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Abstract

Ensuring that large language models (LLMs)001
align with human values is critical for their safe002
and ethical deployment. While recent work003
has advanced search-based prompt optimiza-004
tion for LLMs, there lack explicit mechanisms005
to address human value alignment across di-006
verse languages and cultural contexts. In this007
work, we propose ValueCoT, a novel prompt-008
ing strategy designed to guide search-based009
prompt optimization toward human value align-010
ment. ValueCoT identifies critical factors lead-011
ing to misalignment and provides positive guid-012
ance to address them. Grounded in the prin-013
ciple “Correct faults if found; guard against014
them if none”, ValueCoT simulates human rea-015
soning to optimize system prompt to obtain016
more aligned responses. We integrate Value-017
CoT into existing search-based prompt opti-018
mization framework. The combined framework019
VAPO-ValueCoT is easily applicable to both020
open-source and closed-source LLMs, main-021
taining the flexibility of the base framework022
while enhancing its ability to address human023
value alignment. Experiments on both En-024
glish and Chinese datasets, covering multiple025
choice and free-form question-answering tasks,026
demonstrate that VAPO-ValueCoT improves027
human value alignment compared to baseline028
methods, offering a scalable and flexible solu-029
tion for multilingual and multicultural settings.030

1 Introduction031

The rapid advancement of large language models032

(LLMs) has revolutionized natural language pro-033

cessing, enabling unprecedented capabilities in text034

generation, reasoning, and decision-making. How-035

ever, ensuring that LLMs align with human val-036

ues—such as fairness, safety, and ethical princi-037

ples—remains a critical challenge (Gabriel, 2020;038

Hartvigsen et al., 2022; Hendrycks et al., 2021;039

Huang et al., 2024). Misaligned LLMs risk gen-040

erating harmful, biased, or unsafe outputs, even041

when excelling at task-specific metrics (Bai et al., 042

2022; Ouyang et al., 2022). This challenge is ex- 043

acerbated by the growing deployment of LLMs 044

in high-stakes domains like healthcare, education, 045

and legal systems, where ethical missteps can have 046

severe societal consequences (Gabriel, 2020; Leike 047

et al., 2018). 048

Related work in human value alignment has ex- 049

plored various methods, broadly including training- 050

time and inference-time approaches. Training-time 051

methods (Ouyang et al., 2022; Stiennon et al., 2020; 052

Rafailov et al., 2023; Pang et al., 2024; Dai et al., 053

2024) aim to align models during pre-training or 054

fine-tuning with access to model parameters, mak- 055

ing them computationally expensive and imprac- 056

tical for closed-source models. Moreover, such 057

methods often struggle to generalize across diverse 058

languages and cultural contexts, limiting their appli- 059

cability in global settings. Inference-time methods, 060

such as input/output plug-ins (Ji et al., 2024; Yang 061

et al., 2024b; Cheng et al., 2024; Alon and Kam- 062

fonas, 2023), inference guidance (Touvron et al., 063

2023; Hartvigsen et al., 2022), and prompt engi- 064

neering (Dathathri et al., 2020; Jin et al., 2022) of- 065

fer lightweight alternatives and focus on enhancing 066

safety during deployment. However, these methods 067

often lack the flexibility and robustness needed for 068

complex alignment tasks. 069

To address these challenges, we propose 070

ValueCoT-Enhanced Search-Based Prompt Opti- 071

mization for Human Value Alignment (VAPO- 072

ValueCoT), a lightweight, plug-and-play frame- 073

work for human value alignment through strategic 074

prompt optimization (Wang et al., 2024).VAPO- 075

ValueCoT leverages inference-time optimization 076

through prompt engineering, making it compatible 077

with API-based models and avoiding costly retrain- 078

ing. Our framework is motivated by two common 079

sources of misalignment: sensitive topics and ad- 080

versarial risks. Questions involving ethics, health- 081

care, or social justice require nuanced guidance 082
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to avoid harmful outputs, while inputs designed083

to inject attacks demand proactive defense mech-084

anisms (Perez et al., 2022; Wei et al., 2024; Dong085

et al., 2024). To tackle these challenges, we in-086

troduce ValueCoT, a Chain-of-Thought-inspired087

prompting strategy that iteratively refines system088

prompts using a search-based optimization frame-089

work (Pryzant et al., 2023; Wang et al., 2024).090

ValueCoT operates under the principle of “Cor-091

rect faults if found; guard against them if none,”092

automatically identifying misaligned risks men-093

tioned above and generating corrective feedback094

using LLM self-reflection (Shinn et al., 2023; Paul095

et al., 2024). Besides, we also propose specific de-096

signs in the ValueCoT-enhanced framework VAPO-097

ValueCoT to adapt to different types of tasks, espe-098

cially for free-form question-answering (QA) tasks099

with human values involved, for which the correct-100

ness of an answer cannot be determined solely by101

its factual accuracy. In all, our framework is able102

to adapt to diverse ethical norms and languages103

using task-specific datasets, bridging cultural and104

linguistic gaps without retraining.105

Our contributions are threefold:106

1. We propose a lightweight alignment frame-107

work VAPO-ValueCoT applicable to both108

open-source and closed-source LLMs, largely109

reducing computational costs.110

2. We introduce ValueCoT, a CoT-based prompt-111

ing strategy that systematically addresses ethi-112

cal dilemmas and adversarial inputs, enhanc-113

ing the alignment ability of the basis search-114

based prompt optimization framework.115

3. Our method is designed to be language-116

agnostic and value-system-agnostic, validated117

on tasks of different languages and human val-118

ues, as well as different forms of tasks (multi-119

ple choise tasks and free-form QA tasks).120

2 Related Work121

Our work sits at the intersection of human value122

alignment, automatic prompt optimization, Chain-123

of-Thought (CoT) prompting, and prompt attack124

and defense. Below, we review the relevant litera-125

ture in these areas, highlighting the connections to126

our proposed method.127

Human Value Alignment Current methods in128

this area can be broadly categorized into training-129

time methods and inference-time methods. The130

former aims to embed human values into LLMs 131

during pre-training or fine-tuning. Reinforcement 132

learning from human feedback (RLHF) (Ouyang 133

et al., 2022) fine-tunes LLMs with a reward model 134

learned from human preferences. Direct Preference 135

Optimization (DPO) and its variants (Rafailov et al., 136

2023; Pang et al., 2024; Ethayarajh et al., 2024) 137

optimize LLMs directly based on human prefer- 138

ences without learning a separate reward model. 139

These methods, while effective, often require ex- 140

tensive computational resources and large datasets. 141

Besides, they require access to model parameters, 142

which is not applicable for closed-source LLMs. 143

In contrast, inference-time methods offer flex- 144

ibility and efficiency by aligning model outputs 145

without modifying the model’s parameters, where 146

we put our work in. Cheng et al. (2024) leverages 147

adversarial in-context learning and trains a sepa- 148

rate Seq2Sqe model to iteratively refine prompts, 149

achieving significant improvements in alignment. 150

Ji et al. (2024) and Yang et al. (2024b) also trains 151

a separate model which learns correctional resid- 152

uals between preferred and dispreferred answers, 153

achieving alignment with minimal computational 154

overhead. Jiang et al. (2021) and Liu et al. (2021) 155

show the ability of modifying LLMs’ behavior 156

through carefully designed prompts. These meth- 157

ods are particularly good at addressing out-of- 158

domain contexts and sophisticated human values. 159

Besides, they are more lightweight and applicable 160

to both open-source and closed-source models. 161

Automatic Prompt Optimization Automatic 162

prompt optimization is a crucial technique for en- 163

hancing the scalability of approaches which rely- 164

ing on appropriate prompt to achieve certain goals. 165

Recent methods can be generally categorized into 166

gradient-based, evolutionary, and search-based ap- 167

proaches. Gradient-based methods (Shin et al., 168

2020; Li and Liang, 2021; Lester et al., 2021) lever- 169

age the internal gradients of LLMs to optimize 170

prompts, while evolutionary methods (Fernando 171

et al., 2024; Guo et al., 2024), such as genetic al- 172

gorithms, iteratively evolve prompts through muta- 173

tion and selection. Search-based methods (Pryzant 174

et al., 2023; Yang et al., 2024a; Zhou et al., 2023; 175

Wang et al., 2024), which is most closely related to 176

our work, strategically search the prompt space to 177

find optimal prompts. 178

Chain-of-Thought Prompting Chain-of- 179

Thought (CoT) prompting (Kojima et al., 2022) 180

enhances model reasoning by breaking down 181
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tasks into intermediate steps. CoT has been182

particularly effective in tasks requiring multi-step183

reasoning (Wei et al., 2022), such as mathematical184

problem-solving and logical inference. By185

generating step-by-step reasoning, CoT improves186

the interpretability and accuracy of LLMs. This187

approach has been extended to more advanced188

techniques (Yao et al., 2023; Wang et al., 2023)189

which further enhance reasoning accuracy by190

exploring multiple reasoning paths. Besides, in191

tasks requiring complex ethical reasoning, CoT192

also shows great potential by incorporates ethical193

principles into reasoning steps (Jiang et al., 2021;194

Shinn et al., 2023; Paul et al., 2024). In all, CoT195

prompting is highly effective for tasks requiring196

structured reasoning, making it a natural fit for197

enhancing value alignment in our framework.198

Prompt Attack and Defense Prompt attacks are199

adversarial techniques designed to exploit vulnera-200

bilities in LLMs by manipulating their inputs. Com-201

mon forms of prompt attacks (Wei et al., 2024;202

Li et al., 2023; Huang et al., 2024) include dis-203

guise (pretending to be someone or something, or204

to create a specific scene), reverse induction (pos-205

ing questions seemingly with a benevolent motive,206

while underlying intention is actually malicious),207

and unsafe inquiry (asking for solutions in accor-208

dance with the harmful viewpoint). To defend209

against such attacks at inference stages, researchers210

have developed various prompting strategies (Wei211

et al., 2024; Dong et al., 2024). System prompts are212

integrated within LLMs and provide essential in-213

structions to guide their behaviors (Touvron et al.,214

2023). Providing few-shot examples of safe in-215

context responses can also encourage LLMs to gen-216

erate safer outputs (Wei et al., 2024; Li et al., 2024).217

3 Methodology218

We consider a setting of prompt optimization about219

human value alignment for both multiple choice220

and free-form QA tasks. Based on widely used set-221

tings in previous work (Pryzant et al., 2023; Zhou222

et al., 2023; Wang et al., 2024), for a target task T ,223

we assume there is a system prompt PT which is224

included in the input to a base LLM B to impose re-225

strictions on the output of the LLM, resulting more226

aligned responses. The target task T is specified227

by a dataset DT
train = (Q, (A)) =

(
{qi, (ai)}Ni=1

)
,228

where for multiple choice tasks the ground truth an-229

swer A is required, while for free-form QA tasks,230

A is optional. Our goal here is to automatically231

optimize the system prompt PT to maximize how 232

the output of LLM B aligns with human values on 233

task T . 234

(PT )∗ = argmaxPT ∈SAT (B,PT ,DT ), (1) 235

where AT denotes the metric function measuring 236

alignment of LLM B on a dataset DT for task T , 237

and S is the infinite and intractable sample space 238

for a natural language prompt. 239

To solve this optimization problem, we propose 240

VAPO-ValueCoT, a Value-Aligned Prompt Opti- 241

mization with ValueCoT built on top of recent 242

search-based prompt optimization methods (Wang 243

et al., 2024) In the following subsections, we first 244

briefly describe the search-based prompt optimiza- 245

tion framework (Wang et al., 2024) on top of which 246

we build VAPO-ValueCoT (Sec. 3.1). Then we 247

introduce the proposed ValueCoT and explain how 248

it enhances the search-based prompt optimization 249

framework for value alignment (Sec. 3.2). At last, 250

we elaborate how VAPO-ValueCoT can be used 251

to address both multiple choice and free-form QA 252

tasks (Sec. 3.3). 253

3.1 Search-Based Prompt Optimization 254

Framework 255

In this framework, the prompt optimization prob- 256

lem is formulated as a Markov Decision Process 257

(MDP) M = (S,A, T, r), where st ∈ S is the cur- 258

rent version of the system prompt PT
t at time step 259

t, and at ∈ A is the proposed error-based action 260

consisting of errors made by the base LLM B on 261

training samples and corresponding feedback on 262

how to improve the current PT
t . Actions are gener- 263

ated by the optimizer LLM O prompted by a meta- 264

prompt “Summarize errors and suggest improve- 265

ments1” which we call “action meta-prompt”. 266

The transition function T : S × A −→ S which 267

updates the current system prompt (state) based 268

on the error-based action is also specified by LLM 269

O. The updation to an optimized version of sys- 270

tem prompt is prompted via another meta-prompt 271

“Given the error feedback, give me a better prompt” 272

which we call “optimization meta-prompt”. The 273

reward function r = r(st, at) here evaluates the 274

quality of the updated system prompt on a held-out 275

validation set, reflecting the effectiveness of the 276

prompt in improving the base LLM’s task perfor- 277

mance. 278

1Shorten version. See App. A.1 for the full version. Same
for meta-prompt 2.
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Equipped with the MDP formulation, the prompt279

optimization problem is strategically addressed via280

planning methods with the aim of efficiently explor-281

ing the vast prompt space. The principled Monte282

Carlo Tree Search (MCTS) algorithm (Kocsis and283

Szepesvári, 2006; Coulom, 2007) which balances284

exploration and exploitation is adopted in Wang285

et al. (2024) for planning. MCTS constructs a286

tree where each node represents a state (system287

prompt) and each edge represents an action (error288

feedback) and the transition to the next state af-289

ter applying the action. The algorithm maintains290

a state-action value function Q(s, a) which esti-291

mates the expected future reward of taking action a292

in state s. Four key steps are performed iteratively293

to grow the tree and update the values of Q:294

Selection Starting from the root node (initial sys-295

tem prompt), MCTS traverses the tree to select the296

most promising child node at each level until reach-297

ing a leaf node based on the Upper Confidence298

Bound applied to Trees (UCT) criterion (Kocsis299

and Szepesvári, 2006) which balances exploitation300

(high-reward nodes) and exploration (less-visited301

nodes):302

a∗ = argmaxa∈A(s)

(
Q(s, a) + ω

√
lnN(s)

N (c(s, a))

)
,

(2)303

where ω is a constant controlling the exploration-304

exploitation trade-off, N(s) is the visit count of305

node s, and c(s, a) is the child node of applying306

action a in state s.307

Expansion The tree is expanded by generating308

new child nodes from the selected leaf node. This309

involves generating error-based actions and transit-310

ing to the next state several times both by LLM O.311

Among the new nodes, the one with the highest lo-312

cal reward on the sampled training batch is picked313

for the next phase.314

Simulation This phase simulates future transi-315

tions from the current chosen node according to316

a roll-out policy to estimate the expected future317

rewards. The roll-out policy used in Wang et al.318

(2024) is a greedy policy in terms of highest lo-319

cal reward. This process is performed until the320

terminal state.321

Back-propagation The rewards from the simu-322

lation are backpropagated to update the Q values323

of the traversed nodes, refining the estimates of324

future rewards. Once a terminal state is reached,325

the rewards are back-propagated to update the Q 326

value of each state-action pair along the path from 327

root node to the terminal: 328

Q∗(s, a) =
1

M

M∑
j=1

 ∑
s′∈Sj

s ,a′∈Aj
a

r(s′, a′)

 , (3) 329

where M denotes the number of simulated trajec- 330

tories starting from state s, Sj
s and Aj

a denotes the 331

j-th state and action sequences from s and a, re- 332

spectively. 333

The above four operations repeats for a pre- 334

defined number of iterations, after which the best 335

note (i.e., system prompt) in the best path in terms 336

of highest reward is selected as the final optimized 337

prompt. 338

3.2 ValueCoT Design 339

Recall that in the basis framework, the error-based 340

actions which are defined as error feedback from 341

LLM O are elicited via the “action meta-prompt”, 342

and the state transition (i.e., optimizing current 343

system prompt given error feedback) is performed 344

also by LLM O via another “optimization meta- 345

prompt”. As we can see, the two meta-prompts are 346

designed for very general tasks. Without insight- 347

ful guidance to achieve human value alignment, it 348

may be less efficient to search in the vast natural 349

language prompt space. 350

VAPO-ValueCoT enhances the basis framework 351

by introducing ValueCoT, a novel prompting strat- 352

egy specifically designed for human value align- 353

ment. In the basis framework, two meta-prompts 354

guide the optimizer LLM O to generate error feed- 355

back and refine the current system prompt. While 356

effective for general prompt optimization, these 357

meta-prompts lack explicit mechanisms to address 358

human value alignment. To bridge this gap, we 359

replace the original meta-prompts with ValueCoT 360

prompts, which are tailored to identify and mitigate 361

misalignment risks in LLM responses. 362

The design of ValueCoT is grounded in our ob- 363

servation of two primary scenarios where misalign- 364

ment occurs: 365

Sensitive Topics When the question involves sen- 366

sitive or controversial topics, the LLM may gen- 367

erate responses that conflict with human values. 368

In such cases, ValueCoT carefully identifies these 369

topics (action) and imposes positive guidance to 370

steer the LLM toward value-aligned responses (op- 371

timization). 372
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Prompt Attacks Questions may contain adver-373

sarial elements designed to exploit the LLM as we374

mentioned in Sec. 2. ValueCoT detects these risks375

(action) and removes or neutralizes them, ensuring376

the LLM’s responses remain safe and aligned with377

human values (optimization).378

Generally speaking, the ValueCoT prompting379

strategy follows the traditional principle of "Cor-380

rect faults if found; guard against them if none,"381

emphasizing proactive and reactive measures to en-382

sure alignment. Addressing sensitive topics proac-383

tively ensures that the LLM’s responses are eth-384

ically sound and culturally appropriate while de-385

tecting and mitigating prompt attacks prevents the386

LLM from generating harmful outputs, thereby387

maintaining alignment. Note that providing insight-388

ful guidance via ValueCoT is far from manually389

designing the system prompt. By integrating the390

guidance into the prompting strategy, ValueCoT391

enables the LLM to simulate human-like reason-392

ing and ethical decision-making, making it highly393

effective for tasks requiring not only the correct-394

ness of LLM responses but also the alignment with395

human values.396

3.3 Reward Design397

The design of the reward function (or score func-398

tion) is a critical component of automatic prompt399

optimization frameworks (Hao et al., 2023; Pryzant400

et al., 2023; Zhou et al., 2023; Wang et al., 2024),401

as it directly influences the quality and alignment of402

the optimized prompts. Given the diversity of tasks403

and the varying nature of their outputs, we pro-404

pose distinct reward function designs for multiple-405

choice tasks and free-form QA tasks. These de-406

signs ensure that the reward function is tailored407

to the specific requirements of each task type, en-408

abling effective optimization for both task perfor-409

mance and human value alignment.410

Deterministic Tasks For tasks with definitive an-411

swers, such as general multiple-choice questions,412

the reward function can be straightforwardly de-413

fined based on task performance metrics. Follow-414

ing prior work in prompt optimization (Zhou et al.,415

2023; Pryzant et al., 2023; Wang et al., 2024), we416

adopt accuracy as the reward metric. Specifically,417

the reward is computed as the proportion of cor-418

rect predictions made by the base LLM B on a419

held-out validation set sampled from the training420

data. This design ensures that the reward function421

is both interpretable and directly tied to the task ob-422

jective, making it suitable for optimizing prompts 423

in deterministic settings. 424

Free-Form QA Tasks In contrast to multiple- 425

choice tasks, free-form QA tasks about human val- 426

ues do not have fixed correct answers, especially 427

when they involve human values or subjective judg- 428

ments. Instead, the quality of a response is deter- 429

mined by its adherence to human values, such as 430

fairness, safety, and ethical considerations. Eval- 431

uating such responses requires external feedback, 432

as the correctness of an answer cannot be deter- 433

mined solely by its factual accuracy. Here, the 434

reward function must account for the quality and 435

alignment of the generated responses. 436

To address this challenge, we draw inspiration 437

from the Reinforcement Learning from Human 438

Feedback (RLHF) paradigm (Ouyang et al., 2022; 439

Bai et al., 2022), where human preferences are used 440

to guide model behavior. However, unlike RLHF, 441

which often relies on binary feedback (e.g., pre- 442

ferred vs. non-preferred responses), we adopt a 443

more nuanced approach by using a specific scorer 444

(Huang et al., 2024) to generate scalar scores as 445

rewards. This scorer evaluates responses based on 446

predefined criteria that reflect human values and 447

ethical standards. The use of scalar scores, as op- 448

posed to binary feedback, provides a richer signal 449

for optimization, enabling more efficient and pre- 450

cise alignment. 451

4 Experiments 452

In this section, we design experiments to address 453

two key questions: 454

1. How effectively does our method align LLMs 455

with human values across different cultural 456

and linguistic contexts? 457

2. How does the performance of our method 458

compare to existing baselines? 459

4.1 Experimental Setup 460

Tasks and Baselines To evaluate the effective- 461

ness of our method, we conduct experiments on 462

three benchmark datasets: CValues (Xu et al., 463

2023), Flames (Huang et al., 2024), and Ethics 464

(Hendrycks et al., 2021). These datasets are de- 465

signed to assess the alignment of LLMs with hu- 466

man values, but they differ in their value dimen- 467

sions, languages, and task formats, providing a 468

comprehensive evaluation framework. CValues 469

5



focuses on measuring the safety and responsibil-470

ity of Chinese LLMs, offering a rich collection of471

prompts and responses annotated by domain ex-472

perts. It is particularly valuable for evaluating how473

well models handle culturally specific value align-474

ment in Chinese contexts. We construct a multi-475

ple choice task called “Cvalues_mc” from Cvalues476

for our experiments. The dataset includes both477

open-ended and multiple-choice questions, cov-478

ering topics such as fairness, legality, and social479

ethics. Flames, another Chinese benchmark, em-480

phasizes fairness, legality, data protection, morality,481

and safety. It provides a diverse set of tasks, includ-482

ing adversarial prompts designed to test the robust-483

ness of LLMs against harmful or biased outputs.484

The dataset is widely used to assess the alignment485

of models with Chinese societal norms and ethical486

standards. We select three dimensions where ade-487

quate data is available to construct three free-form488

QA tasks “Flames_Safety”, “Flames_Fairness”,489

and “Flames_Morality” from Flames for our ex-490

periments. Finally, Ethics is an English dataset491

collected from English speakers from the United492

States, Canada, and Great Britain. It evaluates493

LLMs’ ability to predict human ethical judgments494

across diverse scenarios, spanning five core di-495

mensions including justice, deontology, utilitarian-496

ism, virtues, and commonsense morality. To main-497

tain consistency with the other two benchmarks,498

we select justice and commonsense morality di-499

mensions to construct two multiple choice tasks500

“Ethics_Justice” and “Ethics_CM” from Ethics for501

our experiments.502

For baselines, we compare optimized system503

prompts via VAPO-ValueCoT with the original sys-504

tem prompts (denoted as “Ori”) and the optimized505

ones via the PromptAgent framework (Wang et al.,506

2024) for all tasks. See App. A.3 for more details507

about tasks and baselines.508

Implementation Details In terms of implemen-509

tation, we run VAPO-ValueCoT and PromptAgent510

both with two groups of base LLMs and optimizer511

LLMs. The first group consists of open-source512

models from the Qwen series, which are known for513

their strong performance in Chinese language tasks.514

We choose Qwen2-7B as the base LLM to be op-515

timized, and Qwen2.5-72B as the optimizer LLM.516

The second group includes closed-source models517

from the GPT series, which are widely recognized518

for their advanced reasoning and alignment capa-519

bilities. We choose GPT-3.5 as the base LLM to be520

optimized, and GPT-4 as the optimizer LLM. For 521

both groups, the meta-prompts used are detailed in 522

App. A.1 and App. A.2. These meta-prompts guide 523

the optimization process by providing structured 524

instructions for error feedback and prompt refine- 525

ment. To have a fair comparison, we use the same 526

set of hyper-parameters for VAPO-ValueCoT and 527

PromptAgent as provided in Wang et al. (2024). 528

4.2 Results and Analysis 529

To evaluate the alignment performance of differ- 530

ent methods, we employ task-specific metrics that 531

reflect the nuanced demands of human value align- 532

ment. For multiple-choice tasks, we use accuracy 533

on test datasets, a standard metric in value align- 534

ment benchmarks (Bai et al., 2022; Jiang et al., 535

2021). For free-form QA tasks, we adopt the scalar 536

Flames scores, which quantify alignment across 537

dimensions (Huang et al., 2024). Higher values 538

in both metrics indicate stronger alignment with 539

human values. 540

Sec. 4.1 summarizes the performance of our 541

method (VAPO-ValueCoT), the original system 542

prompts (Ori), and the baseline PromptAgent 543

framework across three datasets: CValues, Flames, 544

and Ethics. Our method achieves consistent im- 545

provements over the original system prompts in all 546

cases, demonstrating its ability to align both open- 547

source (Qwen series) and closed-source (GPT se- 548

ries) LLMs with human values. For example, on 549

the Flames benchmark, which emphasizes Chinese 550

societal norms, VAPO-ValueCoT improves fairness 551

scores by 67% (for GPT series) and 43% (for Qwen 552

series) compared to the original prompts, and im- 553

prove morality scores by 76% (for GPT series) and 554

63% (for Qwen series), underscoring its effective- 555

ness in culturally specific contexts. The improve- 556

ment of GPT series on such Chinese datasets is 557

more obvious, demonstrating that VAPO-ValueCoT 558

may help with adapting LLMs to different systems 559

of human values. Overall, the performance con- 560

sistency of VAPO-ValueCoT highlights its adapt- 561

ability to diverse LLM families, a critical advan- 562

tage given the proliferation of proprietary and open- 563

source LLMs. 564

While the baseline PromptAgent framework also 565

shows promise in general prompt optimization, it 566

exhibits critical limitations in value alignment tasks 567

possibly due to lack of guidance of how alignment 568

is considered during the optimization process. In 569

3 of 6 evaluated cases for Qwen series models (de- 570

noted as italic in Sec. 4.1), PromptAgent results 571
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Model Method Cvalues_mc Flames Ethics
Safety Fairness Morality Justice CM

GPT-3.5
Ori 0.7333 0.0716 0.1456 0.1437 0.4000 0.8867

PromptAgent 0.7533 0.1351 0.1973 0.2147 0.7600 0.9133
VAPO-ValueCoT 0.7800 0.1322 0.2437 0.2553 0.8600 0.8933

Qwen2-7B
Ori 0.7667 0.0812 0.1682 0.2057 0.6333 0.7733

PromptAgent 0.6467 0.0569 0.2208 0.1954 0.7800 0.9133
VAPO-ValueCoT 0.8133 0.1034 0.2405 0.3333 0.8600 0.8933

Table 1: Comparison results of accuracy (for Cvalue_mc and Ethics tasks) and Flames scores (for Flames tasks) of
the evaluated base LLM in each group. Blod and underline indicates the best.

in “reverse optimization”, degrading performance572

by up to 30% compared to the original prompts.573

This phenomenon aligns with prior observations574

of reward hacking in RLHF-based methods, where575

models exploit reward signals without achieving576

true alignment (Ouyang et al., 2022). In contrast,577

VAPO-ValueCoT avoids such pitfalls by integrat-578

ing ValueCoT, a CoT-inspired strategy that explic-579

itly reasons about ethical during optimization. For580

instance, on safety and morality dimensions of581

Flames, VAPO-ValueCoT outperforms PromptA-582

gent by 82% and 71% for the Qwen model, re-583

spectively, showcasing the effectiveness of our pro-584

posed techniques.585

5 Conclusion586

In this paper, we presented VAPO-ValueCoT, a587

novel framework designed to enhance the align-588

ment of large language models (LLMs) with hu-589

man values across diverse linguistic and cultural590

contexts. Our approach leverages a Chain-of-591

Thought (CoT)-inspired prompting strategy, Value-592

CoT, to systematically address misalignment risks,593

thereby improving the alignment capabilities of594

existing search-based prompt optimization meth-595

ods. Through extensive experiments on bench-596

mark datasets with differen task forms (multiple597

choice and free-form question-answering), lan-598

guages (English and Chinese) and human value599

systems (Western and Eastern), we demonstrate600

VAPO-ValueCoT’s effectiveness in aligning both601

open-source and closed-source LLMs with human602

values. By integrating ValueCoT into a search-603

based framework, VAPO-ValueCoT identifies and604

mitigates sensitive topics and adversarial attacks,605

while simulating human reasoning to enhance eth-606

ical decision-making. The results highlight the607

framework’s adaptability across cultural and lin-608

guistic settings.609

In conclusion, VAPO-ValueCoT advances hu- 610

man value alignment in LLMs through prompt 611

optimization, offering a lightweight and flexible 612

solution for future research. By addressing the 613

challenge of aligning LLMs with human values 614

across diverse contexts, VAPO-ValueCoT supports 615

the ethical deployment of language models in real- 616

world applications. 617

6 Limitation 618

Despite its strengths, VAPO-ValueCoT has certain 619

limitations. One notable weakness is its depen- 620

dence on the quality of the optimizer LLM. The 621

effectiveness of the prompt optimization process 622

is highly contingent on the capabilities of the opti- 623

mizer LLM, which may not always be well-aligned 624

with human values or sufficiently advanced to han- 625

dle complex ethical scenarios. Additionally, while 626

our experiments demonstrate strong performance 627

on benchmark datasets, the framework’s effective- 628

ness in real-world applications with more diverse 629

and dynamic inputs remains to be fully validated. 630

Future work could focus on developing more so- 631

phisticated reward functions that incorporate multi- 632

dimensional human values, extending the frame- 633

work to other types of tasks such as text generation 634

and dialogue systems, and exploring the use of 635

multi-modal inputs to enhance alignment in real- 636

world scenarios. 637
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A Appendix 935

A.1 Basis Meta-Prompt 936

In this section, we provide the exact action meta- 937

prompt and optimization meta-prompt used by the 938

basis framework (Wang et al., 2024) in Fig. 1. 939

A.2 ValueCoT Meta-Prompt 940

In this section, we provide the exact action meta- 941

prompt and optimization meta-prompt equipped 942

with the proposed ValueCoT used by VAPO- 943

ValueCoT in Fig. 2, where the solid and black texts 944

indicate how the idea of ValueCoT works. 945

A.3 Dataset Split 946

Here we list how we split the datasets for each task 947

in App. A.3 for our experiments. 948
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For each wrong example, 
carefully examine each question and wrong answer step by step, 
provide comprehensive and different reasons why the prompt 
leads to the wrong answer. 
At last, based on all these reasons, summarize and list all the 
aspects that can improve the prompt.

Based on the above information, please write 1 new prompt 
following these guidelines:
1. The new prompt should solve the current prompt's problems.
2. The new prompt should consider the list of prompts and evolve 
based on the current prompt.
3. The new prompt should be wrapped with <START> and <END>.

Figure 1: Action meta-prompt (left, pink) and optimization meta-prompt (right, green) for the basis framework
(Wang et al., 2024).

For each wrong example, carefully examine each question and 
wrong answer step by step, provide comprehensive and different 
reasons why the prompt leads to the wrong answer. At last, based 
on all these reasons, summarize and list all the aspects that can 
improve the prompt.
1. Whether the question involves sensitive topics. 
2. Whether the question itself carries the risk of prompt attacks, 
which includes, but is not limited to, eliciting harmful responses 
through identity disguise or the fabrication of particular scenarios.

Based on the above information, please write 1 new prompts 
following these guidelines:
1. The new prompts should solve the current prompt's problems.
2. For questions involving sensitive topics, respond with caution 
and provide positive guidance.
3. For questions that carry the risk of prompt attacks, eliminate 
the risk of attack, discern the true intent behind the question, 
and deliver an appropriate and harmless response.
4. Each new prompt should be wrapped with <START> and <END>.

Figure 2: Action meta-prompt (left, pink) and optimization meta-prompt (right, green) enhanced by ValueCoT
(solid and black texts) in VAPO-ValueCoT.
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