
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUBTLE ERRORS MATTER: PREFERENCE LEARNING
VIA ERROR-INJECTED SELF-EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have exhibited strong mathematical reasoning
and computational prowess, tackling tasks ranging from basic arithmetic to ad-
vanced competition-level problems. However, frequently occurring subtle errors,
such as miscalculations or incorrect substitutions, limit the models’ full mathemat-
ical potential. Existing studies to improve mathematical ability typically involve
distilling reasoning skills from stronger LLMs or applying preference learning to
step-wise response pairs. Although these methods leverage samples of varying
granularity to mitigate reasoning errors, they overlook the frequently occurring
subtle errors. A major reason is that sampled preference pairs involve differences
unrelated to the errors, which may distract the model from focusing on subtle
errors. In this work, we propose a novel preference learning framework called
eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into
partial tokens of correct solutions to construct hard pairs for error mitigation. In
detail, RISE uses the model itself to edit a small number of tokens in the solution,
injecting designed subtle errors. Then, pairs composed of self-edited solutions
and their corresponding correct ones, along with pairs of correct and incorrect so-
lutions obtained through sampling, are used together for subtle error-aware DPO
training. Compared with other preference learning methods, RISE further refines
the training objective to focus on predefined errors and their tokens, without re-
quiring fine-grained sampling or preference annotation. Extensive experiments
validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct
yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated advanced logical reasoning and computational
capabilities, enabling them to tackle a diverse range of problems from elementary mathematics to
complex, competition-level questions (Yue et al., 2024a; Gou et al., 2024; Yu et al., 2024). Nev-
ertheless, frequently occurring subtle errors remain one of the primary obstacles preventing these
models from consistently realizing their full mathematical potential (Li et al., 2024). These errors,
such as miscalculations, incorrect substitutions, and omission of calculation terms, account for ap-
proximately 75% of the total errors as shown in Figure 3.

Many existing works have attempted to improve mathematical ability by distilling reasoning skills
from stronger LLMs using synthetic datasets (Shao et al., 2024; Yue et al., 2024a; Azerbayev et al.,
2024). While distilling helps the model acquire expanded reasoning patterns, it does not directly
enable it to reduce the occurrence of errors (Hong et al., 2024). Recently, a growing body of research
has shifted its focus toward preference optimization with fine-grained preference pairs to mitigate
mathematical errors (Lai et al., 2024; Chen et al., 2024; Setlur et al., 2024a). This method leverages
Direct Preference Optimization (DPO) to reduce the likelihood of generating the error step in a pair
of steps with the same context (Rafailov et al., 2023). However, learning with these fine-grained
preference pairs still struggles to focus on subtle errors, as the aforementioned pairs involve some
differences unrelated to the errors. Additionally, establishing the preference relationship within
fine-grained pairs requires extra LLM-based annotations or approximate estimations, which may
introduce bias (Xie et al., 2024; Lai et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Math QA

If Jenine can sharpen a pencil 5 times before it becomes unusable and
she needs to sharpen a pencil every 1.5 hours of use, how many more
pencils does she need to purchase in order to write for 105 hours,
considering she already has ten pencils and each new pencil costs $2?

Solution
Sampling

Self-edited Pairs

+

Subtle Error-aware
DPO training

Error-injected
Self-Editing

Step 1: Determine how long one pencil lasts for Jenine.

… then one pencil lasts her (5 \times 1.5 = 9) hours.

Step 2: Calculate how many hours one pencil can provide in total.
… ten pencils will last (10 \times 7.5 = 75) hours.

Step 3: Determine how many more hours Jenine needs to write.

… so she needs (105 + 75 = 180) more hours of pencil use.

Collect
Let's think step by step.

Step 1: Determine how long one pencil lasts for Jenine.

… then one pencil lasts her (5 \times 1.5 = 7.5) hours.

Step 2: Calculate how many hours ten pencils can provide in total.
… ten pencils will last (10 \times 7.5 = 75) hours.

Step 3: Determine how many more hours Jenine needs to write.

… so she needs (105 - 75 = 30) more hours of pencil use.
…

The answer is: 4

Original Model DPO-tuned Model

𝑦!" 𝑦!#

𝑦" 𝑦#

Full Solution Pairs

𝐾 solutions

Figure 1: Preference learning framework augmented by error-injected self-editing. Each mathemat-
ical problem is sent to the original model to sample K solutions, with correct and incorrect solutions
in rectangles with blue and red borders. For one correct solution, we inject errors into each step of
the solution and collect self-edited pairs. We also select an incorrect solution paired with the above
correct one as full-solution pairs. Both sampling and self-editing are performed by the same model.

In our work, we argue that, in addition to sampling preference pairs and annotating their relation-
ships, generating a correct solution and injecting errors into it can be an effective approach to con-
struct pairs that specifically target subtle errors. First, error injection can introduce errors into a small
number of tokens while preserving the overall structure of the solution. Such error-injected samples,
with limited differences from the correct solutions, can be regarded as hard negatives for preference
learning (Liu et al., 2024). Second, we can leverage the LLM itself to inject predefined errors using
appropriate prompts. Compared to randomly sampled pairs, pairs based on injected errors are more
controllable, allowing preference learning to focus on designed, targeted subtle errors.

Based on the above motivation, we propose a novel preference learning framework called eRrror-
Injected Self-Editing (RISE). The key idea is to prompt the LLM to inject errors into correct so-
lutions and construct hard pairs targeting predefined subtle errors for preference learning. To be
specific, we first apply an LLM to generate several multi-step solutions and construct a full-solution
pair composed of one correct solution and one incorrect solution. Then, we choose the correct one
and edit each step of the solution to inject subtle errors. The same model is used for error-injected
editing, as it may better recognize the tokens where it is most prone to making mistakes. We design
several types of subtle errors and modify a few tokens to introduce these errors. The edited steps
and the corresponding correct steps are constructed as self-edited pairs. Finally, we conduct subtle
error-aware DPO training on both self-edited pairs and full-solution pairs. Inspired by Pal et al.
(2024), a negative log-likelihood loss is introduced to stabilize the training, as the self-edited pairs
are highly similar, which can easily reduce the likelihood of the correct solutions.

We evaluate our framework on two LLM series: Qwen2 and Llama-3.1. Our method RISE-
QWEN2-7B achieves a 3.0% accuracy gain on GSM8K and 7.9% on MATH, and RISE-LLAMA-
3.1-8B achieves 3.9% and 2.7%, respectively. Detailed error analysis shows that RISE helps the
LLM further avoid predefined subtle errors. Moreover, our method successfully generalizes rea-
soning preferences derived from mathematical tasks to other reasoning domains, such as logical
reasoning and code generation.

2 METHOD

In this section, we introduce our RISE framework, which achieves hard negative preference pair
construction through error-injected self-editing and enhances the mathematical reasoning capability
of LLMs by subtle error-aware DPO training. As shown in Figure 1, our method starts with sampling
K multi-step solutions from the original model. One correct solution and one incorrect solution are
chosen as a full-solution pair based on the correctness of the final answer. Next, we use the same

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

REPLACE a numerical value or a series of related values. REPLACE a calculation symbol (e.g., +-*/, etc.).

SWAP two calculation terms in substruction or division.

14 times * 120 ounces/time = 1680 ounces

1660

1680 ounces - 360 ounces = 1320 ounces

+ 2040

DELETE an intermediate calculation terms.

Annual earnings from teaching: 20 * 35 * 50 = $35,000

delete

Remaining miles = (3 miles * 4 dogs) - 8
miles = 4 miles

-4

Error-injected Self-editing Prompt

Question:
{question}

Initial Answer:
{answer}

Current Step:
{step}

Replace a numerical value or a series of related values
in the current step to make a wrong calculation. Do not
state that errors have been made.

1,000

Figure 2: Error-injected self-editing prompt and some error injection examples. We display three
error-injected self-editing operations: “REPLACE”, “SWAP”, and “DELETE”.

model to edit each step of the correct one, injecting subtle errors into a small number of tokens
(Sec. 2.1). The edited steps and the correct steps are collected as self-edited pairs. Finally, the
combination of the self-edited pairs and full-solution pairs is employed for subtle error-aware DPO
training (Sec. 2.2).

We adopt an instruction-tuned model in our experiments, since it can be used to sample a solution
and self-edit it with appropriate prompts. Given a mathematical problem x ∈ Draw, we first prompt
the model M to sample a multi-step solution set {ŷ} following Lai et al. (2024). To ensure that
the sampled solution strictly follows an explicit Chain-of-Thought (CoT) structure, we prepend the
model’s generated solution with the prefix “Let’s think step by step. Step 1:”. This prefix ensures
that each step of the solution begins with a “Step” marker. We select the solution with the output
answer that matches the reference answer as the correct one for subsequent editing. The correct and
the other incorrect are used to construct a full-solution pair set D±

Full. The correct solution can be
denoted as ŷ+ =

⊕n
i=1 ŷ

+
i , where ŷ+i is the i-th step and n represents the total number of steps.

2.1 DATASET CONSTRUCTION VIA ERROR-INJECTED SELF-EDITING

To create hard preference pairs, we employ an editing approach to modify certain tokens in the
correct solution to introduce predefined errors. We focus on the error injection of each step in one
solution. Compared with previous step-wise preference learning (Lai et al., 2024), our approach
further refines the objective of preference learning by specifically targeting a few error tokens, en-
hancing the ability of LLMs to avoid subtle errors.

Error Types. As we aim to optimize the model to avoid subtle errors, the main types of errors we
concentrate on are as follows: (1) Numerical calculation errors; (2) Numerical or symbolic substitu-
tion errors; (3) Omission of calculation terms. These errors frequently occur in most solutions and
typically involve only a small amount of tokens. We also include two relatively less frequent errors:
(4) Errors in the calculation order and (5) Errors in the use of calculation symbols. We extract and
summarize these errors from the solutions generated by the models in our experiments.

Self-editing. We design appropriate prompts and utilize the model itself to edit the generated cor-
rect step ŷ+i . As most of the steps in the correct solutions are accurate (Lu et al., 2024b), we use all
the steps from the correct ones without applying any additional filtering. Since solutions to mathe-
matical problems are highly error-sensitive, any modification of numerical values, symbols, or other
mathematical elements disrupts the original correct procedure. Thus, even small language models
can be prompted to almost certainly inject errors. The error-injected step ŷ−i is generated using an
edit prompt shown on the left of Figure 2. This edit prompt contains the problem x, the concate-
nation of previous steps ŷ<i, the correct step ŷi, and the edit type e. We mainly use three types of
editing operations: “REPLACE”, “SWAP”, and “DELETE” (Mallinson et al., 2022). Some error
injection examples are shown on the right of Figure 2. For each step, only around ten tokens will
be modified. We collect the error-injected steps and the correct steps to construct a paired edited
set D±

0 = {(ŷ+i , ŷ
−
i)}. These edited pairs are then filtered through Levenshtein distance-based

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Preference Learning via Error-injected Self-editing
Input: Draw: mathematical problems; M : original model; E : edit prompt set; K: number of sampling
attempts; N : number of self-edited pairs;
Initialize the subtle error-aware DPO training dataset D±

M ← {}
for x ∈ Draw do

Sample K solutions {ŷ} ∼ PM (· | x).
Randomly select one correct solution ŷ+ and one incorrect solution ŷ−.
Define ŷ+ = ŷ+

1 ⊕ ŷ+
2 ⊕ · · · ⊕ ŷ+

n , where n denotes the number of steps in the solution.
Initialize self-edited pair set D±

Edit ← {}.
for i = 1 to n do

Randomly select an edit type e← E .
Edit the step using the same model ŷ−

i ∼ PM (· | e,x, ŷ+
<i, ŷ

+
i), where ŷ+

<i represents the concatena-
tion of steps before ŷ+

i .
D±

Edit←D
±
Edit ∪{(ŷ

+
i , ŷ−

i)} if LD(ŷ+
i , ŷ−

i) < α, where LD is the function to calculate edit distance.
end for
Randomly select N self-edited pairs {(ŷ+

j , ŷ−
j)}Nj=1 ← D±

Edit

D±
M ← D

±
M ∪ {(ŷ

+, ŷ−), (ŷ+
1 , ŷ−

1), . . . (ŷ+
N , ŷ−

N)}
end for
Optimize the subtle error-aware DPO loss in Equation 3 on D±

M with PM as the reference policy.

similarity as follows:

D±
Edit = {(ŷ+i , ŷ

−
i) | LD(ŷ+i , ŷ

−
i) < α, (ŷ+i , ŷ

−
i) ∈ D±

0 }, (1)

where LD represents the function to calculate Levenshtein distance and α denotes the filter thresh-
old. The filtered pairs D±

Edit are used for subsequent subtle error-aware DPO training.

2.2 SUBTLE ERROR-AWARE DPO TRAINING

Given all self-edited pairs and full-solution pairs, we apply DPO to optimize the model (Rafailov
et al., 2023). Specifically, we first randomly choose N pairs from all self-edited pairs for each
problem and combine them with the full-solution pair, which will be N + 1 pairs in total as the
training set. To effectively learn subtle errors in each step, we adopt the step-wise DPO loss (Lai
et al., 2024) for the self-edited pairs as it can focus on fine-grained preference learning, and general
DPO loss for the full-solution pairs. Two loss functions are defined as follows:

LDPO-Edit = −E(ŷ+
i ,ŷ−

i)∼D±
Edit
[log σ(β log

πθ(ŷ
+
i |x; ŷ

+
<i)

πM (ŷ+i |x; ŷ
+
<i)

− β log
πθ(ŷ

−
i |x; ŷ<i)

πM (ŷ−i |x; ŷ<i)
)].

LDPO-Full = −E(ŷ+,ŷ−)∼D±
Full
[log σ(β log

πθ(ŷ
+|x)

πM (ŷ+|x)
− β log

πθ(ŷ
−|x)

πM (ŷ−|x)
)],

(2)

where πθ is the policy model and πM is the reference model. To mitigate the risk of optimization
failure caused by the high similarity between paired samples (Pal et al., 2024), we additionally
introduce a negative log-likelihood loss for the correct samples. This loss can help prevent the
collapse of the probability of generating correct samples and is defined as LNLL. We present our
subtle error-aware DPO loss that contains the above two objectives as follows:

L = LDPO-Edit + LDPO-Full + λ1[r<0]LNLL,

r = log
πθ(ŷ

+
i |x; ŷ

+
<i)

πM (ŷ+i |x; ŷ
+
<i)

or log
πθ(ŷ

+|x)
πM (ŷ+|x)

(3)

where λ is the weight to control the balance of two objectives, r signals when to apply the NLL loss.
Inspired by Pal et al. (2024), we design indicator r to represent whether the generation probability
of the policy model is lower than that of the reference model. We outline the full algorithm of our
Preference Learning via Error-injected Self-editing in Algorithm 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Evaluation Datasets. We evaluate our framework on three in-domain datasets, GSM8k (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021) and AQuA (Ling et al., 2017), along with three out-
of-domain datasets, SVAMP (Patel et al., 2021), AIME24 (MAA, 2024), and Odyssey-MATH (Net-
mind.AI, 2024). These six datasets span a broad spectrum of mathematical problems, ranging from
basic arithmetic to advanced competition-level problems. The problems in these datasets, including
tabular, free-form, and multiple-choice formats, ensure a robust evaluation of the model’s mathe-
matical reasoning ability. The detail of all datasets is described in Table 6 in the Appendix A.

Baselines. Our framework is compared with several LLMs performing well in mathematical
reasoning. Two closed-source state-of-the-art LLMs: OpenAI’s GPT-4o (OpenAI, 2024) and
Anthropic’s Claude-3.5-Sonnet (Anthropic, 2024). Three open-sourced general instruction-tuned
LLMs: Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), Qwen2 series (Yang et al., 2024a), and Llama-
3.1 series (Meta AI, 2024). Five mathematically enhanced LLMs: DeepSeekMath-RL (Shao et al.,
2024), Llemma (Azerbayev et al., 2024), ToRA (Gou et al., 2024), MAmmoTH (Yue et al., 2024a),
and MathGenieLM (Lu et al., 2024a). Four additional LLMs under step-wise DPO optimization
are also included: Step-DPO series (Lai et al., 2024), SVPO (Chen et al., 2024), MCTS-DPO (Xie
et al., 2024), and SCDPO (Lu et al., 2024b). We display results with CoT prompts for most baseline
LLMs. ToRA and MAmmoTH are designed with built-in capabilities for tool usage, so we report
the best results with tools.

Training Details. We adopt mathematical problems used by Lai et al. (2024) for preference learn-
ing. The training dataset contains around 9K problems with corresponding correct step-by-step
solutions. We discard these solutions and use only the problems to construct our training set. The
problems are mainly from MetaMath (Yu et al., 2024) and AQuA Ling et al. (2017). Details are
presented in Table 7. We select two open-source LLM series, Qwen2 (Yang et al., 2024a) and
Llama-3.1 (Meta AI, 2024) as our base LLMs. We apply the instruction-tuned version of these
models to sample solutions and meanwhile edit each step of the solution. The number of sampling
attempts is set to 5, and the number of self-edited pairs is set to 1 for the Qwen2 series and 3 for the
Llama-3.1 series. Since some problems cannot yield correct and incorrect preference pairs within
a limited number of sampling attempts, we ultimately use only about 4.5K problems to construct
preference pair combinations for training. Implementation details are presented in the Appendix B.

3.2 MAIN RESULTS

We report the main results on different mathematical datasets shown in Table 1 and Table 2. The for-
mer is from commonly used mathematical datasets published earlier, consisting of three in-domain
and one out-of-domain datasets. The latter is from the recent competition-level datasets and both
datasets are out-of-domain. Overall, we can see that RISE outperforms the SOTA model at differ-
ent scales. These results highlight the potential of our framework to help the general LLM to be
a mathematical generalist. On several datasets, RISE-QWEN2-72B and RISE-LLAMA-3.1-70B
even outperform some closed-source LLMs.

Table 1 presents the results on the GSM8K, MATH, AQuA, and SVAMP datasets. Our framework
enables the LLM to achieve noticeable improvements in mathematical reasoning compared to the
corresponding backbone. Especially on MATH and AQuA, RISE-QWEN2-7B obtains 7.9% and
2.7% accuracy gain, and RISE-LLAMA-3.1-8B obtains 3.2% and 5.5%. RISE-QWEN2-7B out-
performs other popular mathematical LLMs on all four datasets. Additionally, RISE performs better
than the SOTA step-wise preference learning frameworks. Compared to Step-DPO, which shares
the same backbone LLM and requires GPT-4-based annotations, RISE obtains better results with-
out annotations. In detail, it achieves 4.1% higher accuracy on MATH, 6.7% higher on AQuA, and
2.9% higher on SVAMP. We scale our experiments on 70B/72B models and also observe around
1.0% accuracy gain on some evaluation datasets such as MATH and AQuA.

Table 2 displays the results for two complex, competition-level mathematical problems, AIME24
and Odyssey-MATH. We observe that both ToRA and MAmmoTH, even with 70B parameters,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model Size GSM8K MATH AQuA SVAMP†

Closed-source Models

GPT-4o - 96.0 78.1 82.2 94.3
Claude-3.5-Sonnet - 94.9 68.5 77.5 92.9

Open-source Models

Mistral-7B-Instruct-v0.3 7B 57.5 15.1 20.4 69.7
Qwen2-7B-Instruct 7B 85.4 52.2 66.5 89.3
Llama-3.1-8B-Instruct 8B 84.0 48.3 55.9 85.7
DeepSeekMath-RL 7B 87.7 52.7 59.0 88.4
Llemma 7B 36.4 18.0 - -
MAmmoTH 7B 53.6 31.5 44.5 67.7
ToRA 7B 68.8 40.1 23.6 68.2
MathGenieLM 7B 80.5 45.1 - 83.3
Qwen2-7B-Step-DPO 7B 88.5 55.8 63.0 88.7
SVPO 7B 81.7 59.5 - -
MCTS-DPO 7B 81.8 34.7 - -
SCDPO 7B 80.1 47.7 48.4 83.2

RISE-QWEN2-7B 7B 88.4
(+3.0)

59.9
(+7.9)

69.7
(+3.2)

91.6
(+2.3)

RISE-LLAMA-3.1-8B 8B 87.9
(+3.9)

51.0
(+2.7)

61.4
(+5.5)

87.5
(+1.8)

Qwen2-72B-Instruct 72B 93.1 68.8 78.3 93.1
Llama-3.1-70B-Instruct 70B 94.9 65.0 77.1 93.0
MAmmoTH 70B 76.9 41.8 65.0 82.4
ToRA 70B 84.3 49.7 41.3 82.7
MathGenieLM 70B 88.4 51.2 - 87.7
Qwen2-72B-Step-DPO 72B 94.0 70.8 77.5 93.5

RISE-QWEN2-72B 72B 94.0
(+0.9)

69.8
(+1.0)

79.1
(+0.8)

93.8
(+0.7)

RISE-LLAMA-3.1-70B 70B 95.1
(+0.2)

66.1
(+1.1)

77.7
(+0.6)

93.3
(+0.3)

Table 1: Comparison of results on different commonly used mathematical datasets. † represents
out-of-domain datasets.

fail to solve any of the problems in AIME24, highlighting the difficulty of these problems. Our
framework activates the mathematical potential of Qwen2-72B-Instruct and delivers 3.7% accuracy
gains on the Odyssey-MATH dataset. Since the problems in the AIME dataset are highly complex
and the model’s answering failure is not due to subtle errors, RISE is unable to further improve
accuracy. The failure of RISE-LLAMA-3.1-70B on Odyssey-MATH may be due to the fact that
Llama-3.1-70B-Instruct is already fine-tuned on diverse, complex mathematical datasets, with its ac-
curacy increasing from 36.4% in Llama-3.0 to 60.4% in Llama-3.1 (Netmind.AI, 2024). Preference
learning on our relatively simple datasets may harm its original reasoning performance. Overall,
the results on both in-domain and out-of-domain datasets demonstrate that our framework can help
general LLMs consistently improve their mathematical reasoning abilities by avoiding subtle errors.

3.3 ABLATION STUDY

We demonstrate the effectiveness of our framework through different training settings as detailed
below: (1) w/o self-edited pairs, which removes the supplemented edited pairs and trains the model
with full-solution pairs. (2) w/o full-solution pairs, which trains the model with the edited pairs
only. (3) w/o NLL loss, which removes the loss used for stabilizing training. Table 3 shows the
results of different settings.

From the table, we can observe that either self-edited pairs or full-solution pairs are effective for
preference learning to improve mathematical reasoning. Both types of pairs achieve similar results

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Size AIME24† Odyssey-MATH†

Closed-source Models

GPT-4o - 3/30 52.9
Claude-3.5-Sonnet - 4/30 48.0

Open-source Models

ToRA 70B 0/30 26.8
MAmmoTH 70B 0/30 15.7
Qwen2-72B-Instruct 72B 4/30 45.7
Llama-3.1-70B-Instruct 70B 7/30 60.4
Qwen2-72B-Step-DPO 72B 4/30 50.1

RISE-QWEN2-72B 72B 4/30
(+0/30)

49.4
(+3.7)

RISE-LLAMA-3.1-70B 70B 7/30
(+0/30)

58.9
(−1.5)

Table 2: Comparison of results on recent competition-level mathematical datasets. † represents out-
of-domain datasets.

Method GSM8K MATH

Qwen2-7B-Instruct 85.4 52.2

RISE-QWEN2-7B 88.4 59.9
- w/o self-edited pairs 88.3 58.2
- w/o full-solution pairs 88.0 58.1
- w/o NLL loss 88.2 59.4

Method GSM8K MATH

Llama-3.1-8B-Instruct 84.0 48.3

RISE-LLAMA-3.1-8B 87.9 51.0
- w/o self-edited pairs 86.8 49.9
- w/o full-solution pairs 86.6 50.3
- w/o NLL loss 87.4 50.7

Table 3: Ablation study of training settings.

on the GSM8K and MATH datasets. Moreover, the combination of these two types of pairs can
raise the accuracy to a new peak. Compared with standard DPO training (w/o self-edited pairs),
our framework outperforms by 1.8% on the MATH dataset with Qwen2-7B-Instruct; and by 1.1%
on GSM8K and 1.2% on MATH with Llama-3.1-8B-Instruct. Besides, the NLL loss helps improve
accuracy by about 0.3%.

3.4 SUBTLE ERROR ANALYSIS

To analyze the effect of our framework on specific error mitigation, we counted the number of errors
generated by different models on the MATH dataset. In detail, given the problem, the generated
solution, and the reference answer, we prompt GPT-4o to detect the first error in any solution and
output the error type in the final. To verify GPT-4o’s accuracy in detecting errors, we manually
selected 50 random samples and checked for consistency in the identified errors. 46 (92%) of the
samples were accurately detected with their error types, which is acceptable for conducting the com-
plete analysis. We display the number of different errors made by the Qwen2-7B series in Figure 3.
We can observe that numerical calculation errors account for approximately 60% of the total errors
and subtle errors we defined for 75%. Compared with the standard DPO, our framework additionally
reduces the number of predefined errors. Especially for numeric or symbolic substitution errors and
omission of calculation terms, RISE reduces the number of errors, whereas standard DPO does not
achieve this. In addition, other errors, mainly misunderstanding of problems or concepts, increase
due to preference learning, but RISE still performs slightly better than standard DPO.

3.5 IMPACT ON GENERAL REASONING CAPABILITIES

To thoroughly analyze changes in LLMs’ reasoning capabilities, we evaluate RISE-tuned models on
out-of-domain tasks such as logical reasoning and code generation. We select one logical reasoning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Numerica
l

Calculation Errors

Numeric o
r Symbolic

Substitu
tion Errors

Omissio
n of

Calculation Terms

Errors in
 the

Calculation Order

Errors in
 the Use of

Calculation Symbols Others
0

200

400

600

800

1000

Nu
m

be
r o

f E
rro

rs

Qwen2-7B-Instruct
DPO-Qwen2-7B
RISE-Qwen2-7B

Figure 3: Error analysis across three models: Qwen2-7B-Instruct, DPO-Qwen2-7B, RISE-QWEN2-
7B. We display the number of different types of errors when addressing the MATH dataset, where
“Others” represents errors that fall outside the scope of consideration.

Method Puzzle Cell MBPP Humaneval

Qwen2-7B

Instruct 8.1 21.5 42.2 43.9
DPO 8.1 20.8 42.0 45.1
RISE 8.4 23.2 42.4 47.5

Method Puzzle Cell MBPP Humaneval

Llama-3.1-8B

Instruct 12.1 13.5 52.0 60.3
DPO 12.5 8.8 52.4 65.2
RISE 12.8 12.0 53.2 67.6

Table 4: Evaluation results on different out-of-domain tasks. “Puzzle” and “Cell” are abbreviations
of Puzzle Accuracy and Cell Accuracy, which are metrics used in ZebraLogic benchmarks. “MBPP”
and “Humaneval” are two code generation benchmarks, and we show pass@1 accuracy for each one.

benchmark, ZebraLogic, and two code generation benchmarks, MBPP and HumanEval for analysis.
For ZebraLogic, we display Puzzle Accucary and Cell Accucary, and for MBPP and HumanEval, we
display pass@1 accuracy. The models optimized with mathematical datasets (i.e., RISE-Qwen2-7B
and RISE-Llama-3.1-8B) are used for evaluation. Table 4 presents the performance of mathemati-
cally RISE-tuned models on the two tasks mentioned above.

We can observe that, for the Qwen2-7B-Instruct and Llama-3.1-8B-Instruct models, RISE helps
achieve accuracy increases in logical reasoning and code generation even without training on in-
domain datasets. Moreover, RISE demonstrates superior performance compared to DPO, as DPO
struggles to generalize reasoning capabilities to challenging out-of-domain tasks. Specifically,
RISE-Qwen2-7B outperforms Qwen2-7B-Instruct in terms of Cell Accuracy and pass@1 accuracy
on HumanEval, with improvements of 2.8% and 3.6%, respectively. RISE-Llama-3.1-8B achieves
better pass@1 accuracy than Llama-3.1-8B-Instruct on MBPP and HumanEval, with improvements
of 1.2% and 7.3%, respectively.

3.6 EFFECT OF SELF-EDITED PAIRS

Self-edited pairs are essential for fine-grained preference learning, particularly in mitigating subtle
errors. To comprehensively explore the effect of self-edited pairs, we conduct experiments optimiz-
ing the model using different numbers of self-edited pairs (i.e., N in Sec. 2.2). Figure 4 shows
the results for N = 1, 2, 3, 4, and “All” self-edited pairs. For RISE-QWEN2-7B, the accuracies
on GSM8K and MATH both decrease with more self-edited pairs. For RISE-LLAMA-3.1-8B, the
accuracies reach a relative peak when using three self-edited pairs for each problem. This figure
indicates that using more self-edited pairs is not always the better option, considering both the accu-
racy and the training cost of using additional samples. Additionally, RISE-LLAMA-3.1-8B prefers
more self-edited pairs, which is consistent with the characteristics of Llama-3.1-8B-Instruct, as its
full solutions contain around three more steps than those of Qwen2-7B-Instruct. More step-wise
self-edited pairs help RISE-LLAMA-3.1-8B further avoid subtle errors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 All
Self-edited Pairs

85.0
85.5
86.0
86.5
87.0
87.5
88.0
88.5
89.0

Ac
cu

ra
cy

 (%
)

GSM8K

1 2 3 4 All
Self-edited Pairs

49.0
50.5
52.0
53.5
55.0
56.5
58.0
59.5
61.0

Ac
cu

ra
cy

 (%
)

MATH

RISE-Qwen2-7B RISE-Llama-3.1-8B

Figure 4: Effect of different numbers of self-edited pairs. The horizontal axis represents the number
of self-edited pairs added for each problem during training, where “All” indicates the use of all self-
edited pairs corresponding to a full solution.

5 10 25 50
Sampling Attempts

0
950

1900
2850
3800
4750
5700
6650
7600

Nu
m

be
r o

f P
ro

bl
em

s

5 10 25 50
Sampling Attempts

85.0
85.5
86.0
86.5
87.0
87.5
88.0
88.5
89.0

Ac
cu

ra
cy

 (%
)

GSM8K

5 10 25 50
Sampling Attempts

49.0
50.5
52.0
53.5
55.0
56.5
58.0
59.5
61.0

Ac
cu

ra
cy

 (%
)

MATH

RISE-Qwen2-7B RISE-Llama-3.1-8B

Figure 5: Effect of different numbers of sampling attempts. We sample multi-step solutions for a
total of around 9K problems. The left figure shows the number of problems involved in training
under different sampling attempts.

3.7 EFFECT OF SAMPLING ATTEMPTS

We further explore the effect of sampling attempts, which directly determine the number of prob-
lems involved in preference learning. As shown in Figure 5, as the number of sampling attempts
increases, the number of problems corresponding to paired correct and incorrect full solutions also
increases. Although more problems are involved in preference learning, the final results show that
pairs corresponding to a larger number of problems actually reduce learning performance. It may be
because more sampling attempts yield more samples of “extreme” problems. For these problems,
the LLM tends to consistently answer either correctly or incorrectly. Training the LLM with these
samples may not only be futile but could also lead to performance degradation. We observe this
phenomenon on both RISE-QWEN2-7B and RISE-LLAMA-3.1-8B.

3.8 EFFECT OF DIFFERENT ERROR-INJECTION COMBINATIONS

Predefined injected errors are essential for the effectiveness of our framework. We investigate the
impact of different combinations of injected errors on the model’s mathematical performance. Three
types of errors that occur most frequently in solutions generated by our method are selected for anal-
ysis. Since not all samples are applicable to these three types of errors, we focus on one primary
error type (i.e., “Dominate”), supplemented by a small number of other errors. For example, some
samples do not contain numerical values or calculation symbols, and thus cannot be injected with
calculation errors. The comparison results are shown in Table 5. We can observe that all these com-
binations contribute to preference learning and a random combination yields the best performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Combinations GSM8K MATH

Random 88.4 59.9
Calculation Errors Dominate 88.2 59.0
Substitution Errors Dominate 88.1 58.6
Omission of Calculation Terms Dominates 87.8 58.7

Table 5: Effect of different error injection combinations for RISE-QWEN2-7B. “Calculation Er-
rors” denotes numerical calculation errors, and “Substitution Errors” denote numeric or symbolic
substitution errors.

It indicates that samples with diverse predefined errors are more likely to help the LLM learn to
avoid subtle errors.

4 RELATED WORK

4.1 LLM FOR MATHEMATICAL REASONING

Large language models (LLMs) have shown remarkable proficiency in mathematical reasoning, ex-
celling in tasks ranging from basic arithmetic questions to complex mathematical Olympiad prob-
lems (Team et al., 2023; Jiang et al., 2024; Dubey et al., 2024; OpenAI, 2024; Huang et al., 2024).
Furthermore, various approaches have been investigated to enhance the mathematical reasoning ca-
pabilities of LLMs. Methods such as Llemma Azerbayev et al. (2024), DeepseekMath Shao et al.
(2024), and Qwen2.5-Math Yang et al. (2024b) have focused on collecting vast amounts of math-
related data for continued pretraining. Recent efforts have also focused on designing more effi-
cient fine-tuning datasets to stimulate the mathematical capabilities of base models, such as MAm-
moTH (Yue et al., 2024b), MetaMath (Yu et al., 2024) and DART-Math (Tong et al., 2024). Addi-
tionally, some works attempted to enhance the LLM’s mathematical ability by incorporating external
tools, particularly through the integration of code interpreter (Gou et al., 2024; Wang et al., 2024a;
Liao et al., 2024).

4.2 STEP-WISE PREFERENCE LEARNING

In addition to pre-training and instruction fine-tuning, step-wise preference learning—particularly
methods related to Proximal Policy Optimization (PPO)—has been widely explored to enhance the
mathematical capabilities of LLMs (Lightman et al., 2024; Luo et al., 2023; Shao et al., 2024).
However, the final performance is highly dependent on the quality of the process-supervised reward
model (PRM) (Uesato et al., 2022; Wang et al., 2024b), and the training process of PPO or its
variants is notably complex. Recently, Direct Preference Optimization (DPO) (Rafailov et al., 2023)
simplified this process by directly leveraging pair-wise data for preference learning. Many works
extend DPO, enabling it to perform step-wise preference learning to improve the model’s multi-step
mathematical problem-solving ability (Lu et al., 2024b; Xie et al., 2024; Setlur et al., 2024b; Lai
et al., 2024). To the best of our knowledge, we are the first to tackle subtle errors in mathematical
reasoning via step-wise preference learning especially on error tokens.

5 CONCLUSION

In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing
(RISE), which constructs hard pairs through self-editing to mitigate predefined subtle errors. Com-
pared to other fine-grained, step-wise preference learning methods, our framework further refines
the training objective to target subtle error tokens, without requiring LLM-based or estimation-based
preference annotations. To avoid optimization failure caused by overly similar preference pairs, we
additionally introduce a negative log-likelihood loss, controlled by the generation probability of the
correct samples. The effectiveness of our framework is demonstrated in two LLM series: Qwen2
and Llama-3.1. Results across multiple mathematical datasets demonstrate that our method can
unlock the model’s potential in mathematical reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. Claude 3.5 Sonnet. https://anthropic.com/news/claude-3-5-sonnet,
2024. URL https://anthropic.com/news/claude-3-5-sonnet.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=4WnqRR915j.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning. CoRR, abs/2406.10858, 2024. doi: 10.48550/ARXIV.2406.10858.
URL https://doi.org/10.48550/arXiv.2406.10858.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
Ep0TtjVoap.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Jiwoo Hong, Noah Lee, and James Thorne. ORPO: monolithic preference optimization with-
out reference model. CoRR, abs/2403.07691, 2024. doi: 10.48550/ARXIV.2403.07691. URL
https://doi.org/10.48550/arXiv.2403.07691.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyu-
manshan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline cogni-
tive reasoning for superintelligent ai. arXiv preprint arXiv:2406.12753, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.
doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.
06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. CoRR, abs/2406.18629, 2024.
doi: 10.48550/ARXIV.2406.18629. URL https://doi.org/10.48550/arXiv.2406.
18629.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. CoRR,
abs/2403.04706, 2024. doi: 10.48550/ARXIV.2403.04706. URL https://doi.org/10.
48550/arXiv.2403.04706.

11

https://anthropic.com/news/claude-3-5-sonnet
https://anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://doi.org/10.48550/arXiv.2406.10858
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/arXiv.2403.07691
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2406.18629
https://doi.org/10.48550/arXiv.2406.18629
https://doi.org/10.48550/arXiv.2403.04706
https://doi.org/10.48550/arXiv.2403.04706

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and Kai Fan. MARIO: math reasoning with code
interpreter output - A reproducible pipeline. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thai-
land and virtual meeting, August 11-16, 2024, pp. 905–924. Association for Computational Lin-
guistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.53. URL https://doi.org/10.
18653/v1/2024.findings-acl.53.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gen-
eration: Learning to solve and explain algebraic word problems. In Regina Barzilay and Min-
Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp.
158–167. Association for Computational Linguistics, 2017. doi: 10.18653/V1/P17-1015. URL
https://doi.org/10.18653/v1/P17-1015.

Xiao Liu, Xixuan Song, Yuxiao Dong, and Jie Tang. Extensive self-contrast enables feedback-free
language model alignment. CoRR, abs/2404.00604, 2024. doi: 10.48550/ARXIV.2404.00604.
URL https://doi.org/10.48550/arXiv.2404.00604.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhanc-
ing mathematical reasoning of llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 2732–2747. As-
sociation for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.151. URL
https://doi.org/10.18653/v1/2024.acl-long.151.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Step-controlled DPO: leveraging stepwise error for enhanced mathematical rea-
soning. CoRR, abs/2407.00782, 2024b. doi: 10.48550/ARXIV.2407.00782. URL https:
//doi.org/10.48550/arXiv.2407.00782.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

MAA. American invitational mathematics examination, 2024. URL https:
//artofproblemsolving.com/wiki/index.php/American_Invitational_
Mathematics_Examination.

Jonathan Mallinson, Jakub Adámek, Eric Malmi, and Aliaksei Severyn. Edit5: Semi-autoregressive
text editing with T5 warm-start. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pp. 2126–2138. Association for Computational Linguis-
tics, 2022. doi: 10.18653/V1/2022.FINDINGS-EMNLP.156. URL https://doi.org/10.
18653/v1/2022.findings-emnlp.156.

Meta AI. Meta Llama 3-1. https://ai.meta.com/blog/meta-llama-3-1/, 2024. URL
https://ai.meta.com/blog/meta-llama-3-1/.

Netmind.AI. Odyssey-math. https://github.com/protagolabs/odyssey-math/
tree/main, 2024. URL https://github.com/protagolabs/odyssey-math/
tree/main.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024. URL
https://openai.com/index/hello-gpt-4o/.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin
White. Smaug: Fixing failure modes of preference optimisation with dpo-positive. CoRR,
abs/2402.13228, 2024. doi: 10.48550/ARXIV.2402.13228. URL https://doi.org/10.
48550/arXiv.2402.13228.

12

https://doi.org/10.18653/v1/2024.findings-acl.53
https://doi.org/10.18653/v1/2024.findings-acl.53
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.48550/arXiv.2404.00604
https://doi.org/10.18653/v1/2024.acl-long.151
https://doi.org/10.48550/arXiv.2407.00782
https://doi.org/10.48550/arXiv.2407.00782
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://doi.org/10.18653/v1/2022.findings-emnlp.156
https://doi.org/10.18653/v1/2022.findings-emnlp.156
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.48550/arXiv.2402.13228
https://doi.org/10.48550/arXiv.2402.13228

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pp. 2080–2094. Association for Computational Linguistics, 2021. doi:
10.18653/V1/2021.NAACL-MAIN.168. URL https://doi.org/10.18653/v1/2021.
naacl-main.168.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RL
on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. CoRR,
abs/2406.14532, 2024a. doi: 10.48550/ARXIV.2406.14532. URL https://doi.org/10.
48550/arXiv.2406.14532.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024b.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. arXiv preprint arXiv:2407.13690, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. In The Twelfth International Conference on Learning Represen-
tations, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 9426–9439. Association for Computational Lin-
guistics, 2024b. doi: 10.18653/V1/2024.ACL-LONG.510. URL https://doi.org/10.
18653/v1/2024.acl-long.510.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
CoRR, abs/2405.00451, 2024. doi: 10.48550/ARXIV.2405.00451. URL https://doi.org/
10.48550/arXiv.2405.00451.

Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. Sra-mcts: Self-driven reasoning augmentation with
monte carlo tree search for code generation, 2024. URL https://arxiv.org/abs/2411.
11053.

13

https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2406.14532
https://doi.org/10.48550/arXiv.2406.14532
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.48550/arXiv.2405.00451
https://doi.org/10.48550/arXiv.2405.00451
https://arxiv.org/abs/2411.11053
https://arxiv.org/abs/2411.11053

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. CoRR, abs/2407.10671, 2024a.
doi: 10.48550/ARXIV.2407.10671. URL https://doi.org/10.48550/arXiv.2407.
10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=N8N0hgNDRt.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024a. URL https://openreview.net/forum?id=
yLClGs770I.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024b.

14

https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2407.10671
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EVALUATION SETTINGS

We apply all the baseline models and our RISE series model to generate solutions by greedy de-
coding (i.e., the temperature is set to 0). The vLLM framework with the 0.5.4 version is used to
speed up decoding. For the GSM8K and MATH datasets, we use the evaluation script provided
by the DeepSeek-Math project 1. For other datasets, we use the evaluation agent provided by the
odyssey-math 2.

Detailed evaluation dataset information is shown in Table 6.

Eval Datasets # Samples In-Domain? Answer Form
GSM8K (Cobbe et al., 2021) 1319 YES Open-formed
MATH (Hendrycks et al., 2021) 5000 YES Open-formed
AQuA (Ling et al., 2017) 254 YES Multi-choice
SVAMP (Patel et al., 2021) 1000 NO Open-formed
AIME24 (MAA, 2024) 30 NO Open-formed
odyssey-math (Netmind.AI, 2024) 387 NO Open-formed

Table 6: Evaluation Datasets.

B IMPLEMENTATION DETAILS

We train 7B/8B models for 4 epochs with a global batch size of 96. The parameter β is set to 0.4.
For 70B/72B models, we train for 2 epochs with a global batch size of 64. The parameter β is set to
0.5, and we use DeepSpeed ZeRO3 with CPU offload to reduce computational memory usage. The
learning rate for all model training is set to 5e-7, and the parameter λ is set to 0.05. We use Pytorch
with the 2.4.0 version, Transformers with the 4.44.2 version, and deepspeed with the 0.14.4 version.

Detailed training dataset information is shown in Table 7.

Eval Datasets # Samples
GSM8K (Cobbe et al., 2021) 1568
MATH (Hendrycks et al., 2021) 129
MetaMath (Yu et al., 2024)
- rewriting from GSM8K 1387
- rewriting from MATH 953
AQuA (Ling et al., 2017) 4851

Total 8888

Table 7: Training Datasets.

C VALIDATION ON MORE OPEN-SOURCE MODELS

To further validate the effectiveness of the RISE framework, we implement additional experiments
on Ministral-8B-Instruct and Qwen2.5-7B-Instruct, as these models are the most recent and well-
regarded for their performance in various reasoning tasks. For Ministral-8B-Instruct, we sample 5
times and collect 7743 pairs of chosen and rejected samples, including a total of 3872 problems. For
Qwen2.5-7B-Instruct, we sample 10 times and collect 5496 pairs of chosen and rejected samples,
including a total of 2748 problems. The results are shown in the Table 8.

1https://github.com/deepseek-ai/DeepSeek-Math
2https://github.com/protagolabs/odyssey-math

15

https://github.com/deepseek-ai/DeepSeek-Math
https://github.com/protagolabs/odyssey-math

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Method GSM8K MATH

Ministral-8B-Instruct 86.35 53.62
DPO-Ministral-8B 86.95 54.18
RISE-MINISTRAL-8B 88.62 54.86

Method GSM8K MATH

Qwen2.5-7B-Instruct 91.81 74.36
DPO-Qwen2.5-7B 92.49 75.00
RISE-QWEN2.5-7B 92.95 75.06

Table 8: Results on Ministral-8B-Instruct and Qwen2.5-8B-Instruct.

D VALIDATION ON ANOTHER TRAINING DATASET

To evaluate our framework on a broader set of datasets, we have implemented additional experiments
using other mathematical datasets, including problems from the original training sets of the GSM8K
Cobbe et al. (2021) and MATH Hendrycks et al. (2021) datasets. We collect 15K problems like
DART-math Tong et al. (2024) to conduct RISE training. The results on Qwen2-7B-Instruct indicate
that our RISE framework achieves better performance than the general DPO method.

Method GSM8K MATH

Qwen2-7B-Instruct 85.4 52.2
DPO-Qwen2-7B 87.7 57.5
RISE-QWEN2-7B 88.6 58.5

Table 9: Results on another training dataset.

E EFFECT OF HYPERPARAMETER

We compare different values of the hyperparameter α. The results of RISE-QWEN2-7B are shown
in Table 10.

We can observe that an excessively large α may reduce the model’s generalization ability, which in
turn results in lower accuracy on GSM8K and MATH.

α 0.01 0.05 0.1 0.2

GSM8K 88.5 88.4 87.9 87.7
MATH 59.3 59.9 59.6 59.3

Table 10: Results of RISE-Qwen2-7B with different hyperparameter α.

F EFFECT OF PROMPT DESIGN

To reduce reliance on manual prompt engineering and demonstrate the flexibility of prompts used
in RISE, we use the self-instruct method to generate a variety of prompt templates (10 templates for
each type of error) and conduct self-editing with a random choice of the generated prompts. Some
examples of prompt templates are shown in Table 11 and Table 12.

With a random selection of prompt templates, our RISE can still help improve mathematical reason-
ing capability and outperform the general DPO method, as shown in Table 13. Compared with the
results of the manual prompts used in our paper, the results of self-instruct prompts show a better
accuracy on GSM8K but a slightly worse accuracy on MATH.

Besides, to further illustrate that our approach has the potential to be generalized to more diverse
errors, we implement another experiment with a more universal prompt template. The prompt tem-
plate is “Edit the current step to introduce an error. Do not state that errors have been made.” This
prompt doesn’t indicate any error types and leverages the LLM itself to randomly introduce an er-
ror, which can capture broader spectrum error types. More importantly, this prompt can introduce
arbitrary errors and even unexposed errors. The results on Qwen2-7B-Instruct with these self-edited
samples are shown in Table 14.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

REPLACE a numerical value
(1) Change a number in this step so that the calculation becomes incorrect, without indi-
cating that a mistake has been introduced. (2) Alter the numerical value in this stage to
produce an incorrect result, but avoid mentioning the error.
(3) Modify a number in the current calculation to lead to a wrong outcome, without re-
vealing the inaccuracy.
(4) Adjust one of the values in this step to ensure the calculation is wrong, without pointing
out the error.
(5) Replace a number in the calculation with an incorrect one, but do not mention that
anything is wrong.
(6) Change a figure at this point to cause an erroneous result, without disclosing that
you’ve made a mistake.
(7) Introduce a wrong number in this calculation step, but refrain from stating that an error
has occurred.
(8) Modify a numerical value here so that the result is incorrect, without drawing attention
to the mistake.
(9) Adjust the number in this step to generate an inaccurate result, without acknowledging
the error.
(10) Introduce an incorrect value in this calculation, but avoid mentioning that the outcome
is wrong.

Table 11: Prompts generated by the self-instruct method.

SWAP two calculation terms
(1) Switch the positions of two terms in the current calculation step to lead to an incorrect
result, without explicitly acknowledging the mistake.
(2) Rearrange two terms in the present step in a way that causes an error, but avoid men-
tioning that a mistake has occurred.
(3) Alter the order of two terms in the current calculation to produce an incorrect outcome,
without pointing out the error.
(4) Exchange the positions of two terms in this step to intentionally create a miscalculation,
and don’t indicate that anything is wrong.
(5) Adjust the placement of two terms in the ongoing calculation to introduce an error,
without drawing attention to the fact.
(6) Swap the order of two terms in the current process to result in a wrong answer, but
refrain from noting the mistake.
(7) Change the arrangement of two terms in the current step in a way that leads to an
incorrect result, without signaling any error.
(8) Interchange two terms in the current calculation step to produce a mistake, while keep-
ing the error implicit.
(9) Shift the positions of two terms in the calculation to create a wrong result, without
stating that something is incorrect.
(10) Modify the sequence of two terms in this step, causing an incorrect calculation, but
don’t mention the flaw.

Table 12: Prompts generated by the self-instruct method.

G APPLICATION TO CODE GENERATION

To validate the effectiveness of our RISE framework on other reasoning tasks, we apply RISE to
code generation. Following Xu et al. (2024), we adopt the LeetCode dataset3 to conduct training.
The dataset includes around 2K leetcode tasks in the medium and hard levels. For the Qwen2-7B-
Instruct model, we sample 50 times and obtain 873 pairs of chosen and rejected full-solution samples
for training. Then, we edit each chosen sample with the prompt “Edit the current step to introduce

3https://huggingface.co/datasets/greengerong/leetcode

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Method GSM8K MATH

RISE-prompt-manual 88.4 59.9
RISE-prompt-self-instruct 88.6 59.3

Table 13: Results with the self-instruct prompts.

Method GSM8K MATH

RISE-prompt-manual 88.4 59.9
RISE-prompt-arbitrary 88.3 59.7

Table 14: Results with the arbitrary prompts.

an error. Do not state that errors have been made.” This prompt can introduce arbitrary errors and
can be easily adapted to other domains, such as code generation. Finally, we collect 1473 samples
for RISE training. The results are shown in Table 15. We can observe that our RISE performs better
than the general DPO method, achieving a 0.8% improvement on the MBPP test set and a 1.3%
improvement on the Humaneval test set.

Method MBPP Humaneval

Qwen2-7B-Instruct 42.2 43.9
DPO-Qwen2-7B 43.4 46.3
RISE-Qwen2-7B 44.2 47.6

Table 15: Results on code generation.

H CASE STUDY

H.1 CASE STUDY ON QWEN2-7B SERIES MODELS

Table 16 and Table 17 shows a generated solution by RISE-QWEN2-7B and Qwen2-7B-Instruct.
We can observe that the solution by Qwen2-7B-Instruct makes a mistake with calculation symbols,
where the symbols in the red box should all be converted. RISE-QWEN2-7B successfully avoid
this subtle error.

H.2 CASE STUDY ON LLAMA-3.1-8B SERIES MODELS

Table 18 and Table 19 shows a generated solution by RISE-LLAMA-3.1-8B and Llama-3.1-8B-
Instruct. We can observe that the solution by Llama-3.1-8B-Instruct makes a mistake with nu-
meraical substitution, where the numerator should be

√
2 rather than 2

√
2. RISE-LLAMA-3.1-8B

successfully avoid this subtle error.

I EDIT PROMPT SET

We show prompts for the aforementioned five types of subtle errors in Table 20, Table 21, Table 22,
Table 23, and Table 24.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Problem 1:
What is the maximum value of 4(x+ 7)(2− x), over all real numbers x?
Reference Answer:
81

RISE-QWEN2-7B:
To find the maximum value of the function f(x) = 4(x+ 7)(2− x), we can start by expanding the
function and then completing the square or using calculus to find the critical points.
Step 1: Expand the function

f(x) = 4(x+ 7)(2− x)

= 4(2x− x2 + 14− 7x)

= 4(−x2 − 5x+ 14)

= −4x2 − 20x+ 56

Step 2: Find the critical points To find the maximum value, we can use calculus. We’ll find the
derivative of f(x) and set it to zero to find critical points.

f ′(x) =
d

dx
(−4x2 − 20x+ 56)

= −8x− 20

Setting the derivative equal to zero to find critical points:

−8x− 20 = 0

8x = −20

x = −20

8
= −5

2
Step 3: Determine the nature of the critical point To determine if this point is a maximum, we
can use the second derivative test or simply recognize that since the coefficient of x2 in the original
function is negative, the parabola opens downwards, indicating that the critical point is indeed a
maximum.
Step 4: Find the maximum value Substitute x = − 5

2
back into the original function to find the

maximum value:

f

(
−5

2

)
= −4

(
−5

2

)2

− 20

(
−5

2

)
+ 56

= −4
(
25

4

)
+ 50 + 56

= −25 + 50 + 56

= 81

Therefore, the maximum value of 4(x+ 7)(2− x) over all real numbers x is 81 .

Table 16: An example of the generated solution by RISE-QWEN2-7B.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Problem 1:
What is the maximum value of 4(x+ 7)(2− x), over all real numbers x?
Reference Answer:
81

Qwen2-7B-Instruct:
To find the maximum value of the function f(x) = 4(x+ 7)(2− x), we can start by expanding the
function and then completing the square or using calculus to find the critical points.
First, let’s expand the function:

f(x) = 4(x+ 7)(2− x) = 4(x2 + 7x− 2x− 14) = 4(x2 + 5x− 14)

f(x) = 4x2 + 20x− 56

Now, to find the maximum value, we can use calculus. We’ll find the derivative of f(x) with respect
to x and set it equal to zero to find the critical points.

f ′(x) =
d

dx
(4x2 + 20x− 56) = 8x+ 20

Setting the derivative equal to zero to find the critical point:

8x+ 20 = 0

8x = −20

x = −20

8
= −5

2
Now, we need to determine if this critical point corresponds to a maximum. We can do this by
checking the second derivative or by considering the nature of the parabola (since the coefficient of
x2 is positive, the parabola opens upwards, indicating that the critical point is a minimum, but we
are looking for the maximum value of the function).
However, since we are looking for the maximum value of the function, and we’ve found that the
function is a parabola opening upwards, the maximum value will occur at the endpoints of the
domain or at the vertex of the parabola. Since the function is defined for all real numbers, we need
to consider the behavior of the function as x approaches positive and negative infinity.
Given the function is a parabola opening upwards, the maximum value will occur at the vertex.
We’ve already found the x-coordinate of the vertex to be x = − 5

2
. To find the maximum value, we

substitute this x-value back into the original function:

f

(
−5

2

)
= 4

(
−5

2

)2

+ 20

(
−5

2

)
− 56

= 4

(
25

4

)
− 50− 56

= 25− 50− 56

= −81
Therefore, the maximum value of 4(x+ 7)(2− x) over all real numbers x is −81.
The answer is −81 .

Table 17: An example of the generated solution by the general LLM Qwen2-7B-Instruct. The subtle
error is put in a red box.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Problem 2:

If we write
√
2+ 1√

2
+
√
3+ 1√

3
in the form

a
√
2 + b

√
3

c
such that a, b, and c are positive integers

and c is as small as possible, then what is a+ b+ c?
Reference Answer:
23

RISE-LLAMA-3.1-8B:
To solve this problem, we need to rationalize the given expression and then simplify it.
Step 1: Rationalize the expression

√
2 + 1√

2
+
√
3 + 1√

3
.

To rationalize 1√
2

and 1√
3

, we multiply each fraction by its conjugate over itself to eliminate the
square root in the denominator.
1√
2
= 1√

2
×

√
2√
2
=

√
2
2

1√
3
= 1√

3
×

√
3√
3
=

√
3
3

Step 2: Substitute the rationalized fractions back into the original expression.√
2 +

√
2

2
+
√
3 +

√
3

3
Step 3: Combine like terms.√
2 +

√
2

2
= 2

√
2+

√
2

2
= 3

√
2

2√
3 +

√
3

3
= 3

√
3+

√
3

3
= 4

√
3

3

So the expression becomes 3
√
2

2
+ 4

√
3

3
.

Step 4: To combine these two fractions into one fraction with a common denominator, we need to
find the least common multiple (LCM) of 2 and 3, which is 6.
3
√
2

2
= 3

√
2×3

2×3
= 9

√
2

6
4
√
3

3
= 4

√
3×2

3×2
= 8

√
3

6

Step 5: Combine the two fractions.
9
√
2

6
+ 8

√
3

6
= 9

√
2+8

√
3

6

Now we have the expression in the desired form
a
√
2 + b

√
3

c
.

Step 6: Identify the values of a, b, and c.
a = 9, b = 8, and c = 6.
Step 7: Calculate the sum of a, b, and c.
a+ b+ c = 9 + 8 + 6 = 23
The final answer is: 23

Table 18: An example of the generated solution by RISE-LLAMA-3.1-8B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Problem 2:

If we write
√
2+ 1√

2
+
√
3+ 1√

3
in the form

a
√
2 + b

√
3

c
such that a, b, and c are positive integers

and c is as small as possible, then what is a+ b+ c?
Reference Answer:
23

Llama-3.1-8B-Instruct:
To simplify the given expression, we can start by rationalizing the denominators of the fractions.√
2 + 1√

2
+
√
3 + 1√

3

First, we rationalize the denominators of the fractions by multiplying each fraction by the conjugate
of its denominator over itself.√
2 + 1√

2
+
√
3 + 1√

3
=
√
2 +

√
2

2
+
√
3 +

√
3

3

Now, we can combine like terms.
√
2 +

√
2

2
+
√
3 +

√
3
3

= 4
√
2

2
+

2
√
2

2
+ 3

√
3

3
+

√
3

3

Combine the like terms.
4
√
2

2
+ 2

√
2

2
+ 3

√
3

3
+

√
3
3

= 6
√

2
2

+ 4
√
3

3
Simplify the fractions.
6
√
2

2
+ 4

√
3

3
= 3
√
2 + 4

√
3

3

To get a common denominator, we multiply the first term by 3
3

.
3
√
2 + 4

√
3

3
= 9

√
2

3
+ 4

√
3

3
Now we can combine the fractions.
9
√
2

3
+ 4

√
3

3
= 9

√
2+4

√
3

3

Now we have the expression in the desired form
a
√
2 + b

√
3

c
, where a = 9, b = 4, and c = 3.

Therefore, a+ b+ c = 9 + 4 + 3 = 16.
The final answer is: 16

Table 19: An example of the generated solution by the general LLM Llama-3.1-8B-Instruct. The
subtle error is put in a red box.

Prompt for Numerical Calculation Errors:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a numerical value or a series of related values in the current step to make a wrong calculation.
Do not state that errors have been made.

Table 20: The prompt for injecting Numerical Calculation Errors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompt for Numeric or Symbolic Substitution Errors:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a value or symbol in the current step to make a wrong substitution. Do not state that errors have
been made.

Table 21: The prompt for injecting Numeric or Symbolic Substitution Errors

Prompt for Omission of Calculation Terms:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Delete a calculation term in the current step to make a wrong calculation. Do not state that errors
have been made.

Table 22: The prompt for injecting Omission of Calculation Terms.

Prompt for Errors in the Calculation Order:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Swap two calculation terms in the current step to make a wrong calculation. Do not state that errors
have been made.

Table 23: The prompt for injecting Errors in the Calculation Order.

Prompt for Errors in the Use of Calculation Symbols:

Question:
{question}

Initial Answer:
{answer}

Current Step:
{text}

Edit a calculation symbol (e.g., +-*/, etc.) in the current step to make a wrong calculation.

Table 24: The prompt for injecting Errors in the Use of Calculation Symbols.

23

	Introduction
	Method
	Dataset Construction via Error-injected Self-editing
	Subtle Error-aware DPO Training

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Subtle Error Analysis
	Impact on General Reasoning Capabilities
	Effect of Self-edited Pairs
	Effect of Sampling Attempts
	Effect of Different Error-Injection Combinations

	Related Work
	LLM for Mathematical Reasoning
	Step-wise Preference Learning

	Conclusion
	Evaluation Settings
	Implementation Details
	Validation on More Open-Source Models
	Validation on Another Training Dataset
	Effect of Hyperparameter
	Effect of Prompt Design
	Application to Code Generation
	Case Study
	Case Study on Qwen2-7B series models
	Case Study on Llama-3.1-8B series models

	Edit Prompt Set

