
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HEADMAP: LOCATING AND ENHANCING KNOWL-
EDGE CIRCUITS IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs), through pretraining on extensive corpora, encom-
pass rich semantic knowledge and exhibit the potential for efficient adaptation to
diverse downstream tasks. However, the intrinsic mechanisms underlying LLMs
remain unexplored, limiting the efficacy of applying these models to downstream
tasks. In this paper, we explore the intrinsic mechanisms of LLMs from the per-
spective of knowledge circuits. Specifically, considering layer dependencies, we
propose a layer-conditioned locating algorithm to identify a series of attention
heads, which is a knowledge circuit of some tasks. Experiments demonstrate that
simply masking a small portion of attention heads in the knowledge circuit can
significantly reduce the model’s ability to make correct predictions. This suggests
that the knowledge flow within the knowledge circuit plays a critical role when
the model makes a correct prediction. Inspired by this observation, we propose
a novel parameter-efficient fine-tuning method called HeadMap, which maps the
activations of these critical heads in the located knowledge circuit to the residual
stream by two linear layers, thus enhancing knowledge flow from the knowledge
circuit in the residual stream. Extensive experiments conducted on diverse datasets
demonstrate the efficiency and efficacy of the proposed method.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong language understanding capabili-
ties (Kenton & Toutanova, 2019; Lewis et al., 2020; Radford et al., 2018; 2019; Brown et al., 2020)
by pertaining on large corpora and can achieve excellent performance on downstream tasks with
fine-tuning (Houlsby et al., 2019; Li & Liang, 2021; Hu et al., 2021; Liu et al., 2024). Consequently,
LLMs are applied to a wide range of fields, which creates a growing need to understand model
behavior. However, due to the complex nonlinear interactions within these models, understanding
their intrinsic mechanisms remains a significant challenge.

To understand the intrinsic mechanisms of models, previous works (Meng et al., 2022; Wang
et al., 2022; Zhang et al., 2024) analyze the roles of different components (e.g., Multi-Head Atten-
tion (MHA) blocks and Feed-Forward Network (FFN) blocks) using the causal mediation analysis
(CMA) method (PEARL, 2001; Vig et al., 2020) on well-constructed sentences. In particular, Zhang
et al. (2024) proposes precise fine-tuning of key attention heads based on their findings to improve
the performance of LLMs on mathematical computation tasks. While effective, these studies focus
on specific tasks and sentence formats, limiting their scalability.

To address this limitation, we analyze the mechanisms of LLMs from the perspective of multi-head
attention. Through experiments, we find that masking a single attention head, randomly masking
different heads across various layers, or employing simple greedy masking does not significantly
impact the model’s ability to make correct predictions. This indicates the presence of a complex
structure in LLMs that affects the model’s ability to make accurate predictions, and that the behavior
of attention heads is influenced by those in earlier layers. Based on these findings, we propose
a layer-conditioned locating algorithm, which accounts for the dependency relationships between
different layers, to identify important attention heads layer by layer. Using this method, we can
locate a series of attention heads crucial for the ability to make correct predictions on a specific task.
We refer to this series of attention heads across all layers as the knowledge circuit (Yao et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In addition to enhancing the understanding of LLMs behavior, since the forward pass of LLMs
can be considered as a residual stream where each component of LLMs reads inputs from it and
writes outputs to it (Wang et al., 2022; Todd et al., 2024; Zhang et al., 2024), the knowledge circuit
identified by the proposed layer-conditional locating algorithm could help improve the performance
of LLMs on downstream tasks by enhancing the influence of the knowledge flow in it. To achieve
that, we propose a novel parameter-efficient fine-tuning (PEFT) method called HeadMap. Instead
of updating all the attention heads as did in conventional PEFT methods, the proposed HeadMap
method only transforms the output of attention heads in the identified knowledge circuit via up
and down projection and adds the transformed output into the residual stream,helping LLMs better
adapt to downstream tasks. The number of learnable parameters in HeadMap is small, since the
number of attention heads in the knowledge circuit is not large, leading to its parameter efficiency.
Through extensive evaluations on diverse datasets, we demonstrate that the proposed HeadMap
method achieves comparable performance to the baseline with fewer parameters. Additionally, the
HeadMap method is complementary to other PEFT methods (e.g., LoRA (Hu et al., 2021)), and
combining them could significantly enhance the performance.

The contributions of this paper include the following points: (i) We propose the layer-conditioned
locating algorithm to identify the existence of knowledge circuits in LLMs that significantly influ-
ence the ability to make correct predictions; (ii) Based on knowledge circuits, we proposed the
HeadMap method to enhance the knowledge circuits in the residual stream during the forward pass
of LLMs, aiding the model in better adapting to downstream tasks; (iii) Experiments on extensive
datasets demonstrate the parameter efficiency and effectiveness of the proposed HeadMap method.

2 RELATED WORKS

2.1 MECHANISTIC INTERPRETABILITY OF LARGE LANGUAGE MODELS

As LLMs play increasingly important roles across various domains (Obermeyer et al., 2019; Rudin,
2019; Bender et al., 2021), understanding the underlying mechanisms behind their varying perfor-
mance on different tasks has become a growing research focus (Vig et al., 2020; Meng et al., 2022;
Wang et al., 2022; Todd et al., 2024; Zhang et al., 2024). To investigate the underlying mechanisms
of LLMs, Vig et al. (2020) employ causal mediation analysis (CMA) (PEARL, 2001) to interpret the
instinct mechanism of LLM. Following (Vig et al., 2020), Meng et al. (2022) apply CMA method to
identify the crucial activations for the model’s factual predictions, while Todd et al. (2024) employ
CMA in the In-Context Learning (ICL) scenario and reveal that some attention heads in LLMs trans-
mit compact representations corresponding to the task. To enhance the analysis method proposed
in (Vig et al., 2020), Wang et al. (2022) propose the path patching method to analyze the role of
attention heads on the indirect object identification task. Inspired by (Vig et al., 2020), Zhang et al.
(2024) construct a dataset for mathematical computation tasks and employ a path patching method
to identify that only a small subset of attention heads plays a crucial role in this task. Yao et al.
(2024) focus on factual recall tasks and ablate the special edge in the computation graph of the lan-
guage model to identify the knowledge circuits. Although those studies analyze the intrinsic mecha-
nisms of LLMs from various perspectives, their analytical methods heavily rely on well-constructed
data and are limited to specific tasks, restricting their application to broader scenarios. In contrast,
the proposed layer-conditioned locating algorithm, a simple yet efficient method, can identify the
knowledge circuit that plays a crucial role in making correct predictions for various tasks.

2.2 PARAMETER-EFFICIENT FINE-TUNING

Due to the increasing size of LLMs, fully fine-tuning them for each downstream task has become in-
creasingly difficult. To address this challenge, various PEFT methods have been proposed. Existing
parameter-efficient methods are typically categorized into adapter-based methods, prompt tuning
methods, and low-rank adaptation methods. Specifically, adapter-based methods (Houlsby et al.,
2019; Mahabadi et al., 2021; Karimi Mahabadi et al., 2021) insert compact modules between trans-
former layers. Prompt tuning methods (Li & Liang, 2021; Lester et al., 2021; Razdaibiedina et al.,
2023) add trainable tokens as prefixes to input or intermediate sequences. Low-rank adaptation
methods (Hu et al., 2021; Kopiczko et al., 2023; Wu et al., 2023; Ding et al., 2023; Valipour et al.,
2023; Li et al., 2024; Liu et al., 2024) introduces trainable low-rank matrices to approximate weight
updates. For example, LoRA represents the weight update matrix as the product of two low-rank

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

matrices and DoRA (Liu et al., 2024) decomposes pre-trained weights into magnitude and direction
while fine-tuning direction by LoRA. Different from those methods, the proposed HeadMap method
is built on the critical role of knowledge circuits in LLMs and it only makes updates to the attention
heads in the knowledge circuits.

3 PRELIMINARY

Transformers. In this work, we mainly focus on the autoregressive transformer model, which is
adopted by most LLMs. Given a sequence of input token embeddings X0 = [x0

1,x
0
2, · · · ,x0

N] ∈
RN×d, where N is the number of tokens in the input and d is the dimension of embeddings. For the
model with L transformer layers, each layer consists of an MHA block and an FFN block. Formally,
the hidden state xl

i of i-th token at layer l is calculated as

xl
i = xl−1

i + ali +ml
i, (1)

where ali and ml
i denote the output of the MHA block and the FFN block for the i-th token at layer

l, respectively. The calculation of ali and ml
i are introduced in the following.

Each MHA block consists of H attention heads, which can allow for attending to different represen-
tation subspaces at different positions in the sequence (Vaswani, 2017). For an individual head h in
layer l, it can be parameterized by three matrices: Wl,h

Q ,Wl,h
K ,Wl,h

V ∈ Rd× d
H . Formally, for the

input Xl−1 = [xl−1
1 ,xl−1

2 , . . . ,xl−1
N] of layer l, the output for attention head h is calculated as:

hl,h = f(Xl−1Wl,h
Q ,Xl−1Wl,h

K ,Xl−1Wl,h
V), (2)

where f(Q,K,V) = σ

(
QKT√
d/H

)
V and σ denotes the softmax function. Thus, the output Al =

[al1,a
l
2, · · · ,alN] of the MHA block is formulated as

Al = [hl,1,hl,2, · · · ,hl,H]Wl
O, (3)

where Wl
O ∈ Rd×d is a learnable output matrix.

A FFN block consists of a up projection matrix Wl
up ∈ Rd×d′

and a down projection matrix
Wl

down ∈ Rd′×d, where d′ > d. For token i, the output of the FFN block at layer l is:

ml
i = ϕ((xl−1

i + ali)W
l
up)W

l
down, (4)

where ϕ(·) is an activation function.

Next token prediction loss. Given an LLM M, the input sequence X, and the target sequence
Y = [y1,y2, ...,yNy

] with Ny tokens, the next token prediction loss is defined as

L(M,X,Y) = − 1

Ny

Ny∑
i=1

logM(yi|X,y<i). (5)

4 FROM MULTI-HEAD ATTENTION TO KNOWLEDGE CIRCUIT

It is generally accepted that different attention heads in multi-head attention modules focus on differ-
ent parts of the input and different subspaces of feature representations (Vaswani, 2017). Therefore,
previous works (Todd et al., 2024; Jiang et al., 2024) suggest that a small number of attention heads
in LLMs can comprehend the reasoning required by tasks and guide the model to make appropriate
predictions for diverse ICL tasks. However, it remains unclear whether this phenomenon persists in
more challenging tasks, e.g., commonsense reasoning tasks. In this section, we empirically validate
this phenomenon on commonsense reasoning tasks and present some empirical findings.

Model. In this section, empirical studies are conducted on the LLaMA2-7B model (Touvron et al.,
2023). LLaMA2-7B utilizes a decoder-only transformer architecture and is trained on a large text
corpus, thus it offers competitive performance across various natural language processing tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

(a)

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

4

6

8

10

12

14

16

(b)

0 5 10 15 20 25 30
Layer

4

6

8

10

12

14

16

18

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(c)

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

2.0

2.5

3.0

3.5

4.0

(d)

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

4

5

6

7

8

9

10

11

(e)

0 5 10 15 20 25 30
Layer

2

4

6

8

10

12

14

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(f)
Figure 1: Figures (a) and (d) show the average loss on 64 samples from the SIQA and HellaSwag
datasets, respectively, when masking a single attention head. Figures (b) and (e) show the average
loss on 64 samples from the SIQA and HellaSwag datasets, respectively, when applying the proposed
layer-conditioned locating algorithm. Figures (c) and (f) show the average loss w.r.t. different layers
of LLMs on the SIQA and HellaSwag datasets, respectively.

Task and Datasets. We conduct experiments on commonsense reasoning tasks that have garnered
widespread attention. Those tasks are designed to challenge models beyond mere pattern recogni-
tion, requiring them to apply real-world knowledge to make inferences. Due to the complexity of
the task inputs, performing causal inference analysis through input sequence modifications to iden-
tify underlying knowledge circuits, as explored in previous works (Wang et al., 2022; Zhang et al.,
2024; Meng et al., 2022), presents challenges. Specifically, the commonsense reasoning tasks con-
tain eight datasets, including six question-answering datasets (i.e., BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), ARC-e (Clark et al., 2018), ARC-c (Clark et al., 2018),
and OBQA (Mihaylov et al., 2018)), a context completion dataset (i.e., HellaSwag (Zellers et al.,
2019)), and a fill-in-the-blank dataset (i.e., WinoGrande (Sakaguchi et al., 2021)). Following (Todd
et al., 2024; Jiang et al., 2024), our analysis focuses on samples that LLMs can predict successfully
and utilizes such 64 samples with the lowest next token prediction loss on each dataset to conduct
experiments.

4.1 EXPERIMENT 1: LOCATING CRITICAL ATTENTION HEADS

Critical attention heads are considered as those who change their outputs and then have a substantial
influence on the LLMs’ ability to make correct predictions for a certain task. Therefore, a straight-
forward method to locate critical attention heads is to mask their outputs and observe whether it
causes the LLM to make incorrect predictions. That is, to evaluate the importance of attention head
h in layer l, we set hl,h = 0 and calculate the training loss (i.e. next token prediction loss). If this
loss is much larger than the loss without the masking, this attention head may be critical.

Results. Based on this simple idea, we conduct experiments on commonsense reasoning tasks. Fig-
ure 1(a) and 1(d) illustrate the effect of masking each head in each layer for LLaMA2-7B on SIQA
and HellaSwag datasets. The overall results are shown in Figure 4 of Appendix A.1. According to
the results, we can see that masking a single attention head does not cause significant changes to
the loss of LLMs. For example, the highest average loss change, the difference between the aver-
age loss after and before masking on the SIQA and HellaSwag datasets is only +3.02 and +2.58,
respectively. This suggests that for complex tasks, the loss of LLMs is not driven by the output
of a single attention head. Inspired by (Elhage et al., 2021), the knowledge flow in the LLMs can

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Layer-Conditioned Locating Algorithm
Require: Number of selected attention heads n of each layer, set of selected samples D, modelM

with L layers and H heads at each layer.
1: Initialize H← ∅
2: for l← 1 to L do
3: for h← 1 to H do
4: H← H ∪ {(l, h)};
5: lossl,h ← 0
6: for (X,Y) ∈ D do
7: lossl,h ← lossl,h + L(MH,X,Y) ▷ Calculate the loss when mask the heads in H
8: end for
9: H← H \ {(l, h)}

10: end for
11: for h ∈ arg top K(lossl, n) do
12: H← H ∪ {(l, h)} ▷ Select heads with higher influence of loss
13: end for
14: end for
15: return H

be considered as a residual stream, while the MHA blocks and the FFN blocks can read and write
knowledge in this stream. Therefore, we hypothesize that within LLMs, there exists a knowledge
circuit composed of multiple attention heads across different layers, which aids the model in making
correct predictions for specific tasks by reading and writing the important knowledge in the residual
stream and we conduct the following experiments to verify this hypothesis.

4.2 EXPERIMENT 2: SIMPLE GREEDY LOCATING ALGORITHM

To have a better understanding of the knowledge circuit, we consider the forward pass of the LLM
as a computation graph (Wang et al., 2022; Zhang et al., 2024). Each node in this computation
graph denotes a computation component of LLM (i.e., attention heads and FFN blocks) and the
edge between different nodes denotes the hidden state, which is calculated from the starting node
and is the input of the ending node. Therefore, the knowledge circuit can be viewed as a subgraph
of the computational graph in LLMs and facilitates the critical knowledge flow from input to output.

Based on this perspective, a natural approach to locating a knowledge circuit is to make a simple
greedy locating. This greedy locating method selects the top-n most critical attention heads in each
layer, where the importance of each attention head is calculated as in Section 4.1, and constructs the
knowledge circuit as the subgraph of the computation graph consisting of selected attention heads.

Results. Here we set n to be 8 and hence the knowledge circuit consists of 8 × 32 attention heads.
The green lines in Figures 1(c) and 1(f) show the loss change curve when attention heads are masked
layer by layer using the aforementioned greedy locating method. The overall results are shown
in Figure 6 of Appendix A.3. It is observed that while the initial layers show significant impact,
masking attention heads after the 5-th layer does not lead to substantial changes. This contradicts
previous findings (Jin et al., 2024), which finds that attention heads in the later layers still play a
significant role. A plausible explanation is that this greedy locating method overlooks the inter-layer
dependencies within LLMs. Specifically, when critical attention heads in earlier layers are masked,
the attention heads in later layers may behave differently, since some attention heads that seem
impactful individually might merely reinforce the knowledge provided by earlier critical attention
heads, and their influence disappears once those earlier heads are masked.

4.3 EXPERIMENT 3: LAYER-CONDITIONED LOCATING ALGORITHM

To address this issue, we propose a layer-conditioned locating algorithm to locate knowledge cir-
cuits by taking layer dependencies into consideration. Specifically, the algorithm performs a greedy
search layer by layer, with the loss calculation for each masking attention head depending on the
attention heads masked in the previous layers. The detailed process is shown in Algorithm 1, whose
time complexity is O(HL) with H as the number of attention heads per layer in LLMs and L as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the total number of layers. Similar to the greedy locating algorithm, we set n = 8 and evaluate the
layer-conditioned locating algorithm on LLaMA2-7B.

Results. Figures 1(b) and 1(e) show the average loss when masking the corresponding attention
heads, with critical attention heads in previous layers already masked. The overall results are shown
in Figure 5 of Appendix A.2. Figures 1(c) and 1(f) show the trend of the average loss w.r.t. the
number of masked layers for selecting 8 heads per layer randomly by the greedy locating algorithm
and by layer-conditioned locating algorithm, respectively. The overall results are shown in Figure
6 of Appendix A.3. It can be seen that the knowledge circuit selected by the layer-conditioned
locating algorithm has a greater impact on the training loss compared to that selected randomly or
by the greedy locating algorithm.

4.4 FINDINGS

Based on the above experimental results and analyses, we have the following findings.

Finding 1. Masking some attention heads (i.e. the knowledge circuit) significantly impairs the large
language model’s ability to make accurate predictions, indicating that the knowledge written and
read by the knowledge circuit in the residual stream is crucial for correct predictions.

Finding 2. Masking redundant attention heads in some cases reduces loss, suggesting that knowl-
edge written and read by certain redundant attention heads in the residual stream may interfere with
the model’s accurate predictions.

Finding 3. For a given task, a knowledge circuit impacts the ability of LLMs to make correct predic-
tions, and knowledge circuits varies across tasks. This suggests that LLMs use different knowledge
and patterns for different tasks, and there is no single knowledge circuit that can handle all tasks.

5 METHODOLOGY

Findings 1 and 3 suggest, there exists a crucial subset of attention heads, referred to as the knowl-
edge circuit, that are essential for making the right predictions on the corresponding task. These
knowledge circuits enable the model to make accurate predictions by reading and writing important
knowledge in the residual stream of the LLM. However, Finding 2 suggests the presence of numer-
ous redundant attention heads in the model, whose outputs interfere with the knowledge flow in the
knowledge circuit, thus leading to incorrect predictions. Inspired by these findings, we propose a
novel parameter-efficient fine-tuning method, HeadMap. This method enhances the knowledge flow
from knowledge circuits in the residual stream, aiding large language models in making accurate
predictions.

Due to the FFN block reading and writing on both the residual stream and MHA output, we propose
two variants of the HeadMap method: the first one enhances the residual stream directly (Section
5.1), and the other enhances in the MHA block (Section 5.2). Specifically, the former bypasses the
FFN block and WO, directly writing the knowledge from the knowledge circuit into the residual
stream, while the latter writes the knowledge into the MHA outputs, thereby affecting both the
residual stream and the operation of the FFN block.

5.1 HEADMAP FOR HIDDEN STATES

The forward pass of LLMs can be viewed as a long residual stream, where all attention blocks
and FFN blocks read from and write to it. Thus, at the l-th layer, to enhance the influence of the
knowledge circuit located by the layer-conditioned locating algorithm, we map the outputs of the
selected attention heads and add them to the hidden state Xl. Formally, the output of layer l is
calculated as

Xl = Xl−1 +Al +Ml + Map([hl,s1 , ...,hl,sn]), (6)
where Ml = [ml

1,m
l
2, · · · ,ml

N] denotes the output of the FFN block in layer l, Map(·) denotes a
neural network, H denotes the set containing the selected attention heads in the knowledge circuits,
n is the number of selected attention heads per layer, and (l, si) ∈ H,∀i ∈ [1, n]. To reduce the
number of trainable parameters in Map(·), we use a bottleneck architecture where we first down-
project the outputs of the selected attention heads into r-dimension and then up-project them into d.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Thus, the output can be formulated as

Xl = Xl−1 +Al +Ml + Up
(
Down([hl,s1 , ...,hl,sn])

)
. (7)

5.2 HEADMAP FOR OUTPUTS OF MHA BLOCKS

In addition to adding directly to the residual stream, another way to enhance the knowledge circuit
is to place HeadMap within the MHA. This involves directly adding the mapped output to the output
Al of the MHA block at the l-th layer, resulting in the following output as

Al = [hl,1,hl,2, · · · ,hl,H]Wl
O + Up

(
Down([hl,s1 , ...,hl,sn])

)
. (8)

Since we use two linear mappings here, this method is similar to selecting {W l,h
O |(l, h) ∈ H} to

perform LoRA fine-tuning and does not introduce inference delay.

5.3 IMPLEMENTED DETIALS

Initialization. The parameters of down projection layers are initialized as 0, while the parameters
of up-project layers are initialized by Kaiming uniform. Therefore, in the begining of the training
process, the HeadMap method does not change the output of LLMs.

Parameter complexity. We provide a parameter complexity analysis of the proposed HeadMap
method, where the two variants have the same number of parameters. To fine-tune the large lan-
guage model with hidden dimension d, the proposed HeadMap method selects n attention heads at
each layer. Thus, the HeadMap method introduces O

(
(n× d

H + 1)× r + (r + 1)× d
)

trainable
parameters each layer, where r is the dimension after down-projection and r ≪ d.

6 EXPERIMENT

In this section, we empirically evaluate the proposed HeadMap method.

6.1 EXPERIMENTS ON COMMONSENSE REASONING TASKS

In this section, we conduct experiments on commonsense reasoning tasks.

Datasets. As introduced before, the commonsense reasoning tasks comprise eight datasets, in-
cluding BoolQ, PIQA, SIQA, ARC-e, ARC-c, OBQA, HellaSwag, and WinoGrande. Each dataset
contains a training and testing set. We use the accuracy metric to measure the performance of each
method on each dataset.

Baselines. LLaMA2-7B (Touvron et al., 2023) and LLaMA3-8B (Meta, 2024) are used to be LLMs.
We compare the proposed HeadMap method with LoRA (Hu et al., 2021) and DoRA (Liu et al.,
2024). LoRA and DoRA are used on WQ, WK , WV , WO, Wup, and Wdown at each layer. Addi-
tionally, we explore combining HeadMap with LoRA and DoRA by applying LoRA or DoRA to
fine-tune WV , Wup, and Wdown while implementing HeadMap.

Setups. For commonsense reasoning datasets, we fine-tune and evaluate models on each single
dataset. The batch size is set to 16, and the AdamW optimizer is used. We use the linear learning
rate scheduler and train all methods for 2 epochs with 100 warmup steps. The learning rate is set to
0.0002 for LoRA and DoRA, while set to 0.001 for HeadMap. We set rank r = 32 for all methods
and α = 64 for LoRA and DoRA. We select 8 attention heads for each MHA block and use 64
samples in each dataset to locate the knowledge circuit.

Results. The experimental results on commonsense reasoning datasets are shown in Table 1. It can
be observed that by enhancing the impact of critical heads, both variants of the HeadMap method
achieve comparable results to the baselines while introducing only one-tenth of the parameters. Ad-
ditionally, we find that HeadMap and LoRA-based methods (i.e., LoRA and DoRA) are complemen-
tary as combining LoRA and DoRA with HeadMap achieves better results with fewer parameters.
Moreover, on LLaMA2-7B, combining HeadMap for hidden states with DoRA achieves the best per-
formance on average (+1.29% compared to DoRA) and some tasks (i.e. BoolQ, SIQA, and OBQA),
while HeadMap for hidden states with LoRA achieves the best performance on average (+1.06%
compared to DoRA) and several tasks (i.e. HellaSwag, Arc-c, and OBQA) on LLaMA3-8B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B. The best result in each comparison group is in bold. HeadMapMHA denotes the variant of
HeadMap for outputs of MHA blocks as introduced in Section 5.2 and HeadMapHS denotes the
variant of HeadMap for hidden states in Section 5.1.

Model # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

LoRA 0.95 63.52 81.34 78.56 93.78 81.93 79.71 54.78 77.40 76.38
DoRA 0.96 64.25 83.03 78.30 93.81 82.95 79.50 55.97 78.20 77.02
HeadMapMHA 0.08 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78

+ LoRA (V, U, D) 0.66 65.38 84.66 79.58 93.62 80.58 81.65 56.40 80.20 77.76
+ DoRA (V, U, D) 0.67 65.93 84.06 79.79 93.67 81.93 82.03 57.00 81.00 78.18

HeadMapHS 0.08 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46
+ LoRA (V, U, D) 0.66 66.85 84.06 79.84 93.59 82.08 82.37 56.31 80.60 78.21
+ DoRA (V, U, D) 0.67 67.16 84.28 80.14 93.59 82.00 81.73 56.57 81.00 78.31

LLaMA3-8B
LoRA 0.80 76.30 86.07 80.60 96.01 86.82 90.70 78.67 83.40 84.82
DoRA 0.81 76.73 86.40 80.60 96.13 86.42 91.37 78.75 87.60 85.50
HeadMapMHA 0.07 75.29 89.17 81.47 95.64 85.24 92.00 78.75 88.40 85.74

+ LoRA (V, U, D) 0.60 76.30 90.48 81.27 96.16 87.13 92.05 80.46 88.00 86.48
+ DoRA (V, U, D) 0.61 76.67 89.83 81.68 96.35 87.92 92.13 79.69 87.80 86.51

HeadMapHS 0.07 75.35 89.28 81.53 95.53 85.40 92.17 78.92 87.80 85.75
+ LoRA (V, U, D) 0.60 76.24 89.39 81.52 96.53 87.29 91.84 81.06 88.60 86.56
+ DoRA (V, U, D) 0.61 76.48 90.04 81.73 96.44 87.29 92.30 79.78 87.00 86.38

Table 2: Accuracy (%) on five NLU datasets using LLaMA2-7B and LLaMA3-8B. The best result
in each comparison group is in bold. HeadMap is for outputs of MHA blocks. HeadMapHS is for
hidden states.

Method # Params (%) CoLA MRPC RTE SST-2 WNLI Avg.
LLaMA2-7B

LoRA 0.95 49.20 70.34 87.00 96.10 59.15 72.36
HeadMapMHA 0.08 52.15 69.12 82.67 95.87 54.93 70.95

+ LoRA (V, U, D) 0.66 59.92 82.11 87.36 96.90 56.34 76.53
HeadMapHS 0.08 47.63 77.70 85.92 95.53 54.93 72.34

+ LoRA (V, U, D) 0.66 64.41 80.39 87.36 96.44 59.15 77.55
LLaMA3-8B

LoRA 0.80 65.48 85.29 88.81 96.10 70.42 81.22
HeadMapMHA 0.07 62.75 85.78 88.09 95.76 71.83 80.84

+ LoRA (V, U, D) 0.60 67.82 87.25 90.25 96.33 80.28 84.39
HeadMapHS 0.07 63.85 85.29 88.81 95.99 69.01 80.59

+ LoRA (V, U, D) 0.60 68.77 87.75 89.89 96.44 77.46 84.06

6.2 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

In this section, we conduct experiments on Natural Language Understanding (NLU) tasks.

Datasets. For NLU tasks, we compare baselines on five datasets, including a linguistic acceptability
dataset (i.e., CoLA (Warstadt et al., 2018)), a paraphrase similarity dataset (i.e., MRPC (Dolan &
Brockett, 2005)), a natural language inference dataset (i.e., RTE (Wang et al., 2019)), a sentiment
analysis dataset (i.e., SST-2 (Socher et al., 2013)), and a coreference resolution dataset (i.e., WNLI
(Wang et al., 2019)). We use Matthew’s correlation for CoLA and accuracy for other tasks to
measure the performance of each method.

Baselines. For NLU tasks, we compare the proposed HeadMap method with LoRA on LLaMA2-7B
and LLaMA3-8B. LoRA are used on WQ, WK , WV , WO, Wup, and Wdown at each layer. Moreover,
we combine HeadMap with LoRA.

Setups. Similar to commonsense reasoning datasets, we fine-tune and evaluate models on each
single dataset. The batch size is set to 16, and the AdamW optimizer is used. We use the linear
learning rate scheduler and train all methods for 2 epochs with 100 warmup steps. For the learning
rate of each method, we perform the grid search in {0.0001, 0.0002, 0.0004, 0.0008, 0.001} on each
dataset. We set rank r = 32 for all methods and α = 64 for LoRA. We select 8 attention heads for
each MHA block. We select 8 attention heads for each MHA block and use 64 samples with the
lowest loss in each dataset to locate the knowledge circuit.

Results. The experimental results on diverse NLU datasets are shown in Table 2. As can be seen,
HeadMap achieves comparable performance with fewer parameters. Additionally, compared to
directly only applying LoRA for fine-tuning, combining it with HeadMap significantly enhances

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B for different selection strategies. HeadMap is for outputs of MHA blocks. HeadMapHS is for
hidden states.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

HeadMapMHA (Random) 62.63 82.48 78.25 91.88 78.14 78.07 54.78 75.00 75.15
HeadMapMHA 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78
HeadMapHS (Random) 63.27 83.57 78.30 92.51 76.64 78.79 53.41 75.40 75.24
HeadMapHS 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46

LLaMA3-8B
HeadMapMHA (Random) 74.46 87.92 80.50 95.35 84.05 90.95 77.90 86.80 84.74
HeadMapMHA 75.29 89.17 81.47 95.64 85.24 92.00 78.75 88.40 85.74
HeadMapHS (Random) 74.34 88.25 80.30 95.40 83.82 91.08 77.30 86.80 84.66
HeadMapHS 75.35 89.28 81.53 95.53 85.40 92.17 78.92 87.80 85.75

Table 4: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B for different number of selected heads. HeadMap is for outputs of MHA blocks. HeadMapHS is
for hidden states.

Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

HeadMapMHA (4) 0.07 64.50 82.10 79.93 92.59 78.93 79.29 55.38 78.20 76.37
HeadMapMHA (8) 0.08 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78
HeadMapMHA (16) 0.10 64.28 83.41 79.32 92.83 79.48 79.50 56.06 79.00 76.74
HeadMapHS (4) 0.07 64.04 82.92 78.81 92.56 79.01 79.67 54.18 79.20 76.30
HeadMapHS (8) 0.08 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46
HeadMapHS (16) 0.10 64.28 83.68 78.97 92.80 78.85 79.63 55.72 77.60 76.44

LLaMA3-8B
HeadMapMHA (4) 0.06 75.44 88.63 81.68 95.68 84.93 92.30 79.30 87.80 85.72
HeadMapMHA (8) 0.07 75.29 89.17 81.47 95.64 85.24 92.00 78.75 88.40 85.74
HeadMapMHA (16) 0.08 74.31 89.23 81.83 95.86 86.11 90.91 79.10 87.00 85.54
HeadMapHS (4) 0.06 75.05 88.36 81.17 95.35 85.08 91.75 79.86 87.20 85.48
HeadMapHS (8) 0.08 75.35 89.28 81.53 95.53 85.40 92.17 78.92 87.80 85.75
HeadMapHS (16) 0.08 75.08 88.74 81.63 95.76 85.63 92.13 79.44 87.60 85.75

performance. Specifically, HeadMap for hidden states has much better performance on average
(+5.19% compared to LoRA) and on the CoLA, RTE, and SST-2 datasets with LLaMA2-7B as the
LLM. For LLaMA3-8B, HeadMap for outputs of MHA blocks achieves the best results on average
(+2.84% compared to LoRA) and on the CoLA, MRPC, and SST-2 datasets.

6.3 ABLATION STUDY

Effect of layer-conditioned locating algorithm. Here, we conduct ablation study on the proposed
layer-conditioned locating algorithm. Following the hyperparameters setup in Section 6.1, we com-
pared it with a random selection algorithm on commonsense reasoning datasets. According to the
results shown in Table 3, we can see that attention heads selected by the layer-conditioned locating
algorithm outperforms random selection across all datasets and models, demonstrating the effective-
ness of the proposed layer-conditioned locating algorithm.

Sensitivity to the number of selected heads per layer. Here, we investigate the impact of the
number of selected attention heads to the fine-tuning performance with the same settings of other
hyperparameters as Section 6.1. According to the results shown in Table 4, we can observe that the
performance of the proposed HeadMap method remains stable w.r.t. the number of heads across the
two LLMs, which indicates that critical attention heads in each layer are limited and adding more
does not lead to performance improvement.

6.4 ANALYSIS

Overlapping of knowledge circuits in different datasets. In this experiment, we analyze the
overlapping of attention heads in knowledge circuits identified in different datasets by adopting the
same setups as Section 6.1. Specifically, we calculate the overlap rate of knowledge circuits between
datasets a and b as |Ha∩Hb|

L×H .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Boo
lQ

PIQ
A

SIQ
A

Hella
Sw

ag

Wino
Gran

de
ARC

-e
ARC

-c
OBQA

Boo
lQ

PIQ
A

SIQ
A

Hella
Sw

ag

Wino
Gran

de

ARC
-e

ARC
-c

OBQA

1.0 0.37 0.25 0.3 0.35 0.41 0.32 0.3

0.37 1.0 0.3 0.32 0.31 0.32 0.32 0.28

0.25 0.3 1.0 0.31 0.31 0.24 0.28 0.34

0.3 0.32 0.31 1.0 0.33 0.38 0.35 0.36

0.35 0.31 0.31 0.33 1.0 0.47 0.32 0.35

0.41 0.32 0.24 0.38 0.47 1.0 0.31 0.32

0.32 0.32 0.28 0.35 0.32 0.31 1.0 0.46

0.3 0.28 0.34 0.36 0.35 0.32 0.46 1.0

(a)

0 1 2 3 4 5 6 7 8
Selected Times

0

50

100

150

200

250

He
ad

 N
um

(b)

Figure 2: (a) The overlap rate of knowledge circuits between different tasks on LLaMA2-7B. (b)
Distribution of attention head selection frequency.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(a)

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(b)

Figure 3: The visualization of located knowledge circuits for (a) Arc-e and (b) WinoGrande on
LLaMA2-7B.

The overlap rate between different tasks on LLaMA2-7B and LLaMA3-8B are shown in Figures
2(a) and 8, respectively. The visualization of knowledge circuits for the Arc-easy and WinoGrande
datasets on LLaMA2-7B is shown in Figure 3. It can be observed that for most tasks, the overlap
rate of their identified knowledge circuits is low. This suggests that the knowledge circuits tend to
vary significantly due to differing knowledge requirements for different tasks. However, some tasks
show higher overlap rates. For example, when selecting only 8 attention heads per layer, the overlap
rate between the knowledge circuits in the ARC-e and WinoGrande datasets reaches 0.47, reflecting
the similar knowledge and behaviors needed for model reasoning in these tasks.

The number of times for attention heads being selected. In Figure 2(b), we record the number of
times being selected for each attention head over the eight commonsense reasoning datasets. It can
be seen that only a small number of attention heads are located by many different tasks, indicating
that most attention heads play a crucial role in only a few specific tasks.

7 CONCLUSION

In this paper, we propose the layer-conditioned locating algorithm to identify knowledge circuits
containing a series of attention heads that play a crucial role in a specific task. After locating the
knowledge circuit, we propose the HeadMap method to enhance the influence of the knowledge
circuit on the residual stream, allowing the model to better adapt to downstream tasks. Extension
experiments demonstrate that HeadMap achieves comparable performance with few parameters.
Moreover, HeadMap and LoRA-based methods are complementary, and their combination effec-
tively improves model performance. In our future work, we are interested in applying HeadMap to
more applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/
v1/N19-1300. URL https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gangwei Jiang, Zhaoyi Li, Caigao Jiang, Siqiao Xue, Jun Zhou, Linqi Song, Defu Lian, and Ying
Wei. Interpretable catastrophic forgetting of large language model fine-tuning via instruction
vector. arXiv preprint arXiv:2406.12227, 2024.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen, Jiexin Xu, Huaijun Li, Xiaojian Jiang,
Kang Liu, and Jun Zhao. Cutting off the head ends the conflict: A mechanism for interpreting
and mitigating knowledge conflicts in language models. arXiv preprint arXiv:2402.18154, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–
1035, 2021.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

11

https://aclanthology.org/N19-1300
https://aclanthology.org/I05-5002

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Elora: Efficient low-rank adaptation
with random matrices. In The Twelfth International Conference on Learning Representations,
2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan
Zhang, Lei Duan, Jie Zuo, Cal Yang, and Mingjie Tang. Mixlora: Enhancing large language
models fine-tuning with lora-based mixture of experts, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 565–576, 2021.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias
in an algorithm used to manage the health of populations. Science, 366(6464):447–453, 2019.

J PEARL. Direct and indirect effects. In Proc. of the 17th Conference on Uncertainty in Artificial
Intelligence, 2001, pp. 411–420, 2001.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and
Amjad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparameteri-
zation. In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://aclanthology.org/D13-1170.

Eric Todd, Millicent Li, Arnab Sharma, Aaron Mueller, Byron C Wallace, and David Bau. Function
vectors in large language models. In International Conference on Learning Representations.
ICLR, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3266–3279, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. In The Eleventh
International Conference on Learning Representations, 2022.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Xun Wu, Shaohan Huang, and Furu Wei. Mole: Mixture of lora experts. In The Twelfth International
Conference on Learning Representations, 2023.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun Chen.
Knowledge circuits in pretrained transformers. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
YVXzZNxcag.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming Cheung, Xinmei Tian, Xu Shen, and Jieping
Ye. Interpreting and improving large language models in arithmetic calculation. In Forty-first
International Conference on Machine Learning, 2024.

13

https://aclanthology.org/D13-1170
https://openreview.net/forum?id=YVXzZNxcag
https://openreview.net/forum?id=YVXzZNxcag

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 LOCATING THE CRITICAL ATTENTION HEAD

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

3.0

3.2

3.4

3.6

3.8

4.0

4.2

(a) Arc-easy.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

3.2

3.4

3.6

3.8

4.0

4.2

4.4

(b) Arc-challenge.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

3.0

3.2

3.4

3.6

3.8

4.0

(c) BoolQ.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

(d) OBQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

(e) PIQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

3.0

3.2

3.4

3.6

3.8

4.0

4.2

(f) WinoGrande.

Figure 4: When masking a single attention head, the average loss of 64 samples from each dataset.

The average loss in model predictions when a single attention head is masked is shown in Figure
4. It can be observed that masking a single attention head does not have a significant impact across
different datasets.

A.2 LAYER-CONDITIONED LOCATING ALGORITHM

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

4

6

8

10

12

14

16

(a) Arc-easy.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

5

10

15

20

25

(b) Arc-challenge.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(c) BoolQ.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

5

10

15

20

25

(d) OBQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

4

6

8

10

(e) PIQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

3

4

5

6

7

8

9

10

11

(f) WinoGrande.

Figure 5: When applying the proposed layer-conditioned locating algorithm, the average loss of 64
samples from each dataset.

Figure 5 illustrates the average loss in model predictions when a single attention head is masked
in the current layer, after previous layers have been masked, using the layer-conditioned locating
algorithm. As can be seen, the proposed method can find some attention heads that have a much
larger impact on model loss compared to masking a single attention head. This indicates that the
proposed method effectively identifies a series of attention heads, termed knowledge circuits, that
significantly influence the training loss of large language models.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer

4

6

8

10

12

14

16

18

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(a) Arc-easy.

0 5 10 15 20 25 30
Layer

5

10

15

20

25

30

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(b) Arc-challenge.

0 5 10 15 20 25 30
Layer

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(c) BoolQ.

0 5 10 15 20 25 30
Layer

5

10

15

20

25

30

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(d) OBQA.

0 5 10 15 20 25 30
Layer

4

6

8

10

12

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(e) PIQA.

0 5 10 15 20 25 30
Layer

4

6

8

10

12

Lo
ss

Random
Simple Greedy
Layer-Conditioned Locating

(f) WinoGrande.

Figure 6: The average loss w.r.t. layer of LLMs on all datasets.

A.3 AVERAGE LOSS CURVES OF DIFFERENT LOCATING METHODS

Figure 6 shows the loss curves of different location methods across various datasets w.r.t layer of
LLMs. It can be observed that, compared to random selection and simple greedy methods, our
proposed layer-conditioned locating algorithm more accurately identifies the attention heads with
the greatest impact on model training loss.

A.4 AVERAGE LOSS CURVES ON ALL SAMPLES AND SELECTED SAMPLES OF EACH DATASET

0 5 10 15 20 25 30
Layer

4

6

8

10

12

14

16

18

20

Lo
ss

Selected Samples
All Samples

(a) Arc-easy.

0 5 10 15 20 25 30
Layer

5

10

15

20

25

30

Lo
ss

Selected Samples
All Samples

(b) Arc-challenge.

0 5 10 15 20 25 30
Layer

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Lo
ss

Selected Samples
All Samples

(c) BoolQ.

0 5 10 15 20 25 30
Layer

5

10

15

20

25

30

Lo
ss

Selected Samples
All Samples

(d) OBQA.

0 5 10 15 20 25 30
Layer

2

4

6

8

10

12

Lo
ss

Selected Samples
All Samples

(e) PIQA.

0 5 10 15 20 25 30
Layer

4

5

6

7

8

9

10

11

12

Lo
ss

Selected Samples
All Samples

(f) WinoGrande.

Figure 7: The average loss w.r.t. layer of LLMs on all samples of datasets.

To demonstrate that using samples with minimal loss effectively represents the model’s ability to
handle the corresponding task, we plotted the loss across layers for all samples and for those with
minimal loss, as shown in Figure 7. As can be seen, the curves align closely, indicating that the loss
variations in samples with the smallest loss reflect those of all samples. This suggests that using
samples with the smallest loss to identify knowledge circuits is an efficient and effective approach.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Boo
lQ

PIQ
A

SIQ
A

Hella
Sw

ag

Wino
Gran

de
ARC

-e
ARC

-c
OBQA

Boo
lQ

PIQ
A

SIQ
A

Hella
Sw

ag

Wino
Gran

de

ARC
-e

ARC
-c

OBQA

1.0 0.31 0.31 0.29 0.26 0.34 0.27 0.31

0.31 1.0 0.29 0.35 0.3 0.39 0.35 0.33

0.31 0.29 1.0 0.38 0.36 0.39 0.38 0.38

0.29 0.35 0.38 1.0 0.39 0.41 0.45 0.42

0.26 0.3 0.36 0.39 1.0 0.36 0.47 0.38

0.34 0.39 0.39 0.41 0.36 1.0 0.52 0.46

0.27 0.35 0.38 0.45 0.47 0.52 1.0 0.51

0.31 0.33 0.38 0.42 0.38 0.46 0.51 1.0

Figure 8: The similarity of selected heads between different tasks on LLaMA3-8B.

A.5 SIMILARITY OF KNOWLEDGE CIRCUITS

Figure 8 shows the similarity of knowledge circuits identified across different datasets on LLaMA3-
8B. Most tasks exhibit very low similarity, while a few related tasks, such as ARC-e and ARC-c,
have higher similarity. This highlights the potential of using knowledge circuits to analyze the
behavior of similar tasks.

A.6 PATTERN OF KNOWLEDGE CIRCUITS

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(a) SIQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(b) Arc-challenge.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(c) BoolQ.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(d) OBQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(e) PIQA.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

(f) HellaSwag.

Figure 9: The located knowledge circuit of each dataset.

Figure 9 presents the patterns of knowledge circuits located by the layer-conditioned locating algo-
rithm across different datasets. While some datasets exhibit similar patterns, the majority show sig-
nificant variations. This motivates us to search for distinct knowledge circuits in different datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Learning rate of each baseline and each dataset.

Method CoLA MRPC RTE SST-2 WNLI
LLaMA2-7B

LoRA 2e-4 8e-4 8e-4 2e-4 1e-3
HeadMap 1e-3 8e-4 8e-4 1e-4 1e-3

+ LoRA (V, U, D) (1e-4, 4e-4) (1e-4, 8e-4) (1e-3, 8e-4) (1e-3, 2e-4) (8e-4, 4e-4)
HeadMapHS 8e-4 8e-4 1e-3 2e-4 8e-4

+ LoRA (V, U, D) (8e-4, 4e-4) (1e-4, 1e-3) (1e-3, 8e-4) (2e-4, 2e-4) (2e-4, 1e-3)
LLaMA3-8B

LoRA 2e-4 8e-4 4e-4 2e-4 2e-4
HeadMap 4e-4 8e-4 8e-4 1e-4 1e-3

+ LoRA (V, U, D) (1e-4, 4e-4) (2e-4, 2e-4) (1e-4, 4e-4) (1e-4, 2e-4) (8e-4, 8e-4)
HeadMapHS 8e-4 1e-3 8e-4 2e-4 4e-4

+ LoRA (V, U, D) (4e-4, 1e-4) (1e-3, 2e-4) (2e-4, 4e-4) (4e-4, 1e-4) (8e-4, 8e-4)

Table 6: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B for different selection strategies. HeadMap is for outputs of MHA blocks. HeadMapHS is for
hidden states.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

HeadMapMHA (Redundant) 62.35 81.88 77.33 91.60 77.74 77.40 54.01 76.60 74.86
HeadMapMHA (Random) 62.63 82.48 78.25 91.88 78.14 78.07 54.78 75.00 75.15
HeadMapMHA (Transfer from Winogrande) 64.04 82.86 79.06 92.53 79.40 79.46 56.40 77.40 76.39
HeadMapMHA 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78
HeadMapHS (Redundant) 63.03 82.37 76.92 91.37 78.30 77.99 53.42 75.80 74.90
HeadMapHS (Random) 63.27 83.57 78.30 92.51 76.64 78.79 53.41 75.40 75.24
HeadMapHS (Transfer from Winogrande) 64.53 82.97 78.92 92.58 78.37 79.76 54.95 77.60 76.21
HeadMapHS 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46

B IMPLEMENTED DETAILS

Table 5 presents the learning rates of LoRA, HeadMap, and their combination across different NLU
datasets. For HeadMap combined with the LoRA method, the former values in parentheses indicate
the learning rate for HeadMap and the latter is for LoRA.

C ABLATION STUDY

Transferability. In order to explore whether the knowledge circuit has transferability, we enhance
the knowledge circuit identified in the WinoGrande dataset on different datasets. The results are pre-
sented in Table 6. It can be observed that compared to random selection, the transferred knowledge
circuit demonstrates better performance. This suggests that some of the attention heads within the
knowledge circuit contain general knowledge, not merely task-specific or dataset-specific knowl-
edge. Hence, the knowledge circuits located by the layer-conditioned locating algorithm are capable
of generalizing to other tasks or datasets.

Rebundant. We conduct additional ablation studies on redundant heads. Specifically, we ran-
domly select 8 attention heads from redundant heads in each layer and enhance these attention
heads. The results are shown in Table Table 6. It can be observed that compared to a fully ran-
dom selection in each layer, the performance is worse when selecting and enhancing attention heads
from redundant heads. This indicates that the assistance provided by these redundant heads for the
model’s adaptation to downstream tasks is more limited.

17

	Introduction
	Related Works
	Mechanistic Interpretability of Large Language Models
	Parameter-Efficient Fine-Tuning

	Preliminary
	From multi-head attention to knowledge circuit
	Experiment 1: Locating Critical Attention Heads
	Experiment 2: Simple Greedy Locating Algorithm
	Experiment 3: Layer-Conditioned Locating Algorithm
	Findings

	Methodology
	HeadMap for Hidden States
	HeadMap for Outputs of MHA Blocks
	Implemented detials

	Experiment
	Experiments on Commonsense Reasoning Tasks
	Experiments on Natural Language Understanding Tasks
	Ablation study
	Analysis

	Conclusion
	Additional experimental results
	Locating the critical attention head
	Layer-conditioned locating algorithm
	Average loss curves of different locating methods
	blueAverage loss curves on all samples and selected samples of each dataset
	Similarity of knowledge circuits
	Pattern of knowledge circuits

	Implemented Details
	Ablation Study

