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ABSTRACT

Neural fields, a category of neural networks trained to represent high-frequency
signals, have gained significant attention in recent years due to their impressive
performance in modeling complex 3D data, such as signed distance (SDFs) or
radiance fields (NeRFs), via a single multi-layer perceptron (MLP). However, de-
spite the power and simplicity of representing signals with an MLP, these methods
still face challenges when modeling large and complex temporal signals due to the
limited capacity of MLPs. In this paper, we propose an effective approach to ad-
dress this limitation by incorporating temporal residual layers into neural fields,
dubbed ResFields. It is a novel class of networks specifically designed to effec-
tively represent complex temporal signals. We conduct a comprehensive analysis
of the properties of ResFields and propose a matrix factorization technique to re-
duce the number of trainable parameters and enhance generalization capabilities.
Importantly, our formulation seamlessly integrates with existing MLP-based neu-
ral fields and consistently improves results across various challenging tasks: 2D
video approximation, dynamic shape modeling via temporal SDFs, and dynamic
NeRF reconstruction. Lastly, we demonstrate the practical utility of ResFields by
showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD
cameras of a lightweight capture system.

1 INTRODUCTION

Multi-layer Perceptron (MLP) is a common neural network architecture used for representing con-
tinuous spatiotemporal signals, known as neural fields. Its popularity stems from its capacity to
encode continuous signals across arbitrary dimensions (Kim & Adalı, 2003). Additionally, inher-
ent implicit regularization (Goodfellow et al., 2016; Neyshabur et al., 2014) and spectral bias (Ra-
haman et al., 2019) equip MLPs with excellent interpolation capabilities. Due to these remarkable
properties, MLPs have achieved widespread success in many applications such as image synthesis,
animation, texture generation, and novel view synthesis (Tewari et al., 2022; Xie et al., 2022).

However, the spectral bias of MLPs (Rahaman et al., 2019), which refers to the tendency of neural
networks to learn functions with low frequencies, presents a challenge when it comes to accurately
representing complex real-world signals and capturing fine-grained details. Previous efforts have
aimed to address the spectral bias by utilizing techniques like positional encoding (Vaswani et al.,
2017; Mildenhall et al., 2020; Zhong et al., 2019; Müller et al., 2022) or special activation functions
(Sitzmann et al., 2020b; Fathony et al., 2020). However, even with these methods, representing fine-
grained details remains a challenge, particularly when dealing with large spatiotemporal signals such
as long videos or dynamic 3D scenes.

A straightforward way of increasing the capacity of MLPs is to increase the network complexity
in terms of the total number of neurons. However, such an approach would make the inference
and optimization slower and more GPU memory expensive, as time and memory complexity scales
with respect to the total number of parameters. Another possibility is to meta-learn MLP weights
(Sitzmann et al., 2020a) and maintain specialized independent parameters, but this imposes slow
training that does not scale to photo-realistic reconstructions (Tancik et al., 2021). By far the most
popular approach for increasing modeling capacity is to partition the spatiotemporal field and fit

∗Code, data, and pre-trained models are released at https://github.com/markomih/ResFields
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Figure 1: ResField extends an MLP architecture to effectively represent complex temporal signals
by replacing the conventional linear layers with Residual Field Layers. As such, ResField is versatile
and straightforwardly compatible with most existing temporal neural fields. Here we demonstrate its
applicability on three challenging tasks by extending Siren (Sitzmann et al., 2020b) and TNeRF (Li
et al., 2022): (a) learning temporal signed distance fields and (b) neural radiance fields from four
RGB views and (c) from three time-synchronized RGBD views captured by our lightweight rig. The
figure is best viewed in electronic format on a color screen, please zoom-in to observe details.

separate/local neural fields (Reiser et al., 2021; Müller et al., 2022; Chen et al., 2022). However,
these approaches hinder global reasoning and generalization due to local gradient updates of grid
structures (Peng et al., 2023).
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Figure 2: ResField MLP Architecture.

The challenge that we aim to address is how
to increase the model capacity in a way that
is agnostic to the design choices of MLP neu-
ral fields. This includes architecture, input en-
coding, and activation functions. At the same
time, we must maintain the implicit regular-
ization property of neural networks and retain
compatibility with existing techniques devel-
oped for reducing the spectral bias (Mildenhall
et al., 2020; Sitzmann et al., 2020b). Our key idea is to substitute MLP layers with time-dependent
layers (see Fig. 2) whose weights are modeled as trainable residual parameters Wi(t) added to the
existing layer weights Wi. We dub neural fields implemented in this way ResFields.

Increasing the model capacity in this way offers three key advantages. First, the underlying MLP
does not increase in width and hence, maintains the inference and training speed. This property
is crucial for most practical downstream applications of neural fields, including NeRF (Mildenhall
et al., 2020) which aims to solve inverse volume rendering (Drebin et al., 1988) by querying neural
fields billions of times. Second, this modeling retains the implicit regularization and generalization
properties of MLPs, unlike other strategies focused on spatial partitioning (Reiser et al., 2021; Müller
et al., 2022; Peng et al., 2023; Işık et al., 2023). Finally, ResFields are versatile, easily extendable,
and compatible with most MLP-based methods for spatiotemporal signals.

However, the straightforward implementation of ResFields could lead to reduced interpolation prop-
erties due to a large number of unconstrained trainable parameters. To this end, inspired by well-
explored low-rank factorized layers (Denil et al., 2013; Ioannou et al., 2015; Khodak et al., 2021),
we propose to implement the residual parameters as a global low-rank spanning set and a set of
time-dependent coefficients. As we show in the following sections, this modeling enhances the gen-
eralization properties and further reduces the memory footprint caused by maintaining additional
network parameters.
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In summary, our key contributions are:

• We propose an architecture-agnostic building block for modeling spatiotemporal fields that we
dub ResFields.

• We systematically demonstrate that our method benefits a number of existing methods: Sitzmann
et al. (2020b); Pumarola et al. (2021); Park et al. (2021a;b); Li et al. (2022); Cai et al. (2022); Cao
& Johnson (2023); Fridovich-Keil et al. (2023).

• We validate ResFields on four challenging tasks and demonstrate state-of-the-art (Fig. 1): 2D
video approximation, temporal 3D shape modeling via signed distance functions, radiance field
reconstruction of dynamic scenes from sparse RGB(D) images, and learning 3D scene flow.

2 RELATED WORK

Neural field is a field – a physical quantity that has a value for every point in time and space –
that is parameterized fully or in part by a neural network (Xie et al., 2022), typically an MLP as
the universal approximator (Kim & Adalı, 2003). However, straightforward fitting of signals to
regular MLPs yields poor reconstruction quality due to the spectral bias of learning low frequencies
(Rahaman et al., 2019). Even though this issue has been alleviated through special input encodings
(Mildenhall et al., 2020; Barron et al., 2021; 2022) or activation functions (Sitzmann et al., 2020b;
Tancik et al., 2020; Fathony et al., 2020; Lindell et al., 2022; Shekarforoush et al., 2022), neural
fields still cannot scale to long and complex temporal signals due to the limited capacity. A natural
way of increasing the modeling capacity is to increase the network’s size in terms of the number of
parameters. However, this trivial solution does not scale with GPU and training time requirements.

Hybrid neural fields leverage explicit grid-based data structures with learnable feature vectors to
improve the modeling capacity via spatial (Takikawa et al., 2021; Müller et al., 2022; Chen et al.,
2022; Chan et al., 2022) and temporal (Shao et al., 2023; Fridovich-Keil et al., 2023; Cao & Johnson,
2023; Peng et al., 2023) partitioning techniques. However, these approaches sacrifice the desired
global reasoning and implicit regularization (Neyshabur et al., 2014; Goodfellow et al., 2016) that
is needed for generalization, especially for solving ill-posed problems like inverse rendering. In
contrast, our solution, ResFields, focuses on improving pure neural network-based approaches that
still hold state-of-the-art results across several important applications, as we will demonstrate later.

Input-dependent MLP weights is another common strategy for increasing the capacity of MLPs by
directly regressing MLP weights, e.g. via a hypernetwork (Mehta et al., 2021; Wang et al., 2021c)
or a convolutional (Peng et al., 2023) neural network. However, these approaches introduce an ad-
ditional, much larger network that imposes a significant computational burden for optimizing neural
fields. KiloNeRF (Reiser et al., 2021) proposes to speed up the inference of static neural radiance
fields by distilling the learned radiance field into a grid of small independent MLPs. However, since
a bigger MLP is still used during the first stage of the training, this model has the same scaling limi-
tations as the original NeRF. Closest in spirit to our approach, the level-of-experts (LoE) model (Hao
et al., 2022) introduces an input-dependent hierarchical composition of shared MLP weights at the
expense of reduced representational capacity. Compared to LoE, ResFields demonstrate stronger
generalization and higher representational power for modeling complex spatiotemporal signals.

Temporal fields are typically modeled by feeding the time-space coordinate pairs to neural fields.
SIREN (Sitzmann et al., 2020b) was one of the first neural methods to faithfully reconstruct a 2D
video signal. However, scaling this approach to 4D is infeasible and does not produce desired
results as demonstrated in dynamic extensions of NeRF models (Pumarola et al., 2021; Li et al.,
2022). Therefore, most of the existing NeRF solutions (Pumarola et al., 2021; Park et al., 2021a)
decouple the learning problem into learning a static canonical neural field and a deformation neural
network that transforms a query point from the observation to the canonical space where the field
is queried. However, these methods tend to fail for more complex signals due to the difficulty of
learning complex deformations via a neural network, as observed by Gao et al. (2022). To alleviate
the problem, HyperNeRF (Park et al., 2021b) introduced an additional small MLP and per-frame
learnable ambient codes to better capture topological variations, increase the modeling capacity, and
simplify the learning of complex deformation. The recent NDR (Cai et al., 2022), a follow-up work
of HyperNeRF, further improves the deformation field by leveraging invertible neural networks and
more constrained SDF-based density formulation (Yariv et al., 2021). All of these methods are fully
compatible with the introduced ResFields paradigm which consistently improves baseline results.
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Scene flow is commonly used to model the dynamics of neural fields. Most works use MLPs to
model scene flow by predicting offset vectors (Pumarola et al., 2021; Li et al., 2021b; Prokudin et al.,
2023; Wang et al., 2023b), SE(3) transformation (Park et al., 2021a; Wang et al., 2023a), coefficients
of pre-defined bases (Wang et al., 2021a; Li et al., 2023), or directly using invertible architectures
(Cai et al., 2022; Wang et al., 2023c). These representations are compatible with ResFields which
further enhance their learning capabilities.

Residual connections have a long history in machine learning. They first appeared in Rosenblatt
(1961) in the context of coupled perceptron networks. Rosenblatt’s insight was that the residual
connections increase the efficiency of responding to input signals. Since then, residual connections
have been extensively studied and found a major practical utility as a solution to training deep
neural networks by overcoming the vanishing gradient problem (Hochreiter, 1998; Srivastava et al.,
2015; He et al., 2016) and became a de facto standard for modeling neural networks. Unlike these
residual connections that are added to the output of MLP layers, our ResField layers model the
residuals of the MLP weights, which in turn yields higher representation power of neural fields,
making them more suitable for modeling complex real-world spatiotemporal signals. To the best of
our knowledge, directly optimizing residual or multiplicative correctives of model parameters has
been explored in the context of fine-tuning large language models (Karimi Mahabadi et al., 2021;
Hu et al., 2021; Dettmers et al., 2023) or predicting model weights (Wang et al., 2021c), and has not
been explored for directly training spatiotemporal neural fields.

3 RESFIELDS: RESIDUAL NEURAL FIELDS FOR SPATIOTEMPORAL SIGNALS

Formulation. Temporal neural fields encode continuous signals f : Rd × R 7→ Rc via a neural
network Φθ, where the input is a time-space coordinate pair (t ∈ R, x ∈ Rd) and the output is a
field quantity y ∈ Rc. More formally, the temporal neural field is defined as:

Φθ(t,x) = σn

(
Wn(ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ1)(t,x) + bn

)
, (1)

ϕi(t,xi) = σi(Wixi + bi), (2)

where ϕi : RN
i 7→ RM

i is the ith layer of the MLP, which consists of the linear transformation by
the weight matrix Wi ∈ RNi×Mi and the bias bi ∈ RNi applied to the input xi ∈ RMi , followed
by a non-linear activation function σi. The network parameters θ are optimized by minimizing a
loss term L directly w.r.t a ground truth signal or indirectly by relating a field quantity to the sensory
input, e.g. via volume rendering equation for radiance field reconstruction.

Limitations of MLPs. To model complex and long signals, it is crucial for the underlying MLP to
have a sufficient modeling capacity, which scales with the total number of parameters. However, as
the MLP size increases, the training time of neural fields becomes slower while increasing the GPU
memory requirements, ultimately leading to the bottleneck being the MLP’s size. This is especially
highlighted for dynamic radiance field reconstruction which requires solving an inverse rendering
problem through billions of MLP queries. In the following, we introduce ResFields, an approach
for alleviating the capacity bottleneck for modeling and reconstructing spatiotemporal signals.

ResFields model. We introduce residual field layers (Fig. 2) to effectively capture large and complex
spatiotemporal signals. ResFields, an MLP that uses at least one residual field layer, alleviates the
aforementioned capacity bottleneck without increasing the size of MLPs in terms of the number
of layers and neurons. In particular, we replace a linear layer of an MLP ϕi with our temporal
time-conditioned residual layer defined as:

ϕi(t,xi) = σi((Wi +Wi(t))xi + bi) , (3)

where Wi(t) : R 7→ RNi×Mi is time-dependent and models residuals of the network weights.
This simple formulation increases the model capacity via additional trainable parameters without
modifying the overall network architecture.

= ×
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Figure 3: Factorization of Wi.

ResFields factorization. However, naively imple-
menting Wi(t) ∈ RNi×Mi as a dictionary of train-
able weights would yield a vast amount of indepen-
dent and unconstrained parameters. This would result
in a partitioning of spatiotemporal signal, akin to the
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Figure 4: 2D video approximation. Comparison of different neural fields on fitting RGB videos.
The training and test PSNR curves (left and right respectively) indicate the trade-off between the
model’s capacity and generalization properties. Instant NGP offers good overfitting capabilities,
however, it struggles to generalize to unseen pixels. A Siren MLP with 1024 neurons (Siren-1024),
shows good generalization properties, however, it lacks representation power (low training and low
test PSNR). A smaller Siren with 512 neurons implemented with ResFields (Siren-512+ResFields)
demonstrates good generalization while offering higher model capacity. Besides the higher accu-
racy, our approach offers approximately 2.5 times faster convergence and 30% lower GPU memory
requirements due to using a smaller MLP (Tab. 1). Results on the right provide a visual comparison
of Siren with 256 neurons and Siren with 128 neurons implemented with ResField layers.

space partitioning methods (Reiser et al., 2021; Müller et al., 2022; Shao et al., 2023), and hinder a
global reasoning and implicit bias of MLPs, essential properties for solving under constrained prob-
lems such as a novel view synthesis from sparse setups. To this end, inspired by well-established
low-rank factorized layers (Denil et al., 2013; Ioannou et al., 2015; Khodak et al., 2021), we directly
optimize time-dependent coefficients and Ri-dimensional spanning set of residual network weights
that are shared across the entire spatiotemporal signal (see Fig. 3). In particular, the residual of
network weights are defined as

Wi(t) =
∑Ri

r=1
vi(t)[r] ·Mi[r], (4)

where the coefficients v(t) ∈ RRi and the spanning set M ∈ RRi×Ni×Mi are trainable parameters;
square brackets denote element selection. To model continuous coefficients over the time dimension,
we implement v ∈ RTi×Ri as a matrix and linearly interpolate its rows. Such formulation reduces
the total number of trainable parameters and further prevents potential undesired overfitting that is
common for field partition methods as we will demonstrate later (Sec. 4.5).

Key idea. The goal of our parametrization is to achieve high learning capacity while retaining good
generalization properties. To achieve this for a limited budget in terms of the number of parameters,
we allocate as few independent parameters per time step (in v(t)) and as many globally shared
parameters M. Allocating more capacity towards the shared weights will enable 1) the increased
capacity of the model due to its ability to discover small patterns that could be effectively compressed
in shared weights and 2) stronger generalization as the model is aware of the whole sequence through
the shared weights. Given these two objectives, we design v(t)) to have very few parameters (Ri)
and M to have most parameters (Ri×Ni×Mi); see the Sup. Mat. for further implementation details.

4 EXPERIMENTS

To highlight the versatility of ResFields, we analyze our method on four challenging tasks: 2D video
approximation via neural fields, learning of temporal signed distance functions, radiance reconstruc-
tion of dynamic scenes from calibrated RGB(D) cameras, and learning 3D scene flow.

4.1 2D VIDEO APPROXIMATION

Learning a mapping of pixel coordinates to the corresponding RGB colors is a popular benchmark
for evaluating the model capacity of fitting complex signals (Müller et al., 2022; Sitzmann et al.,
2020b). For comparison, we use two videos (bikes and cat from Sitzmann et al. (2020b)) that
consist respectively of 250 and 300 frames (with resolutions at 512 × 512 and 272 × 640) and fit
neural representations by minimizing the mean squared error w.r.t ground truth RGB values.
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Unlike the proposed setup in Sitzmann et al. (2020b) where the focus is pure overfitting to the image
values, our goal is to also evaluate the interpolation aspects of the models. For this, we leave out
10% of randomly sampled pixels for validation and fit the video signal on the remaining ones. We
compare our approach against Instant NGP, a popular grid-based approach to neural field modeling,
with the best hyperparameter configuration for the task (see supplementary). We also compare
against a five-layer Siren network with 1024 neurons (denoted as Siren-1024), as a pure MLP-based
approach. For our model, we choose a five-layer Siren network with 512 neurons, whose hidden
layers are implemented as residual field layers with the rank Ri = 10 for all hidden layers (Siren-
512+ResFields). We refer to the supplementary for more details and ablation studies on the number
of factors, ranks, and layers for the experiment. Table 1: Video approximation.

test PSNR↑ t[it/s]↑ GPU↓

NGP 34.52 131 1.6G
Siren-1024 36.37 3.55 9.7G
Siren-512+ResFields 39.21 9.78 6.5G

Insights. We report training and test PSNR values averaged
over the two videos in Fig. 4 and Tab. 1. Here, Instant-NGP of-
fers extremely fast and good overfitting abilities as storing the
data in the hash grid structure effectively resolves the problem
of limited MLP capacity, alleviating the need for residual weights. This, however, comes at the ex-
pense of the decreased generalization capability. Siren-1024 has good generalization properties, but
clearly underfits the signal and suffers from blur artifacts. Unlike Siren-1024, Siren-512 with Res-
Fields offers significantly higher reconstruction and generalization quality (36.37 vs 39.21 PSNR)
while requiring 30% less GPU memory and being about 2.5 times faster to train.

This simple experiment serves as a proof of concept and highlights our ability to fit complex tem-
poral signals with smaller MLP architectures, which has a significant impact on the practical down-
stream applications as we discuss in the following sections.

4.2 TEMPORAL SIGNED DISTANCE FUNCTIONS (SDF)

Signed-distance functions model the orthogonal distance of a given spatial coordinate x to the sur-
face of a shape, where the sign indicates whether the point is inside the shape. We model a temporal
sequence of signed distance functions via a neural field network that maps a time-space coordinate
pair (t ∈ R, x ∈ R3) to a signed distance value (y ∈ R).

Table 2: Temporal SDF.
Rank Resources Mean
Ri GPU↓ t[ms]↓ CD↓ ND↓

Siren-128 2.4G 20.06 15.06 27.23

+ResFields

5

2.5G 20.25

9.47 18.54
10 8.79 16.61
20 8.43 15.48
40 8.16 14.19

Siren-256 3.6G 47.99 9.04 16.37

+ResFields

5

3.8G 48.19

7.90 13.00
10 7.71 12.24
20 7.66 11.84
40 7.67 11.67

We sample five sequences of different levels of difficulty (four
from Deforming Things (Li et al., 2021a) and one from ReSynth
(Ma et al., 2021) and convert the ground-truth meshes to SDF
values. We supervise all methods by the MAPE loss following
Müller et al. (2022). To benchmark the methods, we extract a
sequence of meshes from the learned neural fields via march-
ing cubes (Lorensen & Cline, 1987) and report L1 Chamfer dis-
tance (CD↓) and normal consistency (NC↓) w.r.t the ground-truth
meshes (scaled by 103 and 102 respectively). As a main baseline,
we use the current state-of-the-art Siren network (five layers) and
compare it against Siren implemented with our ResField layers,
where residual field layers are applied to three middle layers. We empirically observe that using
ResField on the first and last layers has a marginal impact on the performance since weight matrices
are small and do not impose a bottleneck for modeling capacity.

Insights. Quantitative and qualitative results (Tab. 2, Fig. 1) demonstrate that ResFields consistently
improve the reconstruction quality, with the higher rank increasingly improving results. Importantly,
we observe that Siren with 128 neurons and ResFields (rank 40), performs better compared to the
vanilla Siren with 256 neurons, making our method over two times faster while requiring less GPU
memory due to using a much smaller MLP architecture. Alleviating this bottleneck is of utmost
importance for the reconstruction tasks that require solving inverse rendering by querying the neural
field billions of times as we demonstrate in the next experiment.

4.3 TEMPORAL NEURAL RADIANCE FIELDS (NERF)

Temporal or Dynamic NeRF represents geometry and texture as a neural field that models a function
of color and density. The model is trained by minimizing the pixel-wise error metric between the
images captured from known camera poses and ones rendered via the differentiable ray marcher
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Table 3: Temporal radiance field reconstruction on Owlii (Xu et al., 2017). Previous state-of-
the-art methods consistently benefit from ResField layers without imposing a high computational
overhead; bold numbers denote best per-sequence performance while colors denote the overall 1st ,
2nd , and 3rd best-performing model; i denotes which layers are substituted with ResFeilds layers.

Mean Basketball Model Dancer Exercise
t ↓ FPS↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑

Neus2 (Wang et al., 2023d) 0.5h 30 69.4 91.01 21.73 75.7 90.57 20.48 65.6 89.64 23.01 77.1 93.16 23.23 59.2 90.67 20.21
Tensor4D (Shao et al., 2023) 15h 0.035 32.8 91.05 22.59 30.5 91.22 22.51 40.3 89.30 22.46 26.7 91.53 23.24 33.5 92.16 22.16
HexPlane (Cao & Johnson, 2023)

5h
0.359 20.9 92.62 24.71 17.3 93.22 25.13 24.2 91.48 25.23 23.5 91.88 23.53 18.8 93.92 24.96

+ ResFields (i=1) 0.357 17.8 93.51 25.61 14.9 93.96 25.91 21.3 92.58 26.19 19.7 93.16 24.86 16.3 94.30 25.33
+ ResFields (i=1, 2, 3) 0.354 17.6 93.74 25.79 14.5 94.47 26.62 21.7 92.61 25.82 18.9 93.47 25.14 15.7 94.69 25.82

DyNeRF (Li et al., 2022)

12h

0.328 31.0 91.95 23.59 28.0 92.56 23.49 44.9 89.84 23.11 30.7 91.54 23.33 20.3 93.88 24.45
+ ResFields (i=1) 0.327 20.8 93.69 25.57 14.7 94.58 26.54 26.1 92.24 25.36 24.6 93.35 25.20 17.7 94.59 25.17
+ ResFields (i=1, 2, 3) 0.323 19.3 93.81 25.49 20.3 93.49 24.77 22.2 93.07 26.16 17.6 93.69 25.22 17.1 94.99 25.80
+ ResFields (i=1, . . . , 7) 0.316 19.6 94.00 25.54 17.9 94.47 25.63 23.5 93.15 26.11 20.0 93.58 25.28 16.9 94.81 25.13

TNeRF (Li et al., 2022)

12h

0.339 17.2 94.18 26.18 15.1 94.57 26.33 20.2 93.31 26.52 19.3 93.53 25.09 14.1 95.33 26.77
+ ResFields (i=1) 0.339 14.6 94.99 27.15 12.1 95.67 27.98 18.5 94.07 27.23 14.9 94.59 26.20 13.0 95.63 27.19
+ ResFields (i=1, 2, 3) 0.334 14.2 95.21 27.44 12.2 95.84 27.98 18.3 94.33 27.81 13.3 94.87 26.55 12.9 95.82 27.40
+ ResFields (i=1, . . . , 7) 0.328 14.2 95.45 27.55 12.2 95.90 27.82 17.8 94.49 27.45 14.5 95.22 26.82 12.3 96.21 28.11

DNeRF (Pumarola et al., 2021)

18h

0.215 32.1 92.09 23.36 22.3 93.21 24.74 44.0 90.51 23.19 38.5 91.17 21.29 23.4 93.47 24.21
+ ResFields (i=1) 0.214 14.2 95.16 27.33 12.1 95.88 28.26 18.1 94.15 27.03 14.1 94.66 26.24 12.8 95.95 27.79
+ ResFields (i=1, 2, 3) 0.213 14.0 95.34 27.60 12.2 95.95 28.20 17.6 94.45 27.84 14.0 94.88 26.40 12.4 96.08 27.97
+ ResFields (i=1, . . . , 7) 0.210 14.0 95.67 27.89 12.0 96.15 28.34 17.3 94.85 27.83 14.3 95.45 27.25 12.3 96.21 28.14

Nerfies (Park et al., 2021a)

24h

0.180 23.2 93.15 24.35 21.1 93.53 24.74 28.2 92.02 24.25 23.8 92.96 23.81 19.7 94.09 24.60
+ ResFields (i=1) 0.180 14.6 95.12 27.26 12.3 95.64 27.86 19.3 93.95 26.91 14.2 95.10 27.00 12.7 95.77 27.29
+ ResFields (i=1, 2, 3) 0.179 14.0 95.32 27.43 11.9 95.78 27.87 18.6 94.30 27.21 13.0 95.27 27.11 12.5 95.91 27.51
+ ResFields (i=1, . . . , 7) 0.177 13.8 95.57 27.72 11.8 95.79 27.42 17.6 94.68 27.78 13.5 95.67 27.73 12.2 96.16 27.94

HyperNeRF (Park et al., 2021b)

32h

0.145 16.0 94.94 26.84 13.0 95.47 27.44 22.0 93.76 26.50 15.7 94.89 26.27 13.2 95.64 27.15
+ ResFields (i=1) 0.144 14.4 95.18 27.36 12.4 95.73 28.05 18.7 94.18 27.38 13.4 95.15 26.96 13.0 95.65 27.05
+ ResFields (i=1, 2, 3) 0.144 14.1 95.35 27.45 12.4 95.86 28.11 18.4 94.36 27.32 12.9 95.35 27.24 12.8 95.82 27.14
+ ResFields (i=1, . . . , 7) 0.143 14.2 95.50 27.64 11.9 95.77 27.54 18.0 94.63 27.76 14.3 95.38 27.11 12.4 96.24 28.16

NDR (Cai et al., 2022)

34h

0.129 15.3 94.82 26.78 13.2 95.36 27.31 19.7 93.98 26.95 15.4 94.27 25.69 12.9 95.65 27.18
+ ResFields (i=1) 0.129 14.7 95.14 27.16 12.6 95.74 27.87 18.2 94.17 27.14 15.2 94.83 26.46 12.9 95.84 27.17
+ ResFields (i=1, 2, 3) 0.129 14.0 95.36 27.55 12.2 96.00 28.31 18.1 94.29 27.21 13.2 95.12 26.87 12.6 96.04 27.81
+ ResFields (i=1, . . . , 7) 0.127 14.2 95.56 27.81 11.9 96.02 28.02 19.3 94.48 27.51 13.1 95.38 27.11 12.4 96.36 28.61

DyNeRF DNeRF Nerfies TNeRF HyperNeRF NDR GT
(Li et al., 2022) (Pumarola et al., 2021) (Park et al., 2021a) (Li et al., 2022) Park et al. (2021b) (Cai et al., 2022)

SSIM/PSNR↑ CD↓ SSIM/PSNR↑ CD↓ SSIM/PSNR↑ CD↓ SSIM/PSNR↑ CD↓ SSIM/PSNR↑ CD↓ SSIM/PSNR↑ CD↓

B
as

el
in

e

92.56/23.49 28.0 92.56/23.49 28.0 93.53/24.74 21.1 94.57/26.33 15.1 95.47/27.44 13.0 95.36/27.31 13.2

+
R

es
Fi

el
ds

94.47/25.63 17.9 96.15/28.34 12.0 95.79/27.42 11.8 95.90/27.82 12.2 95.77/27.54 11.9 96.02/28.02 11.9

B
as

el
in

e

91.54/23.33 30.7 92.56/23.49 28.0 92.96/23.81 23.8 94.57/26.33 15.1 95.47/27.44 13.0 95.36/27.31 13.2

+
R

es
Fi

el
ds

91.54/23.33 30.7 95.45/27.25 14.3 95.67/27.73 13.5 95.22/26.82 14.5 95.38/27.11 14.3 95.38/27.11 13.1

Figure 5: Temporal radiance fields on Owlii (Tab. 3); metrics are averaged across all test views.
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(Mildenhall et al., 2020). To better model geometry, we adopt the MLP architecture and signed
distance field formulation from VolSDF (Yariv et al., 2021) that defines density function as Laplace’s
cumulative distribution function applied to SDF. We refer readers to the supplementary for the results
with the NeRF backbone and further implementation details.

Following (Wang et al., 2021b), all models are supervised by minimizing the pixel-wise difference
between the rendered and ground truth colors (l1 error), the rendered opacity and the gt mask (binary
cross-entropy), and further adopting the Eikonal (Gropp et al., 2020) mean squared error loss for
well-behaved surface reconstruction under the sparse capture setup:

L = Lcolor + λ1Ligr + λ2Lmask. (5)

We use four sequences from the Owlii (Xu et al., 2017) dataset to evaluate the methods. Compared
to fully synthetic sequences previously utilized for the task (Pumarola et al., 2021), the dynamic
Owlii sequences exhibit more rapid and complex high-frequency motions, making it a harder task
for MLP-based methods. At the same time, the presence of ground truth 3D scans allows us to
evaluate both geometry and appearance reconstruction quality, as compared to the sequences with
only RGB data available (Li et al., 2022; Shao et al., 2023). We render 400 RGB training images
from four static camera views from 100 frames/time intervals and 100 test images from a rotating
camera from 100 frames. We report L1 Chamfer distance (CD↓) (scaled by 103) and the standard
image-based metrics (PSNR↑, SSIM↑).

We benchmark recent state-of-the-art methods and their variations implemented with ResField lay-
ers of rank ten (Ri = 10) – TNeRF (Pumarola et al., 2021; Li et al., 2022), DyNeRF (Li et al.,
2022), DNeRF (Pumarola et al., 2021), Nerfies (Park et al., 2021a), HyperNeRF (Park et al., 2021b),
NDR (Cai et al., 2022), and HexPlane (Cao & Johnson, 2023; Fridovich-Keil et al., 2023) – as well
as a recent timespace-partitioning methods Tensor4D (Shao et al., 2023) and NeuS2 (Wang et al.,
2023d) (with default training configurations). Please see the Sup. Mat. for further details.

Insights. We report all quantitative and qualitative results in Tab. 3 and Fig. 5. Results demonstrate
that our method consistently improves all baseline methods, achieving new state-of-the-art results
for sparse multi-view reconstruction of dynamic scenes. We further observe that more ResField
layers gradually improve results until the point of saturation (i = 1, 2, 3). This experiment con-
firms that increasing the modeling capacity to a more-than-needed level does not cause overfitting.
Importantly, the simplest/cheapest baseline method TNeRF implemented with ResFields performs
better than every other more expensive baseline method in the original form. We believe that such
speedup and lower memory requirements are of great benefit to the research community, as they
enable the use of lower-end hardware for high-fidelity reconstructions. Given this observation, we
set up a simple camera rig and captured longer and more complex sequences to better understand
the limitations.

Table 4: Lightweight capture from three RGBD views.
Mean Book Glasses Hand Writing

LPIPS↓ SSIM↑ LPIPS SSIM LPIPS SSIM LPIPS SSIM↑ LPIPS SSIM

TNeRF 0.234 79.16 0.323 68.85 0.206 80.44 0.239 81.30 0.168 86.08
+ResFields 0.203 80.00 0.284 70.84 0.164 80.65 0.210 82.09 0.155 86.43

Lightweight capture from three
RGBD views. We capture four se-
quences (150 frames) via synchronized
Azure Kinects (three for reconstruction
and one for validation) and compare
TNeRF (w. depth supervision), a
baseline with a good balance between computational complexity and accuracy, and its enhancement
with ResFields applied to all middle layers. Quantitative evaluation in terms of mean SSIM↑ and
LPIPS↓ (Zhang et al., 2018) reported in Tab. 4 demonstrates that ResFields consistently benefits the
reconstruction (see visuals in Fig. 1 and the Sup. video). However, we observe that both methods
struggle to capture thin and tiny surfaces such as the cord of sunglasses.

4.4 SCENE FLOW

Table 5: Scene flow.
it/s ↑ type fwd/bwd l1 ↓

12
8

ne
ur

on
s ReLU MLP

16.5

offset 6.88 / 7.31
+ResFields 3.85 / 3.85

ReLU MLP SE(3) 4.57 / 4.58
+ResFields 2.64 / 2.56

ReLU MLP DCT 3.19 / 3.19
+ResFields 2.18 / 2.19

25
6

ne
ur

on
s ReLU MLP

5.6

offset 6.50 / 6.44
+ResFields 4.43 / 4.59

ReLU MLP SE(3) 4.00 / 4.10
+ResFields 2.88 / 2.84

ReLU MLP DCT 2.47 / 2.48
+ResFields 1.79 / 1.79

Scene flow models a 3D motion field for every point in space x and
time t. We take the same four Deforming Things sequences from
Sec 4.2 and learn bi-directional scene flow. We use 80% of tracked
mesh vertices to learn the flow and the remaining 20% for evalua-
tion. As a supervision, we use l1 error between the predicted and
the ground truth flow vectors. We consider three motion models that
predict 1) offset vectors (Prokudin et al., 2023; Li et al., 2021b), 2)
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SE(3) transformation (Park et al., 2021a; Wang et al., 2023a), and 3) coefficients of the DCT bases
(Wang et al., 2021a; Li et al., 2023). For all of them, we consider the same architecture from (Wang
et al., 2021a): 8-layer ReLU-MLP with positional encoding.

Insight. Tab. 5 reports the l1 error (scaled by 103) for the evaluation points. ResFields greatly
benefits learning scene flow across all settings. Moreover, the architecture of 256 neurons is less
powerful than its much smaller and faster counterpart (128 neurons) with ResFields (rank of 10) for
both forward and backward flow while being around three times faster: 16.5 vs. 5.6 train it/s.

4.5 ABLATION STUDY

Table 6: ResField modeling.
Mean PSNR↑
test train

Siren-512 31.89 32.13
ϕi(t,xi)=σi(Wixi + bi)

+output residual weights (Karras et al., 2020) 32.84 33.12
ϕi(t,xi)=σi(Wixi + bi)+Wi(t)
+modulated weights (Mehta et al., 2021) 32.65 32.90
ϕi(t,xi)=σi((Wi⊙Wi(t))xi+bi)
+direct (Hao et al., 2022) Wi(t) 35.17 35.95
ϕi(t,xi)=σi(Wi(t)xi+bi)
+ResFields 39.21 39.97
ϕi(t,xi)=σi((Wi+Wi(t))xi+bi)

Table 7: Factorization techniques.
#params Mean PSNR↑

Factorization Rank [M] test train

Siren 0.8 31.96 32.29
+R

es
Fi

el
ds

None 236 38.52 48.46
Reiser et al. (2021)

Low-rank 10 5.4 35.22 36.35
matrix-matrix: 20 10.0 35.88 37.50

v(t) ∈ RNi×Ri 40 19.3 36.67 39.01
M ∈ RRi×Mi 80 37.8 37.69 41.07
HyperNetwork 10.6 38.60 39.56
Ha et al. (2017)

10 0.8 33.04 33.36
CP 20 0.9 33.14 33.47

Carroll & Chang (1970) 40 1.0 33.41 33.75
80 1.1 33.72 34.08

Tucker (1966)

10,64,64 1.1 33.96 34.31
40,64,64 1.5 34.67 35.10
80,64,64 2.0 35.08 35.59

10,256,256 3.6 36.31 36.90
40,256,256 9.5 38.31 39.33
80,256,256 17.4 39.04 40.39

(2,4,8) 4.5 36.42 37.37
LoE (8,16,32) 15.5 39.87 42.27

Hao et al. (2022) (16,32,64) 30.2 40.53 44.15
(32,64,128) 59.5 40.62 46.35

10 8.7 39.59 40.80
Ours 20 16.5 40.87 42.45
Eq. 3 40 32.3 41.69 43.72

80 63.8 41.51 44.39

ResField modeling (Tab. 6). Residual connections
on the layer weights (Wi+Wi(t)) are more power-
ful compared to modeling residuals on the layer out-
put that is commonly used for conditional generation
(Karras et al., 2020), directly modulating layer weights
(Wi ⊙Wi(t)) (Mehta et al., 2021), or using time-
dependent weights (Wi(t)) as in LoE (Hao et al.,
2022). Tab. 6 summarizes the results of these varia-
tions on the video approximation task from Sec. 4.1.

Factorization techniques (Tab. 7). We compare our
factorization (Eq. 4) with alternative techniques: no
factorization (Reiser et al., 2021), low-rank matrix-
matrix decomposition (v(t) ∈ RNi×Ri , M ∈
RRi×Mi ), regressing network parameters (Ha et al.,
2017), hierarchical Levels-of-Experts (LoE) (Hao
et al., 2022), and the classic CP (Carroll & Chang,
1970) and Tucker (1966). CP and Tucker with vary-
ing ranks demonstrate good generalization and over-
fitting results. No factorization achieves great train-
ing PSNR, but its generalization performance is sub-
optimal which has been mitigated by the hierarchi-
cal formulation of LoE. The proposed factorization
achieves the best generalization properties. The re-
ported numbers in Tab. 7 are measured on the video
approximation task for 30% of unseen pixels. See the
Sup. Mat. for additional comparisons.

Limitations. Overall ResFields benefits spatiotempo-
ral neural fields when the bottleneck lies in the model-
ing capacity rather than in solving unconstrained prob-
lems. Specifically, we do not observe an advantage on
challenging ill-posed monocular reconstruction (Gao
et al., 2022) when the main bottleneck is the lack of constraints rather than the network’s capacity.

5 DISCUSSION AND CONCLUSION

We present a novel approach to overcome the limitations of spatiotemporal neural fields in effec-
tively modeling long and complex temporal signals. Our key idea is to incorporate temporal residual
layers into neural fields, dubbed ResFields. The advantage and utility of the method lie in its ver-
satility and straightforward integration into existing works for modeling 2D and 3D temporal fields.
ResFields increase the capacity of MLPs without expanding the network architecture in terms of
the number of layers and neurons, which allows us to use smaller MLPs without sacrificing the re-
construction quality while achieving faster inference and training time with a lower GPU memory
requirement. We believe that progress towards using lower-cost hardware is the key to democratizing
research and making technology more accessible. We hope that our study contributes to develop-
ment of neural fields and provides valuable insights for modeling signals. This, in turn, can lead to
advancements in various domains, including computer graphics, computer vision, and robotics.
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Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Manmohan
Chandraker. Modulated periodic activations for generalizable local functional representations. In
ICCV, 2021.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ToG, 2022.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In ICCV, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Gold-
man, Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional representa-
tion for topologically varying neural radiance fields. ToG, 2021b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. NeurIPS, 2019.

Sida Peng, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Representing volumetric videos
as dynamic mlp maps. In CVPR, 2023.

Sergey Prokudin, Qianli Ma, Maxime Raafat, Julien Valentin, and Siyu Tang. Dynamic point fields.
2023.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In CVPR, 2021.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In ICML, 2019.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In ICCV, 2021.

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.

Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Tensor4d:
Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering. In
CVPR, 2023.

Shayan Shekarforoush, David Lindell, David J Fleet, and Marcus A Brubaker. Residual multiplica-
tive filter networks for multiscale reconstruction. NeurIPS, 2022.

Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. NeurIPS, 2020a.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. NeurIPS, 2020b.

12



Published as a conference paper at ICLR 2024

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. In CVPR, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. NeurIPS, 2020.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan, Jonathan T
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representa-
tions. In CVPR, 2021.

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang Yifan,
Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi, et al. Ad-
vances in neural rendering. In Computer Graphics Forum, 2022.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio Gallo. Neural trajectory fields for dynamic
novel view synthesis. arXiv preprint arXiv:2105.05994, 2021a.

Chaoyang Wang, Lachlan Ewen MacDonald, Laszlo A Jeni, and Simon Lucey. Flow supervision
for deformable nerf. In CVPR, 2023a.

Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Morpheus: Neural dynamic 360 surface re-
construction from monocular rgb-d video. arXiv preprint arXiv:2312.00778, 2023b.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS,
2021b.

Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski,
and Noah Snavely. Tracking everything everywhere all at once. In ICCV, 2023c.

Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas Geiger, and Siyu Tang. Metaavatar: Learning
animatable clothed human models from few depth images. In NeurIPS, 2021c.

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu.
Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. In ICCV, 2023d.

Yiqun Wang, Ivan Skorokhodov, and Peter Wonka. Pet-neus: Positional encoding tri-planes for
neural surfaces. In CVPR, 2023e.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual comput-
ing and beyond. In Computer Graphics Forum. Wiley Online Library, 2022.

Yi Xu, Yao Lu, and Ziyu Wen. Owlii dynamic human mesh sequence dataset. In ISO/IEC
JTC1/SC29/WG11 m41658, 120th MPEG Meeting, 2017.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
NeurIPS, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Ellen D Zhong, Tristan Bepler, Joseph H Davis, and Bonnie Berger. Reconstructing continuous
distributions of 3d protein structure from cryo-em images. arXiv preprint arXiv:1909.05215,
2019.

13



Published as a conference paper at ICLR 2024

A APPENDIX

We provide additional implementation details and experiments to complement our study. All the
reported runtime in this paper is measured on an NVIDIA RTX 3090 GPU card.

A.1 IMPLEMENTATION DETAILS

Initialization. For experiments that use Siren networks (Sitzmann et al., 2020b) (sections 4.1 and
4.2), we follow their proposed initialization scheme. Models used for SDF-based dynamic radiance
field reconstruction (Sec. 4.3) are initialized following the geometric initialization scheme (Gropp
et al., 2020). Other neural network weights are initialized following Glorot & Bengio (2010).

Residual weights. Parameters (vi, Mi) which model our residual weights are initialized with a
normal distribution ∼ N (0, 10−2) to ensure a negligible modification of the initial MLP weights.
We observe that larger initial values may negatively affect geometric and Siren initialization. For all
experiments in the main paper, we set the number of coefficients Ti to the number of frames unless
specified otherwise.

Training details. All models are trained with the Adam optimizer (Kingma & Ba, 2015) with
default parameters defined by the PyTorch framework (Paszke et al., 2019). We observe stable
convergence with the learning rate of 5× 10−4 and gradual cosine annealing (Loshchilov & Hutter,
2016) until the minimum learning rate of 5× 10−5 for the experiments on dynamic neural radiance
fields (Sec. 4.3). For other experiments (sections 4.1 and 4.2), we use the learning rate of 5× 10−5

and cosine annealing until 5× 10−6. All methods are trained respectively for 105, 2× 105, 4× 105,
and 6× 105 iterations on the 2D video approximation task (Sec. 4.1), temporal SDF reconstruction
(Sec. 4.2), and dynamic volumetric reconstruction (Sec. 4.3) on Owlii (Xu et al., 2017) and our
captured sequences. An exception in Sec. 4.3 is with the grid-partitioning methods – Tenso4D (Shao
et al., 2023) and HexPlane (Cao & Johnson, 2023; Fridovich-Keil et al., 2023) – which were trained
for fewer iterations (2× 105) as they use shallower MLPs which converge faster.

A.2 2D VIDEO APPROXIMATION TASK

Table A.1: Number of factors.
Factors Mean PSNR↑
Ti test train

Siren-512 32.02 32.27

+ResFields

100% 39.86 40.73
95% 39.90 40.77
90% 39.79 40.69
80% 39.69 40.62
70% 39.60 40.49
60% 39.53 40.44
50% 39.45 40.37
40% 39.25 40.20
30% 39.10 40.04
20% 38.87 39.82
10% 38.34 39.29

Table A.2: Time interpolation.
Factors Mean PSNR↑
Ti test train

Siren-512 26.72 32.36

+ResFields

90 % 21.61 40.90
80 % 22.01 40.82
70 % 24.57 40.76
60 % 26.06 40.62
50 % 26.12 40.58
40 % 25.54 40.41
30 % 26.51 40.18
20 % 27.32 39.91
10 % 27.34 39.37

Table A.3: Layers vs. rank.
ResField Rank #params Mean PSNR↑
Layers i Ri [M] test train

2 15 4.7 37.53 38.25
1, 2, 3 5 38.01 38.67
2 30 8.7 38.75 39.69
1, 2, 3 10 39.86 40.73
2 45 12.6 39.33 40.43
1, 2, 3 15 40.62 41.66
2 60 16.5 39.67 40.88
1, 2, 3 20 41.20 42.34

All methods presented in the paper (Sec. 4.1) on the 2D video
approximation task are trained for 100k iterations, each iteration
containing 200k random samples from the training set.

For the NGP baseline in Sec. 4.1, we follow the default setup and
use a two-layer fully fused network with ReLU activation func-
tions and run a grid search of hyperparameters to find the optimal
configuration. Specifically, we vary the table size T and the num-
ber of levels L in Tab. A.5 and found that the best results are
achieved with T = 23 and L = 8 which is reported in the main
paper (Fig. 4). Furthermore, we provide results (Tab. A.5) of a
much larger five-layer Siren network with 1700 neurons per layer
to match the number of trainable parameters to ResFields imple-
mented with a five-layer Siren network with 512 neurons, each
containing 8.7M parameters. Expectedly, we observe that both
methods achieve similar fitting and generalization performance.
However, training such a huge MLP with 1700 neurons becomes
impractical, making our approach over six times faster to train
while requiring over two times less GPU memory.

Number of factors (Tab. A.1). We further ablate the impact of
the number of factors Ti of ResFields. In this experiment, we
leave out 10% of randomly sampled pixels for validation and
vary the number of factors used for parameterizing the coeffi-
cients v ∈ RTi×Ri , in particular, we set Ti as the percentage of
the total number of frames. The results averaged over two videos
are reported in Tab. A.1. We observe that the best performance
is achieved for 95% when there’s little overlap between the co-
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Table A.4: Ablation study of different fractions of unseen pixels on the video approximation task.
ResFields consistently demonstrate good generalization properties regardless of the difficulty level.

Unseen Mean PSNR↑ Cat PSNR↑ Bicycles PSNR↑
pixels test train test train test train

Siren-512

10%

32.02 32.27 31.21 31.41 32.84 33.13
+ ResFields 39.86 40.73 38.58 39.15 41.13 42.32

Siren-1024 36.67 37.36 34.95 35.52 38.38 39.19
+ ResFields 43.15 44.75 42.49 43.53 43.82 45.98

Siren-512

20%

31.99 32.27 31.18 31.41 32.79 33.13
+ ResFields 39.74 40.75 38.50 39.15 40.98 42.35

Siren-1024 36.60 37.39 34.90 35.55 38.30 39.23
+ ResFields 42.95 44.82 42.30 43.53 43.59 46.12

Siren-512

30%

31.97 32.3 31.15 31.42 32.80 33.18
+ ResFields 39.59 40.8 38.39 39.17 40.80 42.43

Siren-1024 36.51 37.42 34.83 35.58 38.19 39.27
+ ResFields 42.72 44.96 42.16 43.60 43.28 46.32

Siren-512

40%

31.91 32.29 31.10 31.41 32.71 33.17
+ ResFields 39.39 40.85 38.28 39.20 40.51 42.50

Siren-1024 36.41 37.50 34.74 35.63 38.08 39.38
+ ResFields 42.33 45.14 41.86 43.67 42.79 46.62

Siren-512

50%

31.85 32.31 31.05 31.42 32.66 33.20
+ ResFields 39.09 40.95 38.08 39.24 40.10 42.66

Siren-1024 36.26 37.61 34.62 35.71 37.90 39.51
+ ResFields 41.75 45.41 41.43 43.79 42.08 47.03

Siren-512

70%

31.59 32.40 30.83 31.48 32.35 33.32
+ ResFields 37.70 41.49 37.14 39.42 38.26 43.55

Siren-1024 35.54 38.04 34.08 36.06 36.99 40.02
+ ResFields 38.96 46.61 39.00 44.44 38.91 48.78

efficients. In practice, there is a negligible difference compared to using independent coefficients
(100%) which we use as a default configuration as it is slightly computationally faster.

Time interpolation (Tab. A.2). One downside of using per-frame independent coefficients is that
it does not support time interpolation. We conduct an experiment to evaluate the interpolation along
the time axis. Here we randomly sample 10% of frames and leave them out for validation. As
expected, the lower number of factors Ti leads to a greater overlap among the frames, consequently
leading to better interpolation properties results, while gradually decreasing the training PSNR.

Layers vs. rank (Tab. A.3). Another natural question to consider is whether it is more beneficial
to have more ResField layers or a single ResFied layer with a higher rank while maintaining the
constant number of trainable parameters. We conduct this experiment on the video approximation
task and compare methods with an equal number of parameters. We conclude that multiple ResField
layers provide greater modeling capacity.

Ablation for fewer training samples (Tab. A.4). To complete our study and better understand
the implicit bias of our method, we further benchmark Siren and ResFields with varying difficulty
levels, ranging from 10-70% of unseen pixels. We observe that ResFields consistently demonstrate
good generalization across all the levels of difficulty, well above the baseline.

A.3 TEMPORAL SIGNED DISTANCE FUNCTIONS (SDF)

The architecture of the Siren MLP used for this experiment is identical to the one used for the video
approximation task. All methods are trained for 200k iterations, each batch containing 200k samples
uniformly sampled across time. For each frame we follow the sampling strategy for static SDFs
(Müller et al., 2022) and sample 50% of points on the mesh, 37.5% normally distributed around the
surface N (0, 10−2), and remaining 12.5% are randomly sampled in space.

We provide the full breakdown of per-sequence results in Tab. A.6.

A.4 TEMPORAL NEURAL RADIANCE FIELDS (NERF)

All methods on the Owlii dataset are trained for 400k iterations, except HexPlanes (Cao & Johnson,
2023; Fridovich-Keil et al., 2023) which converges faster (400k iterations) due to using shallower
MLPs, and Tensor4D and NeuS2 for which we follow the default training scheme as the methods
require a particular training strategy. The main baselines (TNeRF, DyNeRF, DNeRF, Nerfies, Hy-
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Table A.5: Extended ablation study on the video approximation task. Siren+ResFields with
512 neurons and Siren with 1700 neurons have an equal number of parameters, however, optimizing
a huge MLP with 1700 neurons comes with a great computational cost. Our method achieves over
six times faster training while requiring over two times less GPU memory.

Resources Mean Cat Video Bikes Video
t [it/s] GPU [G] #params [M] test PSNR↑ train PSNR↑ test PSNR↑ train PSNR↑ test PSNR↑ train PSNR↑

Siren-512 11.66 5.1 0.8 31.89 32.13 31.09 31.29 32.68 32.98
+ResFields R=10 9.78 6.5 8.7 39.21 39.97 37.96 38.44 40.46 41.50
Siren-1700 1.42 15 8.7 39.15 40.20 37.26 38.14 41.04 42.25

NGP T=20

L=6 150 1.3 3.6 31.27 33.25 30.23 31.71 32.31 34.78
L=7 153 1.3 5.7 32.08 35.06 30.89 33.42 33.28 36.70
L=8 157 1.2 7.8 32.61 36.64 31.34 35.15 33.88 38.13
L=9 158 1.1 9.9 32.41 37.80 31.06 36.21 33.75 39.39

NGP T=21

L=6 126 1.6 5.1 32.02 34.48 30.51 32.20 33.52 36.76
L=7 141 1.5 9.3 32.91 36.87 31.45 34.69 34.37 39.04
L=8 146 1.3 13.5 33.66 39.33 31.97 37.29 35.34 41.37
L=9 157 1.2 17.7 33.53 41.36 31.89 39.38 35.17 43.34

NGP T=22

L=6 101 2.1 5.1 32.01 34.47 30.51 32.20 33.51 36.73
L=7 116 1.7 13.5 33.39 37.82 31.82 35.39 34.96 40.25
L=8 144 1.5 21.9 34.02 41.09 32.25 38.71 35.79 43.48
L=9 156 1.2 30.3 33.73 43.83 32.17 41.69 35.29 45.96

NGP T=23

L=6 75 2.7 5.1 32.02 34.48 30.52 32.20 33.52 36.76
L=7 99 2.1 17.4 33.83 39.51 32.14 36.44 35.52 42.57
L=8 131 1.6 34.2 34.52 43.85 32.91 40.85 36.13 46.85
L=9 148 1.2 51 33.96 47.56 32.64 44.63 35.28 50.50

NGP T=24

L=6 51 3.8 5.1 32.01 34.46 30.51 32.20 33.51 36.72
L=7 77 2.7 17.4 33.84 39.51 32.14 36.45 35.54 42.58
L=8 130 1.6 51.0 34.27 44.68 32.72 41.71 35.81 47.66
L=9 145 1.2 84.5 34.02 49.51 33.08 46.58 34.95 52.43

Table A.6: Temporal signed distance function. Siren implemented with our Residual Field layers
consistently improves the reconstruction quality. Moreover Siren with 128 neurons and ResFields
(rank 40) performs better compared to the much bigger vanilla Siren with 256 neurons. Hence lead-
ing to over two times faster inference and convergence time while maintaining lower GPU memory
requirements; t[ms] denotes the average inference time for one million query points. Note that using
higher ranks almost does not affect the overall time complexity as the main bottleneck is the total
number of queries and neurons.

Resources Mean Bear Tiger Vampire Vanguard ReSynth
GPU↓ t[ms]↓ CD↓ ND↓ CD↓ ND↓ CD↓ ND↓ CD↓ ND↓ CD↓ ND↓ CD↓ ND↓

Siren-128 2.4G 20.06 15.063 27.23 7.605 4.519 5.159 4.934 29.490 63.686 17.099 42.953 15.960 20.057
+ ResFields (rank=05)

2.5G 20.25

9.471 18.537 6.813 3.569 4.422 3.639 12.105 39.457 11.420 30.414 12.594 15.606
+ ResFields (rank=10) 8.785 16.608 6.671 3.350 4.351 3.435 9.545 32.220 11.140 29.961 12.216 14.075
+ ResFields (rank=20) 8.427 15.483 6.659 3.301 4.325 3.328 8.708 29.661 10.465 27.541 11.980 13.584
+ ResFields (rank=40) 8.158 14.195 6.579 3.201 4.278 3.148 8.563 29.064 9.729 23.564 11.640 11.999

Siren-256 3.6G 47.99 9.040 16.373 6.532 3.115 4.241 3.055 11.800 36.666 10.623 26.407 12.004 12.622
+ ResFields (rank=05)

3.8G 48.19

7.901 13.000 6.430 3.009 4.177 2.854 8.576 28.846 8.993 20.168 11.331 10.124
+ ResFields (rank=10) 7.714 12.242 6.408 3.001 4.161 2.814 8.136 27.404 8.757 18.950 11.110 9.040
+ ResFields (rank=20) 7.662 11.840 6.396 2.995 4.141 2.753 8.076 27.013 8.650 18.056 11.050 8.385
+ ResFields (rank=40) 7.675 11.674 6.381 3.070 4.137 2.723 8.243 27.296 8.525 17.526 11.087 7.755
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perNeRF, and NDR) are implemented with the MLP architecture from VolSDF (Yariv et al., 2021),
however, we reduced the original MLP size from 256 to 128 neurons as it is impractical to train
such large MLPs on more expensive multi-view temporal sequences. The SDF MLP is followed by
a two-layer color MLP that takes the output feature of the SDF network. Different from the origi-
nal color MLP that is conditioned on the viewing ray direction, we do not pass this information to
the network as it is impossible to capture any view-dependent appearance for this extremely sparse
setup. We observe that training without the viewing direction stabilizes training of the baselines,
especially those that rely on a deformation network. We follow the original formulation of the flow
MLPs used in DNeRF, Nerfies, HyperNeRF, and NDR.

Figure A.1: Base
MLP weights.

Note that the original formulation of the HexPlane method (Cao & Johnson,
2023; Fridovich-Keil et al., 2023) is not suited for reconstruction from sparse
views mainly due to the lack of spherical initialization. Hence we adopt the
geometric initialization developed for Triplanes proposed in PET-NeuS (Wang
et al., 2023e). Unlike the other MLP-based methods, the SDF MLP head of
HexPlane has four linear layers with ReLU activation functions. Furthermore,
to reduce the grid-like artifacts caused by space-time discretization, we tune the
resolution of planes (128 grid locations per dimension) and employ the addi-
tional total variation loss akin to (Cao & Johnson, 2023). We observe that using
a higher resolution for six planes impairs the reconstruction quality.

To make the comparison fair among the baselines, for rendering we employ a
non-biased uniform sampling along the ray and sample 1100 rays during the
training. On each ray, we sample 256 points where the starting and exiting
points of the ray are calculated by ray-box intersection. The box for each se-
quence is estimated from the ground truth scans with a small padding of 5%.
All the methods are supervised by minimizing the loss term in Eq. 5, where we
set λ1 and λ2 to 0.1.

In practice, the SDF-based density formulation performs better under a sparse
setup due to well-behaved surfaces. However, for completeness, we repeat this
experiment with the original NeRF formulation (Tab. A.7). The results demon-
strate that all of the baselines consistently benefit from ResFields, making Ner-
fies+ResFields the overall best-performing method in terms of geometry and
HyperNeRF+ResFields in terms of appearance.

Interpreting residual weights. To better understand the internal workings of ResField MLPs, we
extract a mesh from the base MLP weights without the residual parameters Wi(t) – see Fig. A.1 for
results on the basketball sequence. The extracted mesh demonstrates that the base MLP successfully
discovers a pattern that is shared among all frames.

A.5 PRACTICAL RECONSTRUCTION FROM A LIGHTWEIGHT CAPTURE SYSTEM

Figure A.2: Data capture.

We follow the VolSDF architecture from the experiment on the
Owlii dataset and train all methods for 600k iterations (2200
rays per batch) since the sequences are longer and images are
of higher resolution (540×960).

As the scenes are forward-facing and not constrained from the
opposite side, we employ the depth (Cai et al., 2022) and the
sparseness loss Lsparse (Long et al., 2022). In sum, the final
loss term is:

L = Lcolor + λ1Ldepth + λ2Ligr + λ3Lsparse , (A.1)

where we set λ1, λ2, and λ3 to 0.1 and activate Lsparse after 70k iterations.

Data capture. Inspired by the lightweight practical capture of surgeries1 we create an identical
camera rig with four cameras (see Fig. A.2), three for training and one for evaluation. Additionally,
we crop captured images by projecting an approximated 3D bounding box around the dynamic
region as the main focus of our approach is reconstructing dynamic sequences.

1OR-X Setup
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Table A.7: Temporal radiance field reconstruction on the Owlii dataset (Xu et al., 2017) with the
NeRF parametrization. Previous state-of-the-art methods consistently benefit from our residual field
layers without the computational overhead; results with the VolSDF parametrization are provided
in Tab. 3. Colors denote the overall 1st , 2nd , and 3rd best-performing model; i denotes which
layers are substituted with ResFeilds layers (Ri = 10).

Mean Basketball Model Dancer Exercise
CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑ CD↓ SSIM↑ PSNR↑

TNeRF (Li et al., 2022) 61.6 93.90 26.04 70.9 94.06 25.88 52.9 93.18 27.06 65.4 93.49 25.22 57.1 94.88 25.99
+ ResFields (i=1) 53.6 94.54 26.72 53.8 95.08 27.15 53.4 93.55 27.32 53.3 94.40 26.22 54.0 95.14 26.20
+ ResFields (i=1, 2, 3) 46.1 94.81 27.00 44.6 95.23 27.20 49.6 93.92 27.66 48.1 94.81 26.80 42.3 95.28 26.32
+ ResFields (i=1, . . . , 7) 47.6 95.03 27.16 49.6 95.42 27.51 46.3 94.29 27.96 43.5 94.96 26.74 50.9 95.43 26.44

DyNeRF (Li et al., 2022) 60.8 93.68 25.78 60.9 94.03 25.89 56.2 92.60 26.16 70.1 93.46 25.26 56.1 94.63 25.79
+ ResFields (i=1) 52.6 94.25 26.42 55.9 94.59 26.70 55.5 93.23 27.08 50.5 94.22 26.13 48.4 94.95 25.75
+ ResFields (i=1, 2, 3) 51.8 94.42 26.53 51.3 94.94 26.74 55.3 93.31 27.07 48.8 94.40 26.33 51.6 95.06 25.99
+ ResFields (i=1, . . . , 7) 48.9 94.60 26.72 51.5 95.04 26.95 55.7 93.63 27.40 45.7 94.50 26.23 42.8 95.22 26.28

DNeRF 138.3 92.54 24.40 128.8 92.90 24.34 92.1 91.19 25.04 191.5 92.33 23.50 140.7 93.76 24.72
+ ResFields (i=1) 56.5 94.36 26.47 48.0 95.05 27.03 63.8 92.89 26.35 61.9 94.29 26.09 52.2 95.19 26.41
+ ResFields (i=1, 2, 3) 49.6 94.59 26.68 49.3 95.23 27.14 64.0 93.07 26.58 42.2 94.87 26.75 42.8 95.18 26.22
+ ResFields (i=1, . . . , 7) 52.7 94.81 26.88 47.5 95.32 26.90 61.6 93.44 26.98 49.0 94.99 26.87 52.5 95.47 26.77

Nerfies (Park et al., 2021a) 135.0 93.57 25.35 97.9 93.55 25.21 135.5 93.10 26.20 186.5 93.41 24.73 120.1 94.23 25.26
+ ResFields (i=1) 52.0 94.75 26.99 48.0 95.16 27.14 51.7 93.96 27.79 55.3 94.59 26.36 53.1 95.29 26.66
+ ResFields (i=1, 2, 3) 45.3 94.80 26.88 41.7 95.18 26.70 50.4 93.99 27.82 42.7 94.72 26.49 46.4 95.31 26.52
+ ResFields (i=1, . . . , 7) 42.2 94.90 26.73 51.8 95.31 26.71 23.6 93.84 26.97 43.6 95.06 26.76 49.8 95.41 26.49

HyperNeRF (Park et al., 2021b) 63.5 94.67 26.51 59.9 94.64 26.01 57.8 94.25 27.55 69.7 94.44 25.75 66.7 95.35 26.74
+ ResFields (i=1) 46.9 94.69 26.80 41.0 95.15 27.14 50.4 93.83 27.70 45.6 94.73 26.54 50.7 95.04 25.80
+ ResFields (i=1, 2, 3) 47.1 94.85 26.99 40.7 95.40 27.41 46.5 93.90 27.71 49.2 94.89 26.75 52.0 95.20 26.07
+ ResFields (i=1, . . . , 7) 48.0 95.07 27.27 50.7 95.46 27.50 49.5 94.14 27.90 44.8 95.22 27.03 46.9 95.46 26.66

NDR (Cai et al., 2022) 66.2 94.50 26.48 64.1 94.84 26.64 55.8 94.05 27.40 78.1 93.93 25.34 66.8 95.17 26.53
+ ResFields (i=1) 49.5 94.71 26.89 50.4 95.02 26.90 51.8 93.85 27.64 47.6 94.67 26.48 48.3 95.32 26.53
+ ResFields (i=1, 2, 3) 47.5 94.89 27.13 46.2 95.36 27.36 51.0 93.86 27.62 46.4 94.91 26.85 46.1 95.42 26.69
+ ResFields (i=1, . . . , 7) 49.8 94.97 27.08 44.2 95.31 27.14 50.7 94.20 27.82 49.3 95.03 26.87 55.2 95.37 26.52

Table A.8: Capacity of the low-rank representation. We measure the capacity of the low-rank
parametrization on 351x510-resolution videos (250 frames) with varying levels of difficulty: 1) a
video composed of randomly selected images (250 segments), 2) a video consisting of 6 coherent
segments, and 3) a full video depicting one sequence. We observe that increasing the number of in-
dependent segments has a significant effect on the model performance due to the lack of information
that is shared across the entire signal and could be encoded in the base matrix weights. In spite of
this, our method successfully improves quality over the vanilla Siren even in the most challenging
case (29.18 vs. 19.4 PSNR for rank 40).

Random Video Bikes Video Cat Video
Mean (250 segments) (6 segments) (1 segment)

Rank test PSNR↑ train PSNR↑ test PSNR↑ train PSNR↑ test PSNR↑ train PSNR↑ test PSNR↑ train PSNR↑
Siren 29.86 30.21 19.40 19.65 33.68 34.05 36.49 36.94

+R
es

Fi
el

ds

1 32.99 33.52 23.34 23.78 36.85 37.40 38.77 39.38
2 34.18 34.89 24.26 24.89 38.26 38.98 40.02 40.80
4 35.83 36.82 25.51 26.47 39.95 40.94 42.02 43.06
8 37.31 38.73 26.84 28.39 41.46 42.82 43.62 45.00

10 37.73 39.33 27.26 29.09 41.86 43.34 44.07 45.57
20 38.74 41.08 28.39 31.50 42.82 44.77 45.01 46.96
40 39.43 42.54 29.18 33.64 43.32 45.85 45.78 48.12

A.6 ADDITIONAL INSIGHTS

Capacity of the low-rank representation. Learning signals with many independent parts imposes
additional challenges for both ResFields and coordinate MLPs in general. The coordinate MLP
weights possess the ability to compress a spatio-temporal signal into a compact representation,
mainly because the source signal has a significant amount of repetitive information which is ef-
fectively represented by the optimized network weights. The shared weights of the ResFields have
the same property, as they tend to store information that is common across the entire signal, whereas
the low-rank weights accommodate for topological and dynamic changes for effective learning.

We conduct the following experiment to analyze the learning capacity of our low-rank weights in
the case of dynamic scenes with varying complexity. We create three videos with different levels of
difficulty: 1) A corner case when every frame depicts a novel scene (a video composed from the first
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250 images from the DIV2K dataset Agustsson & Timofte (2017)), 2) the bikes video containing
6 segments, and 3) the cat video containing only 1 segment. All of these three videos are trimmed
and cropped to the same length (250 frames) and resolution (351× 510). Then, we perform the 2D
video approximation (analogous to Sec. 4.1) by learning the mapping from a space-time coordinate
to RGB color (10% of pixels are not seen during the training and are left for evaluation).

Results are reported in Tab. A.8. We observe that increasing the number of independent video
segments indeed has a significant effect on the model performance. This can be attributed to the
lack of information that can be shared across the entire signal and efficiently encoded in the base
matrix weights. However, despite this, our method successfully improves quality over the vanilla
Siren, even in the most challenging case of a random video (19.4 vs 29.18 PSNR for our model with
rank 40). This improvement can be attributed to (a) the increased capacity of the pipeline thanks
to residual modeling and (b) the ability of the neural network to discover small patterns that could
be effectively compressed into shared weights even in the extreme case of a video with completely
random frames. The latter behavior is especially apparent in the simplest case when ResFields uses
only rank 1 (19.4 vs 23.34 PSNR for the random video sequence). Please also note that increasing
the capacity in our case does not lead to significant computational overhead, as we demonstrate in
the main submission and further emphasize in the next section.

Modeling long sequences. ResFields approach faces limitations for long and evolving signals, as
the shared weight matrix runs out of capacity. Here, a straightforward strategy to deal with longer
sequences utilized in the literature (Li et al., 2022) is to split the sequence into independent chunks
and train separate neural fields. We investigate different strategies for addressing the sequences of
arbitrary length.

Table A.9: Modeling long sequences.
#params Chunking PSNR↑

[M] #chunks part test train
Siren 0.2 1 28.18 28.21

+R
es

Fi
el

ds

2.2 1 34.58 34.78
2.6

2
shared 35.65 35.87

4.2 residual 35.96 36.22
4.6 both 37.01 37.31
3.0

4
shared 37.06 37.32

8.1 residual 37.30 37.66
8.9 both 38.89 39.31
3.8

8
shared 38.58 38.90

16.0 residual 38.36 38.84
17.5 both 40.49 41.08
5.3

16
shared 39.55 39.96

31.7 residual 39.47 40.06
34.8 both 41.32 42.13

As our test bed, we consider the 2D video approximation
task (Sec. 4.1) with a longer 512x288-resolution video
(1024 frames). Here, we re-purpose the video captured by
one of our Kinects for the dynamic NeRF reconstruction
task. We divide the video sequence into several chunks of
varying sizes: 512, 256, 128, and 64 frames (2, 4, 8, and
16 sub-sequences respectively). We consider maintaining
for each chunk a set of shared Wi and residual weights
Wi(t) as well as both together (Wi,Wi(t)). For exam-
ple, having 4 chunks and both shared and delta weights
updated would mean having 4 separate tensors and 4 sep-
arate factorized delta weights. The results are summa-
rized in the Tab. A.9.

We observe that as we increase the number of sub-sequences, the results gradually improve for
all three strategies, with the best overall quality achieved by independently updating both weights.
However, this strategy naturally requires the largest amount of parameters. We noted that the strat-
egy of chunking only shared weights is the most parameter-efficient for processing coherent long
sequences. Specifically, maintaining 16 shared weights for the whole sequence achieves better qual-
ity compared to maintaining 4 sets of all considered network parameters (39.55 vs. 38.89 test PSNR),
while using fewer parameters (5.3M vs. 8.9M).
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