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Abstract

Hierarchy and compositionality are common latent properties in many natural1

and scientific datasets. Determining when a deep network’s hidden activations2

represent hierarchy and compositionality is important both for understanding deep3

representation learning and for applying deep networks in domains where inter-4

pretability is crucial. However, current benchmark machine learning datasets either5

have little hierarchical or compositional structure, or the structure is not known.6

This gap impedes precise analysis of a network’s representations and thus hinders7

development of new methods that can learn such properties. To address this gap,8

we developed a new benchmark dataset with known hierarchical and compositional9

structure. The Hangul Fonts Dataset (HFD) is comprised of 35 fonts from the Ko-10

rean writing system (Hangul), each with 11,172 blocks (syllables) composed from11

the product of initial, medial, and final glyphs. All blocks can be grouped into a few12

geometric types which induces a hierarchy across blocks. In addition, each block is13

composed of individual glyphs with rotations, translations, scalings, and naturalis-14

tic style variation across fonts. We find that both shallow and deep unsupervised15

methods only show modest evidence of hierarchy and compositionality in their16

representations of the HFD compared to supervised deep networks. Supervised17

deep network representations contain structure related to the geometric hierarchy18

of the glyphs, but the compositional structure of the data is not evident. Thus, HFD19

enables the identification of shortcomings in existing methods, a critical first step20

toward developing new machine learning algorithms to extract hierarchical and21

compositional structure in the context of naturalistic variability.22

1 Introduction23

Advances in machine learning, and representation learning in particular, have long been accompanied24

by the creation and detailed curation of benchmark datasets [1–5]. Often, such datasets are created25

with particular structure believed to be representative of the types of structures encountered in the26

world. For example, many image datasets have varying degrees of hierarchy and compositionality,27
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as exemplified by parts-based decompositions, learning compositional programs, and multi-scale28

representations [6–8]. In contrast, synthetic image datasets often have known, (at least partial) factorial29

latent structure [9–11]. Having a detailed understanding of the structure of a dataset is critical to30

interpret the representations that are learned by any machine learning algorithm, whether linear (e.g.,31

independent components analysis) or non-linear (e.g., deep networks). Learned representations can32

be used to understand the underlying structure of a dataset. Indeed, one of the desired uses of machine33

learning in scientific applications is to learn latent structure from complex datasets that provide34

insight into the data generation process [12–14]. Understanding how learned representations relate to35

the structure of the training data is an area of active research [15–18].36

Benchmark image datasets such as MNIST (Fig 1A) and CIFAR10/100 [2, 19] enabled research into37

early convolutional architectures. Large image datasets like ImageNet (Fig 1B) and COCO [3, 20] have38

fueled the development of networks that can solve complex tasks like pixel-level segmentation and39

image captioning. Although these datasets occasionally have known semantic hierarchy (ImageNet40

classes are derived from the WordNet hierarchy [3, 21]) or labeled attributes which may be part of41

a compositional structure (attributes like “glasses” or “mustache” in the CelebA dataset [22]), the42

overall complexity of these images prevents a quantitative understanding of how the hierarchy or43

compositionality is reflected in the data or deep network representations of the data. On the other hand,44

synthetic benchmark datasets such as dsprites (Fig 1C), and many similar variations [9–11, 23], have45

known factorial latent structure [24]. However, these datasets typically do not have (known) hierarchy46

or compositionality. Thus, benchmark datasets, which have known hierarchical and compositional47

structure with naturalistic variability, are lacking.48

A B C D

Figure 1: Ground-truth hierarchy and compositionality are lacking in benchmark machine
learning datasets. A Samples from the MNIST dataset. B Samples from the ImageNet dataset. C
Samples from the dsprites dataset. D Samples from the Hangul Fonts Dataset.

Machine learning and deep learning methods have been applied to a variety of handwritten and49

synthetic Hangul datasets with a focus on glyph recognition applications, font generation, and mobile50

applications [25–30]. HanDB is an early handwritten Hangul dataset [31] and contains approximately51

100 samples of each of the 2350 most commonly used blocks. The similarly named Hangul Font52

Dataset packages a number of open fonts for potential machine learning applications with a focus on53

the vectorized contour information for the blocks rather than understanding the latent structure of54

the blocks [32]. As far as we are aware, the Hangul Fonts Dataset presented here is the only Hangul55

dataset that includes compositional and hierarchical annotations.56

A number of methods have been proposed to uncover “disentangled” latent structure from im-57

ages [6, 24, 33–44] and understand hierarchical structures in data and how they are learned in deep58

networks [15, 45]. For datasets where the form of the generative model is not known, deep repre-59

sentation learning methods often look for factorial or disentangled representations [33–35, 46, 47].60

While factorial representations are useful for certain tasks like sampling [24], they do not generally61

capture hierarchical or compositional structures. Deep networks can learn feature hierarchies, wherein62

features from higher levels of the hierarchy are formed by the composition of lower level features.63

The hierarchical multiscale RNN captures the latent hierarchical structure by encoding the temporal64

dependencies with different timescales on for character-level language modelling and handwriting65

sequence generation tasks [48]. Deep networks have been shown to learn acoustic, articulatory, and66

visual hierarchies when trained on speech acoustics, neural data recorded during spoken speech67

syllables, and natural images, respectively [49–52]. Developing methods to probe representations for68
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hierarchical or compositional structures is important to develop in parallel to benchmark machine69

learning datasets.70

In this work, we present the new Hangul Fonts Dataset (HFD) (Fig 1D) designed for investigating71

hierarchy and compositionality in representation learning methods. The HFD contains a large number72

of data samples (391,020 samples across 35 fonts), annotated hierarchical and compositional structure,73

and naturalistic variation. Together these properties address a gap in benchmark datasets for deep74

learning, and representation learning research more broadly. To give examples of the potential use of75

the HFD, we explore whether typical deep learning methods can be used to uncover the underlying76

generative model of the HFD. We find that deep unsupervised networks do not recover the hierarchical77

or compositional latent structure, and supervised deep networks are able to partially recover the78

hierarchy latent structure. Thus, the Hangul Fonts Dataset will be useful for future investigations of79

representation learning methods.80

2 The Hangul Fonts Dataset81

The Korean writing system (Hangul) was created in the year 1444 to promote literacy [53]. Since the82

Hangul writing system was partially motivated by simplicity and regularity, the rules for creating83

“blocks” are regular and well specified. The Hangul alphabet consists of “glyphs” broken into 1984

initial glyphs, 21 medial glyphs, and 27+1 final glyphs (including no final glyph) which generate85

19× 21× 28 = 11, 172 possible combinations of glyphs which are grouped into initial-medial-final86

(IMF) blocks. Not all blocks are used in the Korean language, however all possible blocks were87

generated for use in this dataset. The Hangul Fonts Dataset (HFD) uses this prescribed structure as88

annotations for the image of each block. The dataset consists of images of all blocks drawn in 3589

different open-source fonts from [54–57] for a total of 391,020 annotated images. See Appendix C90

for detailed definitions of blocks, glyphs, and atoms and their linguistic meaning.91

Each Hangul block can be annotated most simply as having initial, medial, and final (IMF) indepen-92

dent generative variables which can be represented as IMF class labels associated with each block.93

In addition, there are variables corresponding to a geometric hierarchy and variables corresponding94

to compositions of glyphs. The hierarchical variables are induced by the geometric layout of the95

blocks. There are common atomic glyphs used across the initial, medial, and final glyph positions96

(after a set of possible translations, rotations, and scalings) [58]. The compositional variables indicate97

which atomic glyphs are used for each block (in a “bag-of-atoms” representation). Together, these98

different descriptions of the data facilitate investigation into what aspects of this known structure99

representation learning methods will learn when trained on the HFD.100

2.1 The structure of a block: hierarchy and compositionality101

There are geometric rules for creating a block from glyphs. The initial glyph is located on the left102

or top of the block as either single or double glyphs (ㄱ or ㄲ in Fig 2A). There are 5 possible103

medial glyph geometries: below, right-single, right-double, below-right-single, or below-right-double104

(ㅗ,ㅏ,ㅔ,ㅘ, orㅞ in Fig 2A). The final glyph is at the bottom of the block as single, double, or105

absent glyphs (ㄱ orㄳ in Fig 2A). Grouping the blocks by the 30 geometric possibilities together106

induce a 2-level hierarchy based on their IMF class labels. The geometric variables describe the107

coarse layout (high level) of a block which is shared by many IMF combinations (low level) (Fig 2B108

and C, bottom and middle levels). Additionally, the 30 geometric categories can be split into their109

initial, medial or final geometries (Fig 2B and C, bottom and middle levels). The geometric context110

of a glyph can change the style of the glyph within a block for a specific font, which is relevant for111

the representation analysis in Section 3. The medial glyph geometry can have a large impact on how112

an initial glyph is translated and scaled in the block. Similarly, the final geometry can impact the113

scaling of the initial and medial glyphs. These contextual dependencies can be searched for in learned114

representations of the data. For example, a supervised deep network trained to predict the initial glyph115

class may use information from the medial geometry early in the network but then eventually discard116

that information when predicting the initial glyph class.117

Since each block is composed of initial, medial, and final glyphs, the blocks can also be annotated118

with compositional features. There are a base set of atomic glyphs (atoms) from which all IMF glyphs119

are created (Fig 3A, Atom row). Then, one initial, one medial, and one final glyph are composed120

into a block (Fig 3A, IMF and Block rows). In this view, each block is built from a composition of a121
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Figure 2: Hierarchy in the Hangul Fonts Dataset. A, Hierarchy: Each block can be grouped by the
initial, medial, and/or final geometry. Block geometry and example blocks are shown. Blue indicates
the possible locations of initial glyphs, orange indicates the possible locations of medial glyphs, and
green indicates the possible locations of final glyphs. A white dashed line indicates that either a
single or double glyph can appear. B, C, Example hierarchies: The bottom row of the hierarchy are
individual blocks. Each triplet of blocks fall under one of the geometric categories from A (middle
row) which defined the 2-level hierarchy. Then, a third level can be defined for initial, medial, or final
geometric categories (top row).

base set of atomic glyphs potential composed with a rotation which are then laid out according to the122

geometric rules. The underlines in the Atom and IMF rows of Fig 3A correspond to inclusion in the123

final colored blocks in the bottom row. In this paper, for comparisons with learned representations,124

the composition features are encoded in 2 ways (although the full structure is available in the dataset).125

The first is a “bag-of-atoms mod rotations” feature where each block is given a vector of binary126

features which contains a 1 if the block contains at least one atom from the top row of Fig 3A in any127

position with any rotation and a 0 otherwise (16 total features). The second is a similar “bag-of-atoms”128

feature where the same atomic glyph with different rotations are given different feature elements (24129

features). These two feature sets do not encode the complete compositional structure, but they are130

amenable to common representation comparison methods.131

These three sets of variables—IMF class labels, hierarchy class labels, and bag-of-atoms binary132

features—are not independent of each other. For example, training on the Initial class label may133

automatically structure the learned representations around the Initial Geometry labels since they are134

partially correlated. However, it is not clear whether this provides an upper (or lower) bound for the135

expected structure of related variables in the representation. For example, if a network is trained on136

the Initial classes and learns a highly clustered representation for each class, it is not guaranteed137

the network will always put classes that share Initial Geometry hierarchy close to each other in the138

learned representations. Indeed, this is a hypothesis we are hoping to test with this dataset across139

representation learning methods. This could result in clustering accuracies lower than what was140

expected based on the label correlations. Similarly, the network could perfectly group Initial class141

representations around their Initial Geometry labels and the clustering accuracy would be set by the142

Initial accuracy with some conversion to account for different numbers of classes.143

The size and shape of a glyph can change within a font depending on the context. Some of these144

changes are consistent across fonts and stem from the changing geometry of a block with different145

initial, medial, or final contexts (Fig 2). Different types of variations such as rotation, translation,146

and more naturalistic style variations arise in the dataset (Fig 3B). Glyphs can incorporate different147

rotations, scalings, and translation during composition into a block (Fig 3B, left 3 sets). There are148

variations across fonts due to the nature of the design or style of the glyphs. These include the style of149
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Figure 3: Composition and variation in the Hangul Fonts Dataset. A, Composition: Each block
is composed of a set of atomic glyphs. The Atom row shows the atomic set of glyphs when scale,
translations, and rotations are modded out. The Initial, Medial, and Final (IMF) rows show all IMF
glyphs. The Block row shows four example blocks with different types of structure. The color of the
block is used to underline the IMF glyphs that compose the block and Atoms that compose the IMFs.
B, Variability: Two example glyphs (rows) across three different IMF contexts (columns) are shown
for each type of variation. Rotation: Left-most block is rotated once counterclockwise in the next
block, then twice counterclockwise in the final block. Scale: Size of initial glyph decreases from
left to right as highlighted in red. Translation: Highlighted glyph takes on various shapes as it is
translated to different regions of the block. Style: Less to more stylized from left to right.

glyphs which can vary from clean, computer font-like fonts to highly stylized fonts which are meant150

to resemble hand-written glyphs (Fig 3B, rightmost set). Line thickness and the degree to which151

individual glyphs overlap or connect also vary. This variation is specific to a font and is based on152

the decision the font designer made, analogous to hand-written digits (i.e., MNIST). These types153

of variation are the main source of naturalistic variation in the dataset since they cannot be exactly154

described, but could potentially be modeled [7, 44].155

2.2 Generating the dataset156

We created a text file for the 11,172 blocks using the Unicode values from [59]. We then converted the157

text files to an image file using the convert utility [60] and font files. The image sizes were different158

across blocks within a font, so the images were resized to the max image size across blocks in the159

font. As the image sizes of blocks were also different across fonts, the blocks were resized to the160

median size across fonts. Individual images for the initial, medial, and final glyphs are included, when161

available. The exact scripts used to generate the dataset, a Dockerfile which can be used to recreate or162

extend the HFD, curated open fonts, and pseudo-code for the generation process are provided (see163

Appendix A). Further summary statistics for the dataset can be found in Appendix B.164

3 Searching for hierarchy and compositionality in learned representations165

Both shallow and deep learning models create representations (or transformations) of the input data.166

Methods like Principal Components Analysis (PCA) produce linear representations and Nonnegative167

Matrix Factorization (NMF) produces a shallow nonlinear representation through inference in a linear168
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generative model, and deep networks produce an increasingly nonlinear set of representations for each169

layer. Here, we compare the learned representation in unsupervised shallow methods, deep variational170

autoencoders, and deep feedforward classifiers. We consider whether the learned representations are171

organized around any of the categorical labels and hierarchy variables with an unsupervised KMeans172

analysis. Then, we investigate whether the hierarchy or compositionality variables can be decoded173

with high accuracy from few features in the representations.174

It is desirable that deep network representations can be used to recover the generative variables of a175

dataset. However, it is currently not known whether deep network representations are typically orga-176

nized around generative variables. In order to understand this, we test whether the latent hierarchical177

structure of the Hangul blocks is a major component of the learned representations using unsupervised178

clustering of the representations. We compare the hierarchy geometry classes from Fig 2A to KMeans179

clusterings of the test set representations (where k is set to the number of class in consideration, for180

more details, see Appendix D). For the shallow and deep unsupervised methods (Fig 4A and B), we181

find that the medial label and geometry, final label, and all_geometry variables are all marginally182

present (0 < normalized accuracy ≤ 0.25, see Section 4 for definition) in the representations. The183

other variables are not recovered by the unsupervised methods (normalized accuracy ≈ 0). This184

shows that while VAE variants may be able to disentangle factorial structure in data, they are not well185

suited to extracting geometric hierarchy from the HFD with high fidelity.186

In contrast (and unsurprisingly), supervised deep networks cleanly extract and recover the label they187

are trained on (Fig 4C-E, first 3 columns) with increasing accuracy across layers (Norm. acc. > 0.25).188

When trained on the initial label, the initial, medial, and all_geometry variables can all be marginally189

recovered, highlighting the contextual dependence of the initial glyph on the medial geometry. The190

medial_geometry variable can be decoded with accuracy significantly above chance across all layers191

(p < .01, 1-sample t-test). However, the normalized accuracy drops from about 0.22 in the first layer192

to less than .01 by the last layer. This indicates that although the network may be using the medial193

geometry context in the early layers, it is compressed out of the representation by the final layers.194

The initial geometry is not present in the first 2 layers, but becomes marginally present in the final195

layers. When trained on the medial labels, the medial geometry is present with high accuracy and196

the all geometries labels are marginally present. When trained on the final labels, the final geometry197

becomes present by the last 2 layers. There is a small amount of interaction with the medial geometry,198

but it is not as large as the initial-medial interaction. There are several mean normalized accuracies199

that are less than zero. Although it is potentially interesting that it only occurs for Initial Geometry,200

the negative values all have pvalues > .01 (1 sample t-test) and some are not significantly different201

from 0. In addition, the significant differences from 0 are relatively small. Furthermore, inspecting202

the per-fold accuracies shows that it was just one or two of the 7 folds that had a larger below chance203

accuracy. Given this, we would attribute this to statistical fluctuations or overfitting rather than a204

meaningful signal. These results indicate that supervised deep networks do learn representations205

that mirror aspects of the hierarchical structure of the dataset that are most relevant for the task, and206

generally do not extract non-relevant hierarchy information.207

Understanding whether deep network representations tend to be more distributed or local is an open208

area of research [17, 61, 62]. We investigated whether deep networks learn a local representation209

by training sparse logistic regression models to predict the latent hierarchy and compositionality210

variables from the representations (Fig 5). If the representation of a hierarchy or compositionality211

variable is present and simple (linear), we would expect the normalized accuracy to be high (near 1212

on the y-axis of the plots in Fig 5). If a representation of a variable is “local”, we would expect the213

variable to be decoded using approximately the same number of features as it has dimensions (near214

101 on the x-axis of Fig 5) and “distributed” representation to have a much higher ratio. To test this,215

we compare these two measures across models and target variables and also across layers for the216

supervised deep networks.217

We find that unsupervised (β-)VAEs (Fig 5A) learn consistently distributed representations of the218

latent variables (typically 30-60x more features than the variable dimension are selected). In terms of219

the prediction accuracy, the cross validated β-VAEs tend to have higher accuracy across variables220

than the VAE and the β-VAE selected for traversals, although there is a fair amount of heterogeneity.221

For supervised deep networks (Fig 5B-D), the supervision variable (initial, medial, final, respectively),222

has high accuracy across layers, and moves from a more distributed to a more local representation at223

deep layers. For the initial and medial labels, the medial geometry can also be read out with high224

accuracy and an increase in localization across layers. The initial geometry is not read out with225
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Figure 4: Representation learning methods partially recover the geometric hierarchy. Normal-
ized clustering accuracy ± s.e.m. is shown across training targets, latent generative variables, layers
(L is the linear part, R is after the ReLU), and model types. A Normalized clustering accuracies for
representations learned with unsupervised linear models. B Normalized clustering accuracies for
representations learned with various deep VAE models. C-E Normalized clustering accuracies for
deep representations trained to predict the initial, medial, and final label, respectively.

high accuracy in the initial and medial label networks, and the final geometry variable can only be226

predicted well for the final label network. The all_geometry variable can be predicted at marginal227

accuracy for all networks. The compositional Bag-of-Atoms (BoA) features cannot be predicted well228

(often at or below chance) for any network and the BoA mod rotations can only be read out with229

marginal accuracy for the initial label network. These results suggest that standard, fully-connected230

deep networks do not typically learn local representations for variables except for those they are231

trained on (and correlated variables).232

4 Methods233

4.1 Representation learning methods234

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Non-negative235

Matrix Factorization (NMF) from Scikit-Learn [63] were used to learn representations from the data.236

These methods were all trained with 100 components which is at least 3-times larger than any of237
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Figure 5: Hierarchy and compositionality are not typically represented locally in deep networks.
Held-out logistic regression normalized accuracy is shown versus the ratio of the number of features
selected to the variable dimensionality. Color indicates latent variable type. A: Results from the VAE
model variants. Shape is model type. B-D: Results from supervised deep networks trained on the
initial, medial, and final tasks, respectively. Letters in correspond to the layers from Fig 2.

A B C

Figure 6: Disentangled reconstructions from β-VAE. Latent traversals of a single latent variable.
The left column is the input image, middle columns are the traversals, and right column is the block
the traversals appear to morph into. A, Initial Across Fonts: First four rows are similar traversals
of an initial glyph from one block across increasingly naturalistic fonts. Final row is an entangled
traversal between initial and final glyphs. B, Final Across Fonts: First four rows are similar traversals
of a final glyph from one block across different fonts. Final row is an entangled traversal between
initial, medial, and final glyphs. C, Final Across Blocks: First two rows are similar traversals of a
final glyph from blocks (with the same hierarchy) in the same font. Third row is a traversal of a final
glyph from a block (with a different hierarchy). Fourth row is an entangled traversal between initial
and final glyphs. Final row shows an entangled traversal of medial and final glyphs.

the latent generative variables under consideration. The models were trained on the training and238

validation sets and the representation analysis was on the test set.239

Variational autoencoders (VAEs) learn a latent probabilistic model of the data they are trained on. The240

β-VAE is a variant of a VAE which aims to learn disentangled latent factors [34, 35] by trading off241

the reconstruction and KL-divergence terms with a factor different than 1. We implement the β-VAE242

from Burgess et al. [35], which encourages the latent codes to have a specific capacity. We experiment243

with both β > 1 from [35] as well as β < 1 from [64, 65]. β-VAE networks with convolutional244

and dense layers were trained on the dataset. 100 sets of hyperparameters were used for training the245

β-VAEs. The hyperparameters and their ranges are listed in Appendix E. In order to cross-validate246

the networks, we checked if the same blocks across fonts are nearest neighbors in the latent space.247

For each block in each font, the nearest neighbor is found. If the neighbor has the same label as the248

block, we assign an accuracy of 1, otherwise 0. This is averaged across all blocks and pairs of fonts249

in the validation set. The model with the best cross-validation accuracy for each label was chosen and250

the downstream analysis was done on the test set latent encodings. We also cherry-picked networks251

which had interpretable latent traversals (Fig 6).252

Fully-connected networks with 3 hidden layers were trained on one of the initial, medial, or final glyph253

variables. For each task, 100 sets of hyperparameters were used for training. The hyperparameters254

and their ranges are listed in Appendix E. The model with the best validation accuracy was chosen255

and the downstream analysis was done on the test set representations (test accuracies reported in256
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Appendix B). Code for training the networks and reproducing the figures will be posted publicly.257

Deep networks representation analysis was partially completed on the NERSC supercomputer. All258

deep learning models were trained using PyTorch [66] on Nvidia GTX 1080s or Titan Xs.259

To compare accuracies (and chance accuracies) across models with differing numbers of classes260

(between 2 and 30), we 0-1 normalize the accuracies across models to make comparisons more clear.261

Specifically, for a model with accuracy = a and chance = c, we report Norm. acc. = a−c
1−c which is 0262

when a = c and is 1 when a = 1, independent of the number or distribution of classes.263

4.2 Generative structure recovery from representation of the data264

The 35 fonts were used in a 7-fold cross validation loop for the machine learning methods. The fonts265

were randomly permuted and then 5 fonts were used for each of the non-overlapping validation and266

test sets. The analysis of representations was done on the test set representations. For the supervised267

deep networks, the Kmeans clustering analysis and sparse logistic regression analysis were applied to268

the activations of every layer both before and after the ReLU nonlinearities. For the unsupervised269

VAEs, they were applied to samples from the latent layer. The logistic regression analysis was not270

applied to the linear representations.271

Clustering a representation produces a reduced representation for every datapoint in an unsupervised272

way. If one chooses the number of clusters to be equal to the dimensionality or number of classes the273

generative variables has, then they can be directly compared (up to a permutation). We cluster the274

representations with KMeans and then find the optimal alignment of the real and clustered labels (see275

Appendix D for more details). We then report the normalized accuracy of this labeling across training276

variables, layers, and hierarchy variables.277

Sparse logistic regression attempts to localize the information about a predicted label into a potentially278

small set of features. To do this, we used logistic regression models fit using the Union of Intersection279

(UoI) method [67, 68]. The UoI method has been shown to be able to fit highly sparse models280

without a loss in predictive performance [69]. We report the normalized accuracy and mean number281

of features selected divided by the number of features or classes across training variables, layers, and282

hierarchy variables. For this analysis, 2 new training and testing sub-splits were created from the283

representations on the original test set that was held out during deep network training.284

5 Discussion285

The Hangul Fonts Dataset (HFD) presented here has hierarchical and compositional latent structure286

that allows each image (block) to have ground-truth annotations, making the HFD well suited for287

deep representation research. Using a set of unsupervised and supervised methods, we are able to288

extract a subset of the variables from the representations of deep networks. Several VAE variants289

have relatively poor variable recovery from their latent layers, while supervised deep networks have290

clear representation of the variables they are trained on and interacting variables. Understanding how291

to better recover such structure from deep network representations will broaden the application of292

deep learning in science.293

In many scientific domains like cosmology, neuroscience, and climate science, deep learning is being294

used to make high accuracy predictions given growing dataset sizes [50, 70–72]. However, deep295

learning is not commonly used to directly test hypotheses about dataset structure. This is partially296

because the nonlinear, compositional structure of deep networks, which is conducive to high accuracy297

prediction from complex data, is not ideal for interrogating hypotheses about data. In particular, it298

is not generally known how the structure of a dataset influences the learned data representations or299

whether the structure of the dataset can be “read-out” of the learned representations. Understanding300

which dataset structures can be extracted from learned deep representations is important for the301

expanded use of deep learning in scientific applications.302

The HFD is based on a set of fonts which provide some naturalistic variation. However, the amount303

of variation is likely much smaller than what would be found in a handwritten dataset of Hangul304

blocks. One benefit to using fonts is that the dataset can be easily extended as new fonts are created.305

To this end, we release the entire dataset creation pipeline to aid in future expansion of the HFD or the306

creation of similar font-based datasets. A related limitation is that by including all possible blocks in307

the datasets, a large fraction of the blocks in the HFD would almost never be found in natural writing308

9



datasets. As is, the HFD could potentially bias machine learning applications which are applied to309

natural writing. To address this, the HFD could be subsampled to the relevant subset of blocks that310

are commonly used.311

Another potential limitation and area of future work is determining how to encode variables like312

hierarchy and compositionality. In this dataset, there is a natural class-based encoding for the shallow313

geometry hierarchy. The Bag-of-Atoms composition encoding ignores structure that is potentially314

relevant for recovering compositionality (much like Bag-of-Words features discard potentially useful315

structure in natural language processing). The specific compositional and hierarchical structure316

in the HFD and the particular encodings used may not be applicable across all different types of317

compositionality or hierarchy, for instance some hierarchy may be fuzzy, rather than discrete and tree-318

like. Similarly, the analysis presented here is tailored to the particular structures present in the data.319

For example, the KMeans clustering analysis was applied to all variables with mutually-exclusive320

class structure, but could not be applied to the bag-of-atoms feature vectors. However, we hope that321

the HFD inspires more research into tools for extracting these features from learned representations.322

In this work, relatively small fully-connected and convolutional networks were considered. However,323

these techniques can be applied to larger feedforward networks, recurrent networks, or networks with324

residual layers to understand the impact on learned representations. Understanding how proposed325

methods for learning factorial or disentangled representations [24, 33, 34, 40] impact the structure of326

learned representations is important for using deep network representations for hypothesis testing in327

scientific domains. Compared to disentangling [46], relatively little work addresses how to define328

and evaluate hierarchy and compositionality in learned representations. Furthermore, unsupervised329

or semi-supervised cross-validation metrics that can be used for model selection across a range330

of structure recovery tasks (e.g., disentangling, hierarchy recovery, compositionality recovery) are331

lacking.332
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