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ABSTRACT

Large language models (LLMs), through pretraining on extensive corpora, encom-
pass rich semantic knowledge and exhibit the potential for efficient adaptation to
diverse downstream tasks. However, the intrinsic mechanisms underlying LLMs
remain unexplored, limiting the efficacy of applying these models to downstream
tasks. In this paper, we explore the intrinsic mechanisms of LLMs from the per-
spective of knowledge circuits. Specifically, considering layer dependencies, we
propose a layer-conditioned locating algorithm to identify a series of attention
heads, which is a knowledge circuit of some tasks. Experiments demonstrate that
simply masking a small portion of attention heads in the knowledge circuit can
significantly reduce the model’s ability to make correct predictions. This suggests
that the knowledge flow within the knowledge circuit plays a critical role when
the model makes a correct prediction. Inspired by this observation, we propose
a novel parameter-efficient fine-tuning method called HeadMap, which maps the
activations of these critical heads in the located knowledge circuit to the residual
stream by two linear layers, thus enhancing knowledge flow from the knowledge
circuit in the residual stream. Extensive experiments conducted on diverse datasets
demonstrate the efficiency and efficacy of the proposed method.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong language understanding capabili-
ties (Kenton & Toutanova, 2019; Lewis et al., 2020; Radford et al., 2018; 2019; Brown et al., 2020)
by pertaining on large corpora and can achieve excellent performance on downstream tasks with
fine-tuning (Houlsby et al., 2019; Li & Liang, 2021; Hu et al., 2021; Liu et al., 2024). Consequently,
LLMs are applied to a wide range of fields, which creates a growing need to understand model
behavior. However, due to the complex nonlinear interactions within these models, understanding
their intrinsic mechanisms remains a significant challenge.

To understand the intrinsic mechanisms of models, previous works (Meng et al., 2022; Wang
et al., 2022; Zhang et al., 2024) analyze the roles of different components (e.g., Multi-Head Atten-
tion (MHA) blocks and Feed-Forward Network (FFN) blocks) using the causal mediation analysis
(CMA) method (PEARL, 2001; Vig et al., 2020) on well-constructed sentences. In particular, Zhang
et al. (2024) proposes precise fine-tuning of key attention heads based on their findings to improve
the performance of LLMs on mathematical computation tasks. While effective, these studies focus
on specific tasks and sentence formats, limiting their scalability.

To address this limitation, we analyze the mechanisms of LLMs from the perspective of multi-head
attention. Through experiments, we find that masking a single attention head, randomly masking
different heads across various layers, or employing simple greedy masking does not significantly
impact the model’s ability to make correct predictions. This indicates the presence of a complex
structure in LLMs that affects the model’s ability to make accurate predictions, and that the behavior
of attention heads is influenced by those in earlier layers. Based on these findings, we propose
a layer-conditioned locating algorithm, which accounts for the dependency relationships between
different layers, to identify important attention heads layer by layer. Using this method, we can
locate a series of attention heads crucial for the ability to make correct predictions on a specific task.
We refer to this series of attention heads across all layers as the knowledge circuit (Yao et al., 2024).
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In addition to enhancing the understanding of LLMs behavior, since the forward pass of LLMs
can be considered as a residual stream where each component of LLMs reads inputs from it and
writes outputs to it (Wang et al., 2022; Todd et al., 2024; Zhang et al., 2024), the knowledge circuit
identified by the proposed layer-conditional locating algorithm could help improve the performance
of LLMs on downstream tasks by enhancing the influence of the knowledge flow in it. To achieve
that, we propose a novel parameter-efficient fine-tuning (PEFT) method called HeadMap. Instead
of updating all the attention heads as did in conventional PEFT methods, the proposed HeadMap
method only transforms the output of attention heads in the identified knowledge circuit via up
and down projection and adds the transformed output into the residual stream,helping LLMs better
adapt to downstream tasks. The number of learnable parameters in HeadMap is small, since the
number of attention heads in the knowledge circuit is not large, leading to its parameter efficiency.
Through extensive evaluations on diverse datasets, we demonstrate that the proposed HeadMap
method achieves comparable performance to the baseline with fewer parameters. Additionally, the
HeadMap method is complementary to other PEFT methods (e.g., LoRA (Hu et al., 2021)), and
combining them could significantly enhance the performance.

The contributions of this paper include the following points: (i) We propose the layer-conditioned
locating algorithm to identify the existence of knowledge circuits in LLMs that significantly influ-
ence the ability to make correct predictions; (ii) Based on knowledge circuits, we proposed the
HeadMap method to enhance the knowledge circuits in the residual stream during the forward pass
of LLMs, aiding the model in better adapting to downstream tasks; (iii) Experiments on extensive
datasets demonstrate the parameter efficiency and effectiveness of the proposed HeadMap method.

2 RELATED WORKS

2.1 MECHANISTIC INTERPRETABILITY OF LARGE LANGUAGE MODELS

As LLMs play increasingly important roles across various domains (Obermeyer et al., 2019; Rudin,
2019; Bender et al., 2021), understanding the underlying mechanisms behind their varying perfor-
mance on different tasks has become a growing research focus (Vig et al., 2020; Meng et al., 2022;
Wang et al., 2022; Todd et al., 2024; Zhang et al., 2024). To investigate the underlying mechanisms
of LLMs, Vig et al. (2020) employ causal mediation analysis (CMA) (PEARL, 2001) to interpret the
instinct mechanism of LLM. Following (Vig et al., 2020), Meng et al. (2022) apply CMA method to
identify the crucial activations for the model’s factual predictions, while Todd et al. (2024) employ
CMA in the In-Context Learning (ICL) scenario and reveal that some attention heads in LLMs trans-
mit compact representations corresponding to the task. To enhance the analysis method proposed
in (Vig et al., 2020), Wang et al. (2022) propose the path patching method to analyze the role of
attention heads on the indirect object identification task. Inspired by (Vig et al., 2020), Zhang et al.
(2024) construct a dataset for mathematical computation tasks and employ a path patching method
to identify that only a small subset of attention heads plays a crucial role in this task. Yao et al.
(2024) focus on factual recall tasks and ablate the special edge in the computation graph of the lan-
guage model to identify the knowledge circuits. Although those studies analyze the intrinsic mecha-
nisms of LLMs from various perspectives, their analytical methods heavily rely on well-constructed
data and are limited to specific tasks, restricting their application to broader scenarios. In contrast,
the proposed layer-conditioned locating algorithm, a simple yet efficient method, can identify the
knowledge circuit that plays a crucial role in making correct predictions for various tasks.

2.2 PARAMETER-EFFICIENT FINE-TUNING

Due to the increasing size of LLMs, fully fine-tuning them for each downstream task has become in-
creasingly difficult. To address this challenge, various PEFT methods have been proposed. Existing
parameter-efficient methods are typically categorized into adapter-based methods, prompt tuning
methods, and low-rank adaptation methods. Specifically, adapter-based methods (Houlsby et al.,
2019; Mahabadi et al., 2021; Karimi Mahabadi et al., 2021) insert compact modules between trans-
former layers. Prompt tuning methods (Li & Liang, 2021; Lester et al., 2021; Razdaibiedina et al.,
2023) add trainable tokens as prefixes to input or intermediate sequences. Low-rank adaptation
methods (Hu et al., 2021; Kopiczko et al., 2023; Wu et al., 2023; Ding et al., 2023; Valipour et al.,
2023; Li et al., 2024; Liu et al., 2024) introduces trainable low-rank matrices to approximate weight
updates. For example, LoRA represents the weight update matrix as the product of two low-rank
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matrices and DoRA (Liu et al., 2024) decomposes pre-trained weights into magnitude and direction
while fine-tuning direction by LoRA. Different from those methods, the proposed HeadMap method
is built on the critical role of knowledge circuits in LLMs and it only makes updates to the attention
heads in the knowledge circuits.

3 PRELIMINARY

Transformers. In this work, we mainly focus on the autoregressive transformer model, which is
adopted by most LLMs. Given a sequence of input token embeddings X0 = [x0

1,x
0
2, · · · ,x0

N ] ∈
RN×d, where N is the number of tokens in the input and d is the dimension of embeddings. For the
model with L transformer layers, each layer consists of an MHA block and an FFN block. Formally,
the hidden state xl

i of i-th token at layer l is calculated as

xl
i = xl−1

i + ali +ml
i, (1)

where ali and ml
i denote the output of the MHA block and the FFN block for the i-th token at layer

l, respectively. The calculation of ali and ml
i are introduced in the following.

Each MHA block consists of H attention heads, which can allow for attending to different represen-
tation subspaces at different positions in the sequence (Vaswani, 2017). For an individual head h in
layer l, it can be parameterized by three matrices: Wl,h

Q ,Wl,h
K ,Wl,h

V ∈ Rd× d
H . Formally, for the

input Xl−1 = [xl−1
1 ,xl−1

2 , . . . ,xl−1
N ] of layer l, the output for attention head h is calculated as:

hl,h = f(Xl−1Wl,h
Q ,Xl−1Wl,h

K ,Xl−1Wl,h
V ), (2)

where f(Q,K,V) = σ

(
QKT√
d/H

)
V and σ denotes the softmax function. Thus, the output Al =

[al1,a
l
2, · · · ,alN ] of the MHA block is formulated as

Al = [hl,1,hl,2, · · · ,hl,H ]Wl
O, (3)

where Wl
O ∈ Rd×d is a learnable output matrix.

A FFN block consists of a up projection matrix Wl
up ∈ Rd×d′

and a down projection matrix
Wl

down ∈ Rd′×d, where d′ > d. For token i, the output of the FFN block at layer l is:

ml
i = ϕ((xl−1

i + ali)W
l
up)W

l
down, (4)

where ϕ(·) is an activation function.

Next token prediction loss. Given an LLM M, the input sequence X, and the target sequence
Y = [y1,y2, ...,yNy

] with Ny tokens, the next token prediction loss is defined as

L(M,X,Y) = − 1

Ny

Ny∑
i=1

logM(yi|X,y<i). (5)

4 FROM MULTI-HEAD ATTENTION TO KNOWLEDGE CIRCUIT

It is generally accepted that different attention heads in multi-head attention modules focus on differ-
ent parts of the input and different subspaces of feature representations (Vaswani, 2017). Therefore,
previous works (Todd et al., 2024; Jiang et al., 2024) suggest that a small number of attention heads
in LLMs can comprehend the reasoning required by tasks and guide the model to make appropriate
predictions for diverse ICL tasks. However, it remains unclear whether this phenomenon persists in
more challenging tasks, e.g., commonsense reasoning tasks. In this section, we empirically validate
this phenomenon on commonsense reasoning tasks and present some empirical findings.

Model. In this section, empirical studies are conducted on the LLaMA2-7B model (Touvron et al.,
2023). LLaMA2-7B utilizes a decoder-only transformer architecture and is trained on a large text
corpus, thus it offers competitive performance across various natural language processing tasks.
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Figure 1: Figures (a) and (d) show the average loss on 64 samples from the SIQA and HellaSwag
datasets, respectively, when masking a single attention head. Figures (b) and (e) show the average
loss on 64 samples from the SIQA and HellaSwag datasets, respectively, when applying the proposed
layer-conditioned locating algorithm. Figures (c) and (f) show the average loss w.r.t. different layers
of LLMs on the SIQA and HellaSwag datasets, respectively.

Task and Datasets. We conduct experiments on commonsense reasoning tasks that have garnered
widespread attention. Those tasks are designed to challenge models beyond mere pattern recogni-
tion, requiring them to apply real-world knowledge to make inferences. Due to the complexity of
the task inputs, performing causal inference analysis through input sequence modifications to iden-
tify underlying knowledge circuits, as explored in previous works (Wang et al., 2022; Zhang et al.,
2024; Meng et al., 2022), presents challenges. Specifically, the commonsense reasoning tasks con-
tain eight datasets, including six question-answering datasets (i.e., BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), ARC-e (Clark et al., 2018), ARC-c (Clark et al., 2018),
and OBQA (Mihaylov et al., 2018)), a context completion dataset (i.e., HellaSwag (Zellers et al.,
2019)), and a fill-in-the-blank dataset (i.e., WinoGrande (Sakaguchi et al., 2021)). Following (Todd
et al., 2024; Jiang et al., 2024), our analysis focuses on samples that LLMs can predict successfully
and utilizes such 64 samples with the lowest next token prediction loss on each dataset to conduct
experiments.

4.1 EXPERIMENT 1: LOCATING CRITICAL ATTENTION HEADS

Critical attention heads are considered as those who change their outputs and then have a substantial
influence on the LLMs’ ability to make correct predictions for a certain task. Therefore, a straight-
forward method to locate critical attention heads is to mask their outputs and observe whether it
causes the LLM to make incorrect predictions. That is, to evaluate the importance of attention head
h in layer l, we set hl,h = 0 and calculate the training loss (i.e. next token prediction loss). If this
loss is much larger than the loss without the masking, this attention head may be critical.

Results. Based on this simple idea, we conduct experiments on commonsense reasoning tasks. Fig-
ure 1(a) and 1(d) illustrate the effect of masking each head in each layer for LLaMA2-7B on SIQA
and HellaSwag datasets. The overall results are shown in Figure 4 of Appendix A.1. According to
the results, we can see that masking a single attention head does not cause significant changes to
the loss of LLMs. For example, the highest average loss change, the difference between the aver-
age loss after and before masking on the SIQA and HellaSwag datasets is only +3.02 and +2.58,
respectively. This suggests that for complex tasks, the loss of LLMs is not driven by the output
of a single attention head. Inspired by (Elhage et al., 2021), the knowledge flow in the LLMs can
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Algorithm 1 Layer-Conditioned Locating Algorithm
Require: Number of selected attention heads n of each layer, set of selected samples D, modelM

with L layers and H heads at each layer.
1: Initialize H← ∅
2: for l← 1 to L do
3: for h← 1 to H do
4: H← H ∪ {(l, h)};
5: lossl,h ← 0
6: for (X,Y) ∈ D do
7: lossl,h ← lossl,h + L(MH,X,Y) ▷ Calculate the loss when mask the heads in H
8: end for
9: H← H \ {(l, h)}

10: end for
11: for h ∈ arg top K(lossl, n) do
12: H← H ∪ {(l, h)} ▷ Select heads with higher influence of loss
13: end for
14: end for
15: return H

be considered as a residual stream, while the MHA blocks and the FFN blocks can read and write
knowledge in this stream. Therefore, we hypothesize that within LLMs, there exists a knowledge
circuit composed of multiple attention heads across different layers, which aids the model in making
correct predictions for specific tasks by reading and writing the important knowledge in the residual
stream and we conduct the following experiments to verify this hypothesis.

4.2 EXPERIMENT 2: SIMPLE GREEDY LOCATING ALGORITHM

To have a better understanding of the knowledge circuit, we consider the forward pass of the LLM
as a computation graph (Wang et al., 2022; Zhang et al., 2024). Each node in this computation
graph denotes a computation component of LLM (i.e., attention heads and FFN blocks) and the
edge between different nodes denotes the hidden state, which is calculated from the starting node
and is the input of the ending node. Therefore, the knowledge circuit can be viewed as a subgraph
of the computational graph in LLMs and facilitates the critical knowledge flow from input to output.

Based on this perspective, a natural approach to locating a knowledge circuit is to make a simple
greedy locating. This greedy locating method selects the top-n most critical attention heads in each
layer, where the importance of each attention head is calculated as in Section 4.1, and constructs the
knowledge circuit as the subgraph of the computation graph consisting of selected attention heads.

Results. Here we set n to be 8 and hence the knowledge circuit consists of 8 × 32 attention heads.
The green lines in Figures 1(c) and 1(f) show the loss change curve when attention heads are masked
layer by layer using the aforementioned greedy locating method. The overall results are shown
in Figure 6 of Appendix A.3. It is observed that while the initial layers show significant impact,
masking attention heads after the 5-th layer does not lead to substantial changes. This contradicts
previous findings (Jin et al., 2024), which finds that attention heads in the later layers still play a
significant role. A plausible explanation is that this greedy locating method overlooks the inter-layer
dependencies within LLMs. Specifically, when critical attention heads in earlier layers are masked,
the attention heads in later layers may behave differently, since some attention heads that seem
impactful individually might merely reinforce the knowledge provided by earlier critical attention
heads, and their influence disappears once those earlier heads are masked.

4.3 EXPERIMENT 3: LAYER-CONDITIONED LOCATING ALGORITHM

To address this issue, we propose a layer-conditioned locating algorithm to locate knowledge cir-
cuits by taking layer dependencies into consideration. Specifically, the algorithm performs a greedy
search layer by layer, with the loss calculation for each masking attention head depending on the
attention heads masked in the previous layers. The detailed process is shown in Algorithm 1, whose
time complexity is O(HL) with H as the number of attention heads per layer in LLMs and L as

5
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the total number of layers. Similar to the greedy locating algorithm, we set n = 8 and evaluate the
layer-conditioned locating algorithm on LLaMA2-7B.

Results. Figures 1(b) and 1(e) show the average loss when masking the corresponding attention
heads, with critical attention heads in previous layers already masked. The overall results are shown
in Figure 5 of Appendix A.2. Figures 1(c) and 1(f) show the trend of the average loss w.r.t. the
number of masked layers for selecting 8 heads per layer randomly by the greedy locating algorithm
and by layer-conditioned locating algorithm, respectively. The overall results are shown in Figure
6 of Appendix A.3. It can be seen that the knowledge circuit selected by the layer-conditioned
locating algorithm has a greater impact on the training loss compared to that selected randomly or
by the greedy locating algorithm.

4.4 FINDINGS

Based on the above experimental results and analyses, we have the following findings.

Finding 1. Masking some attention heads (i.e. the knowledge circuit) significantly impairs the large
language model’s ability to make accurate predictions, indicating that the knowledge written and
read by the knowledge circuit in the residual stream is crucial for correct predictions.

Finding 2. Masking redundant attention heads in some cases reduces loss, suggesting that knowl-
edge written and read by certain redundant attention heads in the residual stream may interfere with
the model’s accurate predictions.

Finding 3. For a given task, a knowledge circuit impacts the ability of LLMs to make correct predic-
tions, and knowledge circuits varies across tasks. This suggests that LLMs use different knowledge
and patterns for different tasks, and there is no single knowledge circuit that can handle all tasks.

5 METHODOLOGY

Findings 1 and 3 suggest, there exists a crucial subset of attention heads, referred to as the knowl-
edge circuit, that are essential for making the right predictions on the corresponding task. These
knowledge circuits enable the model to make accurate predictions by reading and writing important
knowledge in the residual stream of the LLM. However, Finding 2 suggests the presence of numer-
ous redundant attention heads in the model, whose outputs interfere with the knowledge flow in the
knowledge circuit, thus leading to incorrect predictions. Inspired by these findings, we propose a
novel parameter-efficient fine-tuning method, HeadMap. This method enhances the knowledge flow
from knowledge circuits in the residual stream, aiding large language models in making accurate
predictions.

Due to the FFN block reading and writing on both the residual stream and MHA output, we propose
two variants of the HeadMap method: the first one enhances the residual stream directly (Section
5.1), and the other enhances in the MHA block (Section 5.2). Specifically, the former bypasses the
FFN block and WO, directly writing the knowledge from the knowledge circuit into the residual
stream, while the latter writes the knowledge into the MHA outputs, thereby affecting both the
residual stream and the operation of the FFN block.

5.1 HEADMAP FOR HIDDEN STATES

The forward pass of LLMs can be viewed as a long residual stream, where all attention blocks
and FFN blocks read from and write to it. Thus, at the l-th layer, to enhance the influence of the
knowledge circuit located by the layer-conditioned locating algorithm, we map the outputs of the
selected attention heads and add them to the hidden state Xl. Formally, the output of layer l is
calculated as

Xl = Xl−1 +Al +Ml + Map([hl,s1 , ...,hl,sn ]), (6)
where Ml = [ml

1,m
l
2, · · · ,ml

N ] denotes the output of the FFN block in layer l, Map(·) denotes a
neural network, H denotes the set containing the selected attention heads in the knowledge circuits,
n is the number of selected attention heads per layer, and (l, si) ∈ H,∀i ∈ [1, n]. To reduce the
number of trainable parameters in Map(·), we use a bottleneck architecture where we first down-
project the outputs of the selected attention heads into r-dimension and then up-project them into d.

6
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Thus, the output can be formulated as

Xl = Xl−1 +Al +Ml + Up
(
Down([hl,s1 , ...,hl,sn ])

)
. (7)

5.2 HEADMAP FOR OUTPUTS OF MHA BLOCKS

In addition to adding directly to the residual stream, another way to enhance the knowledge circuit
is to place HeadMap within the MHA. This involves directly adding the mapped output to the output
Al of the MHA block at the l-th layer, resulting in the following output as

Al = [hl,1,hl,2, · · · ,hl,H ]Wl
O + Up

(
Down([hl,s1 , ...,hl,sn ])

)
. (8)

Since we use two linear mappings here, this method is similar to selecting {W l,h
O |(l, h) ∈ H} to

perform LoRA fine-tuning and does not introduce inference delay.

5.3 IMPLEMENTED DETIALS

Initialization. The parameters of down projection layers are initialized as 0, while the parameters
of up-project layers are initialized by Kaiming uniform. Therefore, in the begining of the training
process, the HeadMap method does not change the output of LLMs.

Parameter complexity. We provide a parameter complexity analysis of the proposed HeadMap
method, where the two variants have the same number of parameters. To fine-tune the large lan-
guage model with hidden dimension d, the proposed HeadMap method selects n attention heads at
each layer. Thus, the HeadMap method introduces O

(
(n× d

H + 1)× r + (r + 1)× d
)

trainable
parameters each layer, where r is the dimension after down-projection and r ≪ d.

6 EXPERIMENT

In this section, we empirically evaluate the proposed HeadMap method.

6.1 EXPERIMENTS ON COMMONSENSE REASONING TASKS

In this section, we conduct experiments on commonsense reasoning tasks.

Datasets. As introduced before, the commonsense reasoning tasks comprise eight datasets, in-
cluding BoolQ, PIQA, SIQA, ARC-e, ARC-c, OBQA, HellaSwag, and WinoGrande. Each dataset
contains a training and testing set. We use the accuracy metric to measure the performance of each
method on each dataset.

Baselines. LLaMA2-7B (Touvron et al., 2023) and LLaMA3-8B (Meta, 2024) are used to be LLMs.
We compare the proposed HeadMap method with LoRA (Hu et al., 2021) and DoRA (Liu et al.,
2024). LoRA and DoRA are used on WQ, WK , WV , WO, Wup, and Wdown at each layer. Addi-
tionally, we explore combining HeadMap with LoRA and DoRA by applying LoRA or DoRA to
fine-tune WV , Wup, and Wdown while implementing HeadMap.

Setups. For commonsense reasoning datasets, we fine-tune and evaluate models on each single
dataset. The batch size is set to 16, and the AdamW optimizer is used. We use the linear learning
rate scheduler and train all methods for 2 epochs with 100 warmup steps. The learning rate is set to
0.0002 for LoRA and DoRA, while set to 0.001 for HeadMap. We set rank r = 32 for all methods
and α = 64 for LoRA and DoRA. We select 8 attention heads for each MHA block and use 64
samples in each dataset to locate the knowledge circuit.

Results. The experimental results on commonsense reasoning datasets are shown in Table 1. It can
be observed that by enhancing the impact of critical heads, both variants of the HeadMap method
achieve comparable results to the baselines while introducing only one-tenth of the parameters. Ad-
ditionally, we find that HeadMap and LoRA-based methods (i.e., LoRA and DoRA) are complemen-
tary as combining LoRA and DoRA with HeadMap achieves better results with fewer parameters.
Moreover, on LLaMA2-7B, combining HeadMap for hidden states with DoRA achieves the best per-
formance on average (+1.29% compared to DoRA) and some tasks (i.e. BoolQ, SIQA, and OBQA),
while HeadMap for hidden states with LoRA achieves the best performance on average (+1.06%
compared to DoRA) and several tasks (i.e. HellaSwag, Arc-c, and OBQA) on LLaMA3-8B.

7
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Table 1: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B. The best result in each comparison group is in bold. HeadMapMHA denotes the variant of
HeadMap for outputs of MHA blocks as introduced in Section 5.2 and HeadMapHS denotes the
variant of HeadMap for hidden states in Section 5.1.

Model # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

LoRA 0.95 63.52 81.34 78.56 93.78 81.93 79.71 54.78 77.40 76.38
DoRA 0.96 64.25 83.03 78.30 93.81 82.95 79.50 55.97 78.20 77.02
HeadMapMHA 0.08 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78

+ LoRA (V, U, D) 0.66 65.38 84.66 79.58 93.62 80.58 81.65 56.40 80.20 77.76
+ DoRA (V, U, D) 0.67 65.93 84.06 79.79 93.67 81.93 82.03 57.00 81.00 78.18

HeadMapHS 0.08 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46
+ LoRA (V, U, D) 0.66 66.85 84.06 79.84 93.59 82.08 82.37 56.31 80.60 78.21
+ DoRA (V, U, D) 0.67 67.16 84.28 80.14 93.59 82.00 81.73 56.57 81.00 78.31

LLaMA3-8B
LoRA 0.80 76.30 86.07 80.60 96.01 86.82 90.70 78.67 83.40 84.82
DoRA 0.81 76.73 86.40 80.60 96.13 86.42 91.37 78.75 87.60 85.50
HeadMapMHA 0.07 75.29 89.17 81.47 95.64 85.24 92.00 78.75 88.40 85.74

+ LoRA (V, U, D) 0.60 76.30 90.48 81.27 96.16 87.13 92.05 80.46 88.00 86.48
+ DoRA (V, U, D) 0.61 76.67 89.83 81.68 96.35 87.92 92.13 79.69 87.80 86.51

HeadMapHS 0.07 75.35 89.28 81.53 95.53 85.40 92.17 78.92 87.80 85.75
+ LoRA (V, U, D) 0.60 76.24 89.39 81.52 96.53 87.29 91.84 81.06 88.60 86.56
+ DoRA (V, U, D) 0.61 76.48 90.04 81.73 96.44 87.29 92.30 79.78 87.00 86.38

Table 2: Accuracy (%) on five NLU datasets using LLaMA2-7B and LLaMA3-8B. The best result
in each comparison group is in bold. HeadMap is for outputs of MHA blocks. HeadMapHS is for
hidden states.

Method # Params (%) CoLA MRPC RTE SST-2 WNLI Avg.
LLaMA2-7B

LoRA 0.95 49.20 70.34 87.00 96.10 59.15 72.36
HeadMapMHA 0.08 52.15 69.12 82.67 95.87 54.93 70.95

+ LoRA (V, U, D) 0.66 59.92 82.11 87.36 96.90 56.34 76.53
HeadMapHS 0.08 47.63 77.70 85.92 95.53 54.93 72.34

+ LoRA (V, U, D) 0.66 64.41 80.39 87.36 96.44 59.15 77.55
LLaMA3-8B

LoRA 0.80 65.48 85.29 88.81 96.10 70.42 81.22
HeadMapMHA 0.07 62.75 85.78 88.09 95.76 71.83 80.84

+ LoRA (V, U, D) 0.60 67.82 87.25 90.25 96.33 80.28 84.39
HeadMapHS 0.07 63.85 85.29 88.81 95.99 69.01 80.59

+ LoRA (V, U, D) 0.60 68.77 87.75 89.89 96.44 77.46 84.06

6.2 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

In this section, we conduct experiments on Natural Language Understanding (NLU) tasks.

Datasets. For NLU tasks, we compare baselines on five datasets, including a linguistic acceptability
dataset (i.e., CoLA (Warstadt et al., 2018)), a paraphrase similarity dataset (i.e., MRPC (Dolan &
Brockett, 2005)), a natural language inference dataset (i.e., RTE (Wang et al., 2019) ), a sentiment
analysis dataset (i.e., SST-2 (Socher et al., 2013)), and a coreference resolution dataset (i.e., WNLI
(Wang et al., 2019) ). We use Matthew’s correlation for CoLA and accuracy for other tasks to
measure the performance of each method.

Baselines. For NLU tasks, we compare the proposed HeadMap method with LoRA on LLaMA2-7B
and LLaMA3-8B. LoRA are used on WQ, WK , WV , WO, Wup, and Wdown at each layer. Moreover,
we combine HeadMap with LoRA.

Setups. Similar to commonsense reasoning datasets, we fine-tune and evaluate models on each
single dataset. The batch size is set to 16, and the AdamW optimizer is used. We use the linear
learning rate scheduler and train all methods for 2 epochs with 100 warmup steps. For the learning
rate of each method, we perform the grid search in {0.0001, 0.0002, 0.0004, 0.0008, 0.001} on each
dataset. We set rank r = 32 for all methods and α = 64 for LoRA. We select 8 attention heads for
each MHA block. We select 8 attention heads for each MHA block and use 64 samples with the
lowest loss in each dataset to locate the knowledge circuit.

Results. The experimental results on diverse NLU datasets are shown in Table 2. As can be seen,
HeadMap achieves comparable performance with fewer parameters. Additionally, compared to
directly only applying LoRA for fine-tuning, combining it with HeadMap significantly enhances
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Table 3: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B for different selection strategies. HeadMap is for outputs of MHA blocks. HeadMapHS is for
hidden states.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

HeadMapMHA (Random) 62.63 82.48 78.25 91.88 78.14 78.07 54.78 75.00 75.15
HeadMapMHA 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78
HeadMapHS (Random) 63.27 83.57 78.30 92.51 76.64 78.79 53.41 75.40 75.24
HeadMapHS 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46

LLaMA3-8B
HeadMapMHA (Random) 74.46 87.92 80.50 95.35 84.05 90.95 77.90 86.80 84.74
HeadMapMHA 75.29 89.17 81.47 95.64 85.24 92.00 78.75 88.40 85.74
HeadMapHS (Random) 74.34 88.25 80.30 95.40 83.82 91.08 77.30 86.80 84.66
HeadMapHS 75.35 89.28 81.53 95.53 85.40 92.17 78.92 87.80 85.75

Table 4: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B for different number of selected heads. HeadMap is for outputs of MHA blocks. HeadMapHS is
for hidden states.

Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

HeadMapMHA (4) 0.07 64.50 82.10 79.93 92.59 78.93 79.29 55.38 78.20 76.37
HeadMapMHA (8) 0.08 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78
HeadMapMHA (16) 0.10 64.28 83.41 79.32 92.83 79.48 79.50 56.06 79.00 76.74
HeadMapHS (4) 0.07 64.04 82.92 78.81 92.56 79.01 79.67 54.18 79.20 76.30
HeadMapHS (8) 0.08 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46
HeadMapHS (16) 0.10 64.28 83.68 78.97 92.80 78.85 79.63 55.72 77.60 76.44

LLaMA3-8B
HeadMapMHA (4) 0.06 75.44 88.63 81.68 95.68 84.93 92.30 79.30 87.80 85.72
HeadMapMHA (8) 0.07 75.29 89.17 81.47 95.64 85.24 92.00 78.75 88.40 85.74
HeadMapMHA (16) 0.08 74.31 89.23 81.83 95.86 86.11 90.91 79.10 87.00 85.54
HeadMapHS (4) 0.06 75.05 88.36 81.17 95.35 85.08 91.75 79.86 87.20 85.48
HeadMapHS (8) 0.08 75.35 89.28 81.53 95.53 85.40 92.17 78.92 87.80 85.75
HeadMapHS (16) 0.08 75.08 88.74 81.63 95.76 85.63 92.13 79.44 87.60 85.75

performance. Specifically, HeadMap for hidden states has much better performance on average
(+5.19% compared to LoRA) and on the CoLA, RTE, and SST-2 datasets with LLaMA2-7B as the
LLM. For LLaMA3-8B, HeadMap for outputs of MHA blocks achieves the best results on average
(+2.84% compared to LoRA) and on the CoLA, MRPC, and SST-2 datasets.

6.3 ABLATION STUDY

Effect of layer-conditioned locating algorithm. Here, we conduct ablation study on the proposed
layer-conditioned locating algorithm. Following the hyperparameters setup in Section 6.1, we com-
pared it with a random selection algorithm on commonsense reasoning datasets. According to the
results shown in Table 3, we can see that attention heads selected by the layer-conditioned locating
algorithm outperforms random selection across all datasets and models, demonstrating the effective-
ness of the proposed layer-conditioned locating algorithm.

Sensitivity to the number of selected heads per layer. Here, we investigate the impact of the
number of selected attention heads to the fine-tuning performance with the same settings of other
hyperparameters as Section 6.1. According to the results shown in Table 4, we can observe that the
performance of the proposed HeadMap method remains stable w.r.t. the number of heads across the
two LLMs, which indicates that critical attention heads in each layer are limited and adding more
does not lead to performance improvement.

6.4 ANALYSIS

Overlapping of knowledge circuits in different datasets. In this experiment, we analyze the
overlapping of attention heads in knowledge circuits identified in different datasets by adopting the
same setups as Section 6.1. Specifically, we calculate the overlap rate of knowledge circuits between
datasets a and b as |Ha∩Hb|

L×H .
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Figure 2: (a) The overlap rate of knowledge circuits between different tasks on LLaMA2-7B. (b)
Distribution of attention head selection frequency.
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Figure 3: The visualization of located knowledge circuits for (a) Arc-e and (b) WinoGrande on
LLaMA2-7B.

The overlap rate between different tasks on LLaMA2-7B and LLaMA3-8B are shown in Figures
2(a) and 8, respectively. The visualization of knowledge circuits for the Arc-easy and WinoGrande
datasets on LLaMA2-7B is shown in Figure 3. It can be observed that for most tasks, the overlap
rate of their identified knowledge circuits is low. This suggests that the knowledge circuits tend to
vary significantly due to differing knowledge requirements for different tasks. However, some tasks
show higher overlap rates. For example, when selecting only 8 attention heads per layer, the overlap
rate between the knowledge circuits in the ARC-e and WinoGrande datasets reaches 0.47, reflecting
the similar knowledge and behaviors needed for model reasoning in these tasks.

The number of times for attention heads being selected. In Figure 2(b), we record the number of
times being selected for each attention head over the eight commonsense reasoning datasets. It can
be seen that only a small number of attention heads are located by many different tasks, indicating
that most attention heads play a crucial role in only a few specific tasks.

7 CONCLUSION

In this paper, we propose the layer-conditioned locating algorithm to identify knowledge circuits
containing a series of attention heads that play a crucial role in a specific task. After locating the
knowledge circuit, we propose the HeadMap method to enhance the influence of the knowledge
circuit on the residual stream, allowing the model to better adapt to downstream tasks. Extension
experiments demonstrate that HeadMap achieves comparable performance with few parameters.
Moreover, HeadMap and LoRA-based methods are complementary, and their combination effec-
tively improves model performance. In our future work, we are interested in applying HeadMap to
more applications.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 LOCATING THE CRITICAL ATTENTION HEAD
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(a) Arc-easy.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

He
ad

3.2

3.4

3.6

3.8

4.0

4.2

4.4

(b) Arc-challenge.
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(c) BoolQ.
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(d) OBQA.
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(e) PIQA.
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(f) WinoGrande.

Figure 4: When masking a single attention head, the average loss of 64 samples from each dataset.

The average loss in model predictions when a single attention head is masked is shown in Figure
4. It can be observed that masking a single attention head does not have a significant impact across
different datasets.

A.2 LAYER-CONDITIONED LOCATING ALGORITHM
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(f) WinoGrande.

Figure 5: When applying the proposed layer-conditioned locating algorithm, the average loss of 64
samples from each dataset.

Figure 5 illustrates the average loss in model predictions when a single attention head is masked
in the current layer, after previous layers have been masked, using the layer-conditioned locating
algorithm. As can be seen, the proposed method can find some attention heads that have a much
larger impact on model loss compared to masking a single attention head. This indicates that the
proposed method effectively identifies a series of attention heads, termed knowledge circuits, that
significantly influence the training loss of large language models.
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(b) Arc-challenge.
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(f) WinoGrande.

Figure 6: The average loss w.r.t. layer of LLMs on all datasets.

A.3 AVERAGE LOSS CURVES OF DIFFERENT LOCATING METHODS

Figure 6 shows the loss curves of different location methods across various datasets w.r.t layer of
LLMs. It can be observed that, compared to random selection and simple greedy methods, our
proposed layer-conditioned locating algorithm more accurately identifies the attention heads with
the greatest impact on model training loss.

A.4 AVERAGE LOSS CURVES ON ALL SAMPLES AND SELECTED SAMPLES OF EACH DATASET
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(b) Arc-challenge.

0 5 10 15 20 25 30
Layer

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Lo
ss

Selected Samples
All Samples

(c) BoolQ.

0 5 10 15 20 25 30
Layer

5

10

15

20

25

30

Lo
ss

Selected Samples
All Samples

(d) OBQA.

0 5 10 15 20 25 30
Layer

2

4

6

8

10

12

Lo
ss

Selected Samples
All Samples

(e) PIQA.

0 5 10 15 20 25 30
Layer

4

5

6

7

8

9

10

11

12

Lo
ss

Selected Samples
All Samples

(f) WinoGrande.

Figure 7: The average loss w.r.t. layer of LLMs on all samples of datasets.

To demonstrate that using samples with minimal loss effectively represents the model’s ability to
handle the corresponding task, we plotted the loss across layers for all samples and for those with
minimal loss, as shown in Figure 7. As can be seen, the curves align closely, indicating that the loss
variations in samples with the smallest loss reflect those of all samples. This suggests that using
samples with the smallest loss to identify knowledge circuits is an efficient and effective approach.
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Figure 8: The similarity of selected heads between different tasks on LLaMA3-8B.

A.5 SIMILARITY OF KNOWLEDGE CIRCUITS

Figure 8 shows the similarity of knowledge circuits identified across different datasets on LLaMA3-
8B. Most tasks exhibit very low similarity, while a few related tasks, such as ARC-e and ARC-c,
have higher similarity. This highlights the potential of using knowledge circuits to analyze the
behavior of similar tasks.

A.6 PATTERN OF KNOWLEDGE CIRCUITS
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Figure 9: The located knowledge circuit of each dataset.

Figure 9 presents the patterns of knowledge circuits located by the layer-conditioned locating algo-
rithm across different datasets. While some datasets exhibit similar patterns, the majority show sig-
nificant variations. This motivates us to search for distinct knowledge circuits in different datasets.
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Table 5: Learning rate of each baseline and each dataset.

Method CoLA MRPC RTE SST-2 WNLI
LLaMA2-7B

LoRA 2e-4 8e-4 8e-4 2e-4 1e-3
HeadMap 1e-3 8e-4 8e-4 1e-4 1e-3

+ LoRA (V, U, D) (1e-4, 4e-4) (1e-4, 8e-4) (1e-3, 8e-4) (1e-3, 2e-4) (8e-4, 4e-4)
HeadMapHS 8e-4 8e-4 1e-3 2e-4 8e-4

+ LoRA (V, U, D) (8e-4, 4e-4) (1e-4, 1e-3) (1e-3, 8e-4) (2e-4, 2e-4) (2e-4, 1e-3)
LLaMA3-8B

LoRA 2e-4 8e-4 4e-4 2e-4 2e-4
HeadMap 4e-4 8e-4 8e-4 1e-4 1e-3

+ LoRA (V, U, D) (1e-4, 4e-4) (2e-4, 2e-4) (1e-4, 4e-4) (1e-4, 2e-4) (8e-4, 8e-4)
HeadMapHS 8e-4 1e-3 8e-4 2e-4 4e-4

+ LoRA (V, U, D) (4e-4, 1e-4) (1e-3, 2e-4) (2e-4, 4e-4) (4e-4, 1e-4) (8e-4, 8e-4)

Table 6: Accuracy (%) on eight commonsense reasoning datasets using LLaMA2-7B and LLaMA3-
8B for different selection strategies. HeadMap is for outputs of MHA blocks. HeadMapHS is for
hidden states.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMA2-7B

HeadMapMHA (Redundant) 62.35 81.88 77.33 91.60 77.74 77.40 54.01 76.60 74.86
HeadMapMHA (Random) 62.63 82.48 78.25 91.88 78.14 78.07 54.78 75.00 75.15
HeadMapMHA (Transfer from Winogrande) 64.04 82.86 79.06 92.53 79.40 79.46 56.40 77.40 76.39
HeadMapMHA 63.94 83.19 79.07 92.74 79.40 80.30 57.00 78.60 76.78
HeadMapHS (Redundant) 63.03 82.37 76.92 91.37 78.30 77.99 53.42 75.80 74.90
HeadMapHS (Random) 63.27 83.57 78.30 92.51 76.64 78.79 53.41 75.40 75.24
HeadMapHS (Transfer from Winogrande) 64.53 82.97 78.92 92.58 78.37 79.76 54.95 77.60 76.21
HeadMapHS 63.73 83.30 79.73 92.63 78.37 80.30 55.38 78.20 76.46

B IMPLEMENTED DETAILS

Table 5 presents the learning rates of LoRA, HeadMap, and their combination across different NLU
datasets. For HeadMap combined with the LoRA method, the former values in parentheses indicate
the learning rate for HeadMap and the latter is for LoRA.

C ABLATION STUDY

Transferability. In order to explore whether the knowledge circuit has transferability, we enhance
the knowledge circuit identified in the WinoGrande dataset on different datasets. The results are pre-
sented in Table 6. It can be observed that compared to random selection, the transferred knowledge
circuit demonstrates better performance. This suggests that some of the attention heads within the
knowledge circuit contain general knowledge, not merely task-specific or dataset-specific knowl-
edge. Hence, the knowledge circuits located by the layer-conditioned locating algorithm are capable
of generalizing to other tasks or datasets.

Rebundant. We conduct additional ablation studies on redundant heads. Specifically, we ran-
domly select 8 attention heads from redundant heads in each layer and enhance these attention
heads. The results are shown in Table Table 6. It can be observed that compared to a fully ran-
dom selection in each layer, the performance is worse when selecting and enhancing attention heads
from redundant heads. This indicates that the assistance provided by these redundant heads for the
model’s adaptation to downstream tasks is more limited.
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