent to “look into the future” without explicitly predicting it. Namely,
we propose to allow an agent, during its training on past experience, to observe
what actually happened in the future at that time, while enforcing an information
bottleneck to avoid the agent overly relying on this privileged information. Coupled
with recent advances in variational inference and a latent-variable autoregressive
model, this gives our agent the ability to utilize rich and useful information about
the future trajectory dynamics in addition to the present. Our method, Policy
Gradients Incorporating the Future (PGIF), is easy to implement and versatile,
being applicable to virtually any policy gradient algorithm. We apply our proposed
method to a number of off-the-shelf RL algorithms and show that PGIF is able to
achieve higher reward faster in a variety of online and offline RL domains, as well
as sparse-reward and partially observable environments.

1 INTRODUCTION

Fundamentally, reinforcement learning (RL) is composed of gathering useful information (explo-
ration) and assigning credit to that information (credit assignment). Both of these problems present
their own unique learning challenges. In this work, we focus on credit assignment, which refers to
the challenge of matching observed outcomes in the future to decisions made in the past. Humans
appear to do this in a sample efficient manner (Johnson-Laird, 2010), and so it is natural to expect
our own RL agents to do so as well.

One of the most popular approaches to credit assignment, known as model-free RL, is to learn a
value function to approximate the future return given a starting state and action. The value function
is learned using experience of the agent acting in the environment via temporal difference (TD)
methods (Sutton, 1988), which regress the value function to a target based on a combination of
groundtruth returns achieved in the environment and the approximate value function itself. The need
to bootstrap learning of the value function on its own estimates is known to lead to difficulties in
practice, where one must achieve a careful balance between bias and variance (Harutyunyan et al.,
2019; Weaver & Tao, 2001; Schulman et al., 2016; Mnih et al.). If a slight imbalance arises, the
consequences can be disastrous for learning (Tsitsiklis & Van Roy, 1996; van Hasselt et al., 2018;
Sutton & Barto, 2018). For example, in offline RL this issue is so pronounced that algorithms must
apply strong regularizations on both learned policy and value function to achieve stable performance
(Wu et al., 2020; Kumar et al., 2019; Zhang et al., 2021; Nachum et al., 2019).

The model-free approach plays dual to the model-based approach, where an agent learns a dynamics
and reward model of the environment, and then learns an agent to optimize behavior in this model.
Thus, credit assignment boils down to utilizing an appropriate planning algorithm that can perform
multiple rollouts in the model, effectively allowing the agent to “look into the future” (Racaniere
et al., 2017; Pascanu et al., 2017) to determine cause-and-effect (Sutton, 1991; Peng et al., 2018;
Abbas et al.). While model-based RL may appear more straightforward, learning an accurate model
is a challenge in practice, presenting its own sample-efficiency problems (Wang et al., 2020) as well
as memory and computational issues (Lukasz Kaiser et al., 2020). Model-based approaches are thus
most beneficial when the environment exhibits some level of regularity (Fra, 2019).

Published as a conference paper at ICLR 2022

Beyond these issues, credit assignment in both model-free and model-based RL is further exacerbated
by partially observable environments, in which the full environment state is not known to the learning
agent. Thus it is infeasible to predict future events accurately. When applied to such non-Markovian
domains, model-free algorithms relying on bootstrapping and value function approximation tend
to be biased (Singh, 1994). On the other hand for model-based approaches, learning an accurate
dynamics model in such domains is a difficult, potentially ill-defined problem (Suematsu & Hayashi,
1999; Bush & Pineau, 2009).

In this work, we aim to circumvent these challenges. We propose a simple modification to model-free
RL that allows the learned policy and value function to “look into the future” but without the need to
learn an accurate model. Namely, we propose to modify the policy and value function to not only
condition on the presently observed state and action but also on the subsequent trajectory (sampled
by the agent as it was interacting with the environment) following this state and action. This way,
our method mitigates potential approximation or feasibility issues in accurately modeling the future.
To ensure that the learned policy and value function remains relevant during inference (i.e., data
collection) when the future trajectory is unavailable, we place an information bottleneck (Saxe et al.,
2018; Tishby et al., 1999) on the additional inputs, encouraging the learned functions to minimize
their reliance on this privileged information. One may thus view our method as an instance of teacher
forcing or Z-forcing (Goyal et al., 2017; Lamb et al., 2016) where our student is the learned policy
and value function and the teacher is some function of the information in the future trajectory. It is
well known that combining a strong autoregressive decoder with latent variables while ensuring that
they carry useful information is difficult (Bowman et al., 2016; Chen et al., 2017). Z-forcing enforces
the incorporation of relevant information by learning latent variables that predict the future steps.

Practically, our method, Policy Gradients Incorporating the Future (PGIF), is versatile and easy to
implement. We use either a backwards RNN or a transformer to inject downstream information
from the observed trajectories by way of latent variables, with a KL divergence regularization on
these latents. We apply PGIF on top of a variety of off-the-shelf RL algorithms, including RNN-
based PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), and BRAC (Wu et al., 2020), and
evaluate these algorithms on online and offline RL as well as sparse-reward and partially observable
environments. In all of these domains, we demonstrate the ability of PGIF to achieve higher returns
faster compared to these existing RL algorithms on their own, thus showing that our proposed method
is both versatile and beneficial in practice.

2 BACKGROUND AND NOTATION

We begin by providing a brief overview of the notation and preliminary concepts that we will use in
our later derivations.

Markov Decision Processes (MDPs) MDPs are defined by a tuple (S, A, P, R, pg,~) where S is a
set of states, A is a set of actions, IP is a transition kernel giving a probability P(s’|s, a) over next
states given the current state and action, R : & X A — [Ruin, Rmax] is a reward function, pg is an
initial state distribution, and y € [0, 1) is a discount factor. An agent in this MDP is a stationary
policy 7 giving a probability 7 (a|s) over actions at any state s € S. A policy 7 interacts with the
MDP by starting at so ~ pg and then at time ¢ > 0 sampling an action a; ~ m(s;) at which point the
MDP provides an immediate reward R(s;, a;) and transitions to a next state s;+1 ~ P(s¢, at). The
interaction ends when the agent encounters some terminal state sp.

The value function V™ : § — R of a policy is defined as V™ (s) = E, [ZtT;Ol Yiri|so = s|, where
[, denotes the expectation of following 7 in the MDP and 7" is a random variable denoting when
a terminal state is reached. Similarly, the state-action value function @™ : § x A — R is defined
as Q7 (s,a) = Eﬂ[Zthfol ~'ri|so = s,ag = a). The advantage A™ is then given by A™(s,a) =
Q™ (s,a) — V™(s). We denote p, as the distribution over trajectories 7 = (so, ag,70,-- -, ST)
sampled by m when interacting with the MDP.

During learning, 7 is typically parameterized (e.g., by a neural network), and in this case, we use
mp to denote this parameterized policy with learning parameters given by 6. The policy gradient
theorem (Sutton et al., 1999) states that, in order to optimize the RL objective E, .~ ,, [V " (s0)], a
parameterized policy should be updated with respect to the gradient of the following loss (ignoring

Published as a conference paper at ICLR 2022

any gradients through p,,, where we denote stopping the gradient with),

Jea(mo) = ETNng [S70! vt Qe log mg (ae]se)] (1)

where (), is an unbiased estimate of Q™ (s, a;). In the simplest case,), is the empirically observed
future discounted return following s;, a;. In other cases, an approximate (J-value or advantage
function is incorporated to trade-off between the bias and variance in the policy gradients. When the
Q or V value function is parameterized, we will use) to denote its parameters. For example, the
policy gradient loss with a parameterized (), is given by,

T—1

Jo(70, Qu) = Ermpn, {Z ' Qulsiyar) 1ogwe<atst>} : &)
t=0

The value function @)y, is typically learned via some regression-based temporal differencing method.

For example,

T—1
Jio(Qu) = Ernpr, [Z(Qt - Qw(st,at))Q] . 3)

t=0

Stochastic Latent Variable Models In our derivations, we will utilize parameterized policies and
value functions conditioned on auxiliary inputs given by stochastic latent variables. That is, we
consider a latent space Z, typically a real-valued vector space. We define a parameterized policy
that is conditioned on this latent variable as my(als, z) fora € A,s € S,z € Z; i.e., my takes in
states and latent variables and produces a distribution over actions. In this way, one can consider
the latent variable z as modulating the behavior of 7y in the MDP. During interactions with the
MDP or during training, the latent variables themselves are generated by some stochastic process,
thus determining the behavior of my. For example, in the simplest case z may be sampled from a
latent prior p,» (z|s), parameterized by v®. Thus, during interactions with the MDP actions a; are
sampled as a; ~ g (s, 2¢), 2t ~ Py@(s¢). We treat parameterized latent variable value functions
analogously. Specifically, we consider a latent space U and a parameterized ()-value function as
Q. (s, a,u). A prior distribution over these latent variables may be denoted by p,w (u/s).

3 PoLICY GRADIENTS INCORPORATING THE FUTURE

Our method aims to allow a policy during training to leverage future information for learning control.
We propose to utilize stochastic latent variable models to this end. Namely, we propose to train 7y
and Q,, with latent variables (z,u) = {(z;, us)}/—," sampled from a learned function q4(7) which
has access to the full trajectory. For example, the PGIF form of the policy gradient objective in (2)

may be expressed as

T—1
JpGIE, PG(ﬂ'Ga Qy, %) = ETNpﬂ,(Z,u)~q¢(T) |:Z ’Yt : Qw(st, ahut) 10g7rt9(at|5t7 Zz):| . 4

t=0

The PGIF form of the temporal difference objective in (3) may be expressed analogously as,

T—-1

Jeietn (Qur 46) = Ernpr) unay () [Z(Qt — Qu (st s, Ut))Z] : ®)
t=0

It is clear that any RL objective which trains policies and/or value functions on trajectories can be

adapted to a PGIF form in a straightforward manner. For example, in our experiments we will apply

PGIF to an LSTM-based PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), and BRAC (Wu

et al., 2020).

While the PGIF-style objectives above adequately achieve our aim of allowing a policy to leverage
future trajectory information during training, they also present a challenge during inference. When
performing online interactions with the environment, one cannot evaluate ¢4(7), since the full
trajectory 7 is not yet observed. Therefore, while we want to give mg and Q) the ability to look at the
full 7 during training, we do not want their predictions to overly rely on this privileged information.
To this end, we introduce a regularization on gy in terms of a KL divergence from a prior distribution

Po(T) = {po (2, u]5:)} 15" which conditions (z;,u;) only on s;. Thus, in the case of policy
gradient, the full loss is,
JrcirkL(mo, Qs 4p) = Jrair p6 (Mo, Qu, 4g) + BE-~p,. [Dxr (46 (7)|[pu(7))] (6)

Published as a conference paper at ICLR 2022

R SN
Go(ze11be1)

Training

Inference

Figure 1: The architecture of the model. Our inference model 4z uses a backwards hidden state b,
to approximate dependencies of z; on the future of the trajectory. The blue line separates the data
collection and policy gradient training steps in our algorithm and the red lines represent information
flowing into the backwards RNN. Grey variables are used during training and white variables are used
during data collection. Top: we show the training model where the policy gradient loss is calculated
with backwards RNN hidden state information. Bottom: we show the data collection phase of the
algorithm utilizing latent variables sampled from the latent prior.

where [is the weight of the divergence term. The introduction of this prior thus solves two problems:
(1) it encourages the learned policies and value functions to not overly rely on information beyond
the immediate state; (2) it provides a mechanism for inference, namely using latent samples from
p., (8) when interacting with the environment.

Parameterization of g, In our implementation, we parameterize g,(7) as an RNN operating in
reverse order on 7. Specifically, we use an LSTM network to process the states in 7 backwards, to
yield LSTM hidden states b = {b;}7"'. The function ¢4 is then given by Gaussian distributions
with mean and variance at time ¢ derived from the backwards state b;. In practice, to avoid potential
interfering gradients from the objectives of mg and @)y, we use separate RNNs with independent
parameters gy , ¢) for z;, us, respectively. See Figure 1 for a graphical diagram of the training
and inference procedure for PGIF. In our empirical studies shown in Appendix G, we will also show
that a transformer (Vaswani et al., 2017) can be used in place of an RNN with minimal decrease in
performance, providing more computational efficiency and potentially allowing for better propagation
of information over time.

3.1 VARIATIONAL INFORMATION BOTTLENECK INTERPRETATION

The KL regularization we employ above may be interpreted as a variational information bottleneck,
constraining the mutual information between the latent variable distribution and the trajectory 7. Here
we provide a brief derivation establishing this equivalence.

For simplicity, we consider a specific timestep ¢ € N and a starting state s, = s. Let 7> denote the
random variable for all information contained after and including timestep ¢ in trajectory 7 induced
by 7. Let U, be the random variable for latents u; induced by ¢, (7>;) conditioned on all steps in the
trajectory after and including ¢. Consider a constrained objective minimizing Jpgirrp While enforcing
an upper bound I;,,x on the mutual information between the distribution of trajectory steps and the
distribution of latent variables I(7>¢,U;|s; = s). This objective is given by,

TQI/Jli(? JPGIF,TD(Q¢7Q¢|5t =s5) = ETNpﬂg(‘|st:s),utwq¢(72t)[(Qt - Qa/)(styatyut))Q] o

s.t. I(th,ut|8t =38) < I

Recall the definition of mutual information:

p(T>t7Ut|5t = 5)
IT,Z/{SZSZ/T,USZSIO =
(>t t|s¢) p(>t t|st) gp(th\St :s)p(ut\st —5)
aslulr=1)
p(uelse = s)

duthzt
®)

= /Pwa (T>tlst = s)qg(u|T>1) log updT>,

4

Published as a conference paper at ICLR 2022

where p(u¢|s; = s) is the marginal distribution over the latent variable p(u¢|s; = s) =
J 4 (ui|T>¢) pr(T>¢|8¢ = $)d7>,. This marginal is intractable to compute directly, and so to approx-
imate this marginal we introduce a variational distribution h(u;|s; = s). By definition we know that
Dy [p(ue|sy = s)||h(ue|s; = s)] > 0. We can then see that [p(us|s; = s)log p(u|s; = s)duy >
J p(ui|se = s)log h(us|s; = s)du,. We therefore derive the upper bound for use in equation 7 as,

olurs) o)
h(Ut|St = S) - (9)

< Ernp, (loims) | Die(@o(ulms0) | A(urlse = 9))]

‘We can subsume the constraint into the objective as,

I(TetUslse = 5) < / pe(Tatls = 8)gs (ur 1) log

min Jecirp(Qy, 4glse = s) + B (Empwclst:s) [Dkr (gg (1) [A(ue]se =)] — Imax) :

By taking h to be our learned prior p,,, we recover the single step (s; = s), TD analogue of the PGIF
objective in (6), offset by a constant 3 - I, as desired.

3.2 Z-FORCING WITH AUXILIARY LOSSES

While our proposed training architecture enables the policy and value function to look at the full
trajectory 7, in practice it may be difficult for the trajectory information to propagate, especially
in settings with highly sparse learning signals. In fact, it is known that such latent variable models
may ignore the latent variables due to optimization issues, completely negating any potential benefit
(Bengio et al., 2015). To circumvent these issues, we make use of the idea of Z-forcing (Goyal et al.,
2021), which employs auxiliary losses and models to force the latent variables to encode information
about the future. We denote this loss as Jax(¢) where (is the set of parameters in any auxiliary
models, and elaborate on the main forms of this loss which we consider below. We do not combine
different types of auxiliary losses in our total loss function.

We emphasize that these auxiliary losses are applied exclusively to the backwards encoder g4 (7)
and have no direct impact on the learned policy or value functions. In fact, we conduct ablations in
Appendix F showing that these auxiliary losses applied directly to policy and value functions without
PGIF perform worse.

State based forcing (Force) A simple way to force state information to be encoded is to derive
conditional generative models p¢(b;|2;) over the backwards states given the inferred latent variables
2t ~ Qe (2¢|bt), and similarly for the latents u;. We can write this auxiliary objective as a maximum
log-likelihood loss Jax(¢) = —E% & (zebr) (108 P¢ (be|2¢)]. This way, we enforce the noisy mapping

by — z; defined by g4 to not be too noisy so as to completely remove any information from b;.

Value prediction networks (VPN) A more sophisticated approach to force information to be
propagated is to use an autoencoder-like, model-based auxiliary loss. To this end, we take inspiration
from VPNs (Oh et al., 2017), and apply an auxiliary loss that uses b, to predict future rewards, values,
and discounts. Note that, in principle, b; already has access to this information, by virtue of the
backwards RNN or transformer conditioned on the future trajectory. Thus, this auxiliary loss only
serves to enforce that the RNN or transformer dutifully propagates this information from its inputs.
We also note that, in contrast to the state based forcing described above, this approach only enforces
b; to contain the relevant information, and it is up to the RL loss whether this information should be
propagated to the latents z;, u;. We give a detailed explanation of VPNs in Appendix B.

3.3 FULL ALGORITHM

The full learning objective for PGIF is thus composed of three components: First, a latent-variable
augmented RL objective, e.g., policy gradient as shown in (4). Second, a KL regularizer, e.g., as
shown in (6). Finally, an auxiliary loss, given by either state based forcing (Force) or value prediction
networks (VPN). We present an example pseudocode of a PGIF-style policy gradient with learned
value function in Algorithm 1. See Appendix C for further details, including how to adaptively
tune the coefficients on the KL and auxiliary loss components as well as more specific pseudocode
algorithms for advantage policy gradient and soft actor-critic.

5

Published as a conference paper at ICLR 2022

Algorithm 1 PGIF Algorithm with State-Action Value Function Estimation

Require: Initial parameters: 6, v'", v@, ¢, @ 4, (pa, Crp, Weights: awa, atp, Bra, Sp
1: for policy-step k = 0,1,2,..., N do

2 Collect set of Trajectories D = {74,...} :

3 repeat

4 2zt ~ P (2t)

5: Execute: mg(a¢|st, z¢) and observe 7+, s¢11 from environment.

6: until episode termination

7 for Trajectory: 7; € D do
8: b? = BackwardsLSTM?(7;) (Operates over the entire trajectory)
9: bY = BackwardsLSTMY (7;)
10: TiITiLJ{bZ,bU}
11: V{s,a,r,b% b"} cD:
12: Derive Jax-pG (Cpa), Jax-to(¢rp) according to any auxiliary loss.
13: Drp = Dxi(ggm (u[b?)||p,w (uls))
14: Jmp =E;ep [JPGIF,TD(Qw, q,0) + arpJax1p (¢p) + /BTDDTD]
15: Dy = DKL(q¢(Z)(Z|bZ)Hpu(Z) (z]s))
16: Jrg = Erep [Jpcnz, pG (o, Qu, q¢(z>) + apcJaxrc (Crg) + ﬂPGDPG]
17: Update all parameters w.r.t: Jpg and Jrp

4 RELATED WORK
We review relevant works in the literature in this section, with additional discussions in Appendix B.

Incorporating the future Recent works in model-based RL have considered incorporating the
future by way of dynamically leveraging rollouts of various horizon lengths and then using them for
policy improvement (Buckman et al., 2018) . Z-forcing and stochastic dynamics models have been
applied directly to learning environmental models and for behavioral cloning while incorporating the
future but not for online or offline continuous control (Ke et al., 2019). Our present work is unique
for incorporating Z-forcing and conditioning on the future in the model-free RL setting. A few other
methods explore the future in less direct ways. For example, RL Upside down (Schmidhuber, 2020)
uses both reward (or desired return) and state to predict actions, turning RL into a supervised learning
problem.

Hindsight Hindsight credit assignment introduces the notion of incorporating the future of a
trajectory by assigning credit based on the likelihood of an action leading to an outcome in the
future (Harutyunyan et al., 2019). These methods were extended using a framework similar to ours,
leveraging a backwards RNN to incorporate information in hindsight (Mesnard et al., 2021). Still,
there are a number of differences compared to our own work. (1) Only the value function (rather than
both the value and policy functions) is provided access to the future trajectory, whereas we show that
allowing the actor access has benefits in some tasks (Appendix F). (2) There is no KL information
bottleneck; rather information is constrained via an action prediction objective. (3) These previous
works do not employ any Z-forcing, while it is well-known that learning useful latent variables in
the presence of an autoregressive decoder is difficult without Z-forcing (Bayer & Osendorfer, 2015);
in fact, in our own preliminary experiments we found our algorithm performs significantly worse
without any auxiliary losses. Value driven hindsight modelling (HiMo) (Guez et al., 2020) proposes a
hindsight value function, which is conditioned on future information in the trajectory. In this work,
they primarily use the hindsight value function (separate from the agent’s value function) to learn a
low-dimensional representation, which is distilled to a non-hindsight representation that is then used
by the actual actor and critic. Thus there are a few key differences from our work: (1) There are no
gradients passing from the RL loss to the representation loss (only the separate value prediction loss is
used to train the representation), thus this method is arguably less end-to-end than PGIF; (2) The only
mechanism for controlling the amount of information in the representation is through its dimension
size and look-ahead, while using a KL penalty is more flexible. Our method is more versatile than
previous works, being applicable to off-policy and offline RL settings rather than purely on-policy
RL, as in these previous works. Nevertheless, it is an interesting avenue for future work to investigate
how to combine the best of both approaches, especially with guarantees on variance reduction of
policy gradient estimators (Nota et al., 2021) and hierarchical policies (Wulfmeier et al., 2021).

Published as a conference paper at ICLR 2022

5 EXPERIMENTS

We now provide a wide array of empirical evaluations of our method, PGIF, encompassing tasks with
delayed rewards, sparse rewards, online access to the environment, offline access to the environment,
and partial observability. In the appendix, we include further demonstrations of PGIF applied to the
challenging AntMaze environment (Sec. H) with substantial performance improvements, online RL
with full observability (Sec. E) with improvements over a SAC baseline, and numerous ablation
analyses (Sec. F, I) identifying the components of PGIF that are responsible for performance.

In our online RL experiments, we compare against Soft Actor Critic (SAC) (Haarnoja et al., 2018)
and Proximal Policy Optimization (PPO) (Schulman et al., 2017) with an LSTM layer in the policy
network. The comparison with PPO is particularly important since this method also leverages a form
of artificial memory of the past (but not forward-looking like in PGIF). SAC is a state-of-the-art
model-free RL method that employs a policy entropy term in a policy gradient objective and shows
optimal performance and stability when compared with other online deep RL benchmarks. We show
the hyper-parameters for each experiment in the Appendix D. In addition, we explore using our
method with a transformer as opposed to an LSTM as the backwards network in Appendix G.

5.1 CREDIT ASSIGNMENT AND SPARSE REWARDS

PGIF aims to provide a better representation for credit assignment by accounting for downstream
information rather than current. This can be used as additional input to the value function or policy.
We find this helps address two very related problems, optimal credit assignment and learning with
sparse rewards. The former problem is exasperated by the latter since rewards are rarely obtained,
possibly only at the end of the episode. The relevance of each action (credir) must be assigned using
only these rare rewards.

We first aim to show that our method is effective
in a simple environment where credit assignment is

Method Mean Bsuite-score the paramount objective. We examine the Umbrella-
PPO-LSTM 0.33+0.09 Length task from BSUITE (Osband et al., 2020), a
SAC 0.4140.03 task involving a long sequential episode where only

DQN (3-step return) 0.44 4+ 0.06
DQN (1-step return) 0.51 £ 0.03
PGIF-PPO (VPN) 0.46 +0.09

the first observation (a forecast of rain or shine) and
action (whether to take an umbrella) matter, while

PGIF-PPO (Force) 0.26 % 0.10 Fhe rest qf the sequence contai.ns r.andom unrelated
PGIF-SAC (VPN) 0.60 & 0.04 information. A reward of 41 is given at the end of
PGIF-SAC (Force) 0.58 +0.08 the episode if the agent chooses correctly to take the
PGIF-DQN (Force) 0.58 + 0.04 umbrella or not depending on the forecast. This dif-

ficult task is used to test the agent’s ability to assign
Table 1: Performance on the Umbrella-Length credit correctly to the first decision. We evaluate
environment. We run our model for 1000 PGIF-versions of SAC and PPO to vanilla discrete-
episodes steps over 5 random seeds. The SAC (Haarnoja et al., 2018; Christodoulou, 2019)
BSuite score is calculated in terms of the regret as well as a PPO-LSTM (Schulman et al., 2017)
normalized [random, optimal] — [0, 1] (higher baseline. Results are presented in Table 1. We see
is better). The number after + is the standard that our method is able to achieve best performance.
deviation. This suggests that the PGIF agent is able to effi-

ciently and accurately propogate information about
the final reward to the initial timestep, more so than either the one-step backups used in SAC or the
multi-step return regressions used in PPO-LSTM can.

We continue to the Gym-MiniGrid (Chevalier-Boisvert et al., 2018) set of partially-observable
environments, for which rewards are sparse and there is a non-zero reward only when the agent
completes the task (with the reward proportional to the time taken). The agent is only given a local
ego-centric view of its environment. For example, in DoorKey a key must first be obtained and then a
door opened leading to another room with the goal state. It is difficult, but essential, to assign credit
to obtaining the key and opening the door in the correct sequence. We compare against PPO-LSTM
and an implementation of HiMo, which also suggests to use information from the future during agent
learning (Guez et al., 2020). We show the results of these experiments and examples of the grids in
Figure 2, with PGIF-PPO outperforming both baselines. The difference is especially stark on the
Unlock Environment where credit assignment is the key challenge and the standard PPO baseline

Published as a conference paper at ICLR 2022

SimpleCrossingS9N1 Unlock-v0 LavaGapS5 DoorKey-6x6
—— PGIFPPO —— HIMO-PPO "’ —— PGIFPPO —— HIMO-PPO —— PGIFPPO —— HIMO-PPO
—— PPO-LSTM ° —— PPO-LSTM —— PPO-LSTM

H

Episodic Mean Reward

== PGIF-PPO === HIMO-PPO
e PPO-LSTM

Episodic Mean Reward
Episodic Mean Reward
Episodic Mean Reward

Frames Frames Frames Frames

Figure 2: The online episodic mean reward evaluated over 5 episodes every 250 steps for MiniGrid
RL tasks. We show the average over 5 random seeds. 2/ environment step interactions are used. The
shaded area shows the standard error. PGIF always uses state based forcing in these environments.

HalfCh:

v2 Ant-v2 Walke
4000 — rrowsn o Z

Hopper-v2

10000

4000 3000

3000
8000 3000

6000 2000

4000 1000

)
2000 i

1000 1000

0 : ::—d"N: 0

1000

- 1000
-1000
0100000 200000 300000 400000 500000 0 100000 zuoouso 300000 400000 500000 0100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
tep Ste

Episodic Mean Reward
Episodic Mean Reward
Episodic Mean Reward
Episodic Mean Reward

°

Figure 3: The online episodic mean reward evaluated over 5 episodes every 500 steps for MuJoCo
continuous control RL tasks with partial observability. We show the average over 5 random seeds.
500, 000 environment step interactions are used. The shaded area shows the standard error.

fails to converge to any rewards. In LavaGap, there is no significant improvement. We hypothesize
that this is because the most common trajectories generated during early training are ones where the
agent enters the lava. There is also no negative reward for entering the lava, and the episode is simply
terminated, making it more difficult to avoid. This creates a situation where our future representation
is highly suboptimal, especially during early training.

5.2 PARTIAL OBSERVABILITY

We now aim to show that our method is not only effective in fully-observed Markovian settings,
but also in environments with partial observability. This set of experiments uses the MuJoCo
robotics simulator (Todorov et al., 2012) suite of continuous control tasks. These are a set of popular
environments used in both online and offline deep RL works (Fujimoto et al., 2019; 2018) and
provides an easily comparable benchmark for evaluating algorithm sample efficiency and reward
performance. As in previous work (Yang & Nachum, 2021), we introduce an easy modification
to these tasks to make the environment partially observable thereby increasing the difficulty: We
zero-out a random dimension of the state space at each data collection step. This helps us test partial
observability, a feature common in robotic agent tasks.

We compare a PGIF-style SAC implementation to vanilla SAC and PPO-LSTM on these domains. We
show the results of these experiments in Fig. 3. We find that PGIF can provide improved performance
on these difficult tasks, suggesting that PGIF is able to leverage future information in the trajectory to
appropriately avoid uncertainties about the environment, more so than when only conditioning on the
immediate state (vanilla SAC) or even when conditioning on the entire past trajectory (PPO-LSTM).
Interestingly, we find that the simple state based forcing (Force) performs more consistently better
than the more sophisticated VPN based forcing. See Appendix E for online evaluations without
partial observability.

5.3 OFFLINE RL EVALUATIONS

To asses if our method is effective in an offline RL setting, we evaluate our proposed algorithm in
several continuous control offline RL tasks (Fu et al., 2020) against Behavior Regularized Actor

Published as a conference paper at ICLR 2022

Critic (BRAC) (Wu et al., 2020) and Batch-Constrained Q-learning (BCQ) (Fujimoto et al., 2019).
BRAC operates as a straightforward modification of SAC, penalizing the value function using a
measure of divergence (KL) between the behaviour policy and the learned agent policy. For our
PGIF algorithm, we use BRAC as the starting point. For these offline MuJoCo tasks, we examine
DA4RL datasets classified as medium (where the training of the agent is ended after achieving a
"medium" level performance) and medium expert (where medium and expert data is mixed) (Fu et al.,
2020). Datasets that contain these sub-optimal trajectories present a realistic problem for offline RL
algorithms. We also include an offline version of the AntMaze, which is particularly challenging due
to sparse rewards. We show the results of these experiments in Table 2. We find that our method
outperforms the baselines in all but one of the tasks in terms of final episodic reward. We hypothesize
in the medium-expert setting that we perform slightly worse due to the lack of action diversity which
makes learning a dynamics representation difficult. Interestingly, in contrast to the online results,
we find that VPN based forcing performs better than state based forcing, although even state based
forcing usually performs better than the baseline methods.

Environment BRAC PGIF (VPN) PGIF (Force) BCQ
ant-medium 2731 £329 3250+ 125 2980 £ 164 1851 +94
ant-medium-expert 2483 £ 329 3048 362 2431 £ 417 2010 £ 133
hopper-medium 1757+ 183 2327 4+399 1930+ 44 1722 4+ 166
walker2d-medium 3687+ 25 3989 + 259 3821 + 341 2653 + 301
halfcheetah-medium 5462 + 198 6037 +324 6231 + 303 4722 + 206
halfcheetah-medium-expert 5580 + 105 5418 + 76 5491 4+ 143 4463 + 88
antmaze-umaze 0.5+0.16 0.95+0.0 0.74+0.15 0.8£0.13

Table 2: Performance on the offline RL tasks showing the average episodic return. The final average
return is shown after training the algorithm for 500, 000 episodes and then evaluating the policy over
5 episodes. Results show an average of 5 random seeds. The value after £ shows the standard error.

6 DISCUSSION

In this work, we consider the problem of incorporating information from the entire trajectory in
model-free online and offline RL algorithms, enabling an agent to use information about the future to
accelerate and improve its learning. Our empirical results attest to the versatility of our method. The
benefits of our method are apparent in both online and offline settings, which is a rare phenomenon
given that many previous offline RL works suggest that what works well in online RL often transfers
poorly to offline settings, and vice versa (Fujimoto et al., 2019). Beyond just online and offline
RL, our results encompass partial observability, sparse rewards, delayed rewards, and sub-optimal
datasets, demonstrating the ability for PGIF to achieve higher reward faster in all settings.

We also wish to highlight potential risks in our work. Specifically, the use of future information in
PGIF may exacerbate biases present in the experience or offline dataset. For example, it is known
that expert datasets lack action diversity. Further conditioning on the future in this dataset could
force these biases to be incorporated more easily into the learning algorithm. Some other biases that
may arise are a trajectory that contains some marginal reward and is therefore incorporated into our
policy/value function with PGIF. This could hamper exploration of the agent and prevent discovery of
states that yield optimal reward. It may be interest to combine our method with exploration strategies.
Perhaps there are benefits in decreasing access to future information during initial exploratory agent
steps so the agent is better able to explore. Furthermore, we find that our method is slower to train
than the baselines we compare to, due to the fact that the architecture requires training an LSTM, with
at times, very long trajectories as input. We must use the entire trajectories to train this LSTM. These
issues can largely be alleviated by using a transformer, with minimal difference in performance.

REFERENCES

Combined reinforcement learning via abstract representations. Proceedings of the AAAI Conference
on Artificial Intelligence, 2019.

Zaheer Abbas, Samuel Sokota, Erin Talvitie, and Martha White. Selective dyna-style planning under
limited model capacity. In Proceedings of the 37th International Conference on Machine Learning.

Published as a conference paper at ICLR 2022

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks, 2015.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Proceedings of the 28th International Conference on
Neural Information Processing Systems, 2015.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, 2018.

Keith Bush and Joelle Pineau. Manifold embeddings for model-based reinforcement learning under
partial observability. In Advances in Neural Information Processing Systems, 2009.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational lossy autoencoder, 2017.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for OpenAl Gym. https://github.com/maximecb/gym-minigrid, 2018.

Petros Christodoulou. Soft actor-critic for discrete action settings. CoRR, abs/1910.07207, 2019.
URL http://arxiv.org/abs/1910.07207.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. Proceedings of Machine Learning Research,
2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,
2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Co6té, Nan Rosemary Ke, and Yoshua Bengio.
Z-forcing: Training stochastic recurrent networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Scholkopf. Recurrent independent mechanisms. In International Conference on
Learning Representations, 2021.

Arthur Guez, Fabio Viola, Theophane Weber, Lars Buesing, Steven Kapturowski, Doina Precup,
David Silver, and Nicolas Heess. Value-driven hindsight modelling. In Advances in Neural
Information Processing Systems 33: Annual Conference, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot, Nicolas
Heess, Hado P van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, and Remi Munos.
Hindsight credit assignment. In Advances in Neural Information Processing Systems, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence modeling
problem. arXiv preprint arXiv:2106.02039, 2021.

Philip N. Johnson-Laird. Mental models and human reasoning. Proceedings of the National Academy
of Sciences, 2010.

10

Published as a conference paper at ICLR 2022

M. Karl, Maximilian S6lch, J. Bayer, and P. V. D. Smagt. Deep variational bayes filters: Unsupervised
learning of state space models from raw data. ArXiv, abs/1605.06432, 2017.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Modeling the long term future in model-based reinforcement learning. In
International Conference on Learning Representations, 2019.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, 2019.

Alex M Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron C Courville, and Yoshua
Bengio. Professor forcing: A new algorithm for training recurrent networks. In Advances in Neural
Information Processing Systems, 2016.

Thomas Mesnard, Theophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan,
Will Dabney, Thomas S Stepleton, Nicolas Heess, Arthur Guez, Eric Moulines, Marcus Hutter,
Lars Buesing, and Remi Munos. Counterfactual credit assignment in model-free reinforcement
learning. In Proceedings of the 38th International Conference on Machine Learning, 2021.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of The 33rd International Conference on Machine Learning.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience, 2019.

Chris Nota, Philip Thomas, and Bruno C. Da Silva. Posterior value functions: Hindsight baselines
for policy gradient methods. In Proceedings of the 38th International Conference on Machine
Learning, 2021.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems, 2017.

Tan Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In International
Conference on Learning Representations, 2020.

Georg Ostrovski, Marc G. Bellemare, Aédron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racaniere, David
Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Kam-Fai Wong. Deep Dyna-Q: Integrating
planning for task-completion dialogue policy learning. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics), 2018.

Sébastien Racaniere, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pas-
canu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. In Advances in Neural Information Processing Systems,
2017.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning.
In International Conference on Learning Representations, 2018.

11

Published as a conference paper at ICLR 2022

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards — just map them
to actions, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Proceedings of the Fourth Interna-
tional Conference of Learning Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 1707.06347, 2017.

Satinder P. Singh. Learning without state-estimation in partially observable markovian decision
processes. In In Proceedings of the Eleventh International Conference on Machine Learning, 1994.

Nobuo Suematsu and Akira Hayashi. A reinforcement learning algorithm in partially observable
environments using short-term memory. In Advances in Neural Information Processing Systems,
1999.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
1988.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 1991.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2018. ISBN 0262039249.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, 1999.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. 1999.

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

John N. Tsitsiklis and Benjamin Van Roy. Analysis of temporal-difference learning with function ap-
proximation. In Proceedings of the 9th International Conference on Neural Information Processing
Systems, 1996.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning, 2020.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning.
In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, 2001.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2020. URL https://openreview.net/forum?id=BJg9hTNKPH.

Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim
Hertweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, and Martin Riedmiller.
Data-efficient hindsight off-policy option learning, 2021.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential decision
making, 2021.

12

Published as a conference paper at ICLR 2022

Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor Prasanna. {BRAC}+: Going deeper with
behavior regularized offline reinforcement learning, 2021. URL https://openreview.net/
forum?id=bMCfFepJXM.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Mitos, Btazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In International Conference on Learning Representations, 2020.

13

