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ABSTRACT

We present a modular and compositional approach to learning human-aligned
world models via state-action hierarchies. Our approach is inspired by sensory-
motor hierarchies in the mammalian brain. We model complex state transition
dynamics as a sequence of simpler dynamics, which in turn can be modeled using
even simpler dynamics, and so on, endowing the approach with rich composi-
tionality. We introduce Composer, a practical method for learning complex world
models that leverages hypernetworks and abstract states for generating lower-level
transition functions on-the-fly. We first show that state abstractions in Composer
emerge naturally in simple environments as a consequence of training. Incor-
porating a variant of contrastive learning allows Composer to scale to more com-
plex environments while ensuring that the learned abstractions are human aligned.
Additionally, learning a higher-level transition function between learned abstract
states leads to a hierarchy of transition functions for modeling complex dynamics.
We apply Composer to compositional navigation problems and show its capability
for rapid planning and transfer to novel scenarios. In both traditional grid-world
navigation problems as well as in the more complex Habitat vision-based naviga-
tion domain, a Composer-based agent learns to model the state-action dynamics
within and between different rooms using a hierarchy of transition functions and
leverage this hierarchy for efficient downstream planning. Our results suggest that
Composer offers a promising framework for learning the complex dynamics of
real-world environments using a compositional and interpretable approach.

1 INTRODUCTION

Composing existing skills and knowledge to creatively generate solutions for new and complex
problems is a fundamental attribute of human intelligence. Advances in generative AI and large lan-
guage models are beginning to demonstrate attributes of human-like intelligence but fail at simple
tasks like multiplying a few small numbers (Bubeck et al. (2023); Bender et al. (2021); Schmidhuber
(1991a)) that rely on application of compositional knowledge and reasoning. Similar observations
hold true for traditional reinforcement learning (RL) and embodied AI agents (Lake et al. (2016)).
Recent developments in hierarchical reinforcement learning, supported by novel architectures, have
resolved several such challenges in the field (Hafner et al., 2022; Levy et al., 2017; Kulkarni et al.,
2016). However, a significant gap remains in effectively utilizing structured architectures to ex-
ploit compositionality and enable rapid transfer of dynamics and skills. Additionally, while Vision
Language Models have made labeling visual data faster and more affordable (Radford et al., 2021;
Deitke et al., 2024; Liu et al., 2024), there is still limited research on how these labels can enhance
compositional learning in embodied agents.

This prompts a key question: What fundamental computational principles in biological neural net-
works enable compositionality for solving novel problems? To rigorously answer this question, we
look towards recent advances in computational neuroscience. Predictive coding theories have con-
sistently garnered increasing attention as computational models of how the brain perceives and acts
in the real world (Rao & Ballard (1999); Friston & Kiebel (2009); Keller & Mrsic-Flogel (2018);
Jiang & Rao (2022b)). In predictive coding, different areas of the neocortex together implement a
hierarchical generative model of the world. Feedback connections from a higher to a lower level
predict lower-level responses, and the prediction errors propagate via feedforward connections to
update higher-level estimates. While the original formulation of predictive coding ignored actions,
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Figure 1: Learning and Inferring Hierarchical Dynamics. A learnable higher-level latent state
S(2) generates, using a hypernet Hs, a lower-level transition function fs mapping current input xt

and lower-level action at to next input. Here, the input is an image (taken from the Habitat environ-
ment). Composer uses the sequence of prediction errors between the model prediction and the true
input to update and infer in real time the higher-level latent state S(2) (here, representing an estimate
for the current room). Complex dynamics are abstracted in an unsupervised manner in a sequence
of simpler dynamics which are reused to model dynamics in other problems. Additionally, such
abstractions allow hierarchical planning such as navigating between rooms using abstract actions
rather than primitive actions, resulting in significant savings.

recent attempts towards neo-cortical modeling integrate actions for learning and modeling the dy-
namics of environments via state-action hierarchies (Rao et al., 2023; Rao, 2024). Parallel work on
hippocampal activity in navigating mice brains have made progress in understanding computation-
ally complex domains such as transfer learning, and hierarchical planning in the cortex (Botvinick
et al., 2009; Merel et al., 2019). Grid cells in the entorhinal cortex simulate spatial reference frames
that help breakdown a problem into simpler, reusable components. Further, graph schemas, imple-
mented in the hippocampus has shown evidence for compositional learning ( Moser et al. (2008);
Guntupalli et al. (2023); Whittington et al. (2021)). The key insight we consistently observe from
research in neuroscience is that cortical circuits break down a problem into simple sub-components
and solve them via modulated transition dynamics (a.k.a firing patterns) specific to the problem.

Motivated by these insights, we develop in Section 2 the Composer algorithm for learning a hier-
archy of transition functions and state abstractions. Composer uses only random trajectory rollouts
of an agent and their prediction errors to naturally learn abstractions (Fig. 1). We argue that unlike
traditional state and action abstractions, Composer learns to abstract the transition dynamics of en-
vironments and reuses them in similar scenarios. We confirm our hypothesis with experiments and
present them here. In Section 3 we build on the preliminary insights from the previous section and
scale Composer to more complex environments with interpretable notion of abstractions. Finally, in
Section 4 we present results for interesting applications with Composer, like hierarchical planning
and novel scene generation. Details including additional results, code snippets and derivations are
presented in the supplementary section. To summarize, the main contributions of this paper are:

1. A novel and simple compositional model for abstracting complex dynamics using a hierar-
chy of transition functions;

2. A new algorithm to learn hypernetworks that can generate transition functions on the fly
using prediction errors;

3. A scalable, compositional and interpretable world model geared towards efficient use of
abstract labels for faster planning and transfer in real-world environments.
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Figure 2: Inferring higher-level abstract states from lower-level dynamics. (A) A home en-
vironment composed of simpler and, possibly repeating elements (“rooms”). Gray areas represent
walls or regions unreachable by the agent. The rooms are separated to show independent dynamics
and an opportunity for reuse of transition functions between similar rooms (e.g., parts of the bed-
room and kitchen). (B) The rooms correspond to reusable local dynamics that can be abstracted
as the higher-level latent state vector s(2) and inferred by Composer. (C) Latent state inference by
unrolling the state transition graphical model over time and integrating temporal information. (D)
2-D TSNE plot of successive updates to a d = 32 dimensional latent state vector, while the agent
explores a room for τ = 15 time steps. Note that the inference process converges to different parts
of the latent space for different rooms. More examples in Supplementary Section.

2 LEARNING AND INFERRING ABSTRACT TRANSITION DYNAMICS

In this section, we demonstrate how state abstractions and hierarchical transition functions can be
learned by considering a 2-level Composer model (Figure 1; Figure 3). We leverage variants of
hypernetworks which are neural networks that generate the parameters of other neural networks (Ha
et al., 2016) to carefully study different properties of top-down modulation and dynamics abstraction
in simple compositional gridworld environments. Figure 3 shows the parameterization of hypernet-
work based Composer model. Mention gridworld being top down POMDP. FIX

2.1 TOP-DOWN MODULATION

For a simple implementation of hierarchical abstraction of dynamics, we consider two possible
approaches. Both approaches use an approximation of hypernetworks. In our first approach, a hy-
pernetwork predicts a vector with K weights w = [w1, w2, ..., wk] for combining a set of learnable
basis matrices M, generating the state transition function fs at the lower-level. This approach is
similar to prior work in abstracting temporal neural signals (Jiang & Rao (2022a)).

w = H(s(2)T ) (1)

fs =

K∑
k=1

wkMk (2)

ŝt+1 = ReLU(fs(st, at)) (3)

We also experiment with an embedding approach for top-down modulation where the hypernetwork
predicts a vector embedding from the higher-level latent state. The set of matrices M is replaced by
an RNN that takes as input the top-down embedding, the current state and action as inputs and pre-
dicts the next state. In practice, we found that adding additional decoders after the RNN prediction
in this approach, gave results comparable to the mixture of matrices method discussed above.
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e = Hθ(s
(2)
T ) (4)

ht = tanh(xtW1 + b1 + ht−1W2 + b2) (5)

ŝt+1 = ReLU(htW3 + b3) (6)

Where xt = [e, st, at] is the concatenated input at the lower-level and [θ,W1:3, b1:3] are the model
parameters. Unlike traditional autoencoders (Kingma & Welling (2013); Baldi (2012)), this model
does not have an explicit encoder mapping observations to a latent space. The abstract vectors are
directly inferred via backpropagation of prediction errors during inference (rather than being used
solely for learning as in traditional neural networks).

2.2 INFERENCE

Consider an agent exploring its environment using actions defined by an exploration policy π. To
make the example more concrete, assume that the agent is in a home environment made of rooms
(kitchen, bedroom, etc.), as shown in Figure 2(A). A sequence of observations are generated from
the sensory apparatus of the agent as it explores the environment. We assume that the underly-
ing states are partially observable, resulting in a trajectory of observed states and actions over τ
timesteps: Ta∼π = {s0, a0, s1, a1, ..., sτ} 1. Throughout the paper, we assume that the internal
states st are based on encoded representations of inputs xt (Figure 1) and integrate historically ob-
served inputs via the recurrent network, a formulation in line with the recent trends in model-based
RL (Hafner et al. (2019; 2020)). However, in our model, this recurrent network (which implements
the lower-level transition function) is generated on the fly by the current higher-level abstract state
s(2). Formally, st+1 ∼ P (st+1|st, at, s(2)). Notably, even s(2) is unknown and must be learnt
directly from the environment. We pose the process of learning abstraction vectors s(2) as a con-
tinuous inference process in time, similar to estimation in kalman filters. Since our hierarchical
transition models are task-independent, the rewards obtained in any particular task do not directly
affect the transition models. We intend to explore incorporating reward prediction (in addition to
state prediction) at the lower level in future work (Hafner et al. (2020)).

The inference process involves making updates to beliefs over the higher-level state s(2) (e.g., what
room the agent is located in, i.e.. a kitchen, bedroom, etc.) as evidence accumulates over an episode.
This corresponds to inference of s(2) by minimizing prediction loss using gradient updates for each
lower-level time step t (Equations 7, 8; Figure 2(C)):

Lt,s(2) = ||ŝ
(1)
t+1 − s

(1)
t+1||22 + λ||s(2)T ||

2
2 (7)

s(2) ← s(2) − η∇s(2)Lt,s(2) (8)

The first term in equation 7 is the prediction loss. We typically use a decoder to transform the
recurrent network predictions to the original observation space. The second term is an L2 regularizer
on the abstract states which we found improves performance. η = 0.05 is the inference learning rate
which is kept higher than the model parameter learning rates. During the above inference process,
no update is made to the model parameters (Figure 3(A)). A TSNE plot of s(2) converging over
specific episodes to represent different rooms is illustrated in 2(D). We investigate properties of the
latent s(2) space in Section 4.

2.3 LEARNING

Learning the parameters of the hierarchical model is straightforward (Figure 3(B)). After running the
inference process for τ steps, latent states s(2) are frozen and used as inputs to the hypernetwork.
For the same set of observations used during inference, prediction errors for the τ timesteps are
accumulated and the model parameters are updated in an unsupervised manner.

1For convenience and readability of equations, we omit the subscripts and superscripts for variables through-
out the paper, unless necessary: s

(1)
t,T , the lower-level state at time t and at a higher-level time period T , is

replaced with st. Similarly, the higher-level state s
(2)
T is replaced with s(2), when T remains constant.
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Figure 3: Top-down modulation with Hypernetworks. (A) During inference, gradient updates to all
the model parameters are switched off, except the higher-level latent code. Next state prediction
errors accumulate and modify the latent via the backpropagation algorithm. (B) After running K
inference steps, the latents are frozen and the model parameters are updated. The inputs to the
transition function are the current state and action of the agent. Note that we do not fix a target s(2)
vector. It is learnt along with the model parameters in an alternating gradient descent manner.

Lθ =

τ∑
t=1

||ŝ(1)t+1 − s
(1)
t+1||22 (9)

θH ← θH − ηH∇θHLθ; θf ← θf − ηf∇θfLθ (10)

3 SCALING COMPOSER WITH CONTRASTIVE LEARNING

The real test for Composer is when it is scaled to realistic, pixel based, ego-centric environments. We
choose Habitat 2.0 for their fast and efficient rendering, flexibility in environment configuration and
their highly realistic suite of embodied AI tasks (Szot et al., 2021). Habitat’s noisy and sometimes
partially occluded images provide a very realistic scenario for benchmarking our approach.

3.1 WHAT DOES COMPOSER LEARN IN HABITAT 2.0?

There are two fundamental difficulties when scaling our originally proposed algorithm seen in Sec-
tion 2. First, inferring abstractions from prediction errors, and then subsequently training the model
in a alternating descent fashion is very inefficient and slow. The entire process requires a minimum
of two backpropagation step and often more if we choose to infer for multiple steps. Modern auto-
differentiation libraries like pytorch (Paszke et al., 2019) and parallelized GPU operations render
the proposed Composer algorithm much slower than the state-of-the art hierarchical RL approaches.

Second, and more importantly, early experiments show that it is not trivial to learn well defined and
well separated abstractions in complex, and noisy RGBD images. As seen in Figure 4, with increase
in complexity of the sequential data, the ability to discern different abstract dynamics diminishes. In
Figure 4(C), the agent was allowed to explore the entire environment without supervision. We see
that even though there are regions of densely clustered points for a given room, it is hard to decipher
anything meaningful and reliable when several complex dynamics are involved. This problem is
compounded by the fact that it is not obviously clear if there is an inherent difficulty in learning
dynamics for this environment or if the model is utterly distracted by spurious variations, a feature
of visual pixel based reconstruction (Stone et al., 2021; Zhu et al., 2023).

To address the first issue, we introduce an encoder RNN to directly estimate abstract states s(2)

from lower-level variables. We can now avoid an extra inference step which required propagating
error gradients across the model. To address the second issue, we introduce supervised contrastive
learning in the next subsection.
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Figure 4: Abstract state inference on Habitat: Dynamics abstraction and next state prediction with
s(2) as prior. The scaled APC model (Figure S10) was trained on randomly generated trajectories
from Habitat 2.0’s ego-centric home environment. (A) Rendering of a home used in our experiments.
The render was taken from Matterport (Chang et al. (2017)). The next step predicted model outputs
(bottom) and ground truth reconstruction targets (top) are shown for two different rooms. (B) 2D
PCA of inferred s(2) vectors after training Composer for episodes starting at 2 and 3 different rooms.
With no training signal apart from dynamics prediction errors, s(2) shows moderately separable
clusters for different rooms. (C) 2D PCA of inferred s(2) vectors after training the model for all
rooms in the environment.

Supplementary Figure S10 depicts a version of the Composer model which relies on an encoder
RNN that directly infers an abstract state and modulates another lower-level dynamics prediction
via the network Hs. Prior work (Galanti & Wolf (2020)) has shown that such an embedding input-
based approach is functionally equivalent to using a hypernetwork. Additionally, instead of inferring
s(2) via backpropagation of prediction errors, this version of the model uses a simple feedforward
encoder to directly infer s(2) from a sequence of image inputs (amortized inference), leading to
significant improvements in training time and parallel processing.

3.2 SUPERVISED CONTRASTIVE LEARNING

To overcome the non-trivial problem of learning well defined and well separable abstractions, we
turn towards the human brain. We as humans, do not necessarily learn every abstraction bottom-up
from scratch. More often than not, we strongly rely on signals and labels used by others and quickly
adopt them to our own internal models. This is especially true when exploring a novel scene or a
problem. Humans try their best to use existing ideas and concepts to derive new solutions (Lake
et al., 2016).

Motivated by this fact, we look towards learning from labels. Recent advances in Vision Language
Models, have made it incredible cheap to generate and gather labeled images and videos (Radford
et al., 2021; Deitke et al., 2024; Liu et al., 2024). Supervised Contrastive Learning is a variant of
SimCLR that uses labels to learn robust and powerful representations of visual data (Khosla et al.,
2021; Chen et al., 2020). Given some anchor indices I , if P (i) are the set of positive examples for
anchor i (samples from same room in Habitat, for example) and A(i) is all samples excluding the
ith, the supervised contrastive loss for a batch of inputs is defined as:

Lsup =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(11)

Here, zi is the representation of the ith example and τ is a scalar temperature parameter. We incor-
porate this loss along with reconstructions for our world model. For Habitat 2.0, we use the room
labels provided by the environment. Deriving labels from a state of the art VLM is another possible
approach. We show that using an extremely small number of labels (less than 2% of training steps)
is sufficient for inferring well separable dynamics and further modulating a world model.
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Figure 5: Inferring the 5 x 5 room with partially observable patches. Both the figures are 2-D PCA
of d = 32 dimension latent codes. Note that the model-based agent does not know which room it
is put into, and must infer from observations. (A) τ = 10 step inference for different environments
trained with episodes of length 10. (B) One-Shot inference for three different rooms. Final latent
codes for 100 random episodes from each environment are also plotted in the background to validate
the one-shot inference. Details in text.

4 EXPERIMENTS AND RESULTS

4.1 ABSTRACT TRANSITION SPACE

Figure 5(A) shows the inference process for different gridworld rooms after training the Composer
dynamics model. Random trajectories of length τ = 15 are drawn from different rooms and used
for dynamics prediction task. Accurate estimates can be made in time, as the agent gathers more
evidence. Figure 5(B) shows one-shot inference for three rooms when the model is trained with
shorter episodes of length τ = 5. In the same figure, we also plot the PCA of final abstract states
from 100 episodes for each environment. This shows that the one-shot inference result is indeed
accurate. This fast inference method is useful for rapid planning with limited data. Details are in the
Supplementary Section A.3.

4.2 ZERO-SHOT TRANSFER TO NEW ENVIRONMENTS

A significant benefit of abstracting transition dynamics into a continuous latent space is fast transfer
to new environments. To illustrate this, we trained the hierarchical dynamics model on two simple
environments - a vertical and a horizontal hallway. Figure 6 shows the PCA of the higher-level
abstract state space with blue and orange clusters representing the final inferred abstract states for
the environments. We sampled points along the line joining the cluster centers and used the points as
priors to generate a transition function at the lower level. Next state predictions were made using the
generated function and a random policy. These predictions were used to reconstruct the dynamics
and hence the environment captured by the transition function. These new environments (“rooms”)
are plotted as 5 × 5 grids in Figure 6. These new rooms, which were never seen by the model,
demonstrates how the model can compose and transfer learned dynamics to new environments.

4.3 STATE ABSTRACTION IN HABITAT 2.0

We now show that Composer can be scaled to learn abstract states on realistic environments using
very sparse labeled data and supervised contrastive learning. We use a modified Composer as seen in
Figure S10). Dealing with high-dimensional image inputs require powerful encoders and decoders.
For this experiment, we use a pretrained Residual Autoencoder, resnet18 (He et al. (2015); Wijmans
et al. (2020)) to encode and decode 256 × 256 RGB and depth images from Habitat 2.0 Savva
et al. (2019); Szot et al. (2021) (replacing autoencoders with transformer-based ViT (Vaswani et al.
(2017); Dosovitskiy et al. (2021)) or other architectures is straightforward). We task the scaled
model to predict single-step future states, given the current inputs and actions, and train for 500
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Figure 6: Zero shot transfer of dynamics to new environments by interpolating the abstract states
s(2). The dynamics for newly sampled abstract states (priors) are inferred from a model trained only
on Environment 1 and 2 (Note that these rooms have different dynamics in a top-down setting). The
inferred dynamics with interpolated s(2) priors are drawn out as new environments. This hints that
the priors could be learning a smooth space spanning continuously changing transition functions.

Figure 7: Abstractions learnt via Contrastive Learning: Composer learns well defined and hu-
man interpretable abstractions. These abstract states are used to modulate a lower level transition
dynamics. Reconstruction figures in the appendix. The abstract vectors were of size 32 dimensions.
The first 4 principal components explain 80% of the variance. More importantly, only 2% of the
samples were labeled with information about the agent’s room.

epochs. The results without contrastive learning are shown in Figure 4 and with contrastive learning
are shown in Figure 7 and Supplementary Figure S11.

4.4 LEARNING HIGHER LEVEL TRANSITION MODEL AND ACTION ABSTRACTIONS

As discussed above, the higher-level state s(2) abstracts the transition dynamics at the lower-level
(using backpropagation of prediction errors or an encoder). Significant efficiencies can be achieved
by learning a transition function between abstract states, allowing higher-level planning and navi-
gation to any goal in a compositional environment like Figure 2(A). To learn a transition function
between abstract states, we introduce the idea of an abstract action a

(2)
T (similar to an “option”

in hierarchical RL) which is a latent action vector that generates a lower-level policy. We can de-
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Figure 8: Rooms are subgoals: We consider the learnt abstractions s(2) as subgoals in themselves.
Policies to reach these subgoals can be learnt and composed to reach any novel goals in the room.
(A) Reward learning curve for a goal conditioned DQN agent. The rewards are internal to Composer
model and the optimal policies are learnt after a few warm-up epochs of world model learning. (B)
Learnt abstractions can be used as subgoals. In case of habitat, the abstractions are rooms. A1 in the
above figure is the living room and A2 is the longue. Policies that reach these rooms are learnt in a
sample-efficent manner with the same data used by the world model. (C) The learnt policies can be
chained to reach a goal (G) previously unseen by the agent.

fine action abstractions in Composer to represent subgoals or subtasks similar to the formulation in
(Hafner et al. (2022); Schmidhuber (1991a); Abel (2022)). These abstract actions are tied to a con-
text dynamics, since a particular action might not be relevant in all scenarios. For example, ”Open
the microwave” is a valid subgoal if the agent context is kitchen and not when the context is, say,
a conference room. The latent codes for action abstractions can be learnt by a similar inference
process discussed for state abstractions.

For this paper however, we consider the state abstractions to also represent subgoals. We leave the
subgoal learning with Composer as a future work and instead learn a policy, conditioned on s(2) as
subgoals represented by one hot vectors. Figure 8 shows these learnt policies for subgoals of Habitat
environment. Given abstract actions, the transition dynamics for higher-level abstract states can be
defined as P (s

(2)
T+1| s

(2)
T ,a

(2)
T ), implemented by a recurrent network f

(2)
s , where T represents a time

step at the higher level in the hierarchy.

4.5 HIERARCHICAL RL AND PLANNING

It is well-known that the learnt abstract states, along with well-defined abstract actions, can reduce
the effective search space of an agent for reinforcement learning and planning, greatly reducing the
complexity of the problem (Nachum et al. (2019)). To demonstrate that this advantage accrues to
Composer, we performed simple experiments on a compositional gridworld environment (Figure
2). A simple instantiation of Composer’s hierarchical transition model and hierarchical policy was
learnt for this environment. Here, the abstract actions were assumed to be one of 8 possible subgoals.
We considered 2 tasks (1) Goal-reaching RL task where the goals can change at any point in time,
and (2) Planning to reach a fixed goal from increasing distances. The baselines for these experiments
are respectively: (1) A policy gradient model-free agent and (2) An MPC planner with full access
to the oracle transistion dynamics. Our results (Figure 9) show that Composer is indeed robust to
goal changes and can plan faster, as long as the abstract actions are well defined. Work on learning
useful skills without hand-designed abstract actions (Eysenbach et al. (2018)) is ongoing.
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Figure 9: Planning with Composer on the grid world environment. (Left) Rewards collected over
episodes as the goals are changed. RL agents are not robust to changing goals. (Right) Action steps
taken to plan. With abstract actions, Our model can plan exponentially faster due to the reduced
sequence length.

5 CONCLUSION

This paper presents a new method called Composer for learning transition dynamics for complex
real-world environments based on a structured heirarchical model. The method is inspired by the
theory of the mammalian cortex, and learns a hierarchy of transition functions using self-supervised
learning based on prediction errors and hypernetworks. We applied the model to both traditional
grid worlds and the more complex Habitat domain and showed that higher-level latent codes that
generate transition dynamics for different environments form different clusters in the latent space.
Furthermore, this continuous latent space exhibits smooth transformations of transition functions,
allowing Composer to generate dynamics for new environments in a compositional manner. We in-
troduce abstract actions to allow transition functions to be learned for higher-level latent state spaces,
giving rise to hierarchical world models. We also introduce contrastive learning with very sparse la-
bels to regularize the learnt abstractions and align them towards human interpretable representations.
Our results demonstrate the efficacy of higher-level planning using Composer by exploiting learned
hierarchical world models and local reference frames. Our ongoing and future work is focused on
scaling Composer to larger-scale environments and RL benchmarks, and leveraging the model’s
compositional structure and ability to generate new transition functions on the fly to achieve fast
transfer across environments.

6 REPRODUCIBILITY STATEMENT

Throughout the paper, model details and relevant equations are discussed in detail. Numerous dia-
grams and plots are shown to clearly explain the core insights behind the paper. Section 2 mentions
all equations required to reproduce the results. We provide precise experiment setup for abstraction
inference in Supplementary Section A.3. We commit to releasing anonymous source code during
rebuttal phase. The current state of the Composer codebase is not in line with the double blind pol-
icy. All our code was run on a single RTX 4090 24 GB GPU and hence is highly reproducible even
by the most modest computing resource.
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A APPENDIX

A.1 RELATED WORK

The most closely related work is the Active Predictive Coding model (Rao et al. (2023)) and re-
lated papers on predictive coding Rao & Ballard (1999); Jiang & Rao (2022a). Other related work
pertains to various components and aspects of our model including: (1) Top-down Modulation, (2)
Hierarchical World Models (3) Hierarchical Policy (4) Reference Frames.

Top-Down Modulation refers to an abstract state, conditioning a function that is usually working
at a constrained spatio-temporal scale. Intuitively, the latent vector abstracts critical parts of the
lower-level transition or policy function, allowing re-use of learned dynamics or policies in novel
scenarios. For example, a child learns to lift a coffee mug and has no problem transferring that
experience to picking up a jar or pitcher with a handle. There is evidence from neuroscience that the
cortex may use top-down gain modulation to facilitate such transfer of learned behaviors (Ferguson
& Cardin (2020)). We propose variants of hypernetworks (Ha et al. (2016); Galanti & Wolf (2020))
as potential candidates to implement such abstractions in the Composer model.

Hierarchical Transition Models: Ha & Schmidhuber (2018) introduced world models into model-
based RL. Since then, powerful variants of world models have been proposed for modeling in-
creasingly complex environment dynamics (Hafner et al. (2020; 2022); Micheli et al. (2023)). Yet,
these world models are limited in scope when exposed to novel environments. Graph schemas have
gained in popularity in recent years as potential computational mechanisms for emulating abstrac-
tion, transfer and planning in the brain (Guntupalli et al. (2023); Moser et al. (2017); Whittington
et al. (2021)). Our model, which is inspired by the brain’s hierarchical architecture, employs hier-
archical world models that learn abstractions of transition functions limited in space and time, and
further learns to transition in the new abstract space with access to only unsupervised prediction
errors.

Hierarchical Policies: Hierarchical Reinforcement Leaning and action abstractions have have a
long history in RL (Sutton et al. (1999), Barto & Mahadevan (2003), Schmidhuber (1990; 1991a;b)).
With the introduction of deep neural networks (LeCun et al. (2015); Schmidhuber (2014)), many
variants of hierarchical and deep reinforcement learning have been developed (Bacon et al. (2017);
Hafner et al. (2022); Kulkarni et al. (2016)). Abel (2022) provides an extensive discussion of abstract
states and actions. In Composer, a higher-level abstract action vector is generated by the higher-level
policy, and this action vector in turn generates, via a hypernetwork, a low-level policy function;
details in Section 3.4, see also (Rao et al. (2023))).

Reference Frames: Our approach decomposes a complex problem into transition functions and
policies that operate hierarchically within local reference frames. This allows an agent to ignore
task-irrelevant state and action information at each level, resulting in considerable efficiencies in
training and transfer. The importance of reference frames in intelligence and reasoning has been
highlighted recently by Hawkins (2021) based on evidence from neuroscience involving “grid cells”
and spatial reference frames in the cortex and hippocampus (O’Keefe & Dostrovsky (1971); Moser
et al. (2017)). Previous work in AI on hard attention models (Mnih et al. (2014)) can be regarded as
single-level versions of our approach which learns hierarchical reference frames (Section 2).

A.2 EXPERIMENT AND MODEL DETAILS FOR THE SCALED COMPOSER

See Supplementary Figures S10 and S11

A.3 ADDITIONAL RESULTS: FEW-SHOT INFERENCE OF ABSTRACT STATES

Here, we provide experiment details for the analysis of abstract state inference. Results are shown in
Figure 5. Our experiments with the learnt abstract states s(2) was focused on studying the nature of
the abstract transition space. This turned out to be useful when transfering learnt dynamics to novel
environments. For our experiment setup, we collect episodic data for 5 room environments with
different dynamics. The environment dynamics can be changed by placing the walls in different
patterns. The hypernetwork used is a 4 layer deep neural net with 256 units at each layer. We
use ReLU non-linear activation everywhere unless specified. The learning rate for inference was
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Figure S10: Scaling Composer to complex image-based environments. The core idea of using
abstract states s(2) to generate lower-level transition dynamics fs remains the same but instead of
relying on prediction errors for inference, a bottom up encoder is used for amortized inference to
directly infer the abstract state from the accumulated lower level evidence. Pixel based depth images
of size (256 x 256 x 1) from habitat are fed into Composer and s(2) estimates are computed at each
time step. Additionally, we regularize s(2) with sparse labels and supervised contrastive learning.

Figure S11: Composer depth reconstructions for an agent: Along with highly accurate recon-
structions, the model is also able to infer abstract states like kitchen, room, etc.
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kept much higher at η = 0.1, whereas the learning rate for training both the hypernetwork and the
transition function were ηH = ηf = 0.001. For each environment, we collect episodes of length
τ and feed it to Composer model. We experiment inference with episodes of lengths 2, 5, 15, 25
and 50. Typically, longer episodes perform better since the data available about the environment
increases. For every episode, our model first infers the latent code, freezes the final latent code and
performs gradient updates to the model parameters using the prediction errors. Adam optimizer was
used for both inference and training.

To choose a dimension for s(2) ∈ Rd, we run inference and training for d = [4, 8, 16, 32, 64].
Our intent was to create a balance between information capacity (neatly clustered latent codes) and
prediction errors. ( Dawid & LeCun (2023)) notes that generative latent variable architectures can
collapse if the latent codes have very high information capacity. In such cases, the transition function
completely ignore the inputs st, at and learn to essentially push all the necessary information into
the latent code. In our experiments, we found d = 32 to optimally minimize prediction errors while
maintaining separable latent code clusters. The plots representing latent codes in this paper are 2-D
PCA of s(2) originally in a 32 dimension space unless specified.
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