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Abstract

We report promising results for high-throughput estimation
of several key phenotypic traits through the use of small mo-
bile robots and machine-learning based machine-vision algo-
rithms. Our autonomous robotic data collection system, data
association pipeline, and analytics algorithms can provide ac-
curate estimation of Stem Width, Stand Count, Ear Height,
and Plant Height traits for corn, as well as the Pod Count trait
for soybeans. Collecting data for these phenotypes is manu-
ally extremely labor intensive, and has been difficult to auto-
mate. Our results are significant because they show that au-
tonomous robots equipped with multiple relatively low-cost
RGB-vision, RGB-Depth, LiDAR, inertial, and GPS sensors
can significantly increase throughput in phenotyping tasks
across corn and soybean at a variety of growth stages.

Introduction

A significant challenge in modern crop breeding research
is the lack of real-world data on traits that are considered
useful for optimizing yield, achieving pesticide resistance,
and more. Difficulties include a lack of automated meth-
ods to gather data and an insufficient amount of data to
make informed breeding decisions (Fasoula, Ioannides, and
Omirou 2020; Furbank and Tester 2011). Traditional meth-
ods of gathering trait data involve many hours of inefficient
manual measurement in crop fields. Estimating these traits
has proven to be a key bottleneck in crop breeding pipelines
in general. In recent years much research and development
has gone into efficient and automated approaches to both
collecting crop data and computing these traits (Shamshiri
etal. 2018). Here we report the results for estimation of these
traits from in-field imagery using “TerraSentia”—a robotic,
high-throughput field phenotyping system that does not uti-
lize any destructive sampling. We summarize successful re-
sults that we have achieved on rapid autonomous collec-
tion of crop data as well as results on accurately estimat-
ing five traits from data from multiple robots and across
multiple fields at a high throughput. Our results demon-
strate the potential for direct trait estimation in breeding as
well as production fields, and suggest that low-cost high-
throughput phenotyping with robots could be a strong solu-
tion to the phenotyping bottleneck (Fasoula, Ioannides, and
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Omirou 2020; Furbank and Tester 2011). The five traits we
discuss in this paper are are

1. Corn Stem Width

Corn Stand Count

Corn Ear Height

Corn Plant Height

Soybean Pod Count and Yield

These traits are difficult to measure manually. Further-
more, over-canopy systems such as drones, do not provide
information relating to all of these traits (except corn plant
height, which has been previously estimated using over-
canopy data from drones), since they require a view of
the plant from under-the-canopy. We note here that high-
throughput plant phenotyping using machine vision is an ac-
tive and exciting area of research (Singh et al. 2016, 2018).
We describe our results, and provide a brief overview of the
algorithms we have devised, but do not go into exceeding
details of the algorithm due to lack of space. Our intent for
this paper is to not claim novelty in the specifics of the al-
gorithmic design, but rather in the fact that high-throughput
phenotyping with robots is now a reality. As such, we ex-
pect that our results will provide a baseline for researchers
to compete against and we fully expect following methods
to exceed the benchmarks set here. Accordingly, a dataset
will be released publicly following the workshop for this.

A

TerraSentia Field Phenotyping System

TerraSentia robot and automated under-canopy
data collection:

The backbone of the TerraSentia high-throughput phenotyp-
ing system is the TerraSentia robot that autonomously col-
lects field data with multiple sensors. See Figure 1. The Ter-
raSentia robot is capable of fully autonomous under-canopy
row-following in a farm setting with very low intervention
rate (average distance between interventions well exceeds
the length of an average row). The robot traverses using a
combination of GPS, LiDAR (Higuti et al. 2018), or vision-
based autonomy (Sivakumar et al. 2021). Field data is col-
lected with several onboard sensors, including 3 cameras on
front and two sides, one upward facing camera, a RGB-D
sensor, and two LiDARs (front and rear). Through a sim-
ple user-interface, the angles, resolution, field-of-view, and



Figure 1: EarthSense TerraSentia robot is a compact robot
designed to collect under-canopy traits in an autonomous
manner. We built over 100 such robots in 2021. In this paper
we describe results for high-throughput phenotype estima-
tion in corn and soybean using data from these robots.

frame rates of the cameras can be programmatic customized
for specific traits. On-board software transfers the data to a
remote computer on the cloud using Ethernet where the data
is processed.

Data pre-processing:

The data transmission pipelines have been optimized to
work with low-bandwidth rural connections. The data col-
lected and metadata input by the user is used to automat-
ically split the data into Experimental Units (plots). This
process uses GPS geotags, visual data from the side cam-
era, and the LiDAR data using a deep learning model
(not described here). Next per-plot data is processed us-
ing machine-vision algorithms to calculate the desired traits.
These results are then associated back with the appropriate
EUs in the database and presented to the user using an intu-
itive web-based interface (Wei and Molin 2020).

In 2021 season EarthSense collected data over 100,000
EUs (plots) with multiple robots deployed in the field. A
reasonable subset of these data were annotated for the traits
shown below. The toal number of annotations (not images)
well exceeded 3.5 M. All results shown below are on valida-
tion sets that were not used in training.

The algorithms discussed in this paper for computing the
desired five under-canopy traits all take advantage of some
combination of GPS, any of the multiple cameras present on
the robot, and LiDAR. Unless explicitly mentioned other-
wise, all algorithms are run on camera data recorded with a
framerate of 30 frames per second.

Corn Stem Width

Corn Stem Width is defined as the real-world width of the
lowest segment of a corn stem, measured along the corn
stem diameter parallel to the orientation of the plot. High-
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Figure 2: A visualization of the high-throughput phenotyp-
ing pipeline, shown here with single-row plots. Robots col-
lect data in an autonomous manner through breeding diver-
sity panels, split into plots or experimental units. The data is
transmitted to the cloud (or a remote computer at the Edge)
where it is processed, yield estimates are computed, and re-
ported back to the breeder with a user-friendly interface.

Figure 3: A visualization of the corn stem width algorithm
on a 2021 corn field. Masks are annotated with estimated
width in millimeters at several points.

throughput corn stem width in cluttered under-canopy envi-
ronments with machine vision data has been a challenging
open problem (Choudhuri and Chowdhary 2018; Sahiner
et al. 2019; Vit and Shani 2018). Breeding researchers are
interested in knowing the average Corn Stem Width as well
as the distribution of widths per-plot. Our Stem Width algo-
rithm showed high correlation (2 = 0.86) on data we col-
lected and measured. The algorithm is run on data collected
from the side cameras on the TerraSentia robot, at an an-
gle of -5 degrees from the horizontal. Our algorithm uses an
object detection network trained from a Mask-RCNN Incep-
tion ResNet v2 Atrous coco checkpoint to detect corn stems.
The depth to corn plants is estimated from LiDAR data from
the front LiDAR or the rear LIDAR depending on data qual-
ity. The camera angle is accounted for combining the inertial
angle estimate and the measured angle of the camera from
camera encoders. See Figure 3 for a correlation graph that
shows strong correlation with our automated measurements
against manual measurements. The manual measurements
were collected by measuring each corn stem at 1 location
for the plots against which our algorithm is verified.
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Figure 4: A visualization of the corn stand count detector
fed into the stand count algorithm. Masks are annotated with
confidence.

Corn Stand Count

Corn Stand Count is defined as the number of corn plants
within a distance range, typically aggregated per-plot. Early
season stand-counts can often be accomplished using drone
data (Khaki et al. 2020; Garcia-Martinez et al. 2020; Pear-
son 2018; Ghosal et al. 2019), however, later in the season,
when the canopy closes, robotic under-canopy data is nec-
essary for accurate stand-counting. The challenge in corn
stand count is avoiding double counting (Kayacan, Zhang,
and Chowdhary 2018; Zhang et al. 2020). Our Corn Stand
Count algorithm showed high correlation (r?> = 0.88) on
a dataset we collected and measured. The algorithm is run
on data collected from the side cameras on the TerraSentia
robot, at an angle of -30 degrees from the horizontal. Our
algorithm uses an object detection network trained from a
FPN and Mask-RCNN ResNet-101 coco checkpoint to de-
tect individual corn stems. To avoid double counting, two
approaches are possible, first is to use an object tracker sim-
ilar to work in (Zhang et al. 2020), however this can be com-
putationally intensive and needs image-to-image tracking la-
bels. The other approach, which we have devised, uses a a
heuristic based estimator of where the corn plant is going to
be seen using the robot velocity estimate. This enables our
algorithm to distinguish and isolate different real-world corn
plants across the course of a video. Finally we aggregate the
count of distinct corn plants across a unit of distance. Fig-
ure 4 that our algorithm has strong correlation with manual
counts of stems visible in the video from the robot.

Corn Ear Height

Corn Ear Height is defined as the real-world distance be-
tween the ground and the base of the corn ear, or the loca-
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Figure 5: Performance of our automated Corn Ear Height

prediction algorithm on data from multiple corn plots shows
strong correlation with manual measurements.

Figure 6: Visualizations of our Corn Ear detector on data
collected from the TerraSentia robot. Detections are anno-
tated with algorithm height estimates.

tion at which the corn ear is attached to the corn stem. This
is an extremely difficult trait to measure manually, and to au-
tomate because often the corn ears look quite like the leaves
around them, and the view to the ears are often occluded
due to leaves (Wong et al. 2020). Breeding researchers are
interested in knowing the average Corn Ear Height per plot.
We utilize a RGB-D sensor to ensure accurate height predic-
tions. We show here subset of our results on dataset collected
and measured on a corn field maintained by the CROPPS
project at the University of Illinois. See Figure 5 which
shows that our algorithm from robot collected data shows
strong correlation with manual measurements (72 = 0.74).
The algorithm is run on data collected from a forward-facing
camera mounted to the top of the robot angled at a pitch of
25 degrees. The camera records both RGB images as well as
aligned depth images. Our algorithm uses an object detec-
tion network trained from a Mask-RCNN Resnet 101 Atrous
checkpoint to detect corn ear masks and uses camera pose to
estimate the real-world height of a detected corn ear mask
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Figure 7: Performance of our Soybean Pod Count prediction
algorithm on a 2020 soybean field. » = 0.70.

based on depth and angle information from the RGB-D sen-
sor. We provide a visualization of our Ear Height algorithm
superimposed on an image sampled from the color and depth
camera mounted to the top of the robot. This image was sam-
pled from a field on which we achieved high correlation. See
Figure 6.

Corn Plant Height

Corn Plant Height is defined as the real-world distance be-
tween the ground and the base of the highest leaf, or the lo-
cation at which the highest leaf is attached to the corn stem
(Waliman and Zakhor 2019). Breeding researchers are in-
terested in knowing the average Corn Plant Height per plot.
Our Corn Plant Height algorithm showed strong correlation
(r? = 0.91) on a customer dataset we collected and mea-
sured on. Our algorithm explicitly computes the height of
the top of the plant stem rather than the height of the base
of the highest leaf due to ease of algorithm computation,
but our high correlation shows that this is a sufficient proxy
measurement. Our algorithm runs on vertical LiDAR data
and averages the top k-the percentile of the LiDAR returns
for estimating the height from the LiDAR, after correcting
the scan for robot pitch, roll, and yaw. The ground plane is
also detected to compute height directly above the ground.
The LiDAR scan sees a 270 degree arc to the left, right, and
top of the robot, in a plane perpandicular to the robot’s di-
rection of movement at a rate of 40 Hz.

Soybean Pod Count and Yield

Soybean Pod Count is defined as the number of soybean
pods in a plot of soybean plants. There have been several
attempts at measuring soybean podcounts from camera data
(Riera et al. 2021). Our pipeline is fully automated in the
sense that it can go through the plots, collect data, and asso-
ciate the data back to individual plots. Sometimes per-plant
pod count is also desired. Soybean yield, similarly, is the
aggregate of soybean pod weight per plot or per plant. In

our previously published research we demonstrated our al-
gorithm for accurate estimation of soybean yield per plot
(McGuire et al. 2021). Additionally, we demonstrated that
an algorithm directly computing pod count is sufficient to
achieve correlation on soybean yield, which is consistent
with other research showing that soybean pod count and
yield are strongly correlated across many global experiments
(Wei and Molin 2020). Our Soybean Pod Count algorithm
showed strong correlation (r = 0.7,r2 = 0.49) on data col-
lected and measured from a collaborating group at the Uni-
versity of Illinois. See Figure 7. The algorithm is run on data
collected from a side-facing camera pointing at 5 degrees
from the horizontal. The camera has a fisheye lens to pro-
vide a wider field of view and ensure that the entire soybean
plant from bottom to top is covered. We automate a simple
preprocessing step of cropping out the left and right extremi-
ties of the image to focus on the vertical center of the field of
view. Our algorithm uses a detection network trained from a
Faster-RCNN Resnet-101 checkpoint to detect soybean pod
bounding boxes and adds up the number of soybean pods in
an image, or in all images within a plot if we are aggregating
per-plot.

Discussion

We have demonstrated successful methods of applying ar-
tificial intelligence algorithms to improving the efficiency,
scale, and accuracy of crucial plant phenotypes for crop
breeding research. Working with our partners and cus-
tomers, data were collected with multiple robots over more
than 100,000 Experimental Units (plots) across multiple lo-
cations in the US. Only a very small subset of total data col-
lected and analyzed by the EarthSense field robotic field-
phenotyping system is shown here due to reasons surround-
ing data privacy. We are in the process of working around
these issues to pool data from multiple sources in 2021 for
a more exhaustive analysis that will be submitted to a peer
reviewed venue. The main hypothesis that is being verified
by our activities is that high-throughput phenotyping can be
enabled at far lower cost, and at higher efficiency than man-
ual measurements using compact autonomous robots. Our
results presented here clearly provide evidence towards this
hypothesis. Our work shows that under-canopy data can pro-
vide access to a number of phenotypes that are difficult to
measure from over-the canopy with drones or satellites. The
TerraSentia robotic system will provide a strong data source
to a large amount of ongoing work in high-throughput phe-
notyping, not all of which could be covered here due to
space limitation. As such, we strongly believe that with the
robotic phenotyping tools presented here, researchers will
be able to significantly advance algorithms for analytics as
they bring new innovations to bear to overtake the baseline
results presented here. We will help enable such research in
high-throughput phenotyping by releasing a subset of our
dataset openly.
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