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A B S T R A C T

In the light of factories of the future, to ensure productive and safe interaction between robot and human
coworkers, it is imperative that the robot extracts the essential information of the coworker. We address this by
designing a reliable framework for real-time safe human-robot collaboration, using static hand gestures and 3D
skeleton extraction. OpenPose library is integrated with Microsoft Kinect V2, to obtain a 3D estimation of the
human skeleton. With the help of 10 volunteers, we recorded an image dataset of alpha-numeric static hand
gestures, taken from the American Sign Language. We named our dataset OpenSign and released it to the
community for benchmarking. Inception V3 convolutional neural network is adapted and trained to detect the
hand gestures. To augment the data for training the hand gesture detector, we use OpenPose to localize the
hands in the dataset images and segment the backgrounds of hand images, by exploiting the Kinect V2 depth
map. Then, the backgrounds are substituted with random patterns and indoor architecture templates. Fine-
tuning of Inception V3 is performed in three phases, to achieve validation accuracy of 99.1% and test accuracy of
98.9%. An asynchronous integration of image acquisition and hand gesture detection is performed to ensure
real-time detection of hand gestures. Finally, the proposed framework is integrated in our physical human-robot
interaction library OpenPHRI. This integration complements OpenPHRI by providing successful implementation
of the ISO/TS 15066 safety standards for “safety rated monitored stop” and “speed and separation monitoring”
collaborative modes. We validate the performance of the proposed framework through a complete teaching by
demonstration experiment with a robotic manipulator.

1. Introduction

The advent of Industry 4.0, as a modern trend of automation and
data exchange in the manufacturing industry, has proposed the concept
of smart factories of the future [1]. This evolving industry demands a
more effective and involved collaboration between humans and robots,
where each partner can constructively utilize the strengths of the others
to increase productivity and work quality [2].

Safety of the human coworkers and an efficacious interaction be-
tween humans and robots are key factors of success in such an in-
dustrial setting [3,4]. To ensure safety, the ability of the robot to detect
an external force, differentiate between intended and accidental forces
and to adapt to the rapidity of the human coworker is essential [5].
Nevertheless, the sense of vision is also imperative for modern colla-
borative robots to monitor the behavior and actions of their human
coworkers for communicating or preventing accidents [6].

Generally, robots are designed and programmed to perform spe-
cialized tasks. Hence, it is difficult for an unskilled worker to reprogram

the robot for a new task [7]. The traditional robot teaching methods are
tedious, non-intuitive and time consuming. Multi-modal interfaces that
include vision-based gesture detection frameworks, constitute instances
of natural and tangible user interfaces (NUIs and TUIs). NUIs exploit the
user’s pre-existing knowledge and actions – related to daily practices –
to offer natural and realistic interactions. This allows humans to di-
rectly interact with robots through voice, gestures, touch and motion
tracking rather than instructing them the same by typing commands
[8]. In many industrial settings, communication through speech is not
appreciated because of the interference produced by machines opera-
tions. The conventional use of teach pendants is itself too complicated
for new users to learn. Portable devices are always required to be
charged almost on daily-basis and may also have complex menu trees or
networking problems in the interaction software. Manoeuvring the
robot to specific target locations by hand, in physical human-robot
interactions like in teach-by-demonstration applications, is the most
intuitive way of interaction. To unburden the human coworker from
carrying any extra device while s/he manoeuvres the robot with her/his
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hands, gestures are considered to be natural and intuitive ways to
communicate/interact with the robot [9].

Hence, in this paper we propose a real-time robust and background
independent hand gesture detection module based on transfer learning
[10] with convolutional neural networks. The intuitiveness of our
system comes from the fact that the human does not need to wear any
specific suits (Motion capture suits or inertial sensors) nor to carry a
specialized remote control or learn complicated teach pendant com-
mands. Such additional burdens would make the interaction un-
natural [11].

We integrate the proposed hand gesture detection module with our
physical human-robot interaction library OpenPHRI [12] for robot
control. On one hand, this ensures safety of the human coworker – by
complementing the standard collaborative modes in OpenPHRI – while
on the other provides a natural means for robot programming and re-
programming, through hand gestures.

Background and related work are described in Section 2. We sum-
marize our contributions in Section 3, while Skeleton extraction and
hand localization are detailed in Section 4. We describe our convolu-
tional neural network for hand gesture detection in Section 5, while
OpenPHRI integration and collaborative modes imposed by safety
standards are briefly explained in Section 6. The robotic framework and
example industrial application of the proposed framework are pre-
sented in Section 6. We conclude in Section 7.

2. Background and related work

The authors of [1] present the emerging concept of cyber-physical
structure, which will employ extensive automation and self-organiza-
tion of machines and component parts in complex manufacturing sce-
narios, using different sensor modalities. The primary role of human
workers will be to dictate a production strategy and to supervise its
implementation by the robotic systems.

To achieve this goal, safe Human-Robot Interaction is crucial.
According to [13], collaboration can be achieved only when safety is
first guaranteed. We will hereby survey the state of art with a similar
perspective. We will review the literature on safety in collaborative
robotics, gesture detection for interaction and sign language detection
relevant to our research.

2.1. Safety in collaborative robotics

A recent survey on human-robot collaboration in industrial settings
is presented in [8]. The authors talk about safety citing several ISO
standards, discuss intuitive interfaces for robot programming/colla-
boration and explore different industrial applications of human-robot
collaboration. With regards to safety, they recall the four collaborative
modes from ISO 10218-1/2 and ISO TS 15066 [14–16]: “Safety-rated
monitored stop”, “Hand guiding”, “Speed and separation monitoring”
and “Power and force limitation”. Since in this work we addressed the
first and third, let us now focus on works related to these modes.

In [17], the authors present a tire workshop assistant robot. SICK
S300 laser sensors are utilized for navigation, obstacle avoidance and
human detection. The authors define three areas surrounding the robot
namely “Safe area”, “Collaboration area” and “Forbidden area”. The
main disadvantage of this technology [18] is that several thousands of
reflective landmarks are required for reliable navigation of the robot in
a cluttered environment.

The authors of [19] thoroughly discuss several aspects of speed and
separation monitoring in collaborative robot workcells. They analyze
laser-based human tracking systems. The human coworkers are de-
tected through centroid estimation of the detected objects and as the
authors state, this varies based on the motion of legs, shifting of clothes,
and sensor noise. The authors emphasize the technological advance-
ment of safety-rated cameras and on-robot sensing hardware for en-
abling speed and separation monitoring in unstructured environments.

Moreover, the importance of human-specific identification and locali-
zation methods is discussed for reliable physical human robot colla-
boration.

In [20], the authors present the preliminary results of their research
on sensor-less radio human localization to enable speed and separation
monitoring. A wireless device-free radio localization method is adopted
with several nodes connected in mesh configuration, non-regularly
spread over a large indoor area, so that the human-operator being lo-
calized does not need to carry an active wireless device. The concept of
user tracking in wireless sensor networks is extended in [21]. This study
considers the availability of the source attached to the human cow-
orker’s body in the industrial scenario.

The idea of trajectory dependent safety distances is proposed in [22]
to attain dynamic speed and separation monitoring. This method avoids
fixed extra safety clearances and is optimized with respect to the
functional task at hand.

Alternative sensing modalities for speed and separation monitoring
include motion capture systems [23] and vision based depth cameras
[13,24]. In this regard, [18] compares structured light depth cameras
and stereo-vision cameras for mobile robot localization in the industry.

As all these works highlight, an advantage of vision over other
sensors is that it does not require structuring the environment and/or
operator. Furthermore, it is generally more rich, portable (a funda-
mental feature for mobile robots) and low-cost, even when depth is also
measured by the sensor (as with Microsoft Kinect). While at present
Kinect is far from being certifiable for safety, we are confident that in
the near future similar RGB + D sensors will. For all these reasons, in
this work we have decided to use RGB + D vision for addressing safety-
rated monitored stops and speed and separation monitoring. As in [19], we
adopt the idea of human-specific localization to effectively identify the
presence of humans in cluttered environments. Our contributions on
safety will be detailed in the subsequent section after reviewing lit-
erature on gesture detection in human-robot interaction.

2.2. Gesture detection in human-robot interaction

Once safety is guaranteed, collaboration is possible. To this end,
researchers have proposed to use body gestures for communicating with
the robot. The literature on gesture detection in human-robot interac-
tion scenarios is enormous. Here, we focus on works that are related to
the idea we propose, by relying mainly on RGB + D sensing.

A task-oriented intuitive programming procedure is presented in
[25] to demonstrate human-like behavior of a dual-arm robot. The
authors decompose complex activities in simpler tasks that are per-
formed through task-oriented programming where the focus is given to
“what to be done, rather than how to do it”. Moreover, through the
development of intuitive human interfaces, high level commands are
transferred to a sequence of robot motion and actions. For human-robot
interaction, the authors use Kinect V1 [26] to extract human skeletal
coordinates for gesture detection, and the built-in microphone array of
Kinect V1 to detect the oral commands. Whole body gestures (extended
arms) are used to achieve robot motion in a dashboard assembly case.
Although the idea of task decomposition and controlling the robot
through human gestures is beneficial, the considered gestures, as in
[27], are counterintuitive and tiring.

The authors of [28] present methods for obtaining human worker
posture in a human-robot collaboration task of abrasive blasting. They
compare the performance of three depth cameras, namely Microsoft
Kinect V1, Microsoft Kinect V2 [29] and Intel RealSense R200 [30].
Kinect V1 uses a structured light approach to estimate the depth map,
Kinect V2 is a time-of-flight sensor, while RealSense R200 has a ste-
reoscopic infra-red setting to produce depth. In the blasting process, the
abrasives are suspended in the air or fill the surrounding environment,
and significantly decrease the scene visibility. The use of image-based
methods to extract human worker pose is challenging in such en-
vironments. The experimental observations suggest that Kinect V1
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performs best in the real blasting environment, although no concrete
reason could explain this. They also present a novel camera rig with an
array of four Kinect V1 to cover a 180∘ horizontal field of view. The use
of Kinect V1, to extract human pose for a marker-less robot control
method is also presented in [31].

In [32], the authors present an online robot teaching method that
fuses speech and gesture information using text. Kinect V2 localizes the
position of hands in the scene, while their orientation is measured by an
inertial measurement unit. The gesture and speech data are first con-
verted into a description text, then a text understanding method con-
verts the text to robot commands. The proposed method is validated by
performing a peg-in-hole experiment, placing wire-cut shapes, and an
irregular trajectory following task.

To ensure safe interaction, [33,34] proposes a virtual reality
training system for human-robot collaboration. A virtual game simu-
lation is developed for real-time collaboration between industrial ro-
botic manipulators and humans. A realistic virtual human body, in-
cluding a simple first person shooter view, simulates the user’s vision. A
head mount display and a Kinect V1 track the human head and skeleton
pose respectively. Several interaction tasks are accomplished. These
include selection of objects, manipulation, navigation and robot con-
trol. This technique is useful to establish the acceptability of a colla-
borative robot among humans in a shared workspace, as well as to
tackle mental safety issues.

In [7], the authors present a strategy to use speech and a Wii con-
troller to program a Motoman HP6 industrial robot. This helps workers,
with no knowledge of typical programming languages, in teaching
different activities to the robot. A neural network is trained to recognize
hand gestures using features extracted from the accelerometer output of
the Wii-controller. In [35], the authors train artificial neural networks
to classify 25 static and 10 dynamic gestures to control an industrial 5
degrees-of-freedom robotic arm. A data glove, CyberGlove II, and a
magnetic tracker, Polhemus Liberty, are used to extract a total of 26
degrees-of-freedom.

The authors of [5] present a study for measuring trust of human
coworkers in fence-less human-robot collaboration for industrial ro-
botic applications. To ensure safety of the human coworkers, it is es-
sential to equip the robot with vision sensors, so that it can understand
the environment and adapt to the worker’s behavior. The paper also
discusses the use of RGB + D cameras to detect pointing gestures and
proximity monitoring for safety using the depth information. In [36],
authors use human gestures to navigate a wheeled robot through
pointing gestures directed on the floor. The interaction scheme also
includes detection of facial gestures which often fails, as stated by the
authors, because the untrained users make those gestures subtly.

In [37], the authors propose object recognition through 3D gestures
using Kinect V1. They exploit the depth information from Kinect V1 to
subtract the object background. This strategy often fails if predefined
environmental assumptions are not met. Moreover, a histogram
matching algorithm is used to recognize the objects placed on a white
color table. Such techniques have recently been outperformed by
modern deep learning ones like convolutional neural networks [38].
The authors of [39] propose a human-robot interaction system for the
navigation of a mobile robot using Kinect V1. The point cloud acquired
from Kinect V1 is fit on a skeleton topology with multiple nodes, to
extract the human operator pose. This technique is not reliable to ob-
tain the skeletal pose unless the human body non-linear anatomical
constraints are modeled in the design of the skeleton topology.

According to [40], sign language is among the most structured set of
gestures. Hence, in our work, we proposed the use of American Sign
Language (ASL) for communicating with the robot. In the following
subsection, we discuss previous works on sign language detection.

2.3. Sign language detection

Hand gesture detection techniques can be mainly divided into two

categories: electronic/glove-based systems and vision-based methods.
Some researchers prefer the use of wearable sensors to deal with oc-
clusions or varying light conditions [41]. These sensors are expensive,
counterintuitive and limit the operator’s dexterity in his/her routine
tasks. The vision-based methods can be further divided into two cate-
gories; (a) methods that use markers and (b) pure vision-based methods
[42]. Since pure vision-based methods do not require the users to wear
any data-gloves or markers, they offer ease-of-use for the operators to
interact with the robots/machines. Furthermore, in Section 2.1 we have
highlighted the advantage of using vision for safety monitoring. For
these two reasons, here we opt for a pure vision-based method and
review only works on vision-based sign language detection.

Early research on purely vision-based methods for ASL recognition
dates back to 1992 [43]. In this work, the authors use motion detection
to capture start/stop instances of the sign/gesture, hand location
tracking to record the trajectory of the gesture, trajectory shape (using
curve eccentricity) and detection of hand shapes at each stop position.
The hand shapes are classified using the Hough Transform method
described in [44]. The authors in [42] utilize a similar method as in
[43]. It consists of a Canny filter that detects the hand edges in the
scene, followed by a Hough Transform that extracts the feature vector
of size 200. A neural network is then devised to classify the hand ges-
tures. The dataset used to train the neural network is extremely small
and it is assumed that the image background is uniform. The authors do
not mention the hands’ localization in the scene during the recognition
phase. Thus, it is assumed that the system only works if the hand ap-
pears in a specific region of the image.

One of the initial works in detecting ASL gestures through Hidden
Markov models is discussed in [40]. The authors propose two settings in
this research i.e., the second person view (desk based recognizer) and
the first person view (wearable based recognizer). The proposed system
recognizes sentences of the form “personal pronoun, verb, noun and
adjective, pronoun” generated through 40 randomly chosen words. In
both systems, videos were recorded and analyzed offline for ASL
translation. An a priori model of the skin color is used to segment hands
in the scene, while the absolute positions of the detected blobs in the
image are used to distinguish left and right hand. The use of absolute
positions of the hands in addition to a cumbersome wearable camera
and computer system on the head significantly constrain the movement
of the “signer” in the scene.

Recently in [45], researchers proposed an ASL translation system
using binary hand images by keeping the edge information in the image
intact. They use an image cross-correlation method to identify the signs
by comparison with gesture images in a database. A similar hand ges-
ture detector based on binary images is proposed in [46]. The author
proposes a color-independent (using preprocessed binary hand images)
hand gesture detector that relies on a convolutional neural network
(CNN), inspired by LeNet [47]. The classification accuracy of such
system depends largely on the preprocessing steps of image segmenta-
tion performed with color or intensity thresholding, while CNNs are
inherently able of learning color features robustly, as shown in [48].
Such systems also normally require a plain or white background for
hand segmentation, which is hard to obtain in realistic human-robot
interaction scenarios.

The use of depth cameras is becoming increasingly popular in ap-
plications like hand gestures detection or sign language translation. A
thorough survey on 3D hand gesture recognition is presented in [49].
The depth information from such sensors can be used to segment the
hands in cluttered backgrounds, by setting a depth threshold, while the
normalized depth image of the hand adds the information for correct
classification of the hand gestures [50]. The accuracy of such techni-
ques depends on the range and resolution of the depth sensors.
Nevertheless, the use of depth sensors is beneficial, since it aids the
detection of fine-grained hand gestures [51]. Latest works in deep
learning have allowed the extraction of 2D hand skeletons from con-
ventional RGB images [52,53]. This can be used as a basis to fit a 3D

O. Mazhar, et al. Robotics and Computer Integrated Manufacturing 60 (2019) 34–48

36



kinematic hand model through an appropriate optimization technique
as described in [54], thus eliminating the need of depth sensors for this
purpose.

In recent years, the idea of deep learning has made a concrete im-
pact on computer vision research and has been reported to even surpass
human-level performance in image classification [48]. Hence, in our
work we chose to exploit convolutional neural networks to recognize
static hand gestures. We localize and crop the image regions containing
the hands, by exploiting the data from our integration of Kinect V2 with
a state-of-the-art 2D skeleton extractor library. Then, we perform
background substitution and image processing operations (e.g., histo-
gram equalization, introduction of salt and pepper noise etc.) on the
cropped hand images to increase data variance, before training the
CNN. This allows the network to learn robust hand features, by
avoiding time-consuming rigid image processing methods during the
recognition phase.

3. Our contributions

This paper is an extension of our previous work proposed in [55]
which presented a tool handover task between robot and human cow-
orker through static hand gestures. A convolutional neural network,
inspired mainly by LeNet [47] was developed, to classify four hand
gestures. The aim of the previous work was to build a robust hand
gesture detection system. However, the dataset was small, and the hand
images were recorded only by one individual. This could not guarantee
correct detection of hand gestures made by other individuals and with
backgrounds having rich textures.

We extend our work by training a hand gesture detector on ten
gestures instead of four presented in [55]. Moreover, the backgrounds
are now replaced with random pattern/indoor-architecture images to
make the detection robust and background invariant. The vision pipe-
line is then integrated with OpenPHRI [12] to complement the library
with two collaborative modes of the ISO/TS 15066 safety standards.
This integration is detailed in Section 6. We propose an interaction
setting where a human coworker can safely instruct commands to the
robot via gestures. In summary the contributions of this paper are the
following:

• Development of a real-time hand gesture detection framework that
localizes hands through asynchronous integration of OpenPose 2D
skeleton detector and classifies hand-gestures at frame-rate of ap-
proximately 20fps.

• Integration of Kinect V2 depth map with the obtained 2D skeleton to
get a pseudo 3D skeleton, which is used for “speed and separation
monitoring” to ensure the safety of the human coworker.

• Training a background-invariant hand-gesture detection system
through transfer learning from Inception V3 convolutional neural
network.

• On-line release of hand gestures database of Kinect V2 recordings
for benchmarking and comparison.

• Integration of the developed hand gesture detection module with
our safe physical human robot interaction framework, namely
OpenPHRI.

• Validation of the proposed framework for robot teaching and con-
trol of Kuka LWR 4+ arm with the detected hand-gestures.

The overall pipeline of the proposed framework is illustrated in
Fig. 1. Each named box is a cyclic process and dotted arrows represent
asynchronous communications between these processes. Each process is
described in the following sections in detail.

4. Skeleton extraction and hand localization

For safe Human-Robot Interaction, it is essential for the robot to
understand its environment, particularly the human coworker. In this

research, we opted for Microsoft Kinect V2 as the main sensor to cap-
ture the visual information of the human coworker. Kinect V2 is a time-
of-flight sensor and provides a larger field-of-view and higher resolu-
tion RGB and depth images than its predecessor Kinect V1. This allows
the robot to extract functional information from the scene, like human
(s) presence or object/obstacle detection, including depth perception.

4.1. Skeleton extraction module

In our work we utilize OpenPose [52,53], to extract skeletal joint
coordinates, as in [56,57]. This library returns 2D skeletal coordinates
(xi, yi, ci), for = …i 1, ,18, from a RGB image, using confidence maps
and parts affinity fields in a multi-person scene; xi and yi are the ab-
scissas and ordinates respectively of 18 COCO body parts [58], while ci
represent their confidence measure. OpenPose works on the principle of
“convolutional pose machines” described in [52].

OpenPose is a robust skeleton extractor and is not trained on pre-
defined body poses. It extracts each joint independently from the
overall body pose. Hence, it is preferred over libraries like OpenNI and
Microsoft SDK as they are often not accurate in skeleton extraction,
require initialization pose and constraint the user to face the sensor. For
real-time skeleton extraction, this method requires a multi-GPU hard-
ware with the output frame-rate mainly dependent on the number of
persons appearing in the scene. The average frame rate that is achiev-
able using two Nvidia GeForce GTX 1080 on full-HD Kinect V2 RGB
image is approximately 14 fps. Since we currently employ only one GPU
in our framework, we obtain 6 fps with 1 person in the scene.

4.2. Image acquisition and hand localization module

The strategy to localize human body and its sub-parts (i.e., hands or
face) depends mainly on the output of the sensor of choice. In [59] the
authors use skin color for hand segmentation using a conventional RGB
camera, as in [46]. In [60], human body localization is performed using
laser sensors, and its sub-parts are obtained through Kinect with the
OpenNI library as in [61]. In [39], the authors localize the human body,
inspired by Munaro et al. [62], by merging clusters of the point cloud
obtained from the Kinect V1 after voxel filtering and ground plane re-
moval. Lately, infrared based sensors e.g., Leap Motion, are developed
to track fingers of a hand in the near proximity (within 25 to 600 mm)
of the sensor. However this range is too close for our application. In
[54], authors adapt a state-of-the-art object detection deep learning
technique namely YOLOv2, adapted to localize hands and head/face of
a person in a scene. The authors have utilized OpenPose to first extract
hands and face images from recorded videos with human activity, and
then used these images to train YOLOv2 to detect hands and the face of
the person in the scene in real-time. The face is detected to differentiate
left hand from the right one. This is an efficient method to detect hands
in the scene in real-time but requires a separate training/adaptation of
YOLOv2 for hands and faces.

In our research, since we obtain the skeletal joint coordinates from
OpenPose, training a separate hand detector to localize hands is not
required. To estimate the hands position, we fit a line between the
elbow joint and the wrist joint returned by OpenPose and extend this
line to one-third of its original length (empirical value) in the direction
of hand to approximately reach the center of hand. A bounding box is
then centered at the approximated hand center at an angle which the
forearm makes with the horizontal. This makes the hand image acqui-
sition rotation invariant. The size of the bounding box is determined by
the mean depth value of a 6 × 6 matrix centered at the wrist joint,
obtained through Kinect V2 depth map as shown in Fig. 2. The hand
images are cropped with reference to the tilted bounding box, re-scaled
to size 224 × 224 pixels and rotated again such that the cropped image
becomes vertical.
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Fig. 1. The overall pipeline of our framework for pHRI using hand gestures.

Fig. 2. Localization of hand through OpenPose is il-
lustrated. The bounding box is titled with an angle that
the forearm makes with horizontal, while the size of
bounding box is determined by the mean depth value
of the wrist joint. The mean depth value is computed
by averaging the depth pixel values of a 6 × 6 matrix
centered at the wrist joint.
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4.3. Asynchronous integration of the modules

In our previous work [55], we integrated OpenPose with gesture
recognition sequentially to obtain an overall temporal resolution of
approximately 4 fps. In this work, an inter-process distributed system is
designed through nanomsg socket library1 which has drastically in-
creased the frame rate of the vision pipeline. The afore-mentioned inter-
process distributed system works using a “request-reply” communica-
tion pattern, known as scalability protocol. Furthermore, it ensures that
no frames are lost during communication. Fig. 1 illustrates this asyn-
chronous communication between the proposed framework modules
via dotted lines. The image acquisition and hand localization module
retrieves the image stream from Kinect V2 and checks if a frame request
has arrived from the skeleton extraction module. When a frame request
is received, the current RGB and depth image are first serialized
through flatbuffers2 and then passed to the skeleton extraction module.
The skeleton extraction module unserializes the received frames with
flatbuffers and then pass the RGB image through the forward-pass of
OpenPose which returns a vector of 2D skeleton coordinates (xi, yi, ci).
The calculated mean depth values, as described in the previous section,
are concatenated with the 2D skeleton coordinates and this 3D vector
(xi, yi, di) is then sent to the image acquisition and hand localization
module. The integration of Kinect V2 depth map with the 2D skeleton
coordinates from OpenPose however does not represent the actual 3D
coordinates of the joints and represents the surface depth value of the
joints. There is a possibility that a joint is occluded in the scene by an
object or the body itself. To prevent false detection of depth hence
preventing potential accident, we use the confidence measure for each
joint returned by OpenPose. The depth value of each joint is only up-
dated if ci > 0.5 (this is an empirical value), otherwise the previous
depth value is kept. The image acquisition and hand localization
module expects to receive coordinates from skeleton extraction module
in each execution cycle. Once the coordinates are received, the hand is
segmented and cropped image (described in Section 4.2) runs through
the forward-pass of trained convolutional neural network for hand
gesture detection. The detected hand gesture label is sent to the robot
controller running OpenPHRI to pilot the experiment. The overall frame
rate of our gesture detection pipeline is approximately 20 fps while the
skeleton is extracted and the hand location is updated at around 5 fps.
This significantly improves the execution performance of the vision
system as compared to that in [55], which finally leads to a system that
better reacts to human commands.

5. Convolutional neural network for hand gestures detection

In our previous work [55], we designed the CNN architecture for
hand images with relatively plain backgrounds, while the number of
gestures were set to 4 and the gestures were recorded by a single
person. In this research, we used 10 static hand gestures recorded by 10
volunteers (8 males and 2 females) of age 22 to 35 and the backgrounds
of the hand images are substituted with random pattern and indoor
architecture images (explained in Section 5.2). This makes the re-
cognition problem more complex as compared to the one presented in
[55], where only 1 volunteer and 4 gestures had been considered.
Therefore we opted for transfer learning for gesture recognition, ex-
ploiting state-of-the-art CNNs pre-trained on large image data from the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [63]. In
particular, Inception V3 [64] which is state-of-the-art in image classi-
fication for 1000 classes, is adapted for our background-independent
hand-gesture recognition task. Inception V3 is available in Keras python
library [65] with pre-trained weights. Fig. 3 shows samples of the static
gestures we trained our framework on. The gestures include 9 letters/

numbers taken from ASL [66] and a None gesture that is not among
these nine. The letters/numbers are chosen such that they resemble
with each other (like F, 7 and W; A, L and Y) so as to challenge the
training and ensuring robustness of the CNN. The None gesture is im-
portant to determine if the person does not intend to interact with the
robot. Our system also generates this label when the line joining the
elbow and wrist joint (forearm) of the user is too low (in the lower two
quadrants of the axes centered at the elbow joint). In this case, the robot
controller ignores this command and does not initiate any action (which
is likely undesired, since the user’s hand is low). We could have ex-
cluded the None gesture from the trained network, by applying a
predefined threshold to the nine (one per class) network scores. How-
ever, since the relative scores of the ten classes vary a lot according to
the operating conditions, it is not possible to fix a priori such threshold.

5.1. Preparation of dataset/dataset recordings

To create a dataset for gesture recognition and off-line development,
RGB and depth image streams from Kinect V2 are saved in the local
workstation. The frames are saved with an approximate frame rate of
20 fps. Each gesture is recorded by each volunteer for around 12 s with
both hands (see Fig. 4), at three distances of 5, 3 and 1.5 m away from
the sensor. The depth information near Kinect V2 is rich and accurate,
thus the images recorded at the distance of 1.5 m are used for the fine-
tuning of Inception V3 (discussed in Section 5.3). However, since the
network is trained only on RGB images, the hand gestures can also be
recognized at other distances. We are releasing our dataset OpenSign3

online. OpenSign contains RGB and depth (registered) frames of vo-
lunteers recording 10 gestures. The RGB images are saved in png format,
while the float data of the depth images are saved in bin files. The total
number of images in our dataset is 20950. These include 8,646 original
images, and 12,304 synthetic images obtained by substituting the
background with the technique that we will explain in Section 5.2.

We divide the dataset of 20,950 images with a ratio of 3:1:1, i.e.,
12,570 train images and 4,190 images each for cross validation and
test. Train images go through extensive preprocessing (explained in
Section 5.2), while only selective preprocessing operations are applied
to cross-validation images to keep them near those obtained during
recognition in the robotic interaction experiments.

5.2. Background substitution and preprocessing of the hand images

Background substitution is performed so the network is trained to
detect hand gestures independently from the background. We use
nearly 1100 images of random pattern and indoor architectures which
are freely available on the internet4. The background substitution
process is illustrated in Fig. 5. A binary mask for background sub-
stitution is created using the depth information from Kinect V2. All the
pixels that lie at distance within ± 18 % (empirical value) of the mean
depth value computed at the wrist joint (obtained through OpenPose)
are set to 1, while the rest are zeroed.

This binary mask is broadcasted into three channels and then
multiplied by the cropped RGB hand image to get a background sub-
tracted hand. An inverted mask is also created by simply applying a
“NOT” operation on the mask originally computed. The background
pattern images are cropped to multiple 224 × 224 sized images (as it is
the set size of hand images) which are subsequently multiplied by the
inverted hand mask. The hand image with subtracted background and
the pattern images multiplied with the inverted binary mask are then
added in the final step of background substitution. Fig. 6 shows the
samples of gestures with original and substituted backgrounds. As dis-
cussed in Section 5.1, all the training images (images with substituted

1 https://nanomsg.org
2 https://google.github.io/flatbuffers.

3 http://dx.doi.org/10.17632/k793ybxx7t.1
4 https://pixabay.com/
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and original backgrounds) go through several preprocessing steps.
Image processing operations of histogram equalization and introduc-
tion of Gaussian and salt and pepper noise are applied on 30% of
training images each while the remaining 10% are left unprocessed.
Fig. 7 shows random samples of original and processed images after the
addition of Gaussian noise and histogram equalization. For robust
gesture detection, we also use the real-time data augmentation feature
of Keras library.

Keras real-time data augmentation is designed to be iterated by the
model fitting process, creating augmented image data in defined batch
size during training. This reduces the memory overhead of the com-
puter but adds additional time cost during model training. The image
processing operations that are applied on all training images (after the
addition of noise and histogram equalization as discussed above) using
the Keras library include channel shift, zoom, shearing, rotation, axes
flip and position shift.

The batch size for model fitting is set to 100 training images. These
transformations are applied in real-time during model training. So the
number of train images remains the same while each batch for training

Fig. 3. Samples of the gestures considered for training. The labels represent the letters and the numbers taken from American Sign Language. The last gesture is one
of the several None gestures included in the training set.

Fig. 4. A volunteer recording ‘7’ gesture in the laboratory.

Fig. 5. The process of background substitution.
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is applied with selected – yet randomly chosen – transforms. In Fig. 8,
we show samples of processed training images with Keras being passed
to the CNN.

5.3. Adapting Inception V3 to gesture recognition

In image classification problems, the input data i.e., an image, is
formed by low-level edges, curves and color combinations irrespective
of the type of object that the image represents. It is therefore assumed
that the early layers in the pre-trained state-of-the-art networks have
learned to efficiently extract those features from the images thus they
need to be preserved. Inception V3 is trained to recognize 1000 classes

of objects as explained in Section 5. To adapt Inception V3 to classify
only 10 gestures, the last softmax activation layer of this network with
1000 neurons should be replaced with a new layer of 10 neurons. As
implemented in Keras, the Inception V3 has 10 trainable inception
blocks. We perform training in three phases. In the first phase all the
layers (hence inception blocks) in the network are frozen with the ex-
ception of the new layer added and the CNN is trained for 10 epochs
only. This fine-tune the weights of the new layer exploiting the
knowledge of all pre-trained inception blocks. Then we unfreeze last
two inception blocks and trained the CNN for 10 epochs, and then we
trained top four inception blocks so the network is fine-tuned properly
on our dataset. This gradual unfreezing of inception blocks prevents
damaging the pre-trained weights and thus avert over-fitting.

The validation set is used to chose the best performing weights and
then the network is tested on the unseen test set to quantify/estimate
the accuracy of the selected weights. Fig. 9 illustrates the training curve
of validation accuracy and loss of our dataset. Each epoch took ap-
proximately 130 s to pass and the network was able to achieve vali-
dation accuracy of 99.12% at 745th epoch taking around 27 hours of
training.

5.4. Quantification of the trained CNN

To validate and quantify the results even further, the accuracy of the
trained CNN is tested with a test set of 4190 new images. The overall
test accuracy of the trained CNN is found to be 98.9% on test set. The
normalized confusion matrix in Fig. 10 shows the accuracy of each
gestures and misinterpretation of one gesture against the others. It can
be observed that despite 94.3% accuracy of the None gesture, it was
misinterpreted the most among all. The reason for this lower accuracy
is that the None gesture defines all gestures that do not appear like the
other 9 as well as all transitional gestures.

It is difficult to include all the transitional gesture possible to be
classified as None gesture. Moreover, it can be observed from a close
inspection of the test results that the CNN is very accurate in identifying
a gesture as None when a person is holding an object in his hand. It is
inferred that if the CNN is additionally trained on a gesture like “an
object in hand”, this gesture will be easily distinguished. Meanwhile,
this misinterpretation can be dealt by adding a software constraint, as
explained in Section 5, of not invoking gesture detector until the arm is
in the upper two quadrants of the axes centered at the elbow joint of the
person, as we did in [55]. We release the source code of our hand
gesture detection

6. OpenPHRI integration

To control the robot and to remain safe during human-robot colla-
boration, we have used OpenPHRI open-source control library. This
library allows to describe the task to perform using force and velocity
inputs in both the joint and task spaces while enforcing safety con-
straints such as velocity limitations, speed and separation monitoring or
safety-rated monitored stops.

As discussed in Section 2.1, ISO 10218-1/2 and ISO/TS 15066 have
imposed safety requirements for industrial robot systems. Moreover,
these ISO standards have identified four collaborative modes which are
briefly explained as follows:

• Safety-rated monitored stop - This states that the human and robot can
operate in a shared space but not at the same time. As soon as the
human operator occupies the shared space, the robot must stop until
the human exits the shared space.

• Hand guiding - In this mode, the human coworker can teach the robot

Fig. 6. Samples of hand gesture images with original (labeled images) and
substituted backgrounds (below originals). Note the remnants of the original
backgrounds. This phenomenon is due to dilation of the binary masks. While it
could be avoided by using techniques like chroma key, we do not intend to use a
uniform background, to avoid bringing any extra apparatus in operation. In the
experimental results (Section 5.4), we show that despite these remnants, ges-
ture detection is highly accurate.
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positions/waypoints by physically moving the robot without any
means of an intermediate interface.

• Speed and separation monitoring - This defines three zones of the
shared space say red, yellow and green. The operation of robot
depends on the presence of human in each zone. If human coworker
is in the green zone the robot operates at its full speed, at reduced
speed in yellow zone and it should stop in the red zone.

• Power and force limiting - This mode prescribes the limitation of
power and force to allow humans to work side-by-side with the
robot. The robot should be able to handle collisions with the human
to prevent any harmful consequences.

OpenPHRI inherently is able to adopt all four collaborative modes
efficiently. The first and the third modes however, require safety-rated
monitoring sensors. As described in the previous sections, our proposed
framework obtains a pseudo 3D human skeleton, which is used to

Fig. 7. Image processing operations of histogram equalization, introduction of Gaussian and salt and pepper noise are performed on the training images. First row in
each sub-image shows unprocessed image while the processed images are shown in the second rows.

Fig. 8. Image processing operations applied to the training images include
color-shift, zoom, shear, rotation, axes flip and position shift processes.
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Fig. 9. Plot of validation accuracy (top) and validation loss (bottom).

Fig. 10. Normalized confusion matrix quantified on test-set.
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determine the distance of the closest body part of the human coworker
to the robot. This is integrated with OpenPHRI to complement the two
collaborative modes.

7. Example industrial application of the proposed framework

To demonstrate the effectiveness of the proposed approached, we
set up an industrial-like experiment where multiple operators can safely
interact sequentially with the robot using both hand gestures and
physical contact. The experiment is decomposed into two phases: (1) a
teaching by demonstration phase, where the user manually guides the
robot to a set of waypoints and (2) a replay phase, where the robot
autonomously goes to every recorded waypoint to perform a given task,
here force control.

BAZAR robot used for the experiments is composed of two Kuka
LWR 4+ arms with two Shadow Dexterous Hands attached at the end-
effectors and a Kinect V2 mounted on top of it [67]. The arms are at-
tached to a Neobotix MP700 omnidirectional mobile platform. In our
scenario, shown in Fig. 11 the mobile base is kept fixed and only the left
arm, without the hand, is used. The communication with the embedded
arm controller is done using the FRI library.5 The external force applied
to the arm’s end-effector is estimated by the embedded controller
(based on joint torque sensing and on knowledge of the robot’s dynamic
model) and retrieved by FRI. The control rate is set to 5ms.

To orchestrate the experiment, we have designed a finite state
machine (FSM), depicted in Fig. 12. The transitions between the states
are either automatic (no text), depending on sensory information
(arrow with text) or triggered by gestures (hand sign with text).

A video of the experiment is available online6 and snapshots are
given in Fig. 13. The experiment goes as follow. First, the robot goes to
a predefined initial joint configuration before initializing the Teach
phase. Once this initialization is performed, the robot is ready to be
manually guided and taught the waypoints where the tasks have to be
performed during the Replay phase.

Each time a Record gesture (L letter sign) is detected, the current
end-effector pose is recorded. When a Replay gesture (A letter sign)
comes in, the Teach phase is ended and the Replay phase is initialized.
Then, the robot goes to the first recorded waypoint while limiting its
velocity thus ensuring safety of the human worker (speed and separa-
tion monitoring in the FSM) according to the distance of the closest
detected body part. This distance corresponds to the depth value given

by Kinect V2 at the joint image coordinates obtained from OpenPose as
explained in Section 4.3. If the closest body part is occluded by the
robotic arm, the depth value (that will then correspond to the depth
value of the robot itself) is discarded while the next closest body part
visible in the scene is considered a reference for depth.

This estimation of body parts distance is not available with the
default output of OpenPose but it is possible, thanks to our integration,
of Kinect V2 depth map. This amplifies the usefulness of OpenPose
skeleton extraction while assuring a safe interaction of a human cow-
orker with the robot. While in autonomous motion, the robot can be
stopped at any time (Soft Stop constraint in the FSM) using a Stop
gesture (number 5 sign). Making this gesture will slow down the robot
until a full stop is reached. This is useful if an operator must enter the
robot workspace without fearing any injury. The Resume gesture (Y
letter sign) can be made to resume normal operation. When the robot
reaches the waypoint, it switches to the task execution. In this scenario
the task is to apply a 30N force for 2 s along the vertical axis. Once the
task has been executed, the robot goes back to its waypoint and moves
to the next ones to repeat the same operations. If the task has been
performed at all the waypoints, the Replay phase ends and the next
action is determined by the operator. A Reteach gesture (number 7
sign) will move the FSM to the Teach phase while a Repeat gesture (F
letter sign) will repeat all the tasks at the recorded waypoints. If no
other operation is needed, an End gesture (number 2 sign) will end the
experiment.

Experimental results are show in Fig. 14. The time axis has been
limited to the 132–185 s range for better readability. The top graph
displays the result of the hand gesture detection where each vertical
dashed line corresponds to the detection of a gesture. To filter out false
positives, a gesture is considered valid if it appears in five consecutive
frames.

Considering the hand-gesture detection frame rate of 20 Hz, this
gives a 250 ms delay between the making of the gesture and its de-
tection. This delay should not impact human-robot interaction since the
average human reaction time usually lies within the 200–250 ms
range.7 Once the same gesture has been detected five times in a row, the
corresponding signal is activated. False positives can be observed, e.g.
at t=139 s when the first record signal ends, but thanks to the filtering
systems no incorrect signal activation is made. The two following
graphs in Fig. 14 show the end-effector translational velocity and force.
It can be seen that through the Teach phase, i.e. until t=135 s, the
velocity simply follows the force applied to the robot. Then, the Replay
phase starts and the end-effector velocity is now the result of the motion
made to reach the waypoints and also by the force regulation applied at
these locations. Between the two task executions (t=153 s and
t=170 s), one can observe some force applied to the robot at t=162 s.
A safety feature is programmed to prevent accidents due to unexpected
contact between the operator and the robot, leading to a monitored
stop. In this situation, the robot stays still until the contact disappear
and then resumes its motion to the second waypoints. The fourth graph
displays the distance to the closest body part. The values are the raw
ones provided by the Kinect V2 and are unitless. As mentioned pre-
viously, this distance is used to adapt the velocity limitation so that the
robot can move quickly when nobody is around but slows down when
an operator is approaching. The velocity limit is at a minimum of
0.02 m/s at a distance of 300 and at a maximum of 0.3 m/s at a dis-
tance of 600. The effect of this limitation can be observed multiple
times, including after the beginning of the Replay phase where the
distance suddenly drops below 300, enforcing a very slow motion of the
robot. The last graph shows the evolution of the scaling factor com-
puted by OpenPHRI. A value equals to one means that no velocity re-
duction has to be performed to comply with the constraints (velocity
and acceleration limits, speed and separation monitoring and safety-

Fig. 11. Safe physical human robot interaction setup.

5 https://cs.stanford.edu/people/tkr/fri/html/
6 https://www.youtube.com/watch?v=lB5vXc8LMnk 7 http://humanbenchmark.com/tests/reactiontime
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rated monitored or soft stop). When at least one constraint would not be
respected considering the current inputs, the scaling factor decreases
below one to make sure that all constraints are satisfied. When the
value reaches zero, the robot is at a complete stop. Using this technique
allows to easily slow down the robot only when it is necessary.

8. Conclusion

In the perspective of smart factories – also known as factories of the
future – we have introduced a real-time human-robot interaction fra-
mework for robot teaching using hand gestures. The proposed frame-
work relies on our novel rotation and background invariant robust hand
gesture detector. This is achieved by adapting a pre-trained state-of-the-
art convolutional neural network, namely Inception V3, to the classi-
fication of 10 hand gestures. The CNN is trained on an image dataset of
10 hand gestures, recorded with the help of 10 volunteers. The dataset
OpenSign, is open and available to the computer vision community for
benchmarking. We also release the source code of our hand gesture
detector.8

The accuracy of the trained CNN is validated with a set of test
images and is found to be 98.9%. To reaffirm the quality of the hand
gesture detector and to validate it on a mock-up example industrial
scenario, we perform a robotic experiment. Safety and effectiveness of
the experiment are guaranteed by our physical human-robot interaction
library, OpenPHRI. Besides, real-time operation is established by
asynchronous integration of the different modules present in our fra-
mework. The experiment proves the efficiency of the proposed frame-
work, that ensures a natural means for robot programming. The robot is
also aware of its distance from the human worker thanks to the

integration of Kinect V2 and OpenPose. To guarantee the safety of the
human coworker in close vicinity, the robot slows down using the ve-
locity scaling feature of OpenPHRI.

Our approach requires the user to know the gestures the robot can
perceive. However, once s/he has memorized these gestures, it will be
more natural for her/him to communicate with the robot. Integrating
face identification algorithms in this framework, could also be a se-
curity feature. It will allow only selected people to interact with the
robot without entering any passwords or fingerprints scanning which
might require the users to come in close proximity to the robot.

Despite the quantified accuracy and experimental results, the cap-
abilities of our system are limited by the depth range of the vision
sensor. Moreover, the system is trained and tested in indoor settings and
may fail in bright light due to the resulting contrast in RGB images.
Backgrounds with intense texture may also compromise detection. To
handle this, distinct background images should be substituted in the
hand images to train the proposed network. Nevertheless, we believe
that the preliminary results presented in this paper are a very promising
step towards the development of vision-based robot programming. We
encourage researchers interested in these topics to profit from our open
image dataset for benchmarking their algorithms, and to enrich the
dataset with more images.Acknowledgements

This research was supported by a grant from the French Ministère
de l’Education Nationale, de l’Enseignement Supérieur et de la
Recherche.

Fig. 12. The FSM used for the experiment. A plus sign indicates an addition to the controller (a new constraint or new input) while a minus indicates a removal.

8 https://github.com/OsamaMazhar/openhandgesture
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Fig. 13. Screenshots from the robotic experi-
ment by operators Op1 and Op2 (a) Op1
manually guiding the robot to a waypoint in
the workspace. (b) Op1 records the way-points
using Record gesture. (c) Op1 replay the
taught waypoints by Replay gesture. (d) Op2
stands far from the robot so it moves with full
speed. (e) Op2 stops the robot by applying
external force (or accidental touch). (f) Op2
stands near the robot, so it moves slowly en-
suring operator’s safety. (g) Op2 gives Reteach
command to the robot. (h) Op2 sets the new
waypoints manually. (i) Op2 gives Record
command. (j) Op2 stops the robot by Stop
gesture. (k) Op2 resumes the robot operation
by Resume gesture. (l) Op1 ends the robot
operation by giving End command.

Fig. 14. Experimental results. From top to
bottom: hand gesture detection (dashed lines
correspond to detection instants and plain line
to the activation signals), control point trans-
lational velocity, external force at the end-ef-
fector, distance between the camera and the
closest human body part and velocity scaling
factor computed by OpenPHRI to slow down
the motion.
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