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Abstract

Large language models (LLMs) have demon-001
strated impressive reasoning capabilities, par-002
ticularly in textual mathematical problem-003
solving. However, existing open-source im-004
age instruction fine-tuning datasets, contain-005
ing limited question-answer pairs per image,006
do not fully exploit visual information to en-007
hance the multimodal mathematical reasoning008
capabilities of Multimodal LLMs (MLLMs).009
To bridge this gap, we address the lack of010
high-quality, diverse multimodal mathematical011
datasets by collecting 40K high-quality images012
with question-answer pairs from 24 existing013
datasets and synthesizing 320K new pairs, cre-014
ating the MathV360K dataset, which enhances015
both the breadth and depth of multimodal016
mathematical questions. We introduce Math-017
LLaVA 1, a LLaVA-1.5-based model fine-tuned018
with MathV360K. This novel approach signifi-019
cantly improves the multimodal mathematical020
reasoning capabilities of LLaVA-1.5, achiev-021
ing a 19-point increase and comparable per-022
formance to GPT-4V on MathVista’s minitest023
split. Furthermore, Math-LLaVA demonstrates024
enhanced generalizability, showing substantial025
improvements on the MMMU benchmark. Our026
research highlights the importance of dataset027
diversity and synthesis in advancing MLLMs’028
mathematical reasoning abilities.029

1 Introduction030

Motivation. Large language models (LLMs) ex-031

hibit impressive reasoning capabilities, drawing sig-032

nificant research interest in mathematical problem-033

solving in textual form (Wei et al., 2022; Wang034

et al., 2023; Bin et al., 2023; Luo et al., 2023; Yue035

et al., 2023b; Gou et al., 2023; Zhou et al., 2023).036

However, the task of multimodal mathematical rea-037

soning (Lu et al., 2023) requires models to interpret038

diverse images and apply advanced reasoning skills.039

1We will make our data and model publicly available.

While open-source multimodal large language mod- 040

els (MLLMs) like LLaVA (Liu et al., 2023) and 041

Mini-GPT4 (Zhu et al., 2023) perform well on vi- 042

sual question answering tasks (Guo et al., 2023), 043

they fall short of proprietary MLLMs (OpenAI; 044

Google) in solving complex mathematical prob- 045

lems involving visual content. 046

Two common approaches to enhance MLLMs’ 047

mathematical reasoning skills are prompt meth- 048

ods and fine-tuning methods. Prompt methods (Lu 049

et al., 2023; Wang et al., 2024b) leverage MLLMs’ 050

latent abilities through carefully designed prompts, 051

while fine-tuning methods (Wang et al., 2024a; Hu 052

et al., 2023a; Zheng et al., 2023) adjust model pa- 053

rameters using reasoning data collected from real- 054

world or synthetic data from advanced LLMs (e.g., 055

GPT-4). However, existing open-source image in- 056

struction fine-tuning datasets (Lu et al., 2022b; Li 057

et al., 2023; Lu et al., 2022a), which contain limited 058

question-answer pairs per image, do not fully ex- 059

ploit visual information to enhance MLLMs’ mul- 060

timodal mathematical reasoning capabilities. 061

Research Objectives. To bridge this gap, we 062

select 40K high-quality images with corresponding 063

question-answer pairs from 24 pre-existing datasets. 064

These images and queries span various subjects, 065

including algebra, arithmetic, geometry, logic, nu- 066

meric commonsense, science, and visual question 067

answering. The selection criteria were based on im- 068

age clarity and comprehension complexity. Addi- 069

tionally, we propose a pipeline to synthesize 320K 070

new pairs based on the 40K images and seed in- 071

quiries. 072

Constructing such a dataset presents significant 073

challenges, including selecting diverse and high- 074

quality multimodal question-answer data and en- 075

hancing question diversity. Selecting suitable data 076

involves filtering for image clarity and comprehen- 077

sion complexity, ensuring the dataset covers a wide 078

range of mathematical concepts and question types. 079

Enhancing question diversity requires synthesizing 080

1



new questions that probe different aspects of the081

images and involve multiple reasoning steps. To082

further improve model robustness and comprehen-083

sion, we focus on enhancing logical consistency084

(Tascon-Morales et al., 2023) and the ability to un-085

derstand underspecified language (Pezzelle, 2023).086

Contributions. Using the selected 40K data,087

the fine-tuned LLaVA-1.5 model, named Math-088

LLaVA-DS, achieved a significant improvement089

of 10.6% on MathVista (Lu et al., 2023). To fur-090

ther enhance multimodal mathematical reasoning091

capabilities, we synthesized an additional 320K092

question-answer pairs based on the 40K images and093

seed questions, resulting in the MathV360K dataset.094

This comprehensive dataset, containing around095

40K images and 360K question-answer pairs, sig-096

nificantly expands the coverage of multimodal097

mathematical reasoning. Fine-tuning LLaVA-1.5098

with MathV360K, we developed Math-LLaVA,099

which outperforms the original LLaVA-1.5 by 19%100

on MathVista’s minitest split. We also evalu-101

ated Math-LLaVA on MMMU (Yue et al., 2023a),102

demonstrating its improved generalizability.103

2 Related Works104

2.1 Multimodal Large Language Models105

The advancement of LLMs has spurred signifi-106

cant research interest in vision-language interac-107

tion, particularly in integrating visual knowledge108

into LLMs. The CLIP series (Radford et al., 2021;109

Li et al., 2022) aligned visual and language modal-110

ities using contrastive learning on extensive image-111

text pairs. Recent studies increasingly use pre-112

training alignment and visual instruction tuning113

on LLMs for complex tasks like visual question114

answering and multimodal reasoning. MiniGPT-4115

(Zhu et al., 2023) engages in image-text dialogues116

by aligning visual features with text. Similarly,117

models like LLaVA (Liu et al., 2023) and Instruct-118

BLIP (Dai et al., 2024) use learnable projectors or119

query embeddings to interact with visual features.120

These approaches aimed to leverage high-quality121

pre-training and fine-tuning data to comprehend122

complex instructions. Models like mPLUG-Owl123

(Ye et al., 2023), SPHINX (Lin et al., 2023b), and124

MiniCPM-V2 (Hu et al., 2024) introduced new125

grounding data types and modularization training126

to minimize hallucinations and enhance ground-127

ing abilities. Despite these advancements, MLLMs128

face challenges in solving multimodal mathemati-129

cal problems using diagrams. Further exploration130

of the quality and format of image instructions is 131

needed to improve the reasoning capabilities of 132

MLLMs. 133

2.2 Multimodal Reasoning 134

The rapid development of MLLMs has advanced 135

research on multimodal reasoning (Chen et al., 136

2024a; You et al., 2023). Augmenting the original 137

question and answer text data in restricted domains 138

to further fine-tune MLLMs is a popular approach. 139

For raw answers, rationales were either generated 140

by humans (Zhang et al., 2023c) or gathered from 141

prominent LLMs (Wang et al., 2024a; Lin et al., 142

2023a; Chen and Feng, 2023). Additionally, VPD 143

(Hu et al., 2023b) proposed expanding answers 144

by converting programming code formats to natu- 145

ral language formats. For raw questions, DDCoT 146

(Zheng et al., 2023) used LLMs to decompose the 147

original questions into sub-questions. These meth- 148

ods, however, only utilize LLMs to target text-only 149

data within restricted domains, neglecting to fully 150

exploit the visual information in raw images for 151

further enhancement. To evaluate the multimodal 152

reasoning abilities of MLLMs more comprehen- 153

sively, MathVista (Lu et al., 2023), which involves 154

various types of mathematical reasoning and skills, 155

and MMMU (Yue et al., 2023a), which encom- 156

passes multidisciplinary tasks, have been proposed. 157

There is still significant room for improvement in 158

open-source MLLMs. 159

3 Data Synthesis 160

Existing open-source image instruction fine-tuning 161

datasets (Lu et al., 2022b; Li et al., 2023; Lu et al., 162

2022a), containing limited question-answer pairs 163

per image, do not fully exploit visual information to 164

enhance the multimodal mathematical reasoning ca- 165

pabilities of MLLMs. To address this, we propose 166

MathV360K, a robust dataset synthesized based on 167

the 40K selected images and seed question-answer 168

pairs from multiple sub-domains. As shown in 169

the left side of Figure 1, we first select 40K high- 170

quality data points based on the image clarity and 171

comprehension complexity from 24 open-source 172

multimodal question-answering datasets. In the 173

second step, illustrated in the top right of Fig- 174

ure 1, we attempt to fully mine the visual infor- 175

mation of the images to generate additional ques- 176

tions. The data generation pipeline includes cre- 177

ating diverse new questions to fully exploit the 178

visual information, more complex questions to fur- 179

2



Source Data

FigureQA

PlotQA

…

FQA

TabMWP

IconQA

…

MWP

Geometry3K

UniGeo

…

GPS

AI2D

ScienceQA

…

TQA

Super-CLEVR

VQA-AS
…

VQA

Image Clarity Classifier

Not Clear (Clarity: 0) Clear (Clarity: 1)

Image Comprehension Complexity Classifier

Easy Complex

10 2 3
Data Selection

Proportion from 0-3 is 2:3:4:1
Data Augmentation 

and Synthesis
Finetune 

LLaVA-1.5

Original Question ： A dog show
enthusiast recorded the weight of the
winning dog at recent dog shows.
According to the table, what was the
rate of change between 2017 and 2018?
The answer is 6.

New Asked Question: What was the average
weight of the winning dog over the five years
shown in the table? The answer is 16.2 kg.

New Asked Question: What was the
greatest weight change between consecutive
years? The answer is 6 kg.

New Asked Question: How much did the 
weight of the winning dog decrease from the 
heaviest year to the lightest year? The 
answer is 7.

More Complex Question: What is the 
average rate of change in the weight of the 
winning dog from 2016 to 2020? The 
answer is -1.

Rephrased Question: Based on the
recorded weights of the winning dogs at
recent dog show, How did it change
between 2017 and 2018 according to the
following table? The answer is 6.

Simplified Question: Based on the table,
what was the rate of change in weight
between 2017 and 2018? The answer is 6.

Figure 1: The overall flowchart of the proposed multimodal question-answer data selection and data augmentation.
Our data selection depends on the fine-tuned ViT as image classifier. The data generation process depends on the
vision-language model.

ther improve the reasoning capabilities, rephrased180

questions and underspecified questions to improve181

the robustness of the model. With the data gen-182

eration pipeline, we collected 360K high-quality183

and diverse instruction-tuning data for the selected184

40K data points to enhance the image understand-185

ing and mathematical reasoning capabilities of the186

LLaVA-1.5 open-source model.187

3.1 Multimodal Reasoning Data Selection188

3.1.1 Source Data189

We collected 24 visual question answering and mul-190

timodal mathematical reasoning datasets, each tar-191

geting a specific task type and visual content. We192

focused on five problem task types requiring high-193

level reasoning to compile the source dataset: Fig-194

ure Question Answering (FQA), Geometry Prob-195

lem Solving (GPS), Math Word Problem (MWP),196

Textbook Question Answering (TQA), and Visual197

Question Answering (VQA). Table 5 in Appendix198

shows more details about the task type and visual199

context of each source dataset.200

Each multimodal training sample consists of201

three components: an image Ii, a text question Qi,202

and a ground-truth answer Ai. From this data for-203

mat, the model aims to capture visual information204

and question semantics to reason the final answer.205

3.1.2 Image Filtering and Proportioning206

After acquiring the 24 source datasets, we intention-207

ally selected data from the raw images based on the208

following criteria: (1) The clarity of the images, as 209

poor-quality images introduce noise and interfere 210

with learning image semantics; (2) The compre- 211

hension complexity of the images, which varies 212

from easy to complex. By categorizing images 213

into different levels of complexity and selecting 214

proportionally, we can form a training set with an 215

appropriate difficulty distribution; (3) The quality 216

of the corresponding textual question data, ensuring 217

that the difficulty aligns with the comprehension 218

complexity of the images. 219

We fine-tuned two Vision Transformer (ViT) 220

(Dosovitskiy et al., 2021) models to classify im- 221

age clarity and image comprehension complexity, 222

respectively. Due to the lack of annotated image 223

data, we first sampled 10K images uniformly and 224

randomly from the source datasets. These images 225

were labeled for clarity and comprehension com- 226

plexity using GPT-4V (OpenAI), with our designed 227

prompt shown in Figure 2. For image clarity, label 228

0 indicates a blurred, poor-quality image, and la- 229

bel 1 indicates a clear, good-quality image. Image 230

comprehension complexity is determined by the 231

number of objects, their positional relationships, 232

the need for mathematical calculations, detail level, 233

texture, and material properties. Images are catego- 234

rized into scores of 0, 1, 2, and 3, with lower values 235

indicating easier visual context comprehension. 236

Based on the 10K annotated images, we trained 237

two ViT models with initialized fully connected 238

layers for classification using cross-entropy loss. 239
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We first classified all source training dataset images240

using the fine-tuned image clarity classifier and241

filtered out images labeled as 0. Table 5 shows the242

number of images before (i.e., Training Images)243

and after (i.e., Clear Images) filtering.244

Next, we used the image comprehension com-245

plexity classifier to score the filtered images. Ta-246

ble 5 shows that most images are classified as247

medium complexity, followed by easy, and finally248

the most complex. Considering that simple images249

are easier to learn from, while complex images250

are harder and require more reference samples, we251

sampled the first three complexity categories using252

a progressive scale from simple to complex. Since253

images with a score of 3 are the least abundant, we254

collected all of them. We selected 40K data points255

based on an overall ratio of complexity 2:3:4:1,256

ensuring samples from different complexities are257

uniformly selected from each source dataset. As a258

result, we obtained 40K high-quality (I , Q, A) real259

data points that are diverse in image information260

and questions are progressive in difficulty.261

Prompt-Image Annotation:
[ROLE] You are an AI assistant to help me review the image. 

[Task1] Your first task is to review the image and classify the 
clarity and quality of the given image into 0 or 1. 0 indicates 
that the image is not clear and of poor quality. 1 indicates 
that the image is clear enough and of high quality. Your 
answer MUST be in the format: "The label is [0 or 1]". 

[Task2] Your second task is to assess the complexity of the 
image. Rate based on the number of objects in the image, 
their positional relationships, whether mathematical 
calculations are needed for understanding, detail level, 
texture and material properties. The score ranges from 0 to 3, 
with higher scores indicating greater complexity. A score of 3 
represents the highest complexity. Your answer MUST be in 
the format: "The ranking is [YOUR SCORE]". 

Figure 2: The prompt template used in our GPT-4V
API for image annotation. Image clarity is considered
as binary classification and image comprehension com-
plexity is viewd as multi-classification.

3.2 Data Augmentation262

3.2.1 Mining Image for QA Generation263

After selecting 40K multimodal reasoning data, we264

observed that each image typically corresponds to265

limited questions. As shown in the tabular image of266

Figure 1, the original question often focuses only267

on localized arithmetic differences. However, addi-268

tional questions about overall averages, continuous269

variations, and more can also be asked, indicating270

that the visual information of an image is not fully271

exploited with just one question. Therefore, we can 272

further augment the available real data by generat- 273

ing more question-answer pairs for each image. 274

We use GPT-4V to generate additional questions 275

based on the input image and the original question. 276

If questions are generated in a zero-shot manner, 277

they often focus on one-sided visual scenes, lack- 278

ing reasoning and mathematical skills. For images 279

from specific tasks, such as geometric figures, more 280

task-specific questions should be asked. Therefore, 281

we adopt few-shot demonstrations for GPT-4V to 282

generate new questions. 283

For an image belonging to one of the categories 284

(FQA, GPS, MWP, TQA, VQA), we first inter- 285

nally cluster the questions into five classes for each 286

source dataset within that task category. Specifi- 287

cally, features of text questions are obtained using 288

TF-IDF and clustered using K-Means. As shown 289

in Figure 4, we take IconQA as an example. After 290

clustering the questions in the training set, each 291

cluster internally represents a specific questioning 292

format and pattern that can be referenced. Demon- 293

strations are constructed by randomly sampling one 294

question from each cluster of each source dataset 295

belonging to a certain task type. 296

The prompt for generating new questions for an 297

input image is shown in Figure 3. This method 298

ensures that the newly generated questions are con- 299

sistent with the distribution of the original reference 300

questions while improving diversity. Using this ap- 301

proach, we generated 200K new question-answer 302

pairs based on the selected 40K data points. 303

3.2.2 Augmentation of Original Question 304

We designed prompts to augment the original ques- 305

tions, as shown in Figure 5. Using GPT-4V, we gen- 306

erated 40K more complex questions, 40K simpli- 307

fied questions, and 40K rephrased questions. The 308

augmentation focused on the following aspects: 309

Complexity. More complex reasoning samples can 310

enhance the reasoning capabilities of fine-tuned 311

LLMs (Luo et al., 2023). Our first approach in- 312

volves creating more complex questions based on 313

the original image and corresponding inquiries. 314

Logical Consistency. Robust MLLMs should an- 315

swer consistently about similar content in a given 316

image (Tascon-Morales et al., 2023). We employed 317

GPT-4V to ask the same question in different ways 318

without changing the answer. 319

Underspecification. Robust MLLMs must deal 320

with semantic underspecification, where the lin- 321

guistic signal conveys only part of the necessary in- 322
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Prompt-Ask New Questions:

Q: How many dots are there?

Input Image

[ROLE] You are an expert at understanding images and good at asking and answering 
questions based on the given images.

[TASK] You will be given some question examples. Please refer to the format of the 
examples to ask up to five high-quality questions on the given image. The original question 
of the image will also be given, please avoid asking the same question. Please provide the 
correct answer within ten words or answer with only an integer or float number.

[EXAMPLES]
From IconQA:
Question: There is 1 ball in the top row. How many balls are in the bottom row?
Question: What has been done to this letter? …
From CLEVR-Math:  …
From TabMWP: …
[ORIGINAL QUESTION] {Q}
[REQUIREMENT] Please follow and make full use of the image information. Please avoid 
asking questions for which you are not confident to give the definite correct answer. 
Please do not completely copy the content of the example questions. Ensure that provide 
final correct answer for each question.
[OUTPUT FORMAT] Your output MUST be "The question is [YOUR QUESTION]. The answer 
is [YOUR CORRECT ANSWER]."

Figure 3: The prompt template used in our GPT-4V API generates additional questions for each input image.
Demonstrations are constructed by randomly sampling one question from each cluster of each source dataset
belonging to a specific task type.

formation for successful communication (Pezzelle,323

2023). Therefore, we simplified the original ques-324

tions without affecting their semantic understand-325

ing when combined with the image.326

4 Experiments327

4.1 Model and Training328

We employ the LLaVA-1.5 architecture as our base329

model, which primarily comprises the Vicuna-v1.5330

language model (Team, 2023) and a pretrained Vi-331

sion Transformer (ViT) as the image encoder. To332

preserve the foundational model’s superior visual333

perception and descriptive abilities, we fine-tune334

LLaVA-1.5-13B using the proposed MathV360K335

instruction-tuning dataset. The diverse question336

patterns and rich visual content within this dataset337

enhance the model’s multimodal mathematical rea-338

soning capabilities while maintaining its general339

vision-language understanding skills.340

4.2 Evaluation and Metrics341

We evaluate our model using the minitest sub-342

set of MathVista (Lu et al., 2023) in a zero-shot343

manner. This minitest subset comprises 1,000344

samples, including 540 multiple-choice questions345

and 460 questions that require free-form answers346

in the form of integers, floats, or lists. Math-347

Vista adequately assesses the MLLMs’ multimodal348

mathematical skills, including algebraic reasoning349

(ALG), arithmetic reasoning (ARI), geometry rea- 350

soning (GEO), logical reasoning (LOG), numeric 351

commonsense (NUM), scientific reasoning (SCI), 352

and statistical reasoning (STA). Furthermore, Math- 353

Vista questions can be categorized into the follow- 354

ing subsets: FQA, GPS, MWP, TQA, and VQA. 355

For evaluation, we first employ GPT-4 to extract the 356

predicted choices or answers from responses, then 357

report the answer accuracy, which entails determin- 358

ing whether the final answer matches the ground 359

truth. Additionally, we evaluate our model’s en- 360

hanced generalizability using the MMMU bench- 361

mark (Yue et al., 2023a). The MMMU bench- 362

mark, with 900 evaluation samples, encompasses 363

six core disciplines: Art & Design, Business, Sci- 364

ence, Health & Medicine, Humanities & Social 365

Science, and Technology & Engineering, mak- 366

ing it suitable for assessing the generalization of 367

MLLMs’ reasoning capabilities. 368

4.3 Implementation Details 369

We utilize GPT-4V (GPT-4 Vision Preview) for the 370

data generation process. To classify image clarity 371

and comprehension complexity, we fine-tune two 372

ViT-Large-Patch16-224 models, each with a learn- 373

ing rate of 2e-4 and a training period of 5 epochs. 374

For the LLaVA-1.5-13B model, the input image 375

resolution is configured to 336 by 336 pixels. Both 376

the projection linear layer and the language model 377
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Questions Clustering of IconQA
Cluster 0: How many scooters are there? …
Cluster 1: Move the ruler to measure the length of the 
nail to the nearest inch. The nail is about (_) inches 
long. …
Cluster 2: The first picture is a paw. Which picture is 
eighth? …
Cluster 3: If you select a marble without looking, which 
color are you more likely to pick? …
Cluster 4: Rick is waking up in the morning. The clock by 
his bed shows the time. What time is it? …

Figure 4: The visualization of the K-Means by T-SNE.
We take IconQA as example. The questioning format of
each cluster can be used as a reference to generate new
questions for similar visual content.

are trainable. During the fine-tuning phase, we set378

a learning rate of 2e-5, employ a batch size of 16,379

and conduct fine-tuning over 2 epochs using A800380

GPUs equipped with 80GB of memory.381

5 Results and Analysis382

5.1 Main Comparison on MathVista383

We compare Math-LLaVA with other MLLMs on384

the minitest split of the MathVista benchmark in Ta-385

ble 1. As shown in the table, open-source MLLMs386

such as miniGPT4 (Zhu et al., 2023), instructBLIP387

(Dai et al., 2024), and LLaVA-1.5-13B have poor388

performance in multimodal mathematics, with over-389

all accuracy lower than 30%. Compared to the base390

model, LLaVA-1.5-13B, with poor multimodal391

mathematical ability, Math-LLaVA achieves 46.6%392

overall accuracy with a significant improvement393

of 19%. More surprisingly, the proposed Math-394

LLaVA model outperforms close-source models395

Gemini 1.0 Pro (Team et al., 2023) and Claude396

3 Haiku (Anthropic, 2024), even achieving com-397

parable performance to GPT-4V (OpenAI), the398

most powerful close-source MLLMs. Interest-399

ingly, Math-LLaVA achieves 57.7% accuracy on400

GPS subset, outperforming G-LLaVA-13B (Gao401

Prompt-Logical Consistency:
You are an AI assistant to help me rephrase questions. Please 
ask the same question in a different way but have to make sure 
the answer won’t be changed.
Question: {Q}
Rephrase the above question:

Prompt-Complexity:
You will be given the question for the given image. Please ask a 
more complex question that requires more steps to answer 
than the given question. 
Question: {Q}

Prompt-Underspecification:
You are an AI assistant to help me rephrase question of the given
image. Please simplify the question into a concise question, but
does not affect the understanding and answering question with
the image.
Question: {Q}
Simplify the above question:

Figure 5: The prompt templates used in our GPT-4V
API to generate more complex, logically consistent and
underspecified questions from original question text.

et al., 2023), which has been trained on 170K 402

high-quality geometric image-caption and question- 403

answer pairs. The superior performance of Math- 404

LLaVA indicates that the data selection and syn- 405

thesis of high-quality, diverse multimodal question- 406

answer pairs are effective in improving MLLM’s 407

multimodal mathematical reasoning capabilities. 408

5.2 Generalizability of Math-LLaVA 409

The proposed Math-LLaVA model has demon- 410

strated exceptional performance in multimodal 411

mathematical reasoning tasks. To assess its gener- 412

alization capability, we conduct evaluation experi- 413

ments using the MMMU benchmark, which encom- 414

passes various disciplines and domains. The results 415

are shown in Table 2. With only the selected data, 416

Math-LLaVA has a performance drop on science 417

subset. However, we can observe that the Math- 418

LLaVA model fine-tuned on MathV360K can sig- 419

nificantly outperforms the base model, LLaVA-1.5- 420

13B, as well as several other open-source MLLMs 421

on all six sub-domains. This superior performance 422

underscores its capability to generalize to down- 423

stream multimodal understanding and reasoning 424

tasks. Furthermore, the fine-tuning process using 425

our synthetic data does not detract from the model’s 426

reasoning abilities in other domains; rather, it en- 427

hances its generalizability. 428

5.3 Overfitting to Synthesized Dataset 429

The proposed data synthesis pipeline generates ad- 430

ditional question-answer pairs for each image to 431

enhance the mathematical reasoning of MLLMs. 432
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Model
MathVista

ALL FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA
Heuristics Baselines

Random Chance 17.9 18.2 21.6 3.8 19.6 26.3 21.7 14.7 20.1 13.5 8.3 17.2 16.3
Frequent Guess (Lu et al., 2023) 26.3 22.7 34.1 20.4 31.0 24.6 33.1 18.7 31.4 24.3 19.4 32.0 20.9

Human 60.3 59.7 48.4 73.0 63.2 55.9 50.9 59.2 51.4 40.7 53.8 64.9 63.9
Close-Source Multimodal Large Langugae Models (MLLMs)

Gemini 1.0 Nano 2 (Team et al., 2023) 30.6 28.6 23.6 30.6 41.8 31.8 27.1 29.8 26.8 10.8 20.8 40.2 33.5
Qwen-VL-Plus (Bai et al., 2023) 43.3 54.6 38.5 31.2 55.1 34.1 39.1 32.0 39.3 18.9 26.4 59.0 56.1

Gemini 1.0 Pro (Team et al., 2023) 45.2 47.6 40.4 39.2 61.4 39.1 45.2 38.8 41.0 10.8 32.6 54.9 56.8
Claude 3 Haiku (Anthropic, 2024) 46.4 - - - - - - - - - - - -

GPT-4V (OpenAI) 49.9 43.1 50.5 57.5 65.2 38.0 53.0 49.0 51.0 21.6 20.1 63.1 55.8
Open-Source Multimodal Large Langugae Models (MLLMs)

mPLUG-Owl-7B (Ye et al., 2023) 22.2 22.7 23.6 10.2 27.2 27.9 23.6 19.2 23.9 13.5 12.7 26.3 21.4
miniGPT4-7B (Zhu et al., 2023) 23.1 18.6 26.0 13.4 30.4 30.2 28.1 21.0 24.7 16.2 16.7 25.4 17.9

LLaVAR-13B (Zhang et al., 2023b) 25.2 21.9 25.0 16.7 34.8 30.7 24.2 22.1 23.0 13.5 15.3 42.6 21.9
InstructBLIP-7B (Dai et al., 2024) 25.3 23.1 20.7 18.3 32.3 35.2 21.8 27.1 20.7 18.9 20.4 33.0 23.1

LLaVA-13B (Liu et al., 2023) 26.1 26.8 29.3 16.1 32.3 26.3 27.3 20.1 28.8 24.3 18.3 37.3 25.1
SPHINX-V1-13B (Lin et al., 2023b) 27.5 23.4 23.1 21.5 39.9 34.1 25.6 28.1 23.4 16.2 17.4 40.2 23.6

LLaVA-1.5-13B (Liu et al., 2024) 27.6 - - - - - - - - - - - -
LLaVA-1.5-13B† (Liu et al., 2024) 27.7 23.8 22.7 18.3 40.5 30.2 25.3 26.4 22.8 21.6 26.4 35.3 23.6
OmniLMM-12B (OpenBMB, 2024) 34.9 45.0 17.8 26.9 44.9 39.1 23.1 32.3 20.9 18.9 27.8 45.9 44.2
SPHINX-V2-13B (Lin et al., 2023b) 36.7 54.6 16.4 23.1 41.8 43.0 20.6 33.4 17.6 24.3 21.5 43.4 51.5

G-LLaVA-13B (Gao et al., 2023) - - 56.7 - - - - - - - - - -
Math-LLaVA-DS 38.2 33.5 47.2 41.4 36.7 34.6 38.4 34.3 45.6 18.9 33.3 45.9 35.2

Math-LLaVA 46.6 37.2 57.7 56.5 51.3 33.5 53 40.2 56.5 16.2 33.3 49.2 43.9

Table 1: Comparison with baselines on the testmini set of MathVista benchmark. Baseline results are obtained from
Lu et al. (2023). † represents our reproduced results of LLaVA-1.5-13B. The best results in both the close-source
and open-source MLLMs are in bold. MathVista is divided in two ways: task type or mathematical skill, and we
report the accuracy under each subset.

Intuitively, we should investigate whether the pro-433

posed model, Math-LLaVA, is overfitting on the434

generated question-answer pairs. If overfitting oc-435

curs, Math-LLaVA might memorize or retrieve im-436

age information without requiring any visual input.437

To examine this, we compare the performance of438

Math-LLaVA before and after data synthesis, re-439

ferred to as Math-LLaVA-DS and Math-LLaVA,440

respectively, on MathVista using text inputs only.441

As shown in Table 3, Math-LLaVA exhibits sim-442

ilar performance, approximately 32.0%, as Math-443

LLaVA-DS on MathVista when inference is per-444

formed without any visual information. Further-445

more, fine-tuning Math-LLaVA with only text data446

also yields similar observations. This indicates that447

the Math-LLaVA model is not overfitting on the448

synthesized question-answer pairs.449

Interestingly, we also observe that with text-only450

input, LLaVA-1.5-13B achieves an accuracy of451

23.3% on MathVista. Potential reasons for this,452

as explored in (Chen et al., 2024b), could be that453

visual content is unnecessary for many samples 454

in MathVista and that unintentional data leakage 455

may occur during the pre-training of LLMs and 456

MLLMs. 457

5.4 Effectiveness of Synthesis 458

To verify the effectiveness of data selection and 459

the proposed data augmentation strategies, we 460

conduct experiments on various components of 461

MathV360K independently. Initially, we fine-tune 462

the LLaVA-1.5 model on 40K randomly sampled 463

data points from the source dataset, without any 464

selection, to demonstrate the efficacy of data filter- 465

ing and proportioning. Subsequently, we separately 466

combine the selected 40K data points with the gen- 467

erated data using four augmentation methods: min- 468

ing images for QA generation (AskImg), posing 469

complex questions (CompQ), rephrasing questions 470

for logical consistency (RephQ), and simplifying 471

questions for underspecification (SimpQ). Table 4 472

presents the accuracy achieved by different combi- 473

nations of augmentations on MathVista. The results 474
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Model MMMU Art &
Design Business Sci. Health &

Med.
Human. &
Social Sci.

Tech. &
Eng.

Random Chance 22.1 29.2 24.7 18.0 20.7 20.0 21.4
Frequent Guess 26.8 23.3 29.3 27.3 30.0 25.8 24.8
miniGPT4-7B 26.8 29.2 21.3 28.7 30.7 29.2 23.8

mPLUG-Owl-7B 32.7 45.8 24.7 22.7 32.0 45.8 31.0
SPHINX-13B 32.9 48.3 24.7 26.7 30.7 50.0 26.2

InstructBLIP-7B 32.9 40.0 28.0 32.7 28.7 47.5 27.1
LLaVA-1.5-13B 36.4 51.7 22.7 29.3 38.7 53.3 31.4
Math-LLaVA-DS 36.9 55.0 24.7 23.3 38.7 56.7 32.4

Math-LLaVA 38.3 53.3 24.7 30.7 38.7 58.3 33.3

Table 2: Comparison with baselines on the MMMU benchmark.

Model Training Inference MathVista
LLaVA-1.5-13B Image-Text Text 23.3
Math-LLaVA-DS Image-Text Text 32.2

Math-LLaVA Image-Text Text 32.4
Math-LLaVA-DS Text Text 32.1

Math-LLaVA Text Text 32.5

Table 3: Results of inference using only text of Math-
Vista as input. Fine-tuning LLaVA-1.5 using image-text
or text-only data.

indicate that our data synthesis approach, which475

incorporates data selection and each augmentation476

method, yields better performance. Collectively,477

these strategies result in a significant 11% improve-478

ment over randomly sampling 40K data points.479

Select AskImg CompQ RephQ SimpQ ALL
% % % % % 35.6
" % % % % 38.2
" " % % % 42.2
" % " % % 39.8
" % % " % 40.9
" % % % " 41.1
" " " " " 46.6

Table 4: Effectiveness of data selection and different
data augmentation strategies on MathVista.

5.5 Enhancements from Augmentation of480

Each Task Type481

Given that we selected data from five different482

question-answering task types, our aim is to investi-483

gate which types or skills in multimodal mathemat-484

ical reasoning could be enhanced by augmenting485

the source data from each individual task category.486

To this end, we conduct experiments with newly487

synthesized data for each task type, mixed with se-488

lected data. The results on MathVista are presented489

in Figure 6. We observe that augmentation of var-490

ious types of source data can further improve the491
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Figure 6: Accuracy on MathVista by augmentation for
each task type.

model’s performance on the corresponding tasks. 492

The enhancements are particularly pronounced for 493

tasks involving FQA, MWP, and VQA. Interest- 494

ingly, data augmentation for a single task type also 495

shows improvements in effectiveness for other task 496

types, likely due to the overlap in reasoning skills 497

required across different tasks. 498

6 Conclusions 499

We addressed the shortage of high-quality and di- 500

verse multimodal mathematical training datasets 501

by creating MathV360K, which consists of 40K 502

high-quality multimodal questions and answers 503

from 24 existing datasets, along with 320K newly 504

synthesized question-answer pairs. This compre- 505

hensive dataset enhances both the breadth and 506

depth of multimodal mathematical questions. Us- 507

ing MathV360K, we fine-tuned Math-LLaVA, sig- 508

nificantly improving its capability in multimodal 509

mathematical reasoning, outperforming LLaVA- 510

1.5 by 19 points on the minitest split of MathVista. 511

Additionally, Math-LLaVA was validated on the 512

MMMU benchmark, demonstrating its generaliz- 513

ability. Our research underscores the importance 514

of dataset diversity and synthesis in enhancing the 515

mathematical reasoning abilities of MLLMs. 516
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7 Limitations517

The data we selected and synthesized are in the518

format of images, questions, and answers, lacking519

intermediate steps that could be further improved.520

In future work, we will introduce annotated in-521

termediate steps and rationale to construct more522

comprehensive and high-quality datasets to further523

enhance the MLLMs’s multimodal reasoning capa-524

bility.525

8 Ethics Statement526

We do not envision that our work will result in any527

harm as defined in the ACL ethics policy. LLaVA-528

1.5 base model uses LLaMA 2 Community License529

and ViT-Large-Patch16-224 uses Apache License530

2.0. For datasets, GEOS, A-OKVQA and MMMU531

use Apache License 2.0. Geometry3K, FigureQA532

and PMC-VQA use MIT License. Super-CLEVR533

uses BSD License. ChartQA uses GPL 3.0 License.534

GeoQA+, UniGeo and DocVQA are publicly avail-535

able for research purposes. The rest of the dataset536

use permissive Creative Commons Licenses. The537

intended use of these source datasets and evalua-538

tion datasets is to train and test the model’s mul-539

timodal reasoning capability, which is consistent540

with our utilization of all these data. Our pro-541

posed MathV360K can improve the multimodal542

mathematical reasoning ability of the open-source543

LLaVA-1.5 through training. We will make our544

data and model publicly available.545
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A Appendix892

A.1 Source Data Statistics893

We collected 24 visual question answering and mul-894

timodal mathematical reasoning datasets, each tar-895

geting a specific task type and visual content. We896

focused on five problem task types to compile the897

source dataset: Figure Question Answering (FQA),898

which involves analyzing charts and plots statisti-899

cally; Geometry Problem Solving (GPS), which900

involves solving geometrical problems with dia-901

grams and figures; Math Word Problem (MWP),902

which involves arithmetic calculations within the903

context of images; Textbook Question Answer-904

ing (TQA), where reasoning is based on scientific905

knowledge and figures; and Visual Question An-906

swering (VQA), which requires reasoning about ob-907

jects, scenes, or relationships within images. These908

datasets from different domains can be combined909

to cover multiple tasks, incorporating diverse vi-910

sual contexts and mathematical skills. Although911

TQA and VQA primarily involve questions about912

scenes and relationships, they also include ques-913

tions requiring arithmetic or numeric skills. Such914

data enhances multimodal mathematical reasoning915

and generalizes to other question answering tasks.916

The source data are summarized in Table 5 cor-917

responding to Section 3.1.918

A.2 Distribution Proportioning of Image919

Comprehension Complexity920

We select images from the source data based on921

an overall complexity ratio of 2:3:4:1. Due to the922

limited number of the most complex images, all923

images with complexity level 3 are sampled. We924

employ a progressive distribution scale from easy925

to complex, as described in Section 3.1.2. In this926

section, we examine the impact of varying distri-927

bution proportions of the first three image compre-928

hension complexity levels on model performance.929

We explore settings with different proportions of930

comprehension complexities 0, 1, and 2, includ-931

ing uniform distribution, decreasing proportions as932

complexity increases, and proportions that fluctu-933

ate with complexity. As demonstrated in Table 6,934

both uniform distribution of image complexity and935

decreasing proportion with increasing difficulty are936

less effective compared to a progressive propor-937

tional distribution aligned with complexity. These938

findings suggest that MLLMs require fewer sim-939

ple images and question-answer pairs, but benefit940

from a larger proportion of complex training data941

to enhance multimodal mathematical reasoning. 942

Proportion ALL FQA GPS MWP TQA VQA
3:3:3:1 36.0 29.0 44.4 40.9 35.6 34.5
4:3:2:1 36.4 32.0 39.6 42.5 36.9 35.1
2:4:3:1 35.1 32.0 40.5 35.5 36.2 34.6
2:3:4:1 38.2 33.5 47.2 41.4 36.7 34.6

Table 6: Comparison with different distribution propor-
tioning of image comprehension complexity on Math-
Vista.

A.3 Cases Study 943

We present several examples of solutions gener- 944

ated by Math-LLaVA and LLaVA-1.5 for image- 945

question pairs of high school or college-level dif- 946

ficulty in MathVista. As illustrated in Figure 7, 947

the base model (LLaVA-1.5) often performs in- 948

adequately on numerical computations involving 949

tables, geometric problems, and counting tasks 950

at the high school level. In contrast, our Math- 951

LLaVA model demonstrates superior proficiency in 952

addressing these high school problems, thanks to its 953

training on selected and synthesized data designed 954

to tackle complex issues. Although LLaVA-1.5 955

faces challenges when dealing with more advanced 956

functions and detailed tables, Math-LLaVA shows 957

promise and capability in solving such intricate 958

problems. 959

Additionally, we present several examples of 960

newly generated questions, created by thoroughly 961

mining images and questions from the selected 962

dataset. As depicted in Figure 8, the exist- 963

ing dataset contains a limited number of image- 964

question pairs. By fully utilizing the visual infor- 965

mation from the images, we are able to generate 966

a wider variety of questions from different per- 967

spectives, thereby enhancing the diversity of the 968

problem set. The newly generated questions are 969

created in a few-shot manner, referencing the for- 970

mat of existing question types. Consequently, these 971

questions encompass more than just isolated visual 972

content; they involve reasoning with the images. 973

Moreover, the inclusion of complex questions, logi- 974

cally consistent rephrased questions, and simplified, 975

underspecified questions increases the diversity and 976

robustness of the dataset in terms of both question 977

depth and format, compared to the original set of 978

questions. 979

Interestingly, Multimodal Language Models 980

(MLLMs) demonstrate biases when handling mul- 981

timodal mathematical reasoning tasks, particularly 982
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Dataset Task Visual Context Training Images Clear Images
Image Complexity

0 1 2 3
DocVQA (2022) FQA Document Image 8535 8227 2086 6007 125 9
FigureQA (2017) FQA Charts and Plots 18173 18173 687 16792 694 0

DVQA (2018) FQA Bar Chart 19092 19092 21 18021 1045 5
PlotQA (2020) FQA Bar, Line, Scatter 18782 18782 13 18759 10 0

ChartQA (2022) FQA Charts and Plots 3699 3699 0 3649 50 0
MapQA (2022) FQA Map Chart 10020 10016 1 10015 0 0
IconQA (2021b) MWP Abstract Scene 20000 19068 10991 8055 22 0

CLEVR-Math (2022) MWP Synthetic Scene 17552 17551 1 17550 0 0
TabMWP (2022b) MWP Table 20000 20000 14919 5081 0 0

GEOS (2015) GPS Geometry Diagram 66 64 2 57 5 0
Geometry3K (2021a) GPS Geometry Diagram 2101 2101 21 1508 568 4

GeoQA+ (2022) GPS Geometry Diagram 6027 5956 103 4399 1454 0
UniGeo (2022) GPS Geometry Diagram 3499 3432 72 2514 846 0

TQA (2017) TQA Scientific Figure 1499 1497 20 949 498 30
AI2D (2016) TQA Scientific Figure 3247 3235 32 2321 823 59

ScienceQA (2022a) TQA Scientific Figure 6218 6061 1533 4251 273 4
A-OKVQA (2022) VQA Natural Image 16540 14526 10 11724 2743 49

VQA2.0 (2017) VQA Natural Image 16912 14521 45 12783 1672 21
PMC-VQA (2023a) VQA Medical Image 19682 9846 62 2989 3501 3294

VizWiz (2018) VQA Natural Image 20,000 16400 790 14800 770 40
Super-CLEVR (2023) VQA Synthetic Scene 2000 1950 1 1568 381 0

VQA-AS (2015) VQA Abstract Scene 14065 14065 7 13996 62 0
VQA-RAD (2018) VQA Medical Image 259 248 0 91 95 62
TextVQA (2019) VQA Natural Image 15815 11350 179 9497 1598 76

Table 5: Summary of the 24 different source traing datasets for collection. The table provides details on their task,
visual context, distribution of image clarity and comprehension complexity according to fine-tuned ViT classification
model. Among them, only the text data of GeoQA+ are in Chinese, the rest source data are in English.

with logically consistent rephrased or underspec-983

ified questions. As illustrated at the top of Fig-984

ure 9, LLaVA-1.5 exhibits the ability to answer the985

original question correctly but tends to falter with986

simplified, underspecified questions. In contrast,987

Math-LLaVA proves to be more robust, consis-988

tently providing correct answers to underspecified989

questions. This trend is also observed with log-990

ically consistent rephrased questions. Therefore,991

the use of logically consistent and simplified un-992

derspecified questions for data augmentation can993

enhance the robustness of MLLMs in mathematical994

reasoning tasks.995
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Grade Level: College
Hint: Please answer the question and provide the correct option letter, e.g., A, B, C,
D, at the end.
Question: Based on the image, what is the most likely equilibrium population count?
Choices: (A) 40 (B) 60 (C) 80 (D) 100
LLaVA-1.5: The answer is (A) 40 X       Math-LLaVA: The answer is (C) 80 ✓

Hint: Please answer the question requiring an integer answer and
provide the final value, e.g., 1, 2, 3, at the end.
Question: How many methods in the table achieve an A-847
score higher than 20.0?
LLaVA-1.5: The answer is 1 X           
Math-LLaVA: The answer is 3 ✓

Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, 
D, at the end.
Question: Is the function (f: R to R) surjective?
Choices: (A) Yes  (B) No
LLaVA-1.5: The answer is (B) No X       Math-LLaVA: The answer is (A) Yes ✓

Hint: Please answer the question requiring an integer answer and provide the final
value, e.g., 1, 2, 3, at the end.
Question: An administrator at the Department of Motor Vehicles (DMV) tracked
the average wait time from month to month. According to the table, what was the
rate of change between August and September? (Unit: minutes per month)
LLaVA-1.5: The answer is 11.5 X           Math-LLaVA: The answer is -3 ✓

Hint: Please answer the question and provide the correct option letter, 
e.g., A, B, C, D, at the end.
Question: Use a sector paper sheet with a central angle of 120.0 and a 
radius of 6.0 to roll into a conical bottomless paper cap (as shown in the 
picture), then the bottom perimeter of the paper cap is () 
Choices: (A) 2π cm  (B) 3π cm  (C) 4π cm  (D) 5π cm
LLaVA-1.5: The answer is (B) 3π cm X           
Math-LLaVA: The answer is (C) 4π cm ✓

Grade Level: High School

Hint: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, at the end.
Question: Find x.
Choices: (A) 10 (B) 11 (C) 12 (D) 13
LLaVA-1.5: The answer is (B) 11 X        Math-LLaVA: The answer is (C) 12 ✓

Hint: Please answer the question and provide the correct option letter, 
e.g., A, B, C, D, at the end.
Question: If you wanted the leaf with the least main veins, which would 
you choose?
Choices: (A) 3 main veins  (B) pinnate  (C) reticulate  (D) palmate
LLaVA-1.5: The answer is (B) pinnate X           
Math-LLaVA: The answer is (A) 3 main veins ✓

Figure 7: Cases on college and high school difficulty problems of MathVista, Math-LLaVA can solve better
compared to LLaVA-1.5.
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Cases of Questions Generation

Original Question:
Find x. Round to the nearest tenth.

New Asked Question:
• What is the length of side FG in the triangle GFH?
• What is the measure of angle HGF in the triangle GFH?
• What is the length of side FH in the triangle GFH?
• Find the length of GH. Round to the nearest tenth.
• What is the perimeter of triangle GFH?

More Complex Question:
What is the area of triangle GFH?

Rephrased Question:
Determine the value of x and round it to the nearest tenth.

Simplified Question:
Determine x.

Original Question:
Tommy is writing a letter one evening. The clock shows the
time. What time is it?

New Asked Question:
• How many minutes past 7 o'clock is it?
• If Tommy started writing his letter at 7:00, how many

minutes has he been writing?
• If Tommy needs to finish his letter by 8:00, how many

minutes does he have left to write?
• If the clock is 10 minutes fast, what is the actual time?

More Complex Question:
If Tommy started writing the letter at 7:30 P.M. and finished
it 2 hours and 45 minutes later, what time did he finish
writing the letter?

Rephrased Question:
What is the current time shown on the clock while Tommy is
writing a letter in the evening?

Simplified Question:
The clock shows something one evening. What time is it?

Original Question:
Clara has $13.00. Does she have enough to buy a pair of
jeans and a gray sweatshirt?

New Asked Question:
• How much would it cost to buy one of each clothing item

listed?
• Can Clara afford to buy both a denim skirt and a purple

dress with $13.00?
• If Clara buys two pairs of jeans, how much money will she

have left?
• What is the average cost of the items listed?

More Complex Question:
Clara has $13.00. If she buys a pair of jeans and a gray
sweatshirt, how much money will she have left?

Rephrased Question:
With $13.00, does Clara have sufficient funds to purchase
both a pair of jeans and a gray sweatshirt?

Simplified Question:
Clara has $13.00. Does she have enough to buy some jeans
and a sweatshirt?

Original Question:
What is the difference between domestic and cross border in
2018?

New Asked Question:
• What is the total number of M&A deals in 2019?
• What is the percentage increase in domestic M&A deals

from 2015 to 2016?
• What is the average number of cross-border M&A deals

from 2015 to 2017?
• In which year did cross-border M&A deals surpass

domestic deals?
• What is the difference in the number of domestic M&A

deals between the years 2018 and 2020?

More Complex Question:
What is the total number of domestic and cross-border deals
combined for the years 2018 and 2022?

Rephrased Question:
In 2018, what is the contrast between domestic and cross-
border?

Simplified Question:
What is the difference between these two categories in 2018?

Figure 8: Examples of synthesizing new questions on source data.
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Inference for Underspecified Question

Original Question: What is the highest amount this class measures?
LLaVA-1.5: 400 ✓ Math-LLaVA: 400 ✓

Underspecified Question: What amount can this measure up to?
LLaVA-1.5: 3000 X Math-LLaVA: 400 ✓

Original Question: Look at the table. Then answer the question. At a price 
of $320, is there a shortage or a surplus? Choices: (A) shortage (B) surplus
LLaVA-1.5: (A) shortage ✓       Math-LLaVA: (A) shortage ✓

Underspecified Question: At a price of $320, what is the market situation?
LLaVA-1.5: (B) surplus X            Math-LLaVA: (A) shortage ✓

Original Question: What is the value of the smallest individual element in 
the whole chart?
LLaVA-1.5: 1 ✓       Math-LLaVA: 1 ✓

Underspecified Question: What is the smallest element value?
LLaVA-1.5: 0 X         Math-LLaVA: 1 ✓

Original Question: Which year has the least difference between the used
and new cars?
LLaVA-1.5: 2015 ✓ Math-LLaVA: 2015✓

Underspecified Question: Which year has the least difference between
these two types?
LLaVA-1.5: 2014 X Math-LLaVA: 2015 ✓

Inference for Rephrased Question

Original Question: Which region is larger? R1 or R2?
LLaVA-1.5: R2 ✓ Math-LLaVA: R2 ✓

Rephrased Question: Which region, R1 or R2, has a greater area?
LLaVA-1.5: R1 X Math-LLaVA: R2 ✓

Original Question: Subtract all blue metal things. Subtract all tiny objects. 
How many objects are left?
LLaVA-1.5: 4 ✓          Math-LLaVA: 4 ✓

Rephrased Question: Remove all blue metallic items. Remove all small 
things. What is the number of remaining things?
LLaVA-1.5: 6 X            Math-LLaVA: 4 ✓

Original Question: As shown in the figure, AB is a long ladder leaning on
the wall, the foot of the ladder B is away from the wall 1.6, the point D on
the ladder is away from the wall 1.4, the length of BD is 0.55, then the
length of the ladder is ()
LLaVA-1.5: 4.40 ✓ Math-LLaVA: 4.40 ✓

Rephrased Question: In the given figure, AB represents a ladder leaning
against the wall, with the foot B of the ladder located 1.6 units away from
the wall. Point D on the ladder is located 1.4 units away from the wall, and
the length of BD is 0.55 units. What is the length of the ladder?
LLaVA-1.5: 4.00 X Math-LLaVA: 4.40 ✓

Figure 9: Examples of testing on underspecified and rephrased questions.
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