
Active Evaluation Acquisition for Efficient LLM Benchmarking

Yang Li 1 Jie Ma 1 Miguel Ballesteros 1 Yassine Benajiba 1 Graham Horwood 1

Abstract

As large language models (LLMs) become in-
creasingly versatile, numerous large scale bench-
marks have been developed to thoroughly assess
their capabilities. These benchmarks typically
consist of diverse datasets and prompts to evalu-
ate different aspects of LLM performance. How-
ever, comprehensive evaluations on hundreds or
thousands of prompts incur tremendous costs in
terms of computation, money, and time. In this
work, we investigate strategies to improve eval-
uation efficiency by selecting a subset of exam-
ples from each benchmark using a learned policy.
Our approach models the dependencies across
test examples, allowing accurate prediction of the
evaluation outcomes for the remaining examples
based on the outcomes of the selected ones. Con-
sequently, we only need to acquire the actual eval-
uation outcomes for the selected subset. We rig-
orously explore various subset selection policies
and introduce a novel RL-based policy that lever-
ages the captured dependencies. Empirical results
demonstrate that our approach significantly re-
duces the number of evaluation prompts required
while maintaining accurate performance estimates
compared to previous methods.

1. Introduction
As large language models (LLMs) become increasingly ver-
satile, comprehensive benchmarks have emerged to assess
their capabilities. However, these evaluations incur substan-
tial costs - for example, evaluating on the HELM benchmark
requires 4,200 GPU hours for a 176B BLOOM model and
$9,337 for text-davinci-002 API calls (Liang et al., 2022).
Such costs hamper development by preventing frequent eval-
uation during model training and extensive hyperparameter
tuning during inference.

1Amazon Web Service. Correspondence to: Yang Li <yl-
izam@amazon.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

In this work, we aim to improve evaluation efficiency by
reducing the number of evaluation prompts needed. We
observe that evaluation prompts are often correlated, where
a model’s performance on certain prompts tends to corre-
spond with its performance on related ones. To leverage this,
we build a model to capture dependencies across prompts
and predict evaluation scores based on observations from a
subset of prompts. Our goal becomes identifying the mini-
mal subset that can accurately recover the evaluation scores
for the remaining prompts.

Instead of using a fixed subset across all models, we pro-
pose selecting unique subsets for each model through ac-
tive evaluation acquisition (AEA). This approach recog-
nizes that models may have varying strengths - for example,
one model may excel in arithmetic reasoning while another
shows stronger commonsense reasoning. By tailoring the
subset of prompts for each model, we ensure a more accu-
rate and targeted evaluation of its capabilities. Furthermore,
our dynamic acquisition process adapts in real time as eval-
uation scores are gathered. As the model’s performance on
initial prompts is observed, the system adjusts subsequent
prompt selections to better explore areas of uncertainty or
confirm early findings. This iterative approach not only
enhances the accuracy of performance estimation but also
reduces redundancy by avoiding prompts that are likely to
yield predictable results, thereby saving computational re-
sources and time. Importantly, the final evaluation score is
derived from both the acquired scores on selected prompts
and predicted scores on the remaining prompts, ensuring
comparability across models is maintained.

Our contributions include: 1) We tackle LLM evaluation ef-
ficiency through dependency modeling and subset selection,
connecting it with subset selection literature. 2) We design a
generative model that captures dependencies across prompts
and handles mixed-type evaluation scores. 3) We thoroughly
evaluate existing subset selection algorithms on several pop-
ular LLM benchmarks. 4) We develop new subset selection
policies, with our RL-based approach achieving the best
performance using minimal acquisition budget.

2. Problem Formulation
Consider a benchmark X with N prompts, X = {xn}Nn=1.
When evaluating a model m on this benchmark, we obtain

1

Active Evaluation Acquisition for Efficient LLM Benchmarking

evaluation scores Ym = {ymn}Nn=1. A leaderboard for
this benchmark typically contains evaluation scores for M
models, denoted as {Ym}Mm=1. These scores may be of
mixed types - for instance, some datasets might report binary
accuracy while others use continuous metrics like F1 scores.

For a new model m′ to be evaluated, our goal is to ac-
quire evaluation scores for only a subset of prompts Y (o)

m′ =
{ym′o : o ⊆ {1, . . . , N}} while predicting the scores
Y

(u)
m′ = {ym′u : u = {1, . . . , N} \ o} for the remaining

prompts. The key challenge is capturing the dependencies
across prompts to ensure accurate prediction of the unob-
served scores. We model these dependencies through the
conditional distribution p(Y

(u)
m′ |Y (o)

m′ , X). Since the set of
prompts to acquire their scores is not predefined, we must
estimate p(Y

(u)
m′ | Y (o)

m′ , X) for all possible subsets u and o.

Given a budget K for acquiring evaluation scores and the
above generative model, our objective is to find an optimal
subset o∗ ⊆ {1, . . . , N}, where |o∗| = K, such that:

o∗ = argmax
o∈P([N],K)

p(Y
(u)
m′ |Y (o)

m′ , X), (1)

where P([N],K) represents all subsets of {1, . . . , N} with
cardinality K. Note that this optimal subset could be differ-
ent for each model being evaluated.

This objective presents two main challenges. First, the val-
ues Y (u)

m′ for a test model m′ are unknown before acquisition,
making direct optimization impossible. Second, the number
of possible subsets grows combinatorially with N , making
exhaustive search infeasible. Our solution addresses these
challenges through an active learning inspired approach that
iteratively selects prompts based on observed scores.

3. Method
3.1. Modeling Dependencies via Neural Processes

In this section, we aim to capture the dependencies across
evaluation prompts by modeling the conditional distribution
p(Y

(u)
m | Y (o)

m , X). We represent the relationship between
the prompts and their evaluation scores as a stochastic pro-
cess F : X → Y , where X and Y denote the spaces of
prompts and their corresponding evaluation scores, respec-
tively. Evaluating on benchmark X can be interpreted as
observing finite-dimensional marginal distributions of this
stochastic process. Specifically, evaluation scores Ym repre-
sent function values {fm(xn)}Nn=1 for a particular function,
fm, sampled from the distribution of functions.

Neural Processes (NPs) (Garnelo et al., 2018b;a; Kim et al.,
2019) provide a flexible and scalable approach to modeling
such stochastic processes. They combine the strengths of
neural networks and Gaussian Processes to predict outputs
for new inputs by conditioning on a set of context points.

Specifically, the function fm is implicitly parameterized by
a latent vector zm, and the generative model then follows

p(Y
(u)
m | Y (o)

m , X) =
∫
p(zm | Y (o)

m , X)p(Y
(u)
m | zm, Y

(o)
m , X)dzm.

(2)
Since the integration is over a high dimensional latent space,
we optimize the evidence lower bound (ELBO) following
variational autoencoder (VAE) (Kingma & Welling, 2013)

log p(Y (u)
m | Y (o)

m , X)

≥ E
q(zm|Y (u)

m ,Y
(o)
m ,X)

[
log

p(Y
(u)
m | zm, Y

(o)
m , X)p(zm | Y (o)

m , X)

q(zm | Y (u)
m , Y

(o)
m , X)

]
,

(3)
where q(zm | Y (u)

m , Y
(o)
m , X) and p(zm | Y (o)

m , X) repre-
sent the posterior and prior distributions, respectively.

To ensure our model represents a valid stochastic process,
we adhere to the conditions stated by the Kolmogorov Ex-
tension Theorem (Oksendal, 2013): (finite) exchangeability
and consistency. The exchangeability condition requires
that the joint distribution p(Ym) remain unchanged under
permutations of its elements, which we satisfy by using per-
mutation invariant networks to parameterize both the prior
and posterior distributions. The consistency demands that
marginalizing out part of Ym yields the same distribution
as that defined on the original prompt xn. This condition is
met when the approximate posterior equals the true poste-
rior, which we achieve by training the model with sufficient
data from diverse model evaluations so that the lower bound
approaches the actual likelihood. In order to handle textual
prompts, we utilize a pretrained embedding model to rep-
resent each prompt as a Rd vector. Please see Sec. B for
implementation details.

3.2. Evaluation Acquisition Policy

Given the generative model across subsets of evaluation
prompts, we now develop acquisition policies to select an
optimal subset of prompts for acquiring their true evaluation
scores, while the remaining scores will be predicted by the
conditional p(Y (u)

m | Y (o)
m , X).

3.2.1. RANDOM POLICY

A random acquisition policy selects a subset of size K at
random to acquire the evaluation scores. Here, we consider
two variants: Uniform Sampling and Stratified Sampling
(Perlitz et al., 2023). Uniform Sampling selects K prompts
uniformly from X , while Stratified Sampling considers the
size of different datasets and ensures each dataset is equally
represented. The stratified sampling has been verified effec-
tive on HELM benchmark (Perlitz et al., 2023).

3.2.2. STATIC POLICY

A static acquisition policy determines the set of prompts to
be evaluated beforehand, and each model to be evaluated

2

Active Evaluation Acquisition for Efficient LLM Benchmarking

acquires the evaluation scores on the same set of prompts.
We assess the following two types of static policies:

Clustering Given the embedding for each prompt, we
group them into K cluster, then select one prompt in each
cluster that is closest to the cluster centroid. We denote
this approach as Clustering-Embed. Instead of using the
pretrained sentence embedding, we can use the learned
embedding from an Item Response Theory (IRT) model
(Hambleton & Swaminathan, 2013; Embretson & Reise,
2013), which represents the difficulty and discriminability
of each prompt. The Clustering-IRT method, proposed in
(Polo et al., 2024), has been successfully applied on several
public LLM benchmarks. Inspired by (Vivek et al., 2023),
which selects representative examples by clustering based
on prediction confidence, Clustering-Score groups prompts
based on their evaluation scores on the training set. Each
prompt xn is represented by a vector of evaluation scores,
with the size of the vector corresponding to the number of
evaluated models in the training set. The Clustering-Score
method has been used as a baseline in (Polo et al., 2024).

Combinatorial Optimization Given the model p(Y (u)
m |

Y
(o)
m , X), a static acquisition policy can be derived by

searching over the training set to find the optimal subset
of prompts that gives the most accurate prediction of the
remaining prompts. This is a typical combinatorial opti-
mization problem, which is NP-Hard. Here, we employ a
sequential approach that selects one prompt at a time until K
prompts are selected. Starting from an empty set o = ∅, the
next prompt i ∈ u := {1, . . . , N} \ o is chosen to minimize
the prediction error over the training set, i.e.,

i = argmin
i′∈u

EYm∼pDEŶ
(u′)
m

∥Ŷ (u′)
m − Y (u′)

m ∥2, (4)

where o′ = o∪{i′} and u′ = u\{i′} denote the updated ob-
served and unobserved set after acquiring evaluation scores
for prompt i′. Ŷ (u′)

m indicates predicted scores sampled from
the neural process model p(Y (u′)

m | Y (o′)
m , X). The expec-

tation is estimated by Monte Carlo sampling. For notation
simplicity, the above equation computes the mean squared
error on prompts u′; however, in practice, different datasets
may use different metrics. Additionally, these differences
may be weighted depending on the dataset size. Please refer
to Algorithm 3 for pseudo-code of the selection process.
Note that this approach has a complexity of O(KMN),
which could be prohibitive when the benchmark is large.

3.2.3. DYNAMIC POLICY

Instead of acquiring the same set of evaluation scores for
each model, we propose dynamically acquiring adaptive sub-
sets for different models, a method we term Active Evalua-
tion Acquisition (AEA). This approach tailors the selection
of prompts to each model’s specific strengths and weak-
nesses, providing a more accurate and efficient evaluation.

Algorithm 1 Active Evaluation Acquisition
Require: Budget K, model m to be evaluated, Neural Process p
1: o = ∅, Y (o)

m = ∅, u = {1, . . . , N}
2: while |o| < K do
3: Select prompt i according to (5), (6), or (9)
4: Evaluate model m on prompt i to get evaluation score Y

(i)
m

5: o = o ∪ {i}, Y (o)
m = Y

(o)
m ∪ {Y (i)

m }, u = u \ {i}
6: end while
7: Predict the evaluation scores for the remaining prompts

Y
(u)
m ∼ p(Y

(u)
m | Y (o)

m , X)

Dynamic acquisition sequentially acquires evaluation scores
and simultaneously refines the uncertainty of predictions,
enabling real-time adaptation based on observed perfor-
mance. AEA reduces redundancy by avoiding predictable
evaluations and focusing resources on the most informative
prompts. Please refer to Algorithm 1 for pseudo-code of the
active acquisition process.

Uncertainty Sampling Inspired by uncertainty sampling
method widely used in active learning literature (Ren et al.,
2021; Yang et al., 2015; Raj & Bach, 2022), where the most
uncertainty data point under the current predictor is chosen
to query its label, we select the next prompt to be evaluated
based on the uncertainty of p(Y

(i)
m | Y

(o)
m , X). Here, o

contains the evaluated prompts so far, and i ∈ u is one of
the candidate prompts to be selected. We choose the prompt
with the highest entropy:

i = argmaxi∈u H(Y
(i)
m | Y (o)

m , X). (5)

In practice, we estimate the entropy by sampling multiple
times and computing the sample variance.

Information Gain Given the latent variable based neural
process model (2), where the latent variable parameterizes
the stochastic process, a straight-forward acquisition policy
is to select the prompt that provides the most information
about the latent variable zm. We use the conditional mutual
information to measure the amount of information:

i = argmax
i∈u

I(Y (i)
m ; zm | Y (o)

m , X)

= argmax
i∈u

[
H(zm | Y (o)

m , X)− E
Ŷ

(i)
m

H(zm | Ŷ (i)
m , Y (o)

m , X)
]

= argmin
i∈u

E
Ŷ

(i)
m ∼p(Y

(i)
m |Y (o)

m ,X)
H(zm | Ŷ (i)

m , Y (o)
m , X).

(6)
The third equation follows because the observed set o is the
same for any candidate i ∈ u. The expectation is estimated
by Monte Carlo sampling. Note that the entropy is estimated
based on predicted Y

(i)
m rather than the true evaluation score

as the true score is unknown before acquisition. At each
acquisition step, the entropy must be estimated for each
candidate prompt i ∈ u. Therefore, the total complexity is
O(KN), which could be prohibitive for large benchmarks.

3

Active Evaluation Acquisition for Efficient LLM Benchmarking

Reinforcement Learning The active acquisition process
can be formulated as a Markov decision process (MDP),
where the state consists of the currently evaluated prompts
and their scores, and the action space contains the remaining
prompts to be evaluated. To solve the MDP, a reinforcement
learning agent sequentially acquires new evaluation scores
based on the current state. After acquiring evaluation score
for prompt i, the current state transitions to a new state as
follows: o i−→ o ∪ {i}, Y (o)

m
i−→ Y

(o)
m ∪ {Y (i)

m }. When the
agent acquires evaluation scores for K prompts, the acqui-
sition process terminates, and the agent receives a reward
based on the prediction accuracy for the remaining prompts.
In a basic setup, the agent would only receive a reward at the
end of the acquisition process (after selecting K prompts)
based on the prediction accuracy for the remaining prompts.
However, this delayed reward structure poses a typical tem-
poral credit assignment problem, which complicates the
learning of an effective agent, especially when the trajectory
is long (Minsky, 1961; Sutton, 1988). To address this issue,
we design an intermediate reward function that provides
immediate feedback after each acquisition action i. Specifi-
cally, the reward measures the improvement in prediction
accuracy per unobserved prompt:

r(o, i) =
E
Ŷ

(u)
m

∥Ŷ (u)
m −Y (u)

m ∥2

|u| −
E
Ŷ

(u′)
m

∥Ŷ (u′)
m −Y (u′)

m ∥2

|u′| ,
(7)

where o′ = o∪{i} and u′ = u\{i} denote the observed and
unobserved sets after acquiring prompt i. The expectations
are taken over predicted evaluation scores sampled from
the neural process model, with Ŷ

(u)
m ∼ p(Y

(u)
m | Y (o)

m , X)

before acquiring prompt i and Ŷ
(u′)
m ∼ p(Y

(u′)
m | Y (o′)

m , X)
after the acquisition. Note that this intermediate reward
follows the potential function structure (Ng et al., 1999),
therefore, it will not change the optimal policy.

Given this reward structure, the goal of the agent is to learn
a policy π∗ that maximizes the expected cumulative reward
over the trajectory of K acquisitions:

π∗ = argmax
π

Eτ∼π

[
K∑
t=1

r(ot, ii)

]
, (8)

where τ = (o1, i1, ..., oK , iK) represents a trajectory of
states and actions under policy π, and r(ot, it) is the reward
received after selecting prompt it given the current observed
set ot. Note that the reward computation is only required
during training when we have access to all the evaluation
scores. During testing, the next prompt to be evaluated will
be directly selected by the policy:

i = argmaxi∈u π
∗(i | Y (o)

m , X). (9)

Since the policy network has constant computational cost,
the total complexity of the acquisition process remains
O(K) regardless of the benchmark size.

In addition to providing intermediate rewards, we propose
using the neural process to assist the agent with auxiliary
information. Specifically, the neural process can predict
the evaluation scores for unobserved prompts based on the
observed scores in the current state. By sampling multiple
times, the neural process can inform the agent about the un-
certainties of these unobserved scores. The predicted scores
and their uncertainties on the unobserved prompts allow the
agent to anticipate future states and guide its exploration.
For instance, if the neural process is very confident about
the score of a currently unobserved prompt, then acquiring
its real score would be redundant. The auxiliary informa-
tion helps the agent make more informed decisions about
which prompts to evaluate next, improving the efficiency
and accuracy of the active acquisition process.

3.3. Cold Start Problem

As language models advance with emergent capabilities,
benchmarks must expand with new prompts for which no
evaluation scores are initially available. This cold start prob-
lem introduces two key challenges: generalizing the neural
process to predict scores on new prompts, and determining
which new prompts to select.

To address neural process generalization, we employ a
semi-supervised approach where new prompts are treated
as unlabeled data. Specifically, we incorporate predicted
scores with high confidence into the training process through
pseudo-labeling (Lee et al., 2013; Xie et al., 2020; Du et al.,
2020). In our preliminary experiments, we also tested sev-
eral common semi-supervised learning approaches, includ-
ing entropy minimization (Grandvalet & Bengio, 2004) and
consistency regularization (Tarvainen & Valpola, 2017), but
found pseudo-labeling consistently performed best. A sys-
tematic exploration of semi-supervised neural process train-
ing remains as future work.

While static policies are limited by their reliance on his-
torical scores, our dynamic approach enables continuous
adaptation through sequential active acquisition. The key to
handling previously unseen prompts lies in our novel policy
architecture that explicitly incorporates prompt representa-
tions. At each acquisition step, the policy network h takes
two inputs: the acquired scores Y (o)

m and the embeddings of
candidate prompts to be evaluated, where these embeddings
are shared with the neural process model. The network out-
puts a vector in the same space as the prompt embeddings,
and the selection probability is determined through inner
products:

π(i | Y (o)
m , X) =

eai·h(Y (o)
m ,X(o),{ai}i∈u)∑

i∈u e
ai·h(Y (o)

m ,X(o),{ai}i∈u)
, (10)

where {ai}i∈u denote the embeddings of candidate prompts.
This dot-product architecture enables the policy to handle

4

Active Evaluation Acquisition for Efficient LLM Benchmarking

arbitrary action spaces while maintaining awareness of avail-
able actions (Jain et al., 2020). Please refer to Appendix E
for implementation details.

4. Related Works
Active Learning Active learning (Fu et al., 2013;
Konyushkova et al., 2017; Yoo & Kweon, 2019) addresses
the problem of having a learner select specific examples to
query an oracle for their labels, with the goal of learning a
better model using as few labeled examples as possible. In
contrast, our proposed AEA framework focuses on evaluat-
ing a model with fewer examples to accurately predict the
evaluation scores for the remaining examples.

Active Testing Active testing (Kossen et al., 2021) re-
duces the labeling cost by selectively choosing test points
to label, ensuring sample-efficient model evaluation. This
approach has been adapted LLM evaluation (Huang et al.,
2024) and preference data selection (Ashury-Tahan et al.,
2024). While this aligns with the overarching goal of effi-
cient evaluation, our work specifically targets reducing the
cost of running evaluations on a large number of prompts,
rather than minimizing labeling costs.

Computerized Adaptive Testing IRT provides a prin-
cipled framework for adaptive testing (Liu et al., 2024),
selecting test items based on their difficulty and discrim-
ination parameters. Zhuang et al. (2023) further applied
this technique to LLM evaluation. While IRT methods offer
interpretable parameters and theoretical guarantees, they typ-
ically assume item independence. Our approach differs by
explicitly modeling dependencies between prompts through
a neural process and learning adaptive selection strategies
via RL, rather than relying on static item parameters.

Efficient LLM Benchmarking As LLMs continue to de-
velop and scale, ongoing efforts aim to create benchmarks
that comprehensively assess their capabilities. A notable
trend in these benchmarks is their evolution from single-task
assessments (Bowman et al., 2015; Rajpurkar et al., 2016)
to multi-task benchmarks (Wang et al., 2018; 2019), and
ultimately to massively multi-task evaluations (Srivastava
et al., 2022; Liang et al., 2022; Hendrycks et al., 2020). The
ever-increasing evaluation cost has encouraged researchers
to develop efficient evaluation approaches. BIG-bench Lite
(Srivastava et al., 2022) and BIG-bench Hard (Suzgun et al.,
2022) evaluate on a subset of BIG-bench tasks, and Ye et al.
(2023) propose clustering BIG-bench tasks and selecting
the examples that are closest to cluster centers. Perlitz et al.
(2023) found that the model rankings on HELM can be
accurately obtained by evaluating only a fraction of the
examples. Vivek et al. (2023) propose clustering the evalua-
tion examples based on the uncertainty of model predictions,
while Polo et al. (2024) suggest clustering examples based
on learned features from an IRT model. In this work, we

(a) AlpacaEval

(b) HELM-Lite (c) OpenLLM Leaderboard

(d) MMLU (e) Chatbot Arena

Figure 1. Experiment results on five LLM benchmarks, with
shaded areas indicating the standard deviation over three runs.

comprehensively assess these methods and further propose
actively selecting evaluation examples.

5. Experiments
In this section, we assess various evaluation acquisition
policies on several popular LLM benchmarks. We divide
the available leaderboard scores into training and test splits.
The training split is used to fit the neural processes model,
capturing the dependencies across prompts. The acquisi-
tion policies are executed for each model in the test split to
acquire the evaluation scores for a subset of prompts. The
evaluation scores on the remaining prompts are predicted
based on the corresponding neural process model. The final
score for each benchmark is computed as a weighted aver-
age across datasets, and we report the absolute differences
between the predicted scores and the actual scores. Please
see Appendix F for details.

We conduct experiments on five popular LLM benchmarks:
HuggingFace Open LLM Leaderboard (Beeching et al.,
2023), MMLU (Hendrycks et al., 2020), HELM-Lite (Liang
et al., 2022), AlpacaEval 2.0 (Li et al., 2023), and Chatbot
Arena (Zheng et al., 2024). For each benchmark, we divide
its leaderboard into training and testing splits based on mod-
els rather than prompts. When evaluation dates are available

5

Active Evaluation Acquisition for Efficient LLM Benchmarking

(e.g., for Open LLM Leaderboard), we use chronological
splitting to ensure testing is performed on newer models,
better simulating real-world scenarios where we evaluate
newly released LLMs. For benchmarks without temporal
information, we use random splitting. Detailed descriptions
of these benchmarks can be found in Appendix F.

Results Figure 1 presents the main experimental results
on 5 LLM benchmarks. We conduct experiments with 3
random seeds for each benchmark and plot the average per-
formance and standard deviation throughout the acquisition
process. Prompt embeddings are obtained using the SFR
embedding model (Meng et al., 2024). For the static cluster-
ing based policies, since the selected prompts do not have
an inherent order, the acquisition process shuffles the se-
lected prompts at random. For the AlpacaEval and Chatbot
Arena benchmarks, stratified random sampling is equivalent
to uniform sampling since there are only one dataset in each
benchmark. Combinatorial optimization is too expensive to
run for HELM-Lite, HuggingFace Open LLM Leaderboard,
and MMLU due to the large number of prompts. We found
that uncertainty and information gain based policies con-
sistently fail to explore the action space, leading to worse
overall performance. To avoid cluttering the plots, results
for uncertainty sampling and information gain based poli-
cies are moved to the appendix. Please refer to Appendix F
for more analysis.

For all benchmarks, our proposed RL-based acquisition
policy achieves the best performance with the lowest acqui-
sition budget, demonstrating its superior ability to select
informative prompts and accurately estimate benchmark
performance. Notably, our method achieves dramatic reduc-
tions in required evaluations – requiring only 35 prompts to
match the accuracy of random sampling with 100 prompts
on MMLU, and similar efficiency gains across other bench-
marks (75% reduction on HELM-Lite, 92% on AlpacaEval,
see Sec. F.5 for detailed analysis). The stratified random
sampling policy performs similarly to uniform sampling.
Interestingly, the Clustering-Embed policy does not outper-
form the random selection, indicating that the similarity in
prompt embedding does not always translate to the similar-
ity in evaluation scores. Among the three clustering-based
policies, none consistently outperforms the others. On Al-
pacaEval, HELM-Lite, and MMLU, the policies that utilize
the evaluation scores (i.e., Claustering-Score and Clustering-
IRT) perform better, while on the Open LLM Leaderboard
and Chatbot Arena, Clustering-Embed perform better. The
combinatorial optimization based policy does not perform
well, even on the two small benchmarks where it is computa-
tionally feasible. We attribute this to a potential distribution
shift between the models used for training and those used
for testing, suggesting that the static policy optimized on
training models does not generalize well to new models
during testing. Please see Sec. F.3 and F.4 for additional

Table 1. Comparison of our RL-based acquisition policy with Tiny-
Benchmarks (TB) (Polo et al., 2024), using selected prompts to
predict evaluation scores with either the IRT model from TB or
our NP model. The metric is the absolute prediction error.

IRT++ NP

AlpacaEval TB 0.027± 0.002 0.003± 0.001
(K=100) RL 0.014± 0.005 0.001± 0.000

MMLU TB 0.022± 0.000 0.016± 0.000
(K=100) RL 0.028± 0.002 0.013± 0.000

Open LLM TB 0.023± 0.002 0.022± 0.004
(K=200) RL 0.019± 0.001 0.018± 0.001

(a) AlpacaEval (b) HELM-Lite

Figure 2. Evaluate the situation with model bias, where test models
are from different model families compared to the training models.

results and analysis.

Additionally, we compare our methods with tinybenchmarks
(Polo et al., 2024). Given the selected subsets from tiny-
benchmarks, we predict the final benchmark performance
using both the IRT++ models provided by tinybenchmark 1

and our neural process models. Conversely, we also evaluate
our prompt selections using both models. Table 1 compares
the prompt selections from our proposed RL policy with
those from tinybenchmark. The original tinybenchmark se-
lect 600 prompts for Huggingface Open LLM Leaderboard,
but in our comparison, we select 200 prompts to ensure a
fair comparison with our RL policy. The results show that
for both prompt selections, using NP produces better bench-
mark performance estimates, indicating that our NP model
better captures the dependencies and predicts the missing
evaluation scores. Given a fixed prediction model (either
IRT++ or NP), our RL-based acquisition policy achieves
lower error compared to the prompt selections from tiny-
benchmark, demonstrating that our RL-based policy is more
effective at selecting the informative prompts.

Model Bias An important aspect of efficient benchmark-
ing strategies is robustness to model bias. To accurately
evaluate future models, which may differ significantly from
previously seen models, the strategy must accurately mea-
sure model capabilities based on the selected prompts. Our
train-test splits based on date for MMLU and Open LLM

1https://github.com/felipemaiapolo/tinyBenchmarks/tree/main

6

Active Evaluation Acquisition for Efficient LLM Benchmarking

Table 2. Comparison of the final benchmark performance estimation methods. w/ pred indicate the proposed method where the neural
process is used to predict the missing evaluation scores. w/o pred indicates the baseline where final performance is an aggregation of the
acquired evaluation scores.

AlpacaEval HELM-Lite Open LLM MMLU Chatbot Arena
(K=100) (K=200) (K=200) (K=100) (K=40)

Uniform w/ pred 0.005± 0.000 0.038± 0.005 0.022± 0.002 0.018± 0.001 0.052± 0.010
w/o pred 0.012± 0.001 0.079± 0.008 0.043± 0.003 0.042± 0.003 0.036± 0.009

S-Rand w/ pred - 0.035± 0.012 0.030± 0.003 0.017± 0.002 -
w/o pred - 0.072± 0.012 0.023± 0.001 0.038± 0.001 -

C-Embed w/ pred 0.006± 0.001 0.051± 0.010 0.024± 0.002 0.020± 0.004 0.052± 0.014
w/o pred 0.023± 0.008 0.116± 0.003 0.029± 0.000 0.029± 0.000 0.032± 0.003

C-Score w/ pred 0.004± 0.001 0.054± 0.010 0.031± 0.003 0.014± 0.002 0.054± 0.004
w/o pred 0.141± 0.011 0.051± 0.017 0.086± 0.002 0.048± 0.002 0.037± 0.011

C-IRT w/ pred 0.003± 0.001 0.044± 0.013 0.026± 0.001 0.015± 0.001 0.057± 0.002
w/o pred 0.069± 0.003 0.060± 0.014 0.037± 0.003 0.041± 0.006 0.042± 0.003

RL w/ pred 0.001± 0.000 0.030± 0.005 0.018± 0.001 0.013± 0.000 0.034± 0.006
w/o pred 0.064± 0.006 0.081± 0.019 0.063± 0.018 0.050± 0.006 0.045± 0.007

Leaderboard potentially evaluate this situation since model
performance tends to improve over time. To further evaluate
the performance in the presence of model bias, we divide
the models on the AlpacaEval and HELM-Lite leaderboards
based on their organizations. For HELM-Lite, we use pro-
prietary models, such as GPT-4 (Achiam et al., 2023) and
Claude (Anthropic, 2024), for training and test on open-
source models, such as LLaMA (Touvron et al., 2023) and
Mistral (Jiang et al., 2023). For AlpacaEval, we do the oppo-
site, using open-source models for training and proprietary
models for testing.

Figure 2 presents evaluation results on these two bench-
marks with model bias. Firstly, static policies, especially
Clustering-Score and Clustering-IRT that depend on eval-
uation scores from the training models, do not perform
well. Secondly, although random policies do not suffer
from model bias, they cannot leverage dependencies across
prompts, leading to lower overall performance. In contrast,
our RL-based dynamic acquisition policy can effectively
exploit the dependencies across prompts even for models
that is significantly different from the models it has seen
before. However, we notice that the existence of model bias
makes the problem harder to solve. Compared to Fig. 1
on the same benchmark, even for our RL-based policy, it
takes more acquisitions to achieve the same level of errors
as in situations where no model bias exists. In practice, a
continual learning framework, where the NP model and the
acquisition policies are jointly adapted to the newly added
models, might be necessary. We leave this for future works.

Cold Start Problem To evaluate the cold start scenario,
we create a synthetic benchmark using MMLU by designat-
ing 15 subsets as cold start prompts. During the training
of the neural process model and the acquisition policies,
the evaluation scores on these 15 subsets are not available.

Although the evaluation scores are missing, we assume the
prompts themselves are given, allowing random policies
and Clustering-Embed static policy to be evaluated with-
out any modifications. However, the Clustering-Score and
Clustering-IRT policies will never acquire evaluation scores
for these 15 subsets since these policies require access to
the evaluation scores to determine whether a prompt will
be acquired or not. On the other hand, dynamic acquisition
policies can easily adapt to the cold start setting, as they
acquire evaluation scores sequentially and actively.

Figure 3. Evaluate the cold
start problem on MMLU
benchmark, where 15 sub-
sets are left out as cold start
prompts.

Figure 3 presents the results
on the synthetic cold start
MMLU benchmark. The
performance is evaluated
over all 57 subsets dur-
ing testing. As expected,
the Clustering-Score and
Clustering-IRT policies do
not perform well in the cold
start setting because the eval-
uation scores on the 15 left-
out subsets are never ac-
quired. The Clustering-Embed policy performs better than
the other clustering based policies as it can select the cold
start prompts by clustering based on their embeddings. The
RL-based acquisition policy again achieves the best perfor-
mance estimation. However, it is worth noting that the final
estimated benchmark performance is not as accurate as in
the fully observed setting (Fig. 1), indicating potential areas
for future improvement to narrow the gap.

5.1. Ablation Studies

Prediction Model In the main experimental results, we
run the acquisition policy to select a subset of prompts

7

Active Evaluation Acquisition for Efficient LLM Benchmarking

Table 3. Comparison of different prompt embeddings.
Uniform C-Embed C-Score C-IRT RL

AlpacaEval

SFR (4096) 0.005± 0.000 0.006± 0.001 0.004± 0.001 0.003± 0.001 0.001± 0.000
E5 (4096) 0.005± 0.000 0.006± 0.001 0.007± 0.005 0.004± 0.001 0.001± 0.000

BGE-large (1024) 0.006± 0.001 0.006± 0.002 0.009± 0.002 0.007± 0.001 0.002± 0.000
BGE-small (384) 0.009± 0.002 0.009± 0.002 0.038± 0.031 0.015± 0.010 0.005± 0.002

MMLU

SFR (4096) 0.018± 0.001 0.020± 0.004 0.014± 0.002 0.015± 0.001 0.013± 0.000
E5 (4096) 0.018± 0.002 0.018± 0.002 0.014± 0.003 0.016± 0.002 0.014± 0.003

BGE-large (1024) 0.029± 0.003 0.028± 0.005 0.027± 0.005 0.023± 0.006 0.023± 0.003
BGE-small (384) 0.028± 0.003 0.023± 0.006 0.022± 0.005 0.022± 0.005 0.022± 0.002

Table 4. Contributions of auxiliary information and intermediate reward for our RL-based policy.
AlpacaEval MMLU Open LLM

PPO 0.004± 0.002 0.017± 0.004 0.033± 0.010
+auxiliary info 0.003± 0.001 0.016± 0.003 0.029± 0.005
+interm reward 0.001± 0.000 0.013± 0.000 0.018± 0.001

for acquiring their actual evaluation scores and then use a
neural process model to predict the scores for the remain-
ing prompts. However, an alternative method to estimate
benchmark performance is to directly aggregate the acquired
evaluation scores without relying on another model for pre-
diction. The aggregation computes performance per dataset
first and then averages across datasets. Table 2 compares
these two estimation methods. The results show that the
prediction model generally provides better benchmark per-
formance estimation.

Prompt Embedding Our approach utilizes a sentence
embedding model to extract representations for the
prompts. These representations are used both to train
the neural process model and to build the acquisition
policies. For the main results, we use the SFR embedding
model (Salesforce/SFR-Embedding-Mistral)
(Meng et al., 2024) to extract prompt representations. In
Table 3, we present results using several other embedding
models: E5, BGE-large, and BGE-small, corresponding
to intfloat/e5-mistral-7b-instruct (Wang
et al., 2023), BAAI/bge-large-en-v1.5 (Xiao et al.,
2023), and BAAI/bge-small-en-v1.5 (Xiao et al.,
2023), respectively. The results indicate that performance
generally improves with more powerful embedding models
that better distinguish text inputs2. Thus, exploring powerful
embedding models is an important future direction.

Auxiliary Information Our RL-based acquisition policy
builds on PPO (Schulman et al., 2017) and leverages the
neural process model to provide auxiliary information and

2At the time of writing this paper, the aver-
age scores from the MTEB English leaderboard.
(https://huggingface.co/spaces/mteb/leaderboard) for these
four models are: SFR (67.56), E5 (66.63), BGE-large (64.23), and
BGE-small (62.17).

intermediate rewards. Table 4 illustrates the contributions
of these components. The results clearly show that each
component – both auxiliary information and the intermedi-
ate rewards – significantly enhances the acquisition policy,
leading to better selection of informative prompts and more
accurate benchmark performance estimation.

6. Conclusion
In this work, we present a novel approach for efficient LLM
evaluation by leveraging dependency modeling and sub-
set selection. Our key contributions include developing a
generative model that captures dependencies across eval-
uation prompts and handles mixed-type evaluation scores,
as well as proposing new subset selection policies based
on these dependencies. Extensive experiments on multiple
LLM evaluation benchmarks demonstrate the superiority
of our RL-based acquisition policy in providing accurate
benchmark performance estimation with minimal acquisi-
tion budget. Our results show that we can achieve the same
level of accuracy while requiring only 35-75% of the evalua-
tion prompts compared to random sampling across different
benchmarks.

Our approach effectively addresses model bias and cold start
scenarios, though performance in these challenging settings
indicates room for improvement. Future work could ex-
plore integrating continual learning frameworks to enhance
adaptation to new models and prompts. Additionally, lever-
aging more sophisticated embedding models and improving
uncertainty estimation in the neural process could further
boost performance. Our framework provides a foundation
for making comprehensive LLM evaluation more accessible
and efficient.

8

Active Evaluation Acquisition for Efficient LLM Benchmarking

Impact Statement
Our work aims to improve the efficiency of LLM evalua-
tion, which has several important implications. By reducing
the computational resources required for comprehensive
model evaluation, our method can help decrease the environ-
mental impact of AI development through reduced energy
consumption. This is particularly relevant given the grow-
ing concerns about the carbon footprint of large-scale AI
systems.

Additionally, more efficient evaluation methods could de-
mocratize LLM development by lowering the barrier to
entry for researchers and organizations with limited com-
putational resources. This could lead to increased diversity
in AI research and development, as more groups would be
able to rigorously evaluate their models without requiring
extensive computational infrastructure or substantial API
costs.

However, we acknowledge that easier model evaluation
could potentially accelerate the development and deploy-
ment of LLMs, which carry their own ethical considerations
and societal impacts. We encourage users of our method
to carefully consider the broader implications of their work
and to maintain high standards for model evaluation, even
when using efficient sampling approaches.

Furthermore, while our method significantly reduces the
number of required evaluations, it is important to note that
this efficiency should not come at the cost of thorough model
assessment, particularly for safety-critical applications or
when evaluating potential harmful behaviors. We recom-
mend using our method as part of a comprehensive eval-
uation strategy rather than as a complete replacement for
thorough testing.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anthropic, A. The claude 3 model family: Opus, sonnet,
haiku. Claude-3 Model Card, 1, 2024.

Ashury-Tahan, S., Gera, A., Sznajder, B., Choshen, L., Ein-
Dor, L., and Shnarch, E. Label-efficient model selection
for text generation. arXiv preprint arXiv:2402.07891,
2024.

Beeching, E., Fourrier, C., Habib, N., Han, S.,
Lambert, N., Rajani, N., Sanseviero, O., Tun-
stall, L., and Wolf, T. Open llm leader-
board. https://huggingface.co/spaces/

HuggingFaceH4/open_llm_leaderboard,
2023.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
A large annotated corpus for learning natural language
inference. arXiv preprint arXiv:1508.05326, 2015.

De Finetti, B. Funzione caratteristica di un fenomeno aleato-
rio. In Atti del Congresso Internazionale dei Matematici:
Bologna del 3 al 10 de settembre di 1928, pp. 179–190,
1929.

Du, J., Grave, E., Gunel, B., Chaudhary, V., Celebi, O.,
Auli, M., Stoyanov, V., and Conneau, A. Self-training
improves pre-training for natural language understanding.
arXiv preprint arXiv:2010.02194, 2020.

Embretson, S. E. and Reise, S. P. Item response theory.
Psychology Press, 2013.

Fu, Y., Zhu, X., and Li, B. A survey on instance selection
for active learning. Knowledge and information systems,
35:249–283, 2013.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional conference on machine learning, pp. 1704–1713.
PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M.,
Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R.,
et al. A survey of uncertainty in deep neural networks.
Artificial Intelligence Review, 56(Suppl 1):1513–1589,
2023.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by
entropy minimization. Advances in neural information
processing systems, 17, 2004.

Hacohen, G., Dekel, A., and Weinshall, D. Active learning
on a budget: Opposite strategies suit high and low budgets.
arXiv preprint arXiv:2202.02794, 2022.

Hambleton, R. K. and Swaminathan, H. Item response
theory: Principles and applications. Springer Science &
Business Media, 2013.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

9

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Active Evaluation Acquisition for Efficient LLM Benchmarking

Huang, Y., Song, J., Hu, Q., Juefei-Xu, F., and Ma, L. Active
testing of large language model via multi-stage sampling.
arXiv preprint arXiv:2408.03573, 2024.

Hüllermeier, E. and Waegeman, W. Aleatoric and epistemic
uncertainty in machine learning: An introduction to con-
cepts and methods. Machine learning, 110(3):457–506,
2021.

Jain, A., Szot, A., and Lim, J. J. Generalization to
new actions in reinforcement learning. arXiv preprint
arXiv:2011.01928, 2020.

Jamieson, K. G. and Jain, L. A bandit approach to se-
quential experimental design with false discovery control.
Advances in Neural Information Processing Systems, 31,
2018.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes. arXiv preprint arXiv:1901.05761, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Konyushkova, K., Sznitman, R., and Fua, P. Learning ac-
tive learning from data. Advances in neural information
processing systems, 30, 2017.

Kossen, J., Farquhar, S., Gal, Y., and Rainforth, T. Active
testing: Sample-efficient model evaluation. In Interna-
tional Conference on Machine Learning, pp. 5753–5763.
PMLR, 2021.

Kuhn, L., Gal, Y., and Farquhar, S. Semantic uncer-
tainty: Linguistic invariances for uncertainty estima-
tion in natural language generation. arXiv preprint
arXiv:2302.09664, 2023.

Lee, D.-H. et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation
learning, ICML, volume 3, pp. 896. Atlanta, 2013.

Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and Teh,
Y. W. Set transformer. 2018.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 2023.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Liu, Q., Zhuang, Y., Bi, H., Huang, Z., Huang, W., Li, J., Yu,
J., Liu, Z., Hu, Z., Hong, Y., et al. Survey of computerized
adaptive testing: A machine learning perspective. arXiv
preprint arXiv:2404.00712, 2024.

Lu, P.-Y., Li, C.-L., and Lin, H.-T. Re-benchmarking pool-
based active learning for binary classification. arXiv
preprint arXiv:2306.08954, 2023.

Meng, R., Liu, Y., Joty, S. R., Xiong, C., Zhou, Y., and
Yavuz, S. Sfr-embedding-mistral:enhance text retrieval
with transfer learning. Salesforce AI Research Blog, 2024.
URL https://blog.salesforceairesearch.
com/sfr-embedded-mistral/.

Minsky, M. Steps toward artificial intelligence. Proceedings
of the IRE, 49(1):8–30, 1961.

Ng, A. Y., Harada, D., and Russell, S. J. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Proceedings of the Sixteenth Inter-
national Conference on Machine Learning, ICML ’99,
pp. 278–287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. ISBN 1558606122.

Oksendal, B. Stochastic differential equations: an intro-
duction with applications. Springer Science & Business
Media, 2013.

Pacchiano, A., Lee, J., and Brunskill, E. Experiment plan-
ning with function approximation. Advances in Neural
Information Processing Systems, 36, 2024.

Perlitz, Y., Bandel, E., Gera, A., Arviv, O., Ein-Dor, L.,
Shnarch, E., Slonim, N., Shmueli-Scheuer, M., and
Choshen, L. Efficient benchmarking (of language mod-
els). arXiv preprint arXiv:2308.11696, 2023.

Polo, F. M., Weber, L., Choshen, L., Sun, Y., Xu, G., and
Yurochkin, M. tinybenchmarks: evaluating llms with
fewer examples. arXiv preprint arXiv:2402.14992, 2024.

Raj, A. and Bach, F. Convergence of uncertainty sampling
for active learning. In International Conference on Ma-
chine Learning, pp. 18310–18331. PMLR, 2022.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

10

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/

Active Evaluation Acquisition for Efficient LLM Benchmarking

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3:9–44, 1988.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017.

Tifrea, A., Clarysse, J., and Yang, F. Uniform versus uncer-
tainty sampling: When being active is less efficient than
staying passive. arXiv preprint arXiv:2212.00772, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vivek, R., Ethayarajh, K., Yang, D., and Kiela, D. Anchor
points: Benchmarking models with much fewer examples.
arXiv preprint arXiv:2309.08638, 2023.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information
processing systems, 32, 2019.

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., and
Wei, F. Improving text embeddings with large language
models. arXiv preprint arXiv:2401.00368, 2023.

Wimmer, L., Sale, Y., Hofman, P., Bischl, B., and
Hüllermeier, E. Quantifying aleatoric and epistemic un-
certainty in machine learning: Are conditional entropy
and mutual information appropriate measures? In Uncer-
tainty in Artificial Intelligence, pp. 2282–2292. PMLR,
2023.

Xiao, S., Liu, Z., Zhang, P., and Muennighoff, N. C-pack:
Packaged resources to advance general chinese embed-
ding, 2023.

Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. Self-training
with noisy student improves imagenet classification. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10687–10698, 2020.

Yang, Y., Ma, Z., Nie, F., Chang, X., and Hauptmann, A. G.
Multi-class active learning by uncertainty sampling with
diversity maximization. International Journal of Com-
puter Vision, 113:113–127, 2015.

Ye, Q., Fu, H. Y., Ren, X., and Jia, R. How predictable
are large language model capabilities? a case study on
big-bench. arXiv preprint arXiv:2305.14947, 2023.

Yoo, D. and Kweon, I. S. Learning loss for active learning.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 93–102, 2019.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Zhuang, Y., Liu, Q., Ning, Y., Huang, W., Lv, R., Huang, Z.,
Zhao, G., Zhang, Z., Mao, Q., Wang, S., et al. Efficiently
measuring the cognitive ability of llms: An adaptive test-
ing perspective. arXiv preprint arXiv:2306.10512, 2023.

11

Active Evaluation Acquisition for Efficient LLM Benchmarking

A. Training and Deployment Procedure
A.1. Overview

Our approach consists of two key components trained on historical evaluation data:

1. A neural process model that captures dependencies across prompts and predicts unobserved evaluation scores

2. A subset selection policy that determines which prompts to evaluate for new models

A.2. Training Procedure

Given a benchmark leaderboard with M models and N prompts, we first divide the models into train and test splits. For
each model m in the training split, we have access to its complete evaluation scores Ym = {ymn}Nn=1.

A.2.1. NEURAL PROCESS TRAINING

During training:

• For each training iteration:

– Sample a model m from training split

– Randomly partition Ym into observed set Y (o)
m and unobserved set Y (u)

m

– Optimize ELBO objective: maximize log p(Y
(u)
m | Y (o)

m , X)

• The trained model can predict scores for arbitrary subsets of prompts on unseen models

A.2.2. SUBSET SELECTION POLICY TRAINING

We implement and compare several policies:

• Parameter-free policies:

– Random: Selects prompts uniformly at random
– Clustering-Embed: Groups prompts using pretrained embeddings
– Clustering-Score: Uses training set scores as features for clustering
– Uncertainty Sampling: Selects prompts with highest prediction uncertainty based on the neural process model
– Information Gain: Maximizes expected information about latent variables using the above neural process model
– Combinatorial Optimization: Greedily optimizes prediction accuracy based on the above neural process model

• Policies requiring training:

– Clustering-IRT: Trains IRT model to learn prompt embeddings
– RL-based: Learns policy through interaction with neural process model

A.3. Deployment Procedure

For evaluating a new model:

1. Policy selects K prompts for evaluation

2. Obtain actual evaluation scores for selected prompts

3. Neural process predicts scores for remaining prompts

4. Combine actual and predicted scores for final performance estimate

12

Active Evaluation Acquisition for Efficient LLM Benchmarking

B. Neural Process
For a benchmark X with N prompts, X = {xn}Nn=1, we first use a pretrained embedding model to extract the representations
for each prompt. During training, given a model m with evaluation scores Ym, we randomly select a subset of scores Y (o)

m

as observed and maximize the log-likelihood for the remaining scores Y (u)
m based on the equation (3). When Y

(u)
m is too

large to fit into memory, we further sample a smaller subset from Y
(u)
m . Due to the inherent permutation invariance of the

neural process model, random sampling will not affect the learning of dependencies across prompts. Please see Algorithm 2
for training details of the neural process model.

Algorithm 2 Neural Process Training
Require: Training set {Ym}Mm=1, Number of iterations T

1: for t = 1 to T do
2: Sample model m from training set
3: Randomly partition Ym into Y

(o)
m and Y

(u)
m

4: Optimize ELBO: L = E
q(zm|Y (u)

m ,Y
(o)
m ,X)

[
log

p(Y (u)
m |zm,Y (o)

m ,X)p(zm|Y (o)
m ,X)

q(zm|Y (u)
m ,Y

(o)
m ,X)

]
5: end for

B.1. Architecture

The neural process model consists of a prior network p(zm | Y (o)
m , X), a posterior network q(zm | Y (u)

m , Y
(o)
m , X), and a

decoder p(Y (u)
m | zm, Y

(o)
m , X). We generally follow the architecture of Attentive Neural Process (Kim et al., 2019), but

replace the self-attention layer with a more memory-efficient Set Transformer layer (Lee et al., 2018). We also share the
same network for both the prior and posterior. Before feeding the prompt embeddings into the prior/posterior network,
we use an additional linear layer to reduce the dimensionality of the extracted representations. Similarly, the evaluation
scores are passed through a linear layer to increase their dimensionality. We then concatenate the prompt representation
with the score representation along the feature dimension and pass the concatenated set of vectors through a series of
permutation equivariant Set Transformer layers. The outputs are then aggregated across the set elements to obtain a feature
representation for the entire set. Following Set Transformer approach, we use learned pooling by multihead attention. The
set representation is then passed through a linear linear to obtain the parameters for the latent distribution, which we assume
to be Gaussian here. Please see Fig. 1(a) for an illustration of the prior/posterior network.

The decoder network p(Y
(u)
m | zm, Y

(o)
m , X) uses a cross-attention layer to produce a permutation equivariant representation

for each prompt. In this layer, the query is the representation for X , the key is the representation for X(o), and the value
is the permutation equivariant representation corresponding to Y

(o)
m from the prior network. The permutation equivariant

representation for each prompt is then concatenated with the prompt representation and the latent vector. These concatenated
inputs are processed through a series of Set Transformer layers. The final outputs are then passed through a linear layer to
predict the evaluation scores. Please see Fig. 1(b) for an illustration of the decoder network.

B.2. Implementation

In order to handle textual prompts, we utilize a pretrained embedding model to represent each prompt as a Rd vector. During
training, since the entire set Ym might be too large to fit into memory, we randomly sample two non-overlapping subsets
from each model as Y (o)

m and Y
(u)
m , respectively. The prior and posterior distributions share the same network, but take

different inputs. The prior takes in a set of x-y pairs from Y
(o)
m , i.e., {(xo, ymo) : o ⊆ {1, . . . , N}}, while the posterior takes

in a set of x-y pairs from both Y
(o)
m and Y

(u)
m . Following the Attentive Neural Process (Kim et al., 2019), we implement

the prior/posterior network using self-attention blocks to better capture the dependencies across set elements. To reduce
memory usage, we use Set Transformer architecture (Lee et al., 2018), where each set element attends to a small set of
learnable induced points instead of attending to all other elements directly. The decoder network p(Y

(u)
m | zm, Y

(o)
m , X)

employs cross-attention, allowing each unobserved prompt to attend to the relevant observed prompts. According to De
Finetti’s Theorem (De Finetti, 1929), the likelihood over set elements Y (u)

m can be conditionally independent conditioned on
the latent variable zm. However, we still use a Set Transformer (Lee et al., 2018) to better capture the dependencies. Please
refer to Appendix B for details of the model architecture.

13

Active Evaluation Acquisition for Efficient LLM Benchmarking

B.3. Mixed-type Evaluation Scores

The above architecture uses a linear layer to obtain the representation for the evaluation scores. However, the linear layer is
not suitable for discrete scores. Instead, we use an Embedding layer to represent the categorical evaluation scores. When
a benchmark contains mixed-type scores, meaning some datasets report real-valued metrics while others report discrete
scores, we additionally include an embedding vector to indicate the metric types.

B.4. Hyperparameters

Table B.1 summarizes the hyperparameters used for the neural process model for each dataset. For the HELM-Lite and
Chatbot Arena benchmarks, due to their relatively small number of models with evaluation scores, a neural process model
with set transformer layers can easily overfit the data. Therefore, we use linear layers instead of the set transformer layers.
Note that we did not conduct a thorough hyperparameter search. It is possible to further improve the results with optimized
hyperparameters.

Table B.1. Hyperparameters for the nueral process model.
AlpacaEval MMLU Open LLM HELM-Lite Chatbot Arena

representation dimension for x 16 16 16 16 16
representation dimension for y 16 16 16 16 16

feature dimension for permutation equivariant layer 32 32 32 32 16
number of permutation equivariant layers for encoder 1 2 2 1 1
number of permutation equivariant layers for decoder 1 2 2 1 1

number of attention heads 8 8 8 N/A N/A
number of induced points 16 16 8 N/A N/A

latent dimension 16 32 32 16 8

C. Combinatorial Optimization based Acquisition Policy

Given the model p(Y (u)
m | Y (o)

m , X), a static acquisition policy can be derived by searching over the training set to find the
optimal subset of prompts that gives the most accurate prediction of the remaining prompts. This is a typical combinatorial
optimization problem, which is NP-Hard. Here, we employ a sequential approach that selects one prompt at a time until K
prompts are selected. Starting from an empty set o = ∅, the next prompt i ∈ u := {1, . . . , N} \ o is chosen to minimize the
prediction error over the training set, i.e.,

i = argmin
i′∈u

EYm∼pDEŶ
(u′)
m ∼p(Y

(u′)
m |Y (o′)

m ,X)
∥Ŷ (u′)

m − Y (u′)
m ∥2, (C.1)

where o′ = o ∪ {i′} and u′ = u \ {i′}. We estimate the expectation by Monte Carlo sampling. For notation simplicity, the
above equation computes the mean squared error on prompts u′; however, in practice, different datasets may use different
metrics. Additionally, these differences may be weighted depending on the dataset size. Please refer to Algorithm 3 for
pseudo-code of the selection process. Note that this approach has a complexity of O(KMN), which could be prohibitive
when the benchmark is large.

D. Reinforcement Learning based Acquisition Policy
The acquisition policy determines the next prompt to acquire its evaluation score based on the current state, which includes
the prompts X(o) and their scores Y (o)

m that have already been acquired. We further incorporate the candidate prompts
X(u) into the policy inputs, i.e., P (i | Y (o)

m , X), so the policy has access to the action space. Including the candidate
prompts in the inputs is crucial in the cold start setting since the action space differs between training and testing. Similar
to the neural process model, the policy network employs two linear layers to obtain representations for both the prompts
and the evaluation scores, which are then concatenated along the feature dimension. For the candidate prompts without
available evaluation scores, we use a special embedding vector. Then, a permutation-invariant network processes the set
of concatenated representations and outputs a aggregated representation for the entire set. We utilize the Set Transformer
architecture for the permutation invariant network. Two branches of linear layers are added on top of the set representation for
actor and critic, respectively. The actor branch outputs a vector with the same dimensionality as the prompt representations.

14

Active Evaluation Acquisition for Efficient LLM Benchmarking

(a) Prior/Posterior (b) Decoder

Figure B.1. The architecture of the neural process model.

15

Active Evaluation Acquisition for Efficient LLM Benchmarking

Algorithm 3 Static Evaluation Acquisition via Combinatorial Optimization
Require: Acquisition budget K, Training set Dtrain, Number of samples S, Neural Process p

1: o = ∅, u = {1, . . . , N}
2: while |o| < K do
3: L = {}
4: for i′ ∈ u do
5: o′ = o ∪ {i′}, u′ = u \ {i′}
6: Sample S predictions {Ŷ (u′)

m,s }Ss=1 from p(Y
(u′)
m | Y (o′)

m , X) for each model m
7: L[i′] = 1

|Dtrain|×S

∑|Dtrain|
m=1

∑S
s=1 ∥Ŷ

(u′)
m,s − Y

(u′)
m ∥2

8: end for
9: i = argmini′∈u L[i

′]
10: o = o ∪ {i}, u = u \ {i}
11: end while

The probability of selecting a prompt is proportional to the inner product of the output vector and the prompt representations.
To prevent the policy from selecting duplicate prompts, the probability of the already selected prompts is manually set to
zero. The critic branch outputs a scalar indicating the value estimation for the current state. Table D.1 summarizes the
hyperparameters used for the policy network and PPO training process. We did not conduct hyperparameter optimization
and used the same set of hyperparameters for all datasets. Further improvements are likely possible with hyperparameter
optimization tailored to each dataset.

Table D.1. Hyperparameters for RL-based acquisition policy.

Policy Network

representation dimension for x 16
representation dimension for y 16

feature dimension for permutation equivariant layer 32
number of permutation equivariant layers 1

number of linear layers for actor 1
number of linear layers for critic 1

PPO

advantage λ 0.95
discount factor γ 0.99
PPO clip range [0.8, 1.2]

entropy coefficient 0.0

E. Cold Start Problem
In the cold start setting, the benchmark is expanded with new prompts for which no evaluation scores are initially available
for any model. That is, the original benchmark X = {xn}Nn=1 have evaluation scores Ym = {ymn}Nn=1 for M models,
while a set of new prompts X ′ = {xn}N

′

n=N+1 do not have any evaluation scores.

To enable the neural process model generalize to the newly added prompts, we propose a semi-supervised training procedure,
where the new prompts are treated as unlabeled data. During training, we optimize the log-likelihood (3) for X and Ym.
Simultaneously, we predict the evaluation scores for the new prompts X ′ based on the current trained model. When the
prediction is sufficiently accurate, meaning the uncertainty is lower than a predefined threshold, we add the predicted scores
as synthetic training data to optimize the ELBO (3).

The RL policy in the cold start setting follows a similar architecture to Sec. D. To help the policy generalize to unseen
prompts, we use the learned prompt representations from the neural process model and keep them fixed throughout the
training process. Additionally, we found that entropy regularization over the actor distribution aids generalization, which is
set to 0.001 in our experiments.

16

Active Evaluation Acquisition for Efficient LLM Benchmarking

F. Experiments
F.1. LLM Leaderboard

We conduct experiments on 5 popular LLM benchmarks:

• HuggingFace Open LLM Leaderboard (Beeching et al., 2023) consists of 6 datasets with a total of 28,659 prompts.
Evaluation scores include both binary accuracy and real-valued probabilities. We collect evaluation scores for 2,084
models and select 1,000 models for training based on their evaluation date. The most recently evaluated models are used
for testing, simulating the real-world scenario.

• MMLU (Hendrycks et al., 2020) contains 57 datasets with a total of 14,042 multiple choice QA problems on different
subjects. Evaluation scores are all binary accuracy. We collect evaluation scores for the same models from the Open LLM
Leaderboard.

• HELM-Lite (Liang et al., 2022) include 10 datasets (each possibly containing several sub-datasets) with a total of 13,021
prompts. Evaluation scores include both binary exact match scores and real-values metrics such as F1 and BLEU. We
collect evaluation scores for 33 models and randomly select 23 models for training since the evaluation does not have
dates.

• AlpacaEval 2.0 (Li et al., 2023) contains 805 prompts. For each model, the generations are compared to those of GPT-4
to compute the win rate. Although this benchmark is relatively small, it requires an expensive GPT-4 based judge, so
reducing the number of API calls can significantly reduce the total evaluation cost. We collect evaluation scores for 130
models and randomly select 70% for training.

• Chatbot Arena (Zheng et al., 2024) is a popular human-annotated benchmark, where annotators interact with two
anonymous models using the same prompts and declare a winner. We use the pairwise comparisons evaluated on the 80
MTBench prompts (Zheng et al., 2024). Although this benchmark is relatively small, human evaluation is expensive, so
further reducing the evaluation prompts could lower costs. The annotations include comparisons over multiple turns,
but we only use the annotations for the first turn here. Unlike other benchmarks where each model directly receives an
evaluation score, this benchmark evaluates each pair from a set of 6 models. To create the train-test splits, we randomly
select one of the six models, and all pairs that involve the selected model are included in the test split. Note that not all
80 prompts are annotated for each model pair. While our neural process model can handle missing data, the acquisition
process must acquire the true score for any prompt the policy selects. To address the missing data during acquisition
process, we use the trained neural process to predict the missing evaluation scores. We report win rate for this benchmark.

F.2. Evaluation Procedure

For a model m′ to be evaluated, the acquisition policy determines a subset of prompts X(o) to acquire the true evaluation
scores. The neural process model p(Y (u)

m′ | Y
(o)
m′ , X) predicts the evaluation scores for the remaining prompts. The

benchmark performance is then estimated based on these predicted scores. For benchmarks with only one dataset, the
benchmark performance is the average over all examples. For benchmarks with multiple datasets, the benchmark performance
is averaged over the performance of each dataset. For example, the HuggingFace Open LLM Leaderboard consists of 6
datasets, so the benchmark performance is the average of the performance on these 6 datasets. The MMLU dataset further
contains 57 subsets, so its performance is the average over these 57 subsets. For Chatbot Arena, we report win rate as the
benchmark performance. For final evaluation results, we compute the absolute difference between the predicted benchmark
performance and the real benchmark performance for each model in the test split and report the average absolute error over
all models in the test split.

F.3. Additional Results

Table F.1 presents the benchmark performance estimation errors for various acquisition policies across different LLM
benchmarks. We conduct experiments with 3 random seeds for each benchmark and report the average estimation error and
standard deviation under the specified acquisition budget. Prompt embeddings are obtained using the SFR embedding model.
For the AlpacaEval and Chatbot Arena benchmarks, stratified random sampling is equivalent to uniform sampling since
they only contain one dataset. Combinatorial optimization and information gain based policies are too expensive to run for
HELM-Lite, HuggingFace Open LLM Leaderboard, and MMLU due to the large number of prompts in each benchmark.

17

Active Evaluation Acquisition for Efficient LLM Benchmarking

Table F.1. Benchmark performance estimation error on each LLM benchmark. Lower is better.
AlpacaEval HELM-Lite Open LLM MMLU Chatbot Arena

(K=100) (K=200) (K=200) (K=100) (K=40)

Uniform 0.005± 0.000 0.038± 0.005 0.022± 0.002 0.018± 0.001 0.052± 0.010
S-Rand - 0.035± 0.012 0.030± 0.003 0.017± 0.002 -

C-Embed 0.006± 0.001 0.051± 0.010 0.024± 0.002 0.020± 0.004 0.052± 0.014
C-Score 0.004± 0.001 0.054± 0.010 0.031± 0.003 0.014± 0.002 0.054± 0.004
C-IRT 0.003± 0.001 0.044± 0.013 0.026± 0.001 0.015± 0.001 0.057± 0.002

Comb-Optim 0.006± 0.003 - - - 0.065± 0.012
Uncertainty 0.011± 0.001 0.055± 0.013 0.063± 0.015 0.050± 0.003 0.035± 0.003

LatentInfoGain 0.010± 0.003 - - - 0.066± 0.025
RL 0.001± 0.000 0.030± 0.005 0.018± 0.001 0.013± 0.000 0.034± 0.006

The RL-based acquisition policy consistently achieves the lowest error across all benchmarks, indicating its superior ability
to select informative prompts and accurately estimate benchmark performance. The stratified random sampling performs
similarly to the uniform sampling, and these random acquisition policies generally are competitive, particularly because they
are efficient and do not rely on any other models to determine the prompt selection.

The Cluster-Embed policy does not perform any better than the random selection, suggesting that the similarity in prompt
embedding does not always correlate with the similarity in the evaluation scores. Utilizing evaluation scores for clustering
shows mixed results. The Clustering-Score policy outperforms Clustering-Embed on AlpacaEval and MMLU but underper-
forms on HELM-Lite, Open LLM and Chatbot Arena benchmarks. Clustering based on IRT features generally provides
better performance estimation since these features are learned to reflect the evaluation scores.

The combinatorial optimization based policy does not perform well, even on the two small benchmarks where it is
computationally feasible. We attribute this to a potential distribution shift between the models used for training and those
used for testing, suggesting that the static policy optimized on training models does not generalize well to new models
during testing.

The uncertainty sampling based acquisition policy does not perform well across all benchmarks. Theoretically, the
uncertainty sampling method requires a good estimation of the aleatoric uncertainty to perform well. However, in practice,
the uncertainty from the neural process model combines the aleatoric and epistemic uncertainties. Quantifying and
decomposing the aleatoric and epistemic uncertainties is an active research ares in machine learning (Gawlikowski et al.,
2023; Wimmer et al., 2023; Hüllermeier & Waegeman, 2021), which we leave for future work to explore for our AEA
application. Similarly, the information gain based acquisition policy also requires accurate uncertainty estimation, which is
challenging, especially with scarce training data on AlpacaEval and Chatbot Arena benchmarks.

F.4. Further Analysis of the Results

From the main results in Figure 1, we found that our approach achieves exceptional estimation on AlpacaEval with near
0% absolute error, while on other benchmarks the error is obviously above 0. To better understand the factors affecting
evaluation score prediction accuracy and the varying performance across different benchmarks, we conducted a detailed
analysis using the HELM-Lite benchmark. We chose HELM-Lite for this analysis due to its diverse datasets covering
different types of tasks and metrics. To isolate the impact of prompt selection policy, we performed this analysis using 50
randomly selected prompts as conditioning to predict the evaluation scores.

It’s worth noting that prompts that are inherently difficult for language models, resulting in consistently low scores, do
not necessarily translate to high prediction error for the evaluation scores. For example, if no model can solve a particular
prompt, its evaluation score will always be zero, making it relatively easy to predict.

Factors Affecting Prediction Accuracy For a dataset with N prompts evaluated on M models from the training set,
with evaluation scores denoted as {ymn}M,N

m=1,n=1, we analyzed the following factors that might affect the evaluation score
prediction:

• Metric Types: We hypothesized that discrete metrics (e.g., exact match accuracy) would be harder to predict than
continuous metrics (e.g., BLEU scores).

18

Active Evaluation Acquisition for Efficient LLM Benchmarking

• Prompt Diversity: A dataset with diverse prompts is potentially harder for LLM. The prompt diversity is measured
using the average pairwise cosine similarity of prompt embeddings.

• Task Difficulty: We estimate the task difficulty as 1 minus the average evaluation scores across all models, i.e.,
1− 1

MN

∑
m,n ymn, where higher values indicate more challenging tasks.

• Score Diversity: A dataset where the score distribution has a high variance can potentially lead to higher prediction
error. The score diversity is calculated as the variance of evaluation scores within the dataset.

• Task Informativeness: We estimate the informativeness of each prompt as the variance of its evaluation scores on all
models, then the task informativeness is averaged over prompts: 1

N

∑
n Varm(ymn), measuring how discriminative

each prompt is across different models.

• Evaluation Variability: Calculating the variance of the mean scores across prompts is another way to quantify the
variability or diversity in the task: Varn(1

M

∑
m ymn).

Results and Analysis Table F.2 shows the correlation between these factors and prediction error across 28 subsets from
HELM-Lite:

Table F.2. Correlation between dataset characteristics and prediction error

Factor Spearman Pearson

Metric Type 0.783 0.759
Prompt Diversity -0.722 -0.719
Score Diversity 0.216 0.366
Task Informativeness 0.720 0.781
Evaluation Variability 0.885 0.842
Task Difficulty -0.195 -0.138

Key findings from our analysis:

1. Metric Type Impact: The strong correlation (0.78) confirms our hypothesis that discrete metrics are more challenging
to predict than continuous ones. This helps explain why benchmarks with primarily discrete metrics (e.g., MMLU)
show higher prediction errors compared to those with continuous metrics.

2. Prompt Diversity: Interestingly, higher prompt diversity correlates with lower prediction error (-0.72). This counter-
intuitive finding suggests that while diverse prompts may be challenging for LLMs to answer, they might actually
provide richer signals for predicting evaluation scores. This also aligns with the analysis that harder task for LLM does
not necessarily mean harder evaluation score prediction. This is further supported by the negative correlation between
Task Difficulty and prediction error.

3. Task Informativeness: Task Informativeness has a high correlation with prediction error, as expected, since prompts
with high variance in evaluation scores are inherently harder to predict accurately.

This analysis helps explain the varying performance across different benchmarks. For instance, AlpacaEval’s near-zero
prediction error can be attributed to several factors:

• Its relatively small size (805 prompts) compared to other benchmarks makes dependencies easier to capture

• Its continuous win-rate scores from a logistic regression model are inherently smoother than discrete metrics

• The evaluation scores come from a single consistent source (GPT-4 evaluator)

In contrast, benchmarks like MMLU and HELM-Lite show higher prediction errors due to their larger size, predominantly
discrete metrics, and more diverse evaluation criteria across different subsets.

19

Active Evaluation Acquisition for Efficient LLM Benchmarking

Table F.3. Prediction error by metric type

Metric Type Prediction Error

Binary 0.1055
Real-valued 0.0334

Table F.4. Prediction error by specific metric

Metric Prediction Error

BLEU-4 0.0302
F1 Score 0.0386
Exact Match 0.0777
Quasi Exact Match 0.0957
Final Number Exact Match 0.1134
Math Equivalence Chain-of-Thought 0.1367

Impact of Metric Types To further investigate the impact of metric types, we analyzed prediction errors across different
metrics. Tables F.3 and F.4 show detailed breakdowns:

The results clearly demonstrate that:

• Binary metrics have significantly higher prediction errors (0.1055) compared to real-valued metrics (0.0334)

• Among specific metrics, continuous measures like BLEU-4 (0.0302) and F1 Score (0.0386) show lower prediction
errors

• Complex discrete metrics, particularly those involving mathematical reasoning (Math Equivalence Chain-of-Thought:
0.1367), present the highest prediction challenges

F.5. Discussion on Random Sampling as a Baseline

Random sampling serves as a compelling baseline for efficient benchmarking due to several attractive properties:

• Simplicity: Implementation requires no additional models or complex selection strategies

• Statistical Guarantees: Supports standard statistical analysis and uncertainty quantification

• No Cold Start: Naturally handles new prompts without requiring historical evaluation data

• Interpretability: Results are easily understood and trusted by benchmark users

Our experiments show that random sampling achieves competitive performance compared to more sophisticated methods.
This aligns with observations in the active learning literature, where simple random sampling often performs surprisingly
well when the labeling budget is large (Lu et al., 2023; Hacohen et al., 2022; Tifrea et al., 2022). Similar phenomena have
been observed in experimental design and bandit problems (Jamieson & Jain, 2018; Pacchiano et al., 2024), suggesting this
is a general principle rather than specific to our setting.

However, a closer examination of our results reveals that our RL-based policy can achieve the same estimation accuracy
with significantly fewer prompts:

This efficiency gain is particularly meaningful in the context of LLM evaluation, where each prompt evaluation:

• Requires significant computational resources

• May incur API costs for closed models

20

Active Evaluation Acquisition for Efficient LLM Benchmarking

Table F.5. Comparison of prompts required to achieve similar estimation errors

Dataset Uniform Sampling RL Policy
Prompts Error Prompts Error

AlpacaEval 100 0.0051±0.0005 8 0.0051±0.0008
MMLU 100 0.0179±0.0010 35 0.0172±0.0023
HELM-Lite 200 0.0376±0.0060 50 0.0350±0.0004
OpenLLM 200 0.0225±0.0026 100 0.0223±0.0024
MT-Bench 40 0.0518±0.0127 23 0.0506±0.0118

• Contributes to environmental impact through energy consumption

The choice between random sampling and our method presents several trade-offs:

1. Sample Efficiency vs. Complexity: Our method achieves better sample efficiency but requires maintaining additional
models and more complex implementation.

2. Statistical Guarantees vs. Empirical Performance: Random sampling provides clear statistical guarantees, while our
method’s theoretical properties are less well-understood despite strong empirical performance.

3. Immediate Deployment vs. Training Requirements: Random sampling can be deployed immediately, while our
method requires initial training on historical evaluation data.

In practice, the choice between methods should be guided by specific requirements:

• When evaluation costs are high and minimizing the number of prompts is crucial, our method offers substantial benefits

• When statistical guarantees or immediate deployment are prioritized, random sampling may be more appropriate

• For large-scale evaluations where even small reductions in prompts translate to significant cost savings, the added
complexity of our method may be justified

These considerations suggest that both approaches have their place in the LLM evaluation ecosystem. Random sampling
serves as a reliable, interpretable baseline, while our method offers a more sophisticated alternative when maximum sample
efficiency is desired. Future work could explore hybrid approaches that combine the statistical guarantees of random
sampling with the efficiency gains of learned selection strategies.

F.6. Comparison with Uncertainty Estimation Baselines

A natural alternative to our RL-based acquisition policy would be to use uncertainty estimates from the model’s generations
to determine which prompts to evaluate. To validate our approach, we compared our RL-based policy with two common
uncertainty estimation baselines:

• Generation Perplexity: Using the log-likelihood of the model’s generation as an uncertainty estimate

• Semantic Entropy (Kuhn et al., 2023): Computing entropy over semantic clusters of multiple generations using a
pretrained NLI model

We conducted experiments on three recent language models (Mistral-7B, Mixtral-8x7B, and Gemma-7B) evaluating their
performance on the AlpacaEval benchmark. For each model, we compare different methods for selecting prompts to
evaluate, while using the same neural process model to predict scores for the remaining prompts.

As shown in Table F.6, our RL-based acquisition policy consistently outperforms both uncertainty estimation baselines
across all models and selection budgets. We hypothesize that this superior performance stems from two key factors:

21

Active Evaluation Acquisition for Efficient LLM Benchmarking

Table F.6. Comparison of acquisition policies on AlpacaEval benchmark. Values show absolute error in benchmark score estimation under
different selection budgets.

Model Method Selection Budget
10 20 50 100

Mistral-7B
Perplexity 0.0162 0.0156 0.0103 0.0088
Semantic Uncertainty 0.0122 0.0175 0.0126 0.0150
RL (ours) 0.0012 0.0008 0.0006 0.0006

Mixtral-8x7B
Perplexity 0.0025 0.0053 0.0058 0.0076
Semantic Uncertainty 0.0095 0.0145 0.0132 0.0202
RL (ours) 0.0019 0.0003 0.0003 0.0002

Gemma-7B
Perplexity 0.0090 0.0190 0.0136 0.0147
Semantic Uncertainty 0.0148 0.0139 0.0144 0.0169
RL (ours) 0.0013 0.0007 0.0009 0.0004

1. Aligned Uncertainty Estimation: The RL policy is trained jointly with the neural process model, allowing it to better
align its uncertainty estimates with the neural process’s predictive uncertainty. In contrast, inference-based uncertainty
methods may capture the model’s inherent uncertainty but fail to identify cases where the neural process predictions
would be most uncertain or inaccurate.

2. Sequential Decision Making: The RL policy can adapt its selection strategy based on previously observed scores,
while uncertainty-based methods make independent decisions for each prompt.

It’s worth noting that these inference-dependent uncertainty methods are impractical for efficient benchmarking in practice.
They require running inference on all prompts (and sometimes multiple times per prompt), which increases rather than
decreases the overall evaluation cost. In contrast, our RL-based policy makes selections based solely on prompt embeddings
and previously observed scores, maintaining the efficiency benefits of our approach.

G. Computational Complexity Analysis
When comparing the computational complexity of our method to full benchmark evaluation, there are two primary
components to consider: (1) the cost of acquiring evaluation scores for the selected subset of prompts, and (2) the
computational overhead from running the neural process model and acquisition policies.

Evaluation Cost Savings The main computational savings come from the dramatic reduction in the number of prompts
requiring evaluation. Our experiments demonstrate that accurate performance estimation can be achieved with only a small
fraction of the total prompts. Specifically, our method requires less than 1

Computational Overhead While our method introduces some additional computation through the neural process model
and acquisition policies, this overhead is minimal compared to the cost of LLM inference. The bottleneck in evaluation cost
lies in LLM inference, which typically requires high-end computational resources and often involves models with billions of
parameters. In contrast, our neural process model and acquisition policies are implemented with lightweight architectures
(2-3 linear layers in our experiments) that can be executed efficiently on modest hardware with minimal computational
resources.

In conclusion, by reducing the number of required LLM evaluations by orders of magnitude, our method offers substantial
computational savings compared to full evaluation, even when accounting for the additional overhead of running our models.
The lightweight nature of our approach ensures that the computational benefits scale well with increasing benchmark sizes
and model complexities. This makes our method particularly valuable for large-scale benchmarks where comprehensive
evaluation would be prohibitively expensive.

22

