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Abstract001

Astronomical image interpretation presents a002
significant challenge for applying multimodal003
large language models (MLLMs) to specialized004
scientific tasks. Existing benchmarks focus on005
general multimodal capabilities but fail to cap-006
ture the complexity of astronomical data. To007
bridge this gap, we introduce AstroMMBench,008
the first comprehensive benchmark designed009
to evaluate MLLMs in astronomical image un-010
derstanding. AstroMMBench comprises 621011
multiple-choice questions across six astrophys-012
ical subfields, curated and reviewed by 15 do-013
main experts for quality and relevance. We014
conducted an extensive evaluation of 25 di-015
verse MLLMs, including 22 open-source and 3016
closed-source models, using AstroMMBench.017
The results show that Ovis2-34B achieved018
the highest overall accuracy (70.5%), demon-019
strating leading capabilities even compared020
to strong closed-source models. Performance021
showed variations across the six astrophysical022
subfields, proving particularly challenging in023
domains like cosmology and high-energy as-024
trophysics, while models performed relatively025
better in others, such as instrumentation and so-026
lar astrophysics. These findings underscore the027
vital role of domain-specific benchmarks like028
AstroMMBench in critically evaluating MLLM029
performance and guiding their targeted devel-030
opment for scientific applications. AstroMM-031
Bench provides a foundational resource and a032
dynamic tool to catalyze advancements at the033
intersection of AI and astronomy.034

1 Introduction035

Astronomy is a field that relies heavily on observa-036

tion. The analysis and interpretation of telescope-037

collected image data is a crucial method for as-038

tronomers to understand the universe. The increas-039

ing volume and complexity of astronomical data,040

driven by advanced telescopic technologies, pose041

increasing challenges for efficient and accurate data042

interpretation. Consequently, the quest for more043

advanced image analysis technologies has consis- 044

tently been a significant direction in astronomical 045

research. 046

Recently, as large language models (LLMs) (De- 047

vlin, 2018; Brown et al., 2020; Zeng et al., 2022; 048

Bai et al., 2023a; Grattafiori et al., 2024; DeepSeek- 049

AI, 2024) and large visual models (LVMs) (Ramesh 050

et al., 2021; Zhang et al., 2022; Kirillov et al., 2023; 051

Shen et al., 2023; Zhai et al., 2023; Fini et al., 052

2024; Chen et al., 2024b) have been advancing, 053

researchers have increasingly acknowledged the 054

synergy effects that exist between these two types 055

of models. This recognition has accelerated the 056

formation and advancement of multimodal large 057

language models (MLLMs) (Achiam et al., 2023; 058

Wang et al., 2023; Yao et al., 2024; Tong et al., 059

2024; Abdin et al., 2024; Liu et al., 2024; GLM 060

et al., 2024; Bai et al., 2025; Wu et al., 2024; Team, 061

2025; Team et al., 2025; Zhu et al., 2025; Dong 062

et al., 2025). MLLMs combine the advanced natu- 063

ral language processing capabilities of LLMs with 064

the visual comprehension strengths of LVMs, en- 065

abling them to possess both extensive world knowl- 066

edge and advanced abilities in solving general vi- 067

sual tasks and complex reasoning (Huang et al., 068

2024a). This combination of capabilities allows 069

MLLMs to perform deeper and more detailed anal- 070

ysis of text and images, showing significant po- 071

tential and value across various domains, such as 072

healthcare (Guo and Wan, 2024), autonomous driv- 073

ing (Cui et al., 2023), and art (Ko et al., 2022). 074

It is foreseeable that MLLMs, with their power- 075

ful visual perception and understanding capabil- 076

ities, will have enormous potential to assist as- 077

tronomers in analyzing astronomical observation 078

images. However, evaluating the performance of 079

MLLMs in astronomical image understanding re- 080

mains challenging. Although there are many mul- 081

timodal benchmarks (Yue et al., 2024; Chen et al., 082

2024a; Wang et al., 2024; Masry et al., 2022; 083

Li et al., 2023; Huang et al., 2024b; Lu et al., 084
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2024a) available for evaluating the performance of085

MLLMs, they focus either on the models’ compre-086

hensive capabilities or on specific nonastronomical087

tasks. These benchmarks lack the domain speci-088

ficity needed to assess a model’s ability to handle089

tasks that require specialized knowledge of astro-090

physical processes.091

To address this gap, we introduce AstroMM-092

Bench, the first benchmark specifically designed to093

evaluate the performance of MLLMs in astronomy.094

AstroMMBench includes 621 multiple-choice ques-095

tions generated through an automated pipeline us-096

ing images of papers on arxiv1, which have been097

rigorously vetted by 15 domain experts. These098

questions span six major subfields, from Galactic099

Astrophysics to Cosmology, providing a compre-100

hensive framework for assessing capabilities in the101

field of MLLMs astronomy.102

We evaluated 25 diverse MLLMs, comprising103

22 publicly available open-source and 3 power-104

ful closed-source models, using the VLMEvalKit105

framework and found significant performance dif-106

ferences across models and different subfields of107

astronomy. The results indicate that Ovis2-34B108

(Lu et al., 2024b) performs particularly well in109

various astrophysical tasks, achieving an overall110

score of 70.53%. Notably, its performance sur-111

passed that of leading closed-source models like112

ChatGPT-4o (Hurst et al., 2024) (69.07%) and113

Doubao-1.5-vision-pro (68.12%), demonstrating114

the strong competitiveness of open-source solu-115

tions in professional field tasks. These findings un-116

derscore the importance of domain-specific bench-117

marks for advancing MLLMs in scientific research.118

We hope that AstroMMBench will become a key119

tool at the intersection of astronomy and artificial120

intelligence, promoting the development of mod-121

els with better astronomical image understanding122

capabilities.123

2 Related Work124

Evaluating the diverse capabilities of MLLMs ne-125

cessitates comprehensive benchmarks. Existing126

general multimodal benchmarks (Yu et al., 2024;127

Chen et al., 2024a; Yue et al., 2024; Ying et al.,128

2024; Song et al., 2024; Li et al., 2024, 2023; Fu129

et al., 2024), primarily focus on everyday scenar-130

ios and common knowledge. They cover tasks131

such as image captioning, visual question answer-132

ing (VQA), object perception, and complex reason-133

1https://arxiv.org/

Figure 1: Distribution of questions across astronomy
subfields in AstroMMBench.

ing across more than 20 skill dimensions. While 134

these benchmarks are essential for measuring fun- 135

damental multimodal abilities and general world 136

knowledge, they typically rely on common image 137

types and scenarios, thus lacking the specialized 138

content and nuanced understanding required for 139

performance evaluation in fine-grained scientific 140

domains. 141

To address the limitations of general-purpose 142

benchmarks in terms of domain-specific knowledge 143

coverage and task complexity, researchers have de- 144

veloped an increasing number of specialized evalu- 145

ation suites. In the domain of mathematical and log- 146

ical reasoning, benchmarks such as MathVista (Lu 147

et al., 2024a), MathVerse (Zhang et al., 2024), and 148

We-Math (Qiao et al., 2024) have been introduced 149

to assess models’ capabilities in understanding and 150

solving visually presented mathematical problems. 151

For chart and diagram understanding, datasets like 152

ChartQA (Masry et al., 2022), ChartX (Xia et al., 153

2024), and CharXiv (Wang et al., 2024) focus on 154

evaluating model performance in chart recognition 155

and complex reasoning tasks. Significant progress 156

has also been made in multimodal evaluation for 157

the medical domain, where benchmarks such as 158

MedXpertQA (Zuo et al., 2025) and MediConfu- 159

sion (Sepehri et al., 2024) systematically examine 160

model performance in medical image diagnosis, 161

pathology recognition, and other critical clinical 162

tasks. The emergence of these domain-specific 163

benchmarks has significantly advanced the evalua- 164

tion of MLLMs in complex, specialized scenarios, 165

offering a standardized framework for fine-grained 166

capability analysis and promoting their applicabil- 167

ity in high-stakes, expert-driven contexts. 168

Despite significant progress in MLLM evalua- 169

tion across general and various specific domains, a 170
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Figure 2: Examples of randomly selected questions in AstroMMBench.

dedicated multimodal evaluation benchmark specif-171

ically for astronomical images remains absent. Our172

work directly addresses this critical gap by intro-173

ducing AstroMMBench.174

3 AstroMMBench175

3.1 Overview Of AstroMMBench176

AstroMMBench is the first benchmark specifically177

designed to evaluate the performance of MLLMs178

in the domain of astronomical image interpreta-179

tion. It comprises 621 multiple-choice questions,180

meticulously curated to cover six core subfields181

of astrophysics: Astrophysics of Galaxies (GA),182

Cosmology and Nongalactic Astrophysics (CO),183

Earth and Planetary Astrophysics (EP), High En-184

ergy Astrophysical Phenomena (HE), Instrumenta-185

tion and Methods for Astrophysics (IM), and So-186

lar and Stellar Astrophysics (SR). This structure187

ensures a broad yet deep assessment of MLLM188

performance across the discipline.189

As illustrated in Figure 1, the questions are well-190

distributed across these subfields, with counts rang-191

ing from 87 to 111 per category, ensuring repre-192

sentative topical coverage. Each question, paired193

with an astronomical image, requires a model to194

select the correct answer from four options. Fig-195

ure 2 showcases representative examples from As-196

troMMBench.197

The construction of AstroMMBench involved 198

a multi-stage process, detailed in the subsequent 199

sections. This process began with the collection 200

of image-text pairs from recent astrophysical lit- 201

erature (§3.2), followed by an automated pipeline 202

for question generation (§3.3.1), and culminated in 203

a rigorous, expert-led review phase to ensure the 204

quality, relevance, and scientific accuracy of each 205

question (§3.3.2). 206

3.2 Data Collection 207

Constructing a high-quality and domain-specific 208

evaluation dataset that remains relevant in the 209

rapidly evolving field of MLLMs presents chal- 210

lenges, particularly regarding data leakage. To ad- 211

dress this, we need a data source that is both rich in 212

domain-specific content and continuously updated. 213

The arXiv repository perfectly fits this requirement, 214

serving as a vast and dynamic archive of scientific 215

preprints that reflect the very latest advancements 216

across diverse subdisciplines of astrophysics. Its 217

continuous nature allows for the potential gener- 218

ation of future benchmark versions utilizing data 219

published after the training cutoff of new models, 220

thereby mitigating the risk of data contamination. 221

For the initial construction of AstroMMBench, 222

we focused exclusively on the "Astrophysics" 223

(astro-ph) category on arXiv. We collected the TeX 224

source files of 3,592 papers submitted between Jan- 225
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uary 1, 2024, and July 31, 2024. From these col-226

lected papers, we extracted images along with their227

corresponding captions and contextual references228

found within the main body of the text, yielding an229

initial corpus of 19,299 image-text pairs.230

This collection process, based on arXiv’s con-231

stantly updating content, forms the foundation for232

a benchmark design that can be readily updated.233

While the specific timeframe of this initial dataset234

(collected in 2024) provides a snapshot of astro-235

physical research up to that point, the methodol-236

ogy allows for the creation of subsequent versions237

of AstroMMBench using newer arXiv data. This238

inherent flexibility is key to maintaining a high-239

quality benchmark that minimizes potential data240

leakage as MLLMs are continually trained on ever-241

larger and more recent datasets.242

3.3 Automatic Pipeline243

Manually creating high-quality exam questions, es-244

pecially in specialized fields like astronomy, is not245

only time-consuming and laborious but may not be246

able to adapt to the ever-improving model devel-247

opment in a timely manner. With the rapid rise of248

MLLMs, it is possible to automatically generate249

high-quality questions from images with detailed250

text descriptions.251

To efficiently construct a large-scale benchmark,252

we developed an automated pipeline for question253

generation and curation. Specifically, we em-254

ployed LLaMA3.3-70B-Instruct and InternVL2.5-255

78B (Chen et al., 2024c) for question generation.256

This automation significantly reduced the manual257

effort in building a large-scale benchmark. Figure258

3 shows the entire automated process, which is di-259

vided into two main stages: stage one is used to260

generate multiple-choice questions, and stage two261

filters the generated questions through multi-step262

review to ensure question quality.263

3.3.1 Questions Autogeneration264

The first stage of our pipeline focuses on automati-265

cally generating multiple-choice questions from the266

collected image-text pairs. Initially, we refine the267

textual data associated with each image to enhance268

its consistency and clarity. We observed that cap-269

tions and contextual references extracted directly270

from research papers often contain:271

• Information Redundancy: Descriptions that272

include details irrelevant to the specific image273

or residual LaTeX formatting;274

• Style Inconsistency: Variations in writing 275

styles across different authors, which impact 276

the standardization of the input text. 277

To address these challenges, we used the 278

LLaMA3.3-70B-Instruct model to rewrite the tex- 279

tual data. This rewriting process was guided by 280

a carefully designed prompt (see Appendix A.1) 281

aimed at ensuring the accuracy and completeness of 282

the content while effectively reducing redundancy 283

and unifying the expression style. To provide essen- 284

tial background context, we supplied the LLaMA 285

model with the paper’s title and abstract, in addition 286

to the image captions and contextual references. 287

Following the text refinement, the polished tex- 288

tual descriptions, paired with their correspond- 289

ing astronomical images, were input into the 290

InternVL2.5-78B model to generate the multiple- 291

choice questions. To ensure the generated ques- 292

tions were clear, challenging, and scientifically ac- 293

curate, we utilized an implicit thought chain prompt 294

(see Appendix A.2). This prompt was designed to 295

guide the model through a structured reasoning pro- 296

cess, facilitating the generation of questions that 297

effectively probe understanding of the image and 298

its context, along with plausible answer options. 299

3.3.2 Questions Review 300

After generating preliminary questions, we intro- 301

duced a multi-stage review process to ensure the 302

quality and academic rigor of the generated ques- 303

tions. This is the core step of the second stage, 304

which aims to ensure that the final retained ques- 305

tions are highly accurate and challenging through 306

multi-model evaluation and expert review. 307

First, to ensure that the generated questions can 308

effectively assess the respondents’ ability to ana- 309

lyze astronomical images, we used five LLMs for 310

an initial filtering step, including InternLM2.5-7B- 311

Chat (Cai et al., 2024), LLaMA-3.1-8B-Instruct, 312

Yi-1.5-34B-Chat (Young et al., 2024), Qwen2.5- 313

32B (Team, 2024), and InternLM2-20B-Chat (Cai 314

et al., 2024). Each model answered each question 315

five times, and a question was considered correctly 316

answered by a model if at least three out of five 317

responses were correct. To eliminate questions that 318

could be answered primarily through linguistic rea- 319

soning without requiring visual understanding, we 320

discarded questions that were correctly answered 321

by at least two models. As a result of this filtering 322

process, the initial pool of 19,299 generated ques- 323

tions was reduced to 9,677, retaining those more 324
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(a) Multiple Choice Questions Autogeneration

(b) Question/Answer Review

Figure 3: Automated pipeline for multiple-choice question generation and review. The pipeline is divided into
two stages. (a) The initial stage involves the autogeneration of multiple-choice questions. Llama-3.3-70B-Instruct
refines textual descriptions associated with astronomical images, while InternVL2.5-78B generates corresponding
questions. (b) The second stage is the review process, where the generated questions undergo filtering by large
language models (LLMs) and expert evaluation to ensure the quality, correctness, and relevance of both the questions
and answers before their inclusion in the final benchmark.

Figure 4: Distribution of question difficulty in As-
troMMBench, based on the number of evaluated models
that correctly answered each question. The x-axis indi-
cates the "Number of Models Correctly Answering" a
question (0-25), and the y-axis shows the count of ques-
tions at each correctness level, broken down by subfield.

likely to require visual input for accurate interpre-325

tation.326

To ensure the accuracy, relevance, and rigor of327

the dataset, a panel of 15 astronomy experts—each328

holding at least a master’s degree in astronomy329

or a related field—conducted a thorough review330

of 1,800 randomly selected questions from the re-331

maining 9,677 questions. Each question was inde-332

pendently evaluated by an expert within the cor-333

responding subfield. Based on criteria including 334

image-question alignment, contextual complete- 335

ness, answer accuracy and uniqueness, and the ne- 336

cessity of domain-specific knowledge, a total of 621 337

high-quality questions were retained. Furthermore, 338

to mitigate potential biases in model responses and 339

ensure fair evaluation, the correct answer options 340

for these 621 questions were reassigned to be uni- 341

formly distributed across options A, B, C, and D. 342

3.4 Difficulty Distribution 343

To further characterize AstroMMBench as an eval- 344

uation benchmark, we analyzed the distribution of 345

question difficulty. The difficulty of each question 346

in AstroMMBench, as revealed by the evaluation 347

results presented in Section 4, is characterized by 348

the number of the 25 evaluated models that were 349

able to correctly answer it. Figure 4 illustrates this 350

difficulty distribution based on the performance of 351

the evaluated models. The x-axis represents the 352

number of models that correctly answered a given 353

question, ranging from 0 for the most challenging 354

questions (answered correctly by no models) to 25 355

for the easiest (answered correctly by all models). 356

The y-axis shows the number of questions at each 357

level of correctness, with stacked areas represent- 358

ing the contribution of each astrophysical subfield. 359
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The overall trend in the figure indicates that the360

number of questions gradually decreases as their361

difficulty increases. This suggests that the bench-362

mark deliberately avoids an overrepresentation of363

extremely difficult questions that current models364

struggle to solve. Most questions fall within the365

medium difficulty range, which is effective for dif-366

ferentiating model capabilities. Additionally, the367

stacked area chart shows that questions from all368

subfields contribute to the overall difficulty spec-369

trum, although their proportions vary across dif-370

ficulty levels. This distribution demonstrates that371

AstroMMBench offers a challenging yet balanced372

evaluation framework.373

4 Experiments374

4.1 Baselines375

MLLMs To evaluate the performance of current376

MLLMs in the domain of astronomy, we selected377

a diverse set of 25 models, comprising 22 pub-378

licly available open-source models and 3 carefully379

selected powerful closed-source models. The com-380

plete list of evaluated models, along with their over-381

all and subfield-specific performance on AstroMM-382

Bench, is presented in Table 1.383

Evaluation For the evaluation process, we uti-384

lized VLMEvalKit (Duan et al., 2024), a widely385

used open-source evaluation framework specifi-386

cally designed for MLLMs, which provides stan-387

dardized protocols and metrics. As AstroMM-388

Bench is composed exclusively of multiple-choice389

questions with a single correct answer, the primary390

evaluation metric used is accuracy (proportion of391

correctly answered questions). A model’s response392

is considered correct only if the extracted answer393

option precisely matches the predefined correct394

answer. To accurately extract the chosen answer395

option from the potentially verbose text outputs of396

the evaluated MLLMs, we employed DeepSeek-V3397

(DeepSeek-AI, 2024) to parse model responses and398

identify the intended answer option (A, B, C, or399

D), thereby mitigating issues arising from simple400

pattern matching in free-form generation. All ex-401

periments were conducted on hardware equipped402

with eight NVIDIA A100 GPUs.403

4.2 Main Results on AstroMMBench404

4.2.1 Overall Performance405

Table 1 summarizes the performance of 25 MLLMs406

evaluated on AstroMMBench, sorted by overall ac-407

curacy. The OpenCompass scores are drawn from408

the OpenCompass multimodal model leaderboard2, 409

which reflects model capabilities across general- 410

purpose tasks. The results demonstrate substantial 411

variation in performance across models. Among 412

them, the open-source Ovis2-34B model achieved 413

the highest overall accuracy (70.53%), outperform- 414

ing all other models on this benchmark. It is fol- 415

lowed by ChatGPT-4o (69.07%) and Doubao-1.5- 416

Vision-Pro (68.12%), highlighting the competitive- 417

ness of state-of-the-art commercial MLLMs. Re- 418

markably, Ovis2-34B’s leading performance over 419

these proprietary models underscores the rapid ad- 420

vancement and potential of open-source MLLMs 421

for domain-specific tasks. 422

The scores for other models span a wide range, 423

with Gemma3-4B and InternVL3-1B achieving the 424

lowest overall accuracies of 42.51% and 45.73%, 425

respectively. Although all models outperform the 426

25% accuracy expected from random guessing on 427

a four-choice multiple-choice task, their overall 428

performance remains limited. This highlights the 429

difficulty of the AstroMMBench benchmark and 430

reveals significant room for improvement in current 431

MLLMs’ ability to process astronomical images. 432

4.2.2 Relationship with General Capabilities 433

As illustrated in Figure 5, there is a clear posi- 434

tive correlation between the models’ general perfor- 435

mance (OpenCompass score) and their astronomi- 436

cal domain performance (AstroMMBench overall 437

score). The red dashed line in the figure represents 438

the linear regression fit between the two, revealing 439

a linear correlation. To quantify the strength of this 440

linear relationship, we calculated the Pearson cor- 441

relation coefficient, obtaining (r = 0.82), which 442

demonstrates a significant positive correlation. The 443

calculation method for the Pearson correlation coef- 444

ficient (r) is provided in equation 1. This suggests 445

that models performing well on general tasks also 446

tend to excel in astrophysical tasks, validating the 447

robustness and scientific soundness of AstroMM- 448

Bench. 449

r =

∑
(X − X̄)(Y − Ȳ )√∑

(X − X̄)2
∑

(Y − Ȳ )2
(1) 450

However, this correlation is not without ex- 451

ceptions. For example, Ovis2-34B outperforms 452

models with higher general scores like ChatGPT- 453

4o, Qwen2.5-VL-72B, and InternVL3-38B on As- 454

troMMBench. This anomaly suggests that while 455

2https://rank.opencompass.org.cn/
leaderboard-multimodal/?m=REALTIME
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Table 1: Performance of 3 closed-source and 22 open-source models on the AstroMMBench dataset across sub-
domains of astrophysics. The best-performing model in each category is in bold.

Model Overall
(621)

GA
(97)

CO
(111)

EP
(105)

HE
(110)

IM
(87)

SR
(111) OpenCompass

Closed-source Models
ChatGPT-4o (Hurst et al., 2024) 69.07 69.07 67.57 67.62 70.91 68.97 71.17 47.49
Doubao-1.5-vision-pro 68.12 70.10 67.57 64.76 72.73 67.82 65.77 –
QwenVLMax (Bai et al., 2023b) 66.83 58.76 58.56 69.52 65.45 78.16 72.07 –

Open-source Models
Ovis2-34B (Lu et al., 2024b) 70.53 68.04 67.57 68.57 72.73 78.16 69.37 42.82
InternVL3-38B (Zhu et al., 2025) 67.63 68.04 53.15 61.90 70.91 80.46 73.87 45.55
Qwen2.5-VL-72B (Bai et al., 2025) 67.47 59.79 57.66 72.38 69.09 74.71 72.07 48.25
Ovis2-16B (Lu et al., 2024b) 67.31 63.92 63.06 61.90 70.91 75.86 69.37 39.60
Qwen2.5-VL-32B (Bai et al., 2025) 64.25 57.73 60.36 60.00 68.18 68.97 70.27 –
InternVL3-78B (Zhu et al., 2025) 64.25 63.92 51.35 60.95 65.45 73.56 72.07 45.96
InternVL3-14B (Zhu et al., 2025) 63.77 61.86 53.15 62.86 61.82 73.56 71.17 40.72
SAIL-VL-1.6-8B (Dong et al., 2025) 62.32 56.70 58.56 63.81 62.73 68.97 63.96 37.92
InternVL3-8B (Zhu et al., 2025) 61.03 59.79 52.25 61.90 60.91 66.67 65.77 37.40
InternVL3-9B (Zhu et al., 2025) 60.55 60.82 49.55 55.24 62.73 65.52 70.27 –
DeepSeek_VL2 (Wu et al., 2024) 59.90 57.73 53.15 61.90 61.82 68.97 57.66 38.70
Qwen2.5-VL-3B (Bai et al., 2025) 58.94 52.58 59.46 56.19 58.18 65.52 62.16 38.33
MiniCPM-o-2.6 (Yao et al., 2024) 57.97 54.64 51.35 50.48 62.73 67.82 62.16 34.67
Qwen2.5-VL-7B (Bai et al., 2025) 57.33 52.58 56.76 53.33 54.55 67.82 60.36 43.21
Kimi-VL-A3B-Instruct (Team et al., 2025) 56.68 50.52 54.95 54.29 55.45 68.97 57.66 37.00
LLaVA_Onevision_72B (Li et al., 2024) 55.39 52.58 54.95 53.33 50.91 63.22 58.56 39.05
Gemma3-12B (Team, 2025) 52.82 49.48 51.35 60.95 45.45 50.57 58.56 34.15
InternVL3-2B (Zhu et al., 2025) 51.69 53.61 47.75 46.67 50.00 55.17 57.66 30.96
Kimi-VL-A3B-Thinking (Team et al., 2025) 50.08 50.52 45.05 43.81 47.27 57.47 57.66 –
GLM-4v-9B (GLM et al., 2024) 49.76 46.39 39.64 48.57 52.73 59.77 53.15 37.85
InternVL3-1B (Zhu et al., 2025) 45.73 47.42 38.74 39.05 42.73 57.47 51.35 24.39
Gemma3-4B (Team, 2025) 42.51 42.27 34.23 39.05 41.82 48.28 50.45 32.21

general multimodal capabilities can predict suc-456

cess in specialized fields, some models may face457

difficulties when confronted with domain-specific458

challenges in astrophysics. It also underscores459

the unique challenges posed by AstroMMBench,460

where models must handle domain-specific ques-461

tions that may not be adequately captured by462

general-purpose multimodal benchmarks.463

4.2.3 Analysis by Subfield464

AstroMMBench encompasses six major subfields465

of astrophysics. A detailed analysis of model per-466

formance within these distinct domains allows for467

a deeper understanding of their strengths and po-468

tential limitations when tackling different types of469

astronomical tasks. Figure 6 presents a radar chart470

offering a visual overview of the performance pro-471

files for selected representative models across the472

six subfields. Examples of these models’ responses473

within each subfield and varying difficulty ques-474

tions are provided in Appendix B.475

Our analysis indicates that performance dispar-476

ities across different subfields reflect the varying477

capabilities required by the questions in each cat-478

egory. Specifically, questions in the IM and SR479

subfields primarily demand skills related to inter-480

preting standard astronomical plots (e.g., time se- 481

ries, relationships between physical quantities) and 482

recognizing common astronomical objects or in- 483

strument components. These tasks may align well 484

with the graph understanding and object recogni- 485

tion capabilities models acquire during general do- 486

main training, thus resulting in generally higher 487

scores in these subfields. Conversely, questions 488

in the CO and HE subfields typically require a 489

deeper understanding of abstract theoretical con- 490

cepts, interpretation of highly specialized or un- 491

conventional visualizations (e.g., statistical maps 492

of cosmic structures, signatures of particle interac- 493

tions), and complex multi-step reasoning based on 494

fragmented information. These capabilities may 495

be less developed or consistently present in cur- 496

rent general-purpose MLLMs. The GA and EP 497

subfields, covering a wide range of question types 498

from galaxy morphological classification to inter- 499

preting planetary atmospheric data or orbital dy- 500

namics plots, require a mix of these abilities and 501

exhibit intermediate difficulty. 502

The radar chart in Figure 6 visualizes the perfor- 503

mance profiles of various models across astrophys- 504

ical subfields. Top performers like Ovis2-34B and 505

ChatGPT-4o display balanced, consistent polygons, 506

7



Figure 5: Relationship between general multimodal performance (OpenCompass score) and specialized astronomical
image interpretation performance (AstroMMBench overall accuracy) for 22 MLLMs. Point size represents model
scale (parameter count)

Figure 6: Comparison of model performance across six
astrophysical subfields in AstroMMBench.

underscoring their robustness and versatility in as-507

tronomy. In contrast, InternVL3-38B, while achiev-508

ing leading scores in the IM and SR fields, shows509

a notable decrease in performance in the CO field.510

This suggests that its ability to interpret standard as-511

tronomical plots might be stronger than its capacity512

to handle the more abstract concepts and special-513

ized imagery common in cosmology. Other models514

also showcase their specific characteristics, such as515

Doubao-1.5-vision-pro’s prominent strength in the516

HE field and Qwen2.5-VL-72B’s leading perfor-517

mance in the EP field. These variations highlight518

that different models may possess specific profi-519

ciencies aligned with particular astrophysical do-520

mains, likely stemming from differences in their521

training or architecture.522

5 Conclusion 523

In this paper, we introduce AstroMMBench, the 524

first benchmark tailored to assess MLLMs in as- 525

tronomy. It features 621 multiple-choice questions 526

spanning six key astrophysics subfields, automati- 527

cally generated and expert-reviewed for accuracy 528

and relevance. 529

Using the VLMEvalKit framework, we eval- 530

uated 25 MLLMs and observed significant per- 531

formance differences. The open-source Ovis2- 532

34B outperformed top closed-source models like 533

ChatGPT-4o and Doubao-1.5-vision-pro with a 534

70.53% score, emphasizing the promise of open 535

models in scientific domains. We found a strong 536

positive correlation between general MLLM perfor- 537

mance and AstroMMBench scores, yet exceptions 538

demonstrate the critical need for domain-specific 539

evaluation to truly assess specialized proficiency. 540

Furthermore, performance varied across astrophys- 541

ical subfields, with domains like Cosmology and 542

Nongalactic Astrophysics and High Energy Astro- 543

physics proving generally more challenging than 544

Instrumentation and Methods for Astrophysics and 545

Solar and Stellar Astrophysics, reflecting the di- 546

verse demands on MLLM capabilities. We hope 547

that AstroMMBench can become a continuously 548

evolving platform to support the evaluation and 549

promotion of the next generation of MLLMs in 550

astronomy. 551
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Limitations552

Our study provides a benchmark and framework553

for the performance of multimodal large language554

models in the astronomy domain, but we acknowl-555

edge that there are several limitations to our study556

that may require further exploration:557

Limited benchmark size and task diversity558

The current benchmark size of 621 questions, while559

substantial for a first benchmark of this nature, is560

relatively limited compared to the vastness and561

complexity of astronomical phenomena and tasks.562

Furthermore, the task format is currently restricted563

to multiple-choice Visual Question Answering. In-564

corporating more diverse question types, such as565

open-ended questions, multi-step reasoning tasks,566

or predictive analysis challenges, would provide a567

more comprehensive assessment of MLLMs’ ad-568

vanced capabilities needed for complex scientific569

analysis beyond direct VQA.570

Challenges in automated question generation571

and curation Although an automated pipeline572

is employed for initial question generation from573

scientific literature, the quality of the generated574

questions can be inconsistent. This often results in575

a proportion of low-quality or irrelevant questions576

that do not adequately test specialized astronomical577

knowledge. Consequently, ensuring the scientific578

rigor and quality of the final benchmark set heav-579

ily relies on a costly and time-consuming manual580

expert review process. This reliance on manual581

curation limits the scalability and efficiency of ex-582

panding the benchmark size and providing frequent583

updates with new data, presenting a key challenge584

for maintaining a dynamic benchmark.585

In our future work, we will focus on addressing586

these shortcomings to overall improve the qual-587

ity and scalability of AstroMMBench while ensur-588

ing that it becomes a comprehensive and evolving589

benchmark for evaluating MLLMs in the special-590

ized field of astronomy.591

Ethics Statement592

Copyright and License Regarding the data used593

in AstroMMBench, all images and associated tex-594

tual content are sourced from publicly available595

preprints on arXiv. We ensure compliance with596

copyright regulations by strictly adhering to the597

terms of use for arXiv data, which permits the598

re-use and distribution of content under specific599

licenses (typically Creative Commons licenses as600

specified by the authors). We maintain adherence 601

to the established legal and ethical standards for 602

using publicly available scientific literature. 603

We are committed to making AstroMMBench 604

openly accessible to the research community to fa- 605

cilitate further research and evaluation of MLLMs 606

in astronomy. AstroMMBench will be released 607

under the Creative Commons Attribution 4.0 Inter- 608

national License (CC BY 4.0). 609
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A Prompts926

A.1 Prompt for Rewriting Descriptions927

The following Promt is used in LLaMA3.3-70B-928

Instruct model to rewrite the context text descrip-929

tion of the image.930

SYSTEM PROMPT:
Act like an expert with extensive experience writing
in the field of astrophysics.

Objective:
You will be provided with the [CAPTION], and
[CONTEXT] of an image mentioned in the paper.
Meanwhile, the [TITLE] and [ABSTRACT] of the
paper are also provided as background information
to you. Your task is to generate a concise, precise,
and scholarly description of the image, reflecting its
content and relevance within the scientific discourse
of the paper. Your answer will serve senior scholars,
please describe it in a formal and scholarly manner.

Detailed Instructions:

1. Content Analysis:

• Carefully review [CAPTION], and
[CONTEXT] of the image, determining
target image and ensuring a thorough
understanding of its significance and
details.

• Examine the [TITLE] and [ABSTRACT]
of the paper and use those background
informations if necessary.

2. Formatting and Content Restrictions:

• Ensure all LaTeX formats are deleted ex-
cept for mathematical formulas.

• Ignore any content related to unknown
objects in the paper, such as other for-
mulas, images or sections, and do not
summarize them.

• If the content you are given is not related
to the target image, ignore it and do not
summarize it.

• When you refer to the target image, use
expressions such as "The image" or "The
figure", instead of "Figure \ref{?}" or
"Figure ?".

3. Writing the Description:

• Formulate a comprehensive and schol-
arly description of the image using the
gathered information.

Output Format:
{
"description": "The description you generated here"
}

USER PROMPT:
Please give your description based on the following
informations:
[CAPTION]: {caption}
[CONTEXT]: {context}
[TITLE]: {title}
[ABSTRACT]: {abstract}

931
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A.2 Prompt for Question Generation932

The following Promt is used in the InternVL2.5-933

78B model to generate high-quality multi-modal934

multiple-choice questions in the field of astronomy.935

Act like a domain expert in astronomy education,
with extensive experience in designing high-level
exam questions that assess advanced conceptual and
analytical skills.

Objective:
You will receive an image and its associated descrip-
tions. Your task is to generate a multiple-choice
question (include one correct option and three
plausible but incorrect options) at a professional level
that tests the respondent’s ability to analyze images
and apply comprehensive astronomical knowledge.

Detailed Instructions:

1. Image and Description Analysis:

• View the [IMAGE] provided thoroughly,
noting any important subjects, features,
and text, etc.

• Read the [IMAGE DESCRIPTIONS] care-
fully to determine the relationship be-
tween the description and the image, and
consider the astronomical knowledge in-
volved.

2. Question Design:

• Create a question that requires image
analysis, astronomical knowledge, and
in-depth analysis to solve, ensuring it
does not provide hints.

3. Create Answer Choices:

• Determine an answer to the question as
the correct option.

• Develop three plausible but incorrect op-
tions.

4. Explanation of the Correct Answer:

• Provide a detailed explanation for why
the correct answer is accurate.

• Optionally, briefly state why each incor-
rect option is misleading or incorrect.

Output Format:
{
"question": "Your image-based astronomical question
here",
"options": {
"A": "Option A content",
"B": "Option B content",
"C": "Option C content",
"D": "Option D content"
},
"answer": "Correct option letter"
"explanation": "Brief justification for the correct
answer." }

Input:
Please generate the question based on the following:
[IMAGE DESCRIPTIONS]:{image_descriptions}

936

B Model Evaluation Examples 937

This section presents 18 example questions on ran- 938

dom sampling across varying levels of difficulty, 939

with three questions selected from each subdomain. 940

B.1 Solar and Stellar Astrophysics (SR) 941

Correct responses: 24/25 models

Question: Which epoch shows the highest visual
extinction (AV ) for Gaial8cjb at distance of 7140 pc?
Option:

(A) LUCI

(B) SOFI

(C) GTC

(D) None of the above

Answer: C

Ovis2-34B: C

ChatGPT-4o: C

Doubao-1.5-vision-pro: C

InternVL3-38B: C

Qwen2.5-VL-72B: C

LLaVA_Onevision_72B: B

Gemma3-12B: C
942

Figure B1: Case 1 of AstroMMBench in SR 943

subdomain. 944

Correct responses: 17/25 models

945
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Question: Which of the following best describes the
periodicity of the light curve for NGC300-59 in the
Gaia G-band?
Option:

(A) Approximately 500 days

(B) Approximately 1000 days

(C) Approximately 2000 days

(D) Approximately 4000 days

Answer: B

Ovis2-34B: C

ChatGPT-4o: B

Doubao-1.5-vision-pro: C

InternVL3-38B: B

Qwen2.5-VL-72B: C

LLaVA_Onevision_72B: B

Gemma3-12B: B
946

Figure B2: Case 2 of AstroMMBench in SR947

subdomain.948

Correct responses: 4/25 models

Question: What is the primary feature observed in
the light curve of the EBLM J0608-59 system?
Option:

(A) A single transit event

(B) A double eclipse event

(C) A single eclipse event

(D) A continuous out-of-eclipse variation

Answer: B

Ovis2-34B: A

ChatGPT-4o: C

Doubao-1.5-vision-pro: C

InternVL3-38B: B

Qwen2.5-VL-72B: C

LLaVA_Onevision_72B: A

Gemma3-12B: A
949

Figure B3: Case 3 of AstroMMBench in SR950

subdomain.951

B.2 Instrumentation and Methods for 952

Astrophysics (IM) 953

Correct responses: 24/25 models

Question: Which of the following targets has the
most limited visibility in the 2023A California Planet
Search(CPs)simulation?
Option:

(A) Target 100244

(B) Target 100174

(C) Target 100173

(D) Target WASP159

Answer: D

Ovis2-34B: D

ChatGPT-4o: D

Doubao-1.5-vision-pro: D

InternVL3-38B: D

Qwen2.5-VL-72B: D

LLaVA_Onevision_72B: D

Gemma3-12B: D
954

Figure B4: Case 4 of AstroMMBench in IM 955

subdomain. 956

Correct responses: 16/25 models

Question: What is the primary consequence of a mis-
alignment in the Bragg angle θ(∆θ) on the diffracted
X-ray beam in the Laue lens?
Option:

(A) A shift in the diffracted signal along the z-axis

(B) A shift in the diffracted signal along the y-axis

(C) A change in the intensity of the diffracted beam

(D) A change in the polarization of the diffracted
beam

957
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Answer: B

Ovis2-34B: B

ChatGPT-4o: B

Doubao-1.5-vision-pro: B

InternVL3-38B: B

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: A

Gemma3-12B: A
958

Figure B5: Case 5 of AstroMMBench in IM959

subdomain.960

Correct responses: 1/25 models

Question: Which of the following statements is true
regarding the transmissivity of the WFI OBF configu-
rations shown in the image?
Option:

(A) The baseline WFI OBF has higher transmissiv-
ity across all energy bands compared to the 90
nm Al + 150 nm polyimide/60 nm Al configu-
ration.

(B) The 90 nm Al + 150 nm polyimide/60 nm Al
configuration has higher transmissivity below
0.5 keV compared to the baseline WFI OBF.

(C) The transmissivity ratio between the two con-
figurations is constant across the entire energy
range.

(D) The 90 nm Al + 150 nm polyimide/60 nm Al
configuration has higher transmissivity above
1.5 keV compared to the baseline WFI OBF.

Answer: A

Ovis2-34B: D

ChatGPT-4o: B

Doubao-1.5-vision-pro: D

InternVL3-38B: B

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: D

Gemma3-12B: B
961

Figure B6: Case 6 of AstroMMBench in IM962

subdomain.963

B.3 Earth and Planetary Astrophysics (EP) 964

Correct responses: 24/25 models

Question: Which small body in the solar system ex-
hibits the most uniform surface roughness according
to the entropy of information measured in the image?
Option:

(A) 67P/Churyumov-Gerasimenko

(B) (25143) Itokawa

(C) (101955) Bennu

(D) None of the above

Answer: D

Ovis2-34B: D

ChatGPT-4o: D

Doubao-1.5-vision-pro: D

InternVL3-38B: D

Qwen2.5-VL-72B: D

LLaVA_Onevision_72B: D

Gemma3-12B: D
965

Figure B7: Case 7 of AstroMMBench in EP 966

subdomain. 967

Correct responses: 14/25 models

Question: What is the primary effect of increasing
the fragmentation velocity vf on the dust density dis-
tribution in the simulation?
Option:

(A) Formation of smaller dust clumps

(B) Decreased mass-averaged stopping time τs

(C) Uniform distribution of dust
968
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(D) Formation of larger dust clumps

Answer: D

Ovis2-34B: D

ChatGPT-4o: D

Doubao-1.5-vision-pro: D

InternVL3-38B: A

Qwen2.5-VL-72B: D

LLaVA_Onevision_72B: D

Gemma3-12B: A
969

Figure B8: Case 8 of AstroMMBench in EP970

subdomain.971

Correct responses: 9/25 models

Question: What is the most likely cause of the strong
signal at approximately 40 days in the GLS peri-
odogram of TOI-1450A?
Option:

(A) Planetary transit

(B) Stellar rotation

(C) Binary star system

(D) Instrumental artifact

Answer: B

Ovis2-34B: A

ChatGPT-4o: A

Doubao-1.5-vision-pro: A

InternVL3-38B: A

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: A

Gemma3-12B: B
972

Figure B9: Case 9 of AstroMMBench in EP973

subdomain.974

B.4 Cosmology and Nongalactic Astrophysics 975

(CO) 976

Correct responses: 22/25 models

Question: Which gravity theory, as depicted in the
image, exhibits a more complex and abundant net-
work of cosmic filaments?
Option:

(A) Poisson (ΛCDM)

(B) Monge-Ampère

(C) Both exhibit similar complexity

(D) Neither, the complexity is indistinguishable

Answer: B

Ovis2-34B: B

ChatGPT-4o: B

Doubao-1.5-vision-pro: B

InternVL3-38B: B

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: A

Gemma3-12B: B
977

Figure B10: Case 10 of AstroMMBench in CO 978

subdomain. 979
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Correct responses: 18/25 models

Question: What is the primary feature indicated by
the elongated X-ray emission in the right panel of the
image?
Option:

(A) A single-armed spiral galaxy

(B) A region of high star formation activity

(C) A supermassive black hole

(D) A cold front in the galaxy cluster

Answer: D

Ovis2-34B: D

ChatGPT-4o: D

Doubao-1.5-vision-pro: D

InternVL3-38B: D

Qwen2.5-VL-72B: D

LLaVA_Onevision_72B: D

Gemma3-12B: D
980

Figure B11: Case 11 of AstroMMBench in CO981

subdomain.982

Correct responses: 4/25 models

Question: Which cosmographic model, as depicted
in the image, provides stronger evidence for an accel-
erating universe?
Option:

(A) Cosmographic 3rd order model
983

(B) Cosmographic 4th order model

(C) Both models equally

(D) Neither model

Answer: A

Ovis2-34B: A

ChatGPT-4o: A

Doubao-1.5-vision-pro: B

InternVL3-38B: B

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: B

Gemma3-12B: B
984

Figure B12: Case 12 of AstroMMBench in CO 985

subdomain. 986

B.5 Astrophysics of Galaxies (GA) 987

Correct responses: 23/25 models

Question: What is the primary effect of increasing
the volume filling factor of iron clusters inside dust
grains (ϕsp) on the distribution of dust grain sizes
within 400 au of the disk midplane?
Option:

(A) Decreased magnetic alignment of very large
grains (VLGs)

(B) Increased internal alignment of dust grains

(C) Enhanced Magnetic Alignment by Radiative
Torques (MRAT) alignment for micron-sized
grains

(D) Reduced polarization degree within the disk
scale

Answer: C

Ovis2-34B: C

ChatGPT-4o: C

Doubao-1.5-vision-pro: C

InternVL3-38B: C

Qwen2.5-VL-72B: C

LLaVA_Onevision_72B: C

Gemma3-12B: B
988

Figure B13: Case 13 of AstroMMBench in GA 989

subdomain. 990
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Correct responses: 15/25 models

Question: What is the primary reason for the signif-
icant residuals in the observed data fit shown in the
image?
Option:

(A) Insufficient data points

(B) Incorrect background model

(C) Fixed foreground parameters

(D) Instrumental error

Answer: C

Ovis2-34B: C

ChatGPT-4o: C

Doubao-1.5-vision-pro: C

InternVL3-38B: C

Qwen2.5-VL-72B: C

LLaVA_Onevision_72B: C

Gemma3-12B: B
991

Figure B14: Case 14 of AstroMMBench in GA992

subdomain.993

Correct responses: 1/25 models

Question: What is the primary purpose of the his-
togram in the image?
Option:

(A) To compare the scale length of the Milky Way
with other galaxies

(B) To determine the frequency of galaxies with
specific scale lengths

994

(C) To illustrate the distribution of galaxy types in
the sample

(D) To show the relationship between scale length
and galaxy mass

Answer: A

Ovis2-34B: B

ChatGPT-4o: B

Doubao-1.5-vision-pro: B

InternVL3-38B: B

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: B

Gemma3-12B: A
995

Figure B15: Case 15 of AstroMMBench in GA 996

subdomain. 997

B.6 High Energy Astrophysical Phenomena 998

(HE) 999

Correct responses: 22/25 models

Question: What is the primary reason for the asym-
metric radio emission patterns observed in the maps?
Option:

(A) Galaxy rotation

(B) Galaxy cluster merger

(C) Stellar winds

(D) Black hole activity

Answer: B

Ovis2-34B: B

ChatGPT-4o: B

Doubao-1.5-vision-pro: B

InternVL3-38B: B

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: B

Gemma3-12B: D
1000

Figure B16: Case 16 of AstroMMBench in HE 1001

subdomain. 1002
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Correct responses: 9/25 models

Question: What is the final orbital period of the post-
CE binary with a black hole (BH) companion after
the mass transfer (MT) phase?
Option:

(A) 0.41 d

(B) 1.98 d

(C) 0.53 d

(D) 3.87 d

Answer: D

Ovis2-34B: D

ChatGPT-4o: D

Doubao-1.5-vision-pro: D

InternVL3-38B: D

Qwen2.5-VL-72B: B

LLaVA_Onevision_72B: A

Gemma3-12B: B
1003

Figure B17: Case 17 of AstroMMBench in HE1004

subdomain.1005

Correct responses: 1/25 models

Question: What is the primary reason for the distinct
ring-like pattern observed in the middle panel of the
image?
Option:

(A) Refraction of radio waves through the ice
medium

(B) Reflection of radio waves off the ice surface

(C) Scattering of radio waves by ice crystals
1006

(D) Interference between in-air and in-ice radio
waves

Answer: A

Ovis2-34B: D

ChatGPT-4o: A

Doubao-1.5-vision-pro: D

InternVL3-38B: D

Qwen2.5-VL-72B: D

LLaVA_Onevision_72B: B

Gemma3-12B: D
1007

Figure B18: Case 18 of AstroMMBench in HE 1008

subdomain. 1009
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