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Abstract

Medical Vision-Language Models (Med-VLMs) have demonstrated remarkable per-
formance across diverse medical imaging tasks by leveraging large-scale image-text pre-
training. However, their confidence calibration is largely unexplored, and so remains
a significant challenge. As such, miscalibrated predictions can lead to overconfident
errors, undermining clinical trust and decision-making reliability. To address this, we
introduce CalibPrompt, the first framework to calibrate Med-VLMs during prompt
tuning. CalibPrompt optimizes a small set of learnable prompts with carefully de-
signed calibration objectives under scarce labeled data regime. First, we study a reg-
ularizer that attempts to align the smoothed accuracy with the predicted model con-
fidences. Second, we introduce an angular separation loss to maximize textual fea-
ture proximity toward improving the reliability in confidence estimates of multimodal
Med-VLMs. Extensive experiments on four publicly available Med-VLMs and five di-
verse medical imaging datasets reveal that CalibPrompt consistently improves cali-
bration without drastically affecting clean accuracy. Our code is available at https:
//github.com/iabhlshekbasu/CalibPrompt.

1 Introduction

Medical Vision-Language models (Med-VLMs) have emerged as powerful tools for med-
ical image analysis, leveraging large-scale image-text pretraining to enable zero-shot clas-
sification across diverse medical imaging tasks [1, 19, 36]. These models align medical
images with textual descriptions, facilitating interpretation and diagnosis without requiring
task-specific fine-tuning. However, despite their strong performance in recognizing medical
concepts, Med-VLMs often suffer from poor calibration, where their confidence scores fail
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to reliably indicate actual correctness [8, 24], which is particularly concerning in medical
imaging, as miscalibrated model can lead to misdiagnoses and undermine clinical trust [16].

Model calibration techniques generally fall into two categories: post-hoc calibration and
training-time calibration. Post-hoc methods, such as Platt scaling [26] and temperature scal-
ing [4], adjust confidence scores after training via a transformation function. While compu-
tationally inexpensive, they have two key limitations: (1) reliance on a small validation set,
which may not reflect real-world medical distributions [22, 31], and (2) failure to improve
the model’s internal representations, leaving calibration issues unresolved at the decision-
making level [25]. In contrast, training-time calibration jointly optimizes accuracy and cali-
bration, leading to more robust and generalizable confidence estimates [14]. By integrating
calibration objectives into training, it ensures well-calibrated Med-VLM predictions across
medical tasks, enhancing clinical trust. However, fine-tuning large-scale Med-VLMs with
calibration objectives is often impractical due to high computational cost and requirement of
massive labeled medical datasets.

Meanwhile, prompt tuning has emerged as an efficient alternative to full-model fine-
tuning for adapting Med-VLMs to downstream tasks with limited data [37]. Unlike conven-
tional fine-tuning, which updates the entire model, prompt tuning modifies only a small set
of learnable parameters, significantly reducing computational costs while preserving gener-
alization [5, 10]. This efficiency is particularly valuable in medical imaging, where labeled
data is scarce and full fine-tuning is often impractical. Despite its strong performance in data-
limited settings, prompt tuning primarily optimizes classification and does not inherently im-
prove model calibration. This raises a key question: Can the efficiency of prompt tuning, with
its low data requirements and minimal parameter updates, be leveraged to enhance calibra-
tion without compromising adaptability? Addressing this is crucial to ensure Med-VLMs
produce both accurate and well-calibrated predictions for reliable clinical decision-making.

In this paper, we introduce CalibPrompt, the first approach to calibrate Medical
Vision-Language Models during prompt learning. Specifically, we make following technical
contributions.

— We investigate a simple regularizer that aligns softened accuracy with model confi-
dences to effectively calibrate under class ambiguities inherent in medical imaging.

— We propose a novel angular separation loss that promotes angular gap between textual
features during prompt tuning, specifically tailored to the multimodal architecture of
Med-VLMs.

— We demonstrate the effectiveness of CalibPrompt through comprehensive experi-
ments across four publicly available Med-VLMs and five downstream datasets span-
ning different imaging modalities, achieving superior calibration performance while
tuning only 0.1% of the model parameters.

2 Related Work

Medical Vision-Language Models (Med-VLMs). Med-VLMs inspired by Contrastive
Language-Image Pretraining (CLIP), have advanced medical imaging by aligning image-text
pairs across modalities such as X-ray, histopathology, and retinal imaging. These models en-
able zero-shot and few-shot classification, making them particularly valuable in data-scarce
medical applications [1, 19, 36]. To adapt Med-VLMs efficiently, prompt learning (PL) has
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emerged as a lightweight alternative to full-model fine-tuning [5, 10, 37]. By introducing
learnable prompt tokens without modifying the backbone, PL enhances task performance
while maintaining computational efficiency, making it well-suited for medical imaging with
limited data. In this work, we investigate whether PL can simultaneously improve calibra-
tion and task adaptation, positioning it as a parameter-efficient alternative to computationally
intensive calibration methods for accurate and trustworthy predictions in medical Al.
Confidence Calibration. Confidence calibration assesses how well a model’s predicted
confidence aligns with its actual accuracy, a critical requirement in high-stakes domains
like medical imaging. Well-calibrated models yield reliable uncertainty estimates, crucial
for clinical decision-making, as overconfident misclassifications can lead to severe conse-
quences [4, 16]. Post-hoc calibration methods, such as Temperature Scaling, adjust model
logits via a learned temperature parameter optimized on a held-out validation set [4]. While
computationally efficient, these methods heavily depend on labeled datasets closely match-
ing the target distribution [22, 31].To overcome such limitations, train-time calibration meth-
ods incorporate calibration objectives directly into model training, typically through auxil-
iary loss functions alongside primary task-specific objectives, resulting in more robust and
generalizable confidence estimates [7, 14, 25]. For instance, MACSO [13] aligns predicted
confidences with softened target distributions derived from the model’s internal knowledge,
utilizing correlation-based distance measures. Other effective train-time approaches in-
clude Margin-based Label Smoothing (MbLS) [18], which imposes inequality constraints
on logit distances to prevent overly confident predictions, and Logit Normalization (Log-
itNorm) [33], which enforces a constant norm on logits during training to mitigate over-
confidence. Moreover, Murugesan et al. [20] identified expanded logit distributions in
prompt-tuned models as a significant calibration issue, introducing Zero-Shot Normaliza-
tion to restore alignment with pretrained distributions. Test-time calibration methods like
C-TPT [34] addresses calibration via test-time prompt tuning by optimizing text feature dis-
persion using prototypes. Concurrent with our research, O-TPT [29] addresses calibration
in vision-language models (VLMs) through test-time prompt tuning, enforcing strict orthog-
onality constraints on textual features without relying on labeled data. Similarly, Wang et
al. [31] proposed DAC, which adjusts softmax temperatures based on semantic distances
between embeddings, primarily targeting novel-class calibration in domains with numerous
classes. However, medical imaging datasets typically involve fewer classes, limiting DAC’s
applicability in specialized medical contexts. Their findings underscore that post-hoc cali-
bration methods alone cannot fully recover the pretrained calibration behaviour of VLMs. In
contrast, we introduce a novel prompt-based calibration framework that operates effectively
in few-shot scenarios by jointly optimizing regularization objectives in both probability and
feature spaces. Unlike O-TPT, our method encourages (rather than strictly enforces) an-
gular separation, providing greater flexibility to capture nuanced class relationships within
specialized medical imaging domains.

3 Method

Our goal is to calibrate Med-VLMs in data-limited settings to ensure that their confidence
scores accurately reflect prediction correctness. In medical imaging, miscalibrated models
can lead to overconfident errors with serious clinical implications. To this end, we introduce
a new approach CalibPrompt under prompt-learning setup which is built on two novel
regularizers. The first regularizer matches the softened accuracy with predicted confidences,
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while the second is an angular separation loss that explicitly maximizes the proximity be-
tween textual features. Below, we first describe zero-shot inference with Med-VLMs, then
explain the prompt learning basics, and finally introduce our calibration-aware prompt tuning
approach CalibPrompt.

3.1 Preliminaries:

Zero-Shot Inference for Med-VLMs: Med-VLMs learn a joint representation of images
and text through contrastive pretraining, enabling zero-shot classification. These models con-
sist of an image encoder Eiyg : 7 — R4 and a text encoder E : 7 — R4, where Z and T~ de-
note the image and text spaces, respectively. Given an input image I € Z C R¥*W*C the im-
age encoder extracts a d-dimensional feature vector v = Eine (I). Similarly, the text encoder
maps a textual prompt t(y) € 7 associated with class label y € ) into a text feature vector

u = E(t(y)). During zero-shot inference, class labels {y,...,ygx} are converted into text
prompts using a predefined template, such as t(y;) = “A H&E image of [CLASSy;1”,
and are processed by the text encoder to obtain {uj,...,ugx}, where u; = Eq(t(y;)). For

a test image I, the similarity between the image and text features is computed as s; =
sim(v;,u;), where v; = Eing(I;). The final classification probabilities are obtained using
exp(Tsi)
The predicted label is then given by §, = argmax,, P(y[I;). The corresponding confidence
is given by p; = maxycy P(y[I;). While this zero-shot framework enables flexible classifi-
cation, Med-VLMs often produce overconfident predictions as shown in Table 1. A naive
solution is to fine-tune Med-VLMs with explicit calibration objectives (i.e. train-time auxil-
iary losses); however, this is computationally expensive and requires extensive labeled data.
Thus, an efficient alternative is needed to enhance calibration without full model retraining.
Prompt Learning: Prompt learning (PL) has emerged as an efficient alternative, enabling
adaptation to new tasks without modifying the model backbone. Instead of updating the
entire network, PL optimizes a small set of learnable prompt tokens, making it particularly
useful for data-scarce medical applications. When a text prompt t(y;) € 7 is passed to the
text encoder, it is tokenized into a sequence of word embeddings. Typically, a class-specific
text prompt is represented as [w]; [W]z - -+ [CLASS y;], where each [*] denotes a word embed-
ding. In PL, all fixed embeddings (except for the class token) are replaced with M learnable
embeddings, transforming the prompt into p;; pi2 - - Pimr [CLASS y;], where each prompt em-
bedding p has the same dimensionality as [w]. Let P = p;,, where i € [1,K] and m € [1,M],
represent the set of all learnable prompts. The output text feature vector, incorporating these

learned prompts, is denoted as w;(P), and the modified zero-shot classifier is fp.

Limitation and Motivation: While prompt learning effectively adapts Med-VLMs to down-
stream tasks with limited data, our empirical analysis reveals a critical limitation for Med-
VLMs: it increases calibration error despite improving classification accuracy. We observe
that prompt-tuned models consistently exhibit high Expected Calibration Error [21], indi-
cating a mismatch between confidence scores and actual correctness. To understand this be-
havior, we analyze the geometric properties of learned textual prompts and find that prompt
tuning significantly increases intra-class cosine similarity, causing class representations to
become highly aligned (see Fig. 1 left). While this enhances classification separability, it
also amplifies confidence scores, leading to overconfident predictions and calibration error,
with approximately 22% of misclassifications occurring at high confidence levels of 0.9-1.0
(see Fig.1 middle). Further, our results reveal a strong correlation between high cosine sim-

a softmax function as P(y;|I;) = , where 7 is the softmax temperature parameter.
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Figure 1: Analysis of Prompt Learning Effects on Model Calibration. Left: Cross entropy
(CE) shows higher text feature similarity between classes than CE MDCA. Middle: Cross
entropy histogram demonstrating overconfident misclassifications with higher confidence
levels. Right: Greater feature similarity (CE, CE MDCA) directly correlates with increased
calibration error compared to regularized approaches (LS, FL MDCA).

ilarity and increased miscalibration (see Fig. 1 right), underscoring the need for explicit text
feature space regularization.

3.2 CalibPrompt: Calibration-Aware Prompt Learning

We introduce CalibPrompt as shown in Fig. 2, a new approach to improve confidence
calibration in zero-shot classifiers based on Med-VLMs. Motivated by our observations,
CalibPrompt incorporates learnable prompts into the text encoder and optimizes them with
our proposed calibration-aware auxiliary losses to enforce appropriate confidence calibration
while keeping the model backbone frozen. Specifically, given a zero-shot classifier f based
on a pre-trained Med-VLM (Ejnage; Ecext) and a few labeled samples {(I,, y,l)}ﬁ:’=1 from a
downstream dataset D, where I, € Z and y, € ), CalibPrompt optimizes the learnable
prompts P to jointly minimize classification loss and calibration error:

1 N
P =argmin g 3 | e (fp () yn) + A Laain (2 () )| M

n=1

where Lcg is the cross-entropy loss, Lcap is our overall calibration objective, and A bal-
ances accuracy and calibration objectives. The prompts are updated via backpropagation
while keeping the Med-VLM frozen, preserving its pre-trained knowledge while optimizing
for calibrated predictions. To address miscalibration, we introduce two complementary ob-
jectives: conforming softened accuracy with predicted confidences (Lsyac) and the Angular
Separation Loss (£as), forming our calibration objective Leaip = & Lsmac + BLAs-

Smoothed Accuracy and Confidence Matching (SMAC): Medical image classification of-
ten involves inherent class ambiguities, where diagnostic categories exhibit overlapping vi-
sual features. Traditional hard-label-based calibration methods [14] enforce overly rigid
decision boundaries, leading to miscalibrated overconfidence. To address this, we propose
aligning predicted confidences with smoothed empirical class frequencies in a class-wise
manner, termed SMAC. This provides a nuanced training signal that captures inherent ambi-
guities in medical imaging. Let p, = fp(I,) denote the predicted probability distribution for
image I, across K classes, and let y, € {1,2,...,K} be the ground truth label. The SMAC loss
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Figure 2: Overview of CalibPrompt. Learnable prompts are optimized using classifi-
cation and calibration losses—SMAC and AS—while keeping the image and text encoders
frozen. The SMAC loss aligns confidence with smoothed accuracy, while AS improves fea-
ture separation in the text embedding space.

is formulated as:

Ly by o ( )
Lsmac = Ec:Zl | N;Pn (I—a)fet —— | @
vg. predicted smoothed class
*onfidence frequency
where f. = LYN Ty, = ], and & € [0, 1) controls smoothing intensity. Using smoothed

frequencies for conﬁdence estimation, SMAC allows relaxed matching between predicted
and empirical class distributions, thus reducing the likelihood of overconfident predictions
in ambiguous scenarios.

Angular Separation (AS) Loss : Building on our observation that prompt tuning increases
text embedding similarity (see Fig. 1), we address a key challenge in medical image clas-
sification where high inter-class feature similarity leads to overconfident predictions and
degraded calibration. We propose an Angular Separation Loss for the textual embeddings,
which discourages excessive similarity between class embeddings by minimizing their aver-
age pairwise cosine similarity. This ensures well-separated textual feature representations,
improving confidence calibration while preserving classification accuracy. Mathematically,
let Z € RX*D be the text feature matrix, where each row z; represents the feature embed-
ding of class i in a D-dimensional space. We compute the cosine similarity matrix between
all pairs of feature vectors as S = ZZ! where S;; measures the cosine similarity between
class embeddings z; and z;. To focus only on inter-class relationships, we mask the diagonal
elements (self-similarities) as Sofr.diag = S — diag(S). The Angular Separation Loss is then
defined as the mean similarity across all class pairs:
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Table 1: Zero-shot accuracy (%), confidence (%), and ECE (%) of Med-VLMs on X-ray
and histopathology datasets. Final column shows over/underconfidence. Prompts used are
shown above rows.

Dataset Model Accuracy (%) 1 Confidence (%) ECE (%) | Calibration
Hard Prompt: A chest X-ray image of [class] patient
COVID BioMedCLIP 84.37 95.0 10.70 Overconfident
MedCLIP 78.77 50.0 28.67 Underconfident
RSNA1S BioMedCLIP 49.71 79.0 29.49 Overconfident
MedCLIP 47.60 34.0 14.05 Underconfident
Hard Prompt: An H&E image of [class]
Kather PLIP 57.80 74.0 16.32 Overconfident
QuiltNet 60.39 58.0 4.20 Underconfident
Hard Prompt: An H&E image patch of [class] skin tissue
PanNuke PLIP 56.42 76.0 19.33 Overconfident
QuiltNet 55.59 79.0 23.89 Overconfident
Hard Prompt:
DigestPath PLIP 80.53 74.0 6.14 Underconfident
g QuiltNet 53.39 73.0 19.90 Overconfident

By minimizing this loss, class embeddings become more distinct, reducing confidence over-
estimation and improving calibration. While SMAC loss refines probability-space confidence
calibration, £g explicitly regularizes the text embedding space, ensuring both feature sepa-
rability and confidence reliability.

4 Experiments

Datasets, baselines and implementation details: We hypothesize that the full fine-tuning
approach can lead to overfitting in large networks when training data is limited, resulting in
suboptimal feature representations. We evaluate our method with two regularizers on four
Med-VLMs: PLIP [9], QuiltNet [11], MedCLIP [32], and BioMedCLIP [35], using five
downstream datasets: COVIDX [28], RSNA18 [30], KatherColon [12], PanNuke [3], and
DigestPath [2]. All experiments are conducted on an NVIDIA RTX A6000 GPU with 48GB
memory. Our baselines include cross-entropy (CE), focal loss (FL) (given in supplementary),
and label smoothing (LS), along with their combinations with established calibration regular-
ization techniques such as DCA [17], MMCE [15] , MDCA [6], ZS-Norm[20], Penalty[20],
MDLS [18], and LogitNorm [33]. We evaluated these against our proposed methods SMAC
and SMAC with AS across both full model fine-tuning and prompt learning approaches. We
used an 8-shot setting (8 images per class) for both variations, we used a learning rate of
2 x 107 for full model fine-tuning, while for prompt learning we used a learning rate of
0.002. Detailed hyperparameters are discussed in the supplementary.

Performance of the Med-VLMs is measured using accuracy (ACC). Similarly, for cali-
bration, Expectation Calibration Error [21] (ECE), Adaptive Calibration Error [23] (ACE),
Maximum Calibration Error [21] (MCE), and Expectation Calibration Error - Kernel Density
Estimates[27] ECEXPE,
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Table 2: Comparison of proposed regularizers (SMAC, SMAC+AS) with baseline methods
using Cross Entropy (CE), and Label Smoothing (LS). Accuracy (ACC, %) and Expected
Calibration Error (ECE, %) are shown for PLIP and QuiltNet on histopathology datasets
(Kather, PanNuke, DigestPath). Subscripts FT and PL denote Few-shot Fine-Tuning and
Prompt Learning. Best results are in bold, second-best underlined.

Model — PLIP QuiltNet Average
Dataset — Kather PanNuke DigestPath Kather PanNuke DigestPath All
Loss | ACC 1 ECE | ACC 1 ECE | ACC 1 ECE | Acc 1 ECE | ACC 1 ECE | ACC 1 ECE | ACC 1 ECE |

Cross Entropy-based Losses

Cross Entropy Losspr 81.17 8.46 60.08 15.79 82.68 5.50 79.19 17.20 72.80 7.67 7593 4.62 7531 9.87
Cross Entropy Lossp;,  83.91 592 66.70 17.82 82.87 9.50 87.97 249 69.82 19.70 81.59 11.27 78.81 11.12

CE + DCApr 82.63 820 59.37 17.57 83.76 5.53 80.11 17.90 51.19 13.07 31.49 33.14 64.76 15.90
CE + DCAp;, 85.74 3.60 67.94 1148 7471 1391 88.16 1.50 74.47 429 8424 171 7921 6.08

CE + MMCEFrr 81.16 846 60.15 15.68 82.86 5.52 79.07 17.06 73.05 7.26 80.50 7.60 76.13 10.26
CE + MMCEp,, 83.52 3.07 67.05 12.16 78.81 9.68 90.97 2.11 68.08 17.95 85.13 4.49 7893 8.24
CE + MDCAfr 81.14 841 5990 16.08 82.54 548 79.14 17.17 7280 7.67 31.07 32.53 67.77 14.56
CE + MDCAp;, 8391 579 70.67 9.69 8892 4.08 89.99 1.61 6929 1346 84.89 6.55 81.28 6.86
MbLSp; 84.39 357 66.70 17.82 8276 9.53 84.76 3.48 6554 23.05 82.58 10.90 77.79 11.39
LogitNormp;, 86.52 5.12 57.10 31.72 84.80 9.04 88.22 3.42 7291 13.88 87.17 526 79.45 1141
ZS-Normpy, 85.63 3.07 71.52 17.22 8284 7.31 9191 0.87 69.55 19.18 84.78 6.37 81.04 9.00
Penaltyp;, 86.48 390 7049 3.11 69.61 2.40 89.29 12.28 59.88 3.41 79.23 17.53 75.83 7.11

CE + SMACr1 81.39 852 6437 920 8294 575 79.75 17.85 7278 5.87 80.96 8.64 77.03 9.31

CE + SMACp; 84.11 542 70.67 9.69 8892 4.08 89.99 1.57 69.29 13.46 84.89 6.55 81.31 6.80

CE + (SMAC + AS);r 81.45 855 64.16 9.56 83.04 5.78 7838 13.13 7291 6.02 81.26 881 76.87 8.64
CE + (SMAC +AS)p;,. 84.65 5.05 6581 930 89.75 247 89.53 282 69.02 1651 86.52 6.03 80.88 7.03

Label Smoothing-based Losses

Label Smoothingr7  80.64 9.32 59.83 15.66 8224 5.81 77.99 17.34 7273 773 76.58 7.11 75.00 10.50
Label Smoothingp; ~ 85.28 2.23 67.85 16.01 80.87 5.50 89.43 326 67.55 1693 76.69 7.03 77.95 849

LS + MDCAFr 80.72 9.44 60.24 1492 8255 5.88 78.04 17.36 72.73 7.73 7745 1238 7529 11.29
LS + MDCAp; 83.58 1.06 68.93 939 8329 349 91.53 437 7532 391 88.05 0.82 81.78 3.84
LS + SMACyr 8091 947 65.10 6.13 83.15 6.10 79.48 17.83 7220 5.29 76.88 6.25 7629 8.51
LS + SMACp;, 83.59 130 5949 238 8548 3.11 90.57 0.89 69.64 2.58 88.05 0.82 7947 1.85

LS + (SMAC +AS)rr 8095 9.48 64.67 6.78 83.06 6.04 77.98 1299 72.09 5.15 76.68 6.12 7591 7.76
LS + (SMAC +AS)p;, 85.08 3.11 58.68 219 8630 3.08 87.52 3.58 7193 247 8552 0.77 79.17 2.53

4.1 Results

As shown in Table 1, Med-VLMs demonstrate encouraging zero-shot capability on down-
stream medical tasks, confirming their potential utility in real-world clinical pipelines. How-
ever, these models consistently suffer from severe calibration errors, often assigning high
confidence to incorrect predictions. This miscalibration is particularly concerning in the
medical domain, where overconfident false predictions can compromise trust and safety.
Table 2 provides a detailed comparison, showing that our method yield substantially bet-
ter calibration while maintaining competitive or improved classification accuracy. In par-
ticular, LS-based methods achieve an average ECE of only 1.85%, an improvement over
the 8.49% baseline. Importantly, the accuracy remains stable or slightly better across most
evaluation settings, confirming that calibration-aware objectives do not trade off predictive
performance. Similarly, Table 3 demonstrates that our regularizer attains state-of-the-art
(SOTA) or second-best calibration across both BioMedCLIP and MedCLIP on two indepen-
dent datasets. These results highlight the generalizability of our approach across different
medical VLM architectures and data distributions. Finally, Table 4 reports results across
multiple calibration metrics (ECE, MCE, Brier score), showing consistent improvements for
both PLIP and BioMedCLIP. The improvements are not restricted to one metric but hold
across the board, which underlines the robustness of our method.
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Table 3: Comparison of our proposed calibration regularizers (SMAC, SMAC+AS) with base-
line methods using Cross Entropy (CE), and Label Smoothing (LS). Results show Accuracy
(ACC, %) and Expected Calibration Error (ECE, %) for BioMedCLIP and MedCLIP on
COVID and RSNA datasets. Best results are in bold, second-best are underlined.

Model — BioMedCLIP MedCLIP Average
Dataset — COVID RSNA COVID RSNA All
Loss | ACC 1 ECE | ACC 1 ECE | ACC 1 ECE | ACC 1 ECE | ACC 1 ECE |

Cross Entropy-based Losses
Cross Entropy Lossp;, 80.10 6.61 6298 7.02 77.61 27.51 50.68 17.21 67.84 14.59

CE + DCAp, 59.79 3.75 5171 5.79 7826 28.15 50.66 17.20 60.11 13.72
CE + MMCEp,, 81.24 538 6340 11.72 77.59 2749 50.64 17.17 68.22 15.44
CE + MDCAp,, 78.39 113 62.12 8.63 77.61 27.51 50.69 17.22 6720 13.62
MbLSp, 80.10 6.61 62.22 697 77.61 27.51 50.68 17.21 67.65 14.58
LogitNormpy, 72.45 1439 46.23 3037 77.82 27.72 5090 17.42 61.85 2248
ZS-Normpy, 79.85 4.16 6293 8.09 77.62 27.52 50.80 17.32 67.80 14.27
Penaltypr, 77.85 9.35 50.54 240 77.55 27.45 50.69 1722 64.16 14.11
CE + SMACp;, 7839 113 6190 844 77.61 27.51 50.69 17.22 67.15 13.58

CE + (SMAC + AS)p;, 74.88 4.04 58.75 4.23 77.58 27.48 50.68 17.21 6547 13.24
Label Smoothing-based Losses

Label Smoothingp;,  78.64 12.65 62.13 1693 77.61 27.51 50.63 17.16 67.25 18.56
LS + MDCAp,, 74.77 1333 63.13 18.89 77.51 2741 50.63 17.16 66.51 19.20
LS + SMACp,, 78.29 9.83 63.67 15.82 77.51 27.41 50.63 17.16 67.53 17.56

LS + (SMAC + AS)p;, 74.84 4.69 59.51 574 77.51 2741 50.61 17.14 65.62 13.75

4.2 Ablations

Number of Few-shots: Figure 3 illustrates the effect of varying the number of shots per
class. As expected, increasing the number of training examples consistently improves accu-
racy (ACC) while also reducing calibration error (ECE). This suggests that additional super-
vision not only strengthens discriminative ability but also stabilizes confidence estimation.
Context Length: Figure 3 also evaluates the influence of prompt token length. Our approach
achieves optimal performance at 16 tokens, balancing expressivity and stability. Beyond this
point, increasing the token count introduces instability and variance in both ACC and ECE.
Med-VLMs for Application-Specific Tasks: We further examine the integration of our
calibration-aware design with application-specific objectives. In particular, adding Angular
Loss to PromptSmooth [10] yields measurable improvements in calibration while maintain-
ing high accuracy. Specifically, PromptSmooth (few-shot + zero-shot) achieves 76.6% ACC
with 15.54% ECE, while the addition of Angular Loss slightly decreases ACC to 76.2% but
significantly reduces ECE to 13.62%. This reduction in calibration error, despite marginal
accuracy changes, demonstrates that reliability can be substantially improved without com-
promising predictive utility.

5 Conclusion
We introduced CalibPrompt, a calibration-aware prompt tuning framework for Med-

VLMs that improves confidence reliability while keeping the backbone frozen, making it
efficient and deployment-friendly. By combining SMCA loss for probability-space cali-
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Table 4: Average calibration results of PLIP (PanNuke, DigestPath) and BioMedCLIP
(COVID, RSNA) using ECE, ACE, MCE, and ECEKXPE | Bold and underline denote best
and second-best scores, respectively.

Model — PLIP | BioMed CLIP
Loss | ECE | ACE | MCE | KDE ||ECE | ACE | MCE | KDE |

Cross Entropy-based Losses
Cross Entropy Lossp;, 13.66 13.66 8.53 13.25| 6.82 6.78 2.65 6.54

CE + DCAp,, 1270 1290 7.40 1276 | 477 7.03 226 4.43
CE + MMCEp,, 1092 11.06 633 10.77 | 8.55 855 3.57 849
CE + MDCAp,, 6.80 688 409 6.60 | 488 487 208 5.10
MbLSp;, 13.68 13.68 853 13.26| 6.79 6.77 265 6.56
LogitNormp;, 20.38 20.38 14.46 19.73 |22.38 22.38 1047 22.18
ZS-Normpy, 12.27 1227 799 1182 6.13 6.11 211 591
Penaltypy, 276 3.05 116 327 | 588 6.06 226 6.08
CE + SMACp;, 6.80 6.88 4.09 6.60 | 479 478 2.09 5.02

CE + (SMAC +AS)p;, 5.89 577 290 582 | 414 428 170 4.60

Label Smoothing-based Losses
Label Smoothingp;,  10.76 10.76 6.32 10.71 | 1479 1479 7.08 14.64
LS + MDCAp;, 644 643 287 637 [16.09 16.09 9.19 1587
LS + SMACp,, 275 405 190 2.09 |12.82 12.82 549 12.69
LS + (SMAC +AS)p;, 2.64 351 173 225 | 522 5.14 215 527

ACC vs Number of Shots ECE vs Number of Shots ACC vs Context Tokens. ECE vs Context Tokens
35 9 3

£
J Tl d
:
.
751
10
.
7041 5 h

— —————"

. . ol
a 2 a 2

16 16 3 2 64 246 10 16 2
Number of Shots Number of Shots Context Tokens. Context Tokens

—@- Cross-Entropy + SMAC —A— Focal Loss + SMAC —@- Label Smoothing + SMAC
-l Cross-Entropy + SMAC + AS ~ —@— Focal Loss + SMAC + AS Label Smoothing + SMAC + AS

Figure 3: Comparative analysis of accuracy (ACC) and calibration error (ECE) for different
loss functions across varying few-shot counts and context token lengths.

bration with our proposed Angular Separation (AS) loss for feature regularization,
CalibPrompt mitigates overconfidence and enhances uncertainty estimation, yielding
consistently lower calibration errors without sacrificing accuracy across multiple Med-VLMs
and datasets. Extensive experiments and ablations confirm the complementary benefits of
few-shot supervision and prompt design choices, while broader results highlight that cali-
bration should be treated as an integral part of training rather than a post-hoc fix. In the
future, we envision extending CalibPrompt beyond classification to more challenging
tasks such as medical report generation, cross-modal retrieval, and multimodal reasoning,
thereby advancing the development of calibration-aware Med-VLMs that are both reliable
and clinically actionable.
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