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ABSTRACT

When formulating safety as limits of cumulative cost, safe reinforcement learning
(RL) learns policies that maximize rewards subject to these constraints during both
data collection and deployment. While off-policy methods offer high sample ef-
ficiency, their application to safe RL faces substantial challenges from constraint
violations caused by the cost-agnostic exploration and the underestimation bias
in the cost value function. To address these challenges, we propose Constrained
Optimistic eXploration Q-learning (COX-Q), an off-policy primal-dual safe RL
method that integrates cost-bounded exploration and conservative distributional
RL. First, we introduce a novel cost-constrained optimistic exploration strategy
that resolves gradient conflicts between reward and cost in the action space, and
adaptively adjusts the trust region to control constraint violation in exploration.
Second, we adopt truncated quantile critics to mitigate the underestimation bias in
costs. The quantile critics also quantify distributional, risk-sensitive epistemic un-
certainty for guiding exploration. Experiments across velocity-constrained robot
locomotion, safe navigation, and complex autonomous driving tasks demonstrate
that COX-Q achieves high sample efficiency, competitive safety performance dur-
ing evaluation, and controlled data collection cost in exploration. The results high-
light the proposed method as a promising solution for safety-critical RL.

1 INTRODUCTION

Deploying reinforcement learning (RL) agents in many real-world tasks requires safety guarantees.
For example, robots must not harm humans (Luo et al., 2025)), and autonomous vehicles must avoid
collisions (Feng et al., |2023). Such concerns motivate safe RL, which commonly formulates the
problem as a constrained Markov decision process (CMDP) (Altman, 2021). In this setting, the
agent aims to maximize return while keeping the cumulative safety cost below a threshold. Growing
interest in RL deployment has driven increasing attention to safe RL (Brunke et al., [2022).

Collecting data directly from the environment is essential for many RL applications due to the lim-
itations of simulation fidelity or the need for human-in-the-loop interactions. Domains such as au-
tonomous driving in mixed traffic/Chen et al.|(2024) and healthcare (Gottesman et al.,[2019) require
agents to collect data safely in the real world. In this context, sample efficiency is critical for safe
RL, as it directly determines the data collection cost.

Off-policy RL gains higher sample efficiency than on-policy methods by experience replay (Chen
et al.| 2021) and uncertainty-driven optimistic exploration (Ladosz et al.|[2022). However, applying
off-policy methods to safe RL faces significant challenges. First, the underestimation bias in cumu-
lative cost often leads to constraint violations (Wu et al.,[2024)). In primal-dual safe RL (Stooke et al.}
2020), the changing Lagrangian multiplier further destabilizes the safety performance. Second, the
data collection in off-policy safe RL lacks cost constraints. Applying optimistic exploration can
potentially lead agents into risky regions and result in uncontrolled data collection costs. As a result,
existing safe RL methods are predominantly on-policy (Gu et al.,2024b). Off-policy approaches are
found struggling to satisfy cost constraints in both data collection and deployment, as shown in the
OmniSafe benchmark (Ji et al.|[2024). These issues highlight a critical knowledge gap:

How can off-policy safe RL maintain high data efficiency and meanwhile achieve robust constraint
satisfaction in both data collection and deployment, through cost-constrained exploration and reli-
able value learning?



Under review as a conference paper at ICLR 2026

To address this challenge, we propose Constrained Optimistic eXploration Q-learning (COX-Q),
an off-policy primal-dual safe RL algorithm that maintains data-efficient learning and achieves ro-
bust cost constraint satisfaction in data collection and deployment. COX-Q integrates a novel cost-
bounded optimistic exploration strategy with conservative distributional value estimation and un-
certainty quantification. Our method demonstrates competitive performance across diverse safe RL
benchmarks, showcasing its effectiveness for safety-critical applications.

2 RELATED WORK

This section provides a concise overview of related work to contextualize the core contributions of
this study. We first clarify some key terminologies and define the scope of the overview. Safe RL
is a broad concept that involves a wide range of methodologies, such as Control Barrier Functions
(CBFs) (Chen et al.,[2024), reachability methods (Ganai et al., 2023)). We focus on the formulation of
safety as constraints on cumulative costs, and address it within the constrained RL framework (Alt-
man, [2021). Additionally, this overview comprises only model-free safe RL methods. Model-based
methods (e.g., Safe Dreamer (Huang et al., [2023))) are not included due to fundamental differences.
Related methods are grouped into on-policy and off-policy categories.

Most existing safe RL methods are on-policy, as sharing the behaviour and target policies allows
each update to directly enforce constraint satisfaction through adjusted gradients or trust region
techniques. On-policy approaches include first-order methods such as FOCOPS (Zhang et al., [2020)
and CUP (Yang et al) 2022), as well as second-order methods like CPO, PCPO (Achiam et al.
2017), and RCPO (Tessler et al.,[2018)). Other variants include the PID-Lagrangian method (Stooke
et al.||2020), risk-aware scheduling methods such as Saute RL (Sootla et al., 2022a) and PPOSimmer
(Sootla et al.| [2022b)), and the early terminated MDP formulation (Sun et al.||2021). These methods
and their variants have demonstrated strong empirical performance in many safe RL benchmarks.
For a comprehensive review, we refer readers to (Gu et al.| [2024b)).

In contrast, off-policy safe RL is less studied. Most approaches adopt primal-dual methods like
Lagrangian and PID-Lagrangian (Stooke et al., 2020), but suffer from poor safety performance
due to the underestimation bias in cost values, often leading to constraint violations. To mitigate
this, conservative cost estimators have been proposed. For example, Worst-Case SAC (Yang et al.
2021) penalizes underestimated costs to improve constraint satisfaction. CAL (Wu et al.| | 2024) fur-
ther accelerates training using local policy convexification and the augmented Lagrangian method,
achieving strong safety and sample efficiency using a high update-to-data (UTD) ratio. In terms
of exploration, |Gao et al.| (2025) proposed the so-called MICE to address the underestimation of
cost. The key idea is to use a memory-based intrinsic cost around unsafe states so the cost critic
conservatively overestimates risk. Although the original implementation is for on-policy methods,
the idea can be potentially adopted to off-policy approaches. A recent study by McCarthy et al.
(2025) incorporates optimistic actor-critic (OAC) (Ciosek et al.l [2019) into off-policy safe RL. The
resulting ORAC algorithm actively explores regions with potentially higher reward and lower cost.
While ORAC shows robust safety performance in tests, as its appendix says, it does not enforce cost
constraints in data collection. How to realize cost-compliant exploration remains an open challenge.

In summary, a key gap in off-policy safe RL is the lack of a principled cost-constrained exploration
strategy integrated with conservative value learning. Our approach addresses this challenge from
both theoretical and practical aspects.

3  PROBLEM FORMULATION

Consider a CMDP defined by (S, A, 7, ¢, p, po,v,d). S C R™ is the state space. For a state s; € S,
an agent controlled by a policy a ~ m(:|s) takes an action a; in the action space A C R", then the
next state follows p(s;11]s¢, a¢). The agent receives a reward r; € R and pays a non-negative cost
¢y € R*. The distribution of the initial state is py(so). ¥ € (0,1) is the discount factor shared by
the cumulative reward Z] and cost Z7, which are both random variables:

Stvat E ’Y Tt4+k+1, stvat E ’Y Ct4k+1- (D
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The state-action value function (Q-function) is defined as the expectation of return for the policy:
Q7 (st;ar) = Ex[Z] (st,a¢)],  QF (s, a1) = Ex[Z7 (51, at)]. @)
Safe RL considers a constrained optimization problem:
mT?“X]ESNp,\-,aNW(~‘S) Qr(s,a)], st Eoo, amn(ls)]@2(s,a)] < d, 3)

where p, is the state density function of 7, and d is the cost threshold. The primal-dual approach
constructs the following dual form, updating the policy 7 and Lagrangian multiplier X iteratively:

argMin B, an(1s)[Q7F (5,@) = Q7 (s,0) — d)], )
arg r§1>18>\ x (d— Eswp,\-,aNﬂ'('ls)[Q‘g(s’ a)). ®)

It is useful to note that d is the cost limit for both data collection (training) and tests. This require-
ment is naturally satisfied for on-policy methods, but nor for off-policy methods that use different
data collection and target policies. Next, we introduce the proposed COX-Q algorithm in detail.

4 COST-CONSTRAINED OPTIMISTIC EXPLORATION

This section introduces our core novelty, Cost-Constrained Optimistic eXploration (COX). COX fo-
cuses on addressing the first challenge: cost-constrained exploration during data collection, while
preserving the off-policy training pipeline and its sample-efficiency properties. The theoretical re-
sults in this section are based on the assumption of Gaussian action distributions (Gaussian policies),
which are compatible with most mainstream off-policy RL methods.

Off-policy RL can actively explore using Optimistic Actor Critic (OAC) (Ciosek et al., 2019) for
continuous control tasks. In single-objective RL, OAC first estimates an optimistic upper bound of
Q-value QVB (s, a) from an ensemble of critics, then maximizes this objective under a KL divergence
constraint (trust region). If the action distribution of the target policy is A (u7, Y1), the exploration
policy NV (ug, X g) for collecting data is given by the theorem in OAC (Ciosek et al., 2019):

ET [anUB (Sa a)] a=pT

wE = pr + V25 x —
H[VGQUB(Sva)]a:uT S

,  Yp =X, (6)

where 9 is the KL-divergence threshold. For safe RL, we now have:

* A cost limit d divides (s, a) into safe (Q7 (s,a) < d) and unsafe (Q7 (s, a) > d) regions.
* Two objectives of cumulative reward Q7 (s, a) and cost Q7 (s, a) that impact exploration.
Ideally, we hope that the exploration policy fully explores the safe region and minimizes the visits

to the unsafe region (constraint violations). To this end, we must determine (/) what is the effective
exploration direction? and (2) what is the exploration step length?.

4.1 PoLICY-MGDA FOR EXPLORATION GRADIENT CONFLICT RESOLUTION

We first determine the effective exploration direction (gradient). Safe RL involves two objectives,
making exploration a multi-task problem in nature. We denote (omitting superscript m):

gr = VaQHB(Sv a)'a:uT ge = an]gB(Sa a)|a:uT7 Im = VaQrcnean(S’ a)|a:MT7 (7

where superscripts “UB” and “LB” represent estimated optimistic upper and lower bounds, respec-
tively. Note that the dual form in equation [ favours higher reward and lower cost. We also rewrite
the shift of the mean action A and the trust region in equation [6]as follows (g; is the total gradient):

20
A= pg — pr = nXTg:, "=\ 5o (8
9i 2Tt
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Within the safe area (Q7 (s, a) < d), the KKT condition of equation indicates that we can directly
explore along g,.. In the unsafe area, the gradient is computed using the overall objective in equa-
tionE], giving g; = g, — Ag.. However, this naive sum cannot be directly used. We further want to
ensure that both reward and cost are improving:

AQ (s, up) = gTA =n x g1%7g, <0 and AQY%(s,up) = gTA =1 x gTSrg: > 0. (9)

If one of the conditions in equation [J]is violated, we say that exploration gradients conflict, indi-
cating that either reward or cost is damaged in the exploration. If reward dominates the exploration
in unsafe areas, then agents may not explore towards the safe area. If cost dominates, then the ex-
ploration of reward may be hindered. Note that 7 is non-negative. So, the conflict is defined in the
action space, measured by X-metric:

(92 95)sr = 9] 2195, (10)
which is different from multi-task learning using the direct inner product (Zhang & Yang] |[2021).

To resolve exploration gradient conflicts, we extend the Multiple Gradient Descent Algorithm
(MGDA) (Désidéri, 2012)) to the action space, forming the so-called Policy-MGDA. We first define
a space of gradients in which both conditions of equation ] are satisfied:

K:={g: v = (9,95 = 0,vc = (=9e, 9)2r = O}. (1)
For two gradient vectors, such K always exists except for degenerated or colinear cases. Then we
find the optimal u™* that best aligns with the original direction g; = g, — Ag.:

ut = argminflu — g3, . (12)

Lemma 1 We denote the following Gram-scalars and multipliers:

si; = (g3, 95) v; = {g¢, gi) _ TSecUr Tt Srcle _ T8relr 1 Sl (13)
ij iy Y5/ 7 tyYi) XS Mo SrrSee — s%c ) e SrrSee — 530
Then the optimal solution for equation |l 2|is:
gt ifge € K
v
g — —gr ifv, <0and v, <0
ut = Srr (14)
gtficgc lfUrZOandUc>0
s

Gt — PrGr + [heGe ifv, <0andv. >0

The proof is in Appendix [A.I] u* is the aligned, effective exploration direction in unsafe regions.
Note that policy-MGDA operates in the action space during the online data collection stage with
frozen network parameters, which makes it fundamentally different in both role and design from
existing gradient manipulation methods in safe RL (Gu et al.| [2024a}, |Chow et al., |2021}; [Liu et al.,
2022).

4.2 ADAPTIVE STEP LENGTH FOR EXPLORATION COST CONTROL

After determining the exploration gradient, we adjust the step length adaptively to control the cost
of explorative data collection. To this end, we consider both the microscopic single-step exploration
and the macroscopic training progress.

For each exploration step, the original OAC does not involve the cost constraint in equation [3] To
address this issue, we explicitly bound the cost expectation by adjusting the step length . Given
exploration direction g* (u* in unsafe area or g, in safe area), the threshold of non-negative violation
along this direction is the hinge:

o(n) = [AQE — (d — Q)N+ = [1{gm. 9") 2y — (d — QE")]+. (15)
Denote 7k as the full step length, we can formulate the following bi-level optimization problem:
argmaxn® st 0<n" <k, ¢(n")= min ¢(&). (16)
n* 0<&<mkL

It means that, once the full exploration step length makes the mean cost exceed d, then we choose
the maximum 7* in the trust region to ensure the cost constraint violation ¢(n) is O or minimized.
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Lemma 2 We denote (g,, is define in equation[7):

5= (gm:g")sr, 1T =d— QL (17
Then the optimal solution for equation[I6]is:
NKL ifs<0
n =<0 ifs>0andr < 0;0rs=0 (18)

min(nir,r/s) ifs>0andr >0

The proof is given in Appendix[A.2] * thus minimizes the cost constraint violation (not minimizing
the cost itself) for each exploration step.

Nevertheless, equation [I§]is not always valid. When g* tends to 0 around the optimum, s — 0. So,
the oscillating sign of g* makes n* jump between =7k, manifesting as a pure extra action noise.
To address this issue, we further adaptively adjust § (thus the maximum step length 7y ) based on
the near-on-policy cost in a recent replay buffer Becent, Similar to the Lagrangian multiplier:

arg min 0 X (d — E,epB,...Ci)- (19)

0<6<4

As a result, the exploration cost is governed by d. The adaptive step length tends to fully utilize
the budget in safe regions without violation, while remaining conservative in unsafe regions. By
using the two lemmas above, we can get the adjusted exploration direction v* and the step length
n*. Inserting them back into the OAC theorem in equation|[f]gives the final cost-constraint compliant
exploration policy.

So far, we have explained the “COX-" part, including the effective exploration direction and the
adaptive step length under cost constraints. It is useful to note that the theories in this section are
based on accurate value estimation, particularly for costs. If the critics cannot provide reliable cost
estimates due to the lack of data or function approximation errors, especially in the early stage of
training, the data-collection cost cannot be effectively controlled. Plausible improvements include
incorporating classical methods such as reachability analysis (Ganai et al.l [2023)), or combining
COX with model-based RL, such as SafetyDreamer (Huang et al.| 2023).

Next, we introduce the “-Q” part about distributional value learning and the uncertainty quantifica-
tion method for estimating optimistic bounds.

5 TQC-BASED VALUE LEARNING AND UNCERTAINTY QUANTIFICATION

This section introduces how to mitigate the underestimation bias in cost estimation by using TQC
and conservative value learning. The objective function in equation [ indicates that the Bellman
update favours overestimation bias of reward and underestimation bias of cost (Wu et al., [2024)). In
this paper, we adopt Truncated Quantile Critics (TQC) (Kuznetsov et al.,[2020) to mitigate the bias
and promote exploration by distribution-level epistemic uncertainty.

TQC follows Quantile Regression RL (Dabney et al.;,2018)). Each critic learns the return distribution
by a certain number of evenly distributed quantiles. The key difference is that TQC mixes and sorts
quantiles from all critics, and then truncates the top k atoms to mitigate the overestimation bias.
Specific to safe RL, we truncate the fop k, atoms for reward and the bottom k. atoms for cost critics
(note that the signs for reward and cost are different). The mixed quantiles provide low-variance
gradients to stabilize the learning, and the number of truncated atoms controls biases with high
flexibility.

Another advantage of TQC is that we can quantify distributional epistemic uncertainty. Assume we

have N cost critics and N reward critics. Each critic predicts M quantiles. For instance, qﬁ,?,)r(s, a)
is the approximated quantile function value at the corresponding level 7,,, = (m — 0.5)/M for re-
ward. Following a recent paper, ORAC (McCarthy et al., [2025)), optimistic bounds are estimated by
computing per-quantile bounds across the critic ensemble and aggregating them using Conditional
Value at Risk (CVaR) (Rockafellar et al., 2000).

M
A 1
dm,r(& a) = ,am,r(sa a) + Bra-m,r(sa a) QITJB(Sa CL) = M § qu,T(57 CI,). (20)
m=1



Under review as a conference paper at ICLR 2026

. 1 —
Gm,c(5,0) = fim c(5,0) = Bemc(5,0)  Qe(5,0) = = 3 dim.c(5, ). @n
m=1

Here fi,,,/c and Gy, -/ are mean and standard variance of the m-th quantile across N critics, re-
spectively. For the cost lower bound, we use the « head quantiles only (CVaR is a/M). The two
hyperparameters, 3, and 3., adjust the level of optimism for both objectives.

Combining COX and TQC-based conservative learning yields the full COX-Q algorithm. It ad-
dresses both unconstrained exploration and underestimated cost in an integrated framework that
maintains the inherent sample efficiency of off-policy RL. The implementation is based on the paper
of CAL 2024). We keep the augmented Lagrangian method in CAL to accelerate the
training. The pseudo-code of COX-Q, the key differences from other baselines, and more details are
provided in Appendix

6 EXPERIMENTS

This section compares COX-Q to off-policy and on-policy baselines on three representative safe
RL benchmarks: (1) Velocity-constrained locomotion is a dense-reward task with immediate cost
signals. The robots move alone without interaction with other objects or agents. (2) Safe navigation
poses a hard exploration challenge with sparse rewards and costs. The robots need to avoid touching
static or fixed-route moving hazard objects. This is a typical open-loop control task. (3) SMARTS
autonomous driving represents a strict safety task with a zero-cost threshold. Further, the vehicle
needs to interact with other road users in a closed-loop manner, making it substantially challenging.
In all cases, costs are binary: 0 for safe, and a fixed positive value for unsafe states.

6.1 VELOCITY-CONSTRAINED ROBOT LOCOMOTION

The first experiment is conducted on SafetyVelocity-vl1, a velocity-constrained robot locomotion
benchmark based on MuJoCo (Todorov et all, 2012). The objective is to maximize reward while
keeping the velocity below a threshold; exceeding it incurs a cost of 1, otherwise 0. The episode
cost limit (for 1000 steps) is set to 25. We evaluate four robot configurations, hopper, walker2d, ant,
and humanoid, which share the same reward structure. For faster training, experiments are run in
Brax (Freeman et al | [2021)). Detailed environment settings are provided in Appendix [C.1}

Baselines Selected baselines include representative on-policy and recent off-policy methods. For
on-policy baselines, we select one from each of the categories introduced in Section2} They are CUP

Yang et all,[2022), RCPO (Tessler et al, 2018), PPOSaute (Sootla et al., [2022a), PPOSimmerPID
Sootla et al.|[2022b)), and CPPOPID (Stooke et al.,[2020).

For off-policy baselines, we choose (1) SACUCB-PID (Stooke et al.| [2020), which augments the
original SACPID by conservative cost learning; (2) CAL (Wu et al., 2024) uses a conservative esti-
mate of cost and the augmented Lagrangian method (Luenberger et al., [1984). We choose UTD=1
for CAL so that the impact of high UTD ratios is excluded. Using UTD=1 for all baselines makes
the role of conservative (or distributional) cost learning and the proposed exploration mechanism
comparable across methods. Further, to clarify the contribution of different components in COX,
we include three ablation baselines: (3) TQC uses TQC-based conservative value learning alone,
without optimistic exploration. (4) TQC+OAC uses the direct gradient summation for exploration
(5) TOQC+OAC (with step length auto-tuning) further adds the adaptive length tuning in equation
but does not use gradient conflict resolution. Details about COX-Q and baselines are provided in

Appendix

Results The results are presented in Figure [, Overall, COX-Q demonstrates superior sample
efficiency, achieves high cumulative returns, and has nearly-zero test costs after convergence, mean-
while keeping data collection costs below the predefined budget. More specifically: (1) COX-Q ex-
hibits a clear advantage in data efficiency over on-policy baselines, particularly for high-dimensional

'A recent paper ORAC McCarthy et al.| (2025) combines IQN (Dabney et al., 2018) with OAC, which is
similar to the TQC+OAC baseline here. However, ORAC’s code is not open yet, and only its hyperparameters
for safe navigation are provided. Thus, we use the original IQN-based ORAC for safe navigation tasks only.
For SafetyVelocity-vl and SMARTS, we adopt a TQC-based variant instead.
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Figure 1: Benchmark of COX-Q against off-policy (top) and on-policy (bottom) baselines. Train-
ingEpCost is for data collection, which is expected to stay near or below the threshold throughout
the training. For TestEpCost, the performance after convergence is important. Note that training and
test costs are identical for on-policy methods.

action spaces such as ant and humanoid. Its ability to decouple the exploration and target poli-
cies enables seeking a deployment cost significantly lower than the constraint, a property that
on-policy methods cannot realize. (2) By comparing TQC-based methods against SACUCB-PID
and CAL, we observe that distributional RL has higher sample efficiency than point-value based
baselines, particularly for bipedal robots. (3) Without optimistic exploration, TQC has lower data-
collection costs but higher testing costs than other TQC-based baselines. This characterizes the
exploration-exploitation trade-off with respect to costs. (4) The step length auto-tuning effectively
regulates the data-collection cost, especially in the middle and late training phases. This is evi-
denced by the smooth and horizontal (near the threshold) training cost profiles of TQC+OAC (with
step length auto-tuning) and COX-Q in the third row of Figure[I} In contrast, the naive combina-
tion of TQC+OAC suffers from elevated training costs in tasks with low-dimensional action spaces
(hopper, walker2d) due to unregulated optimistic exploration. (5) The incorporation of gradient
conflict resolution and step-wise cost-constrained exploration in COX-Q is critical for maintaining
exploration cost constraint satisfaction in the early stage of training. Without these components,
TQC+OAC and TQC+OAC (with step length auto-tuning) exhibit training cost constraint violations
in the early learning phase, whereas COX-Q consistently adheres to this constraint across the entire
training process.

The SafetyVelocity-v1 benchmark highlights the key strengths of COX-Q, including maintaining
the high data efficiency of off-policy RL, improved deployment-time safety, and controlled training
costs of explorative data collection. We next assess its performance in exploration-challenging and
more complex environments.



Under review as a conference paper at ICLR 2026

6.2 SAFE NAVIGATION

The second experiment evaluates COX-Q on safe navigation tasks from Safety-Gymnasium (Ji et al.,
2023)), which are characterized by sparse reward and cost signal. In these tasks, a mobile robot needs
to reach a goal, such as navigating to a target location, pressing a specific button, or pushing an ob-
ject, while avoiding static and dynamic hazards, including fragile obstacles. The observation space
consists of Lidar-based point cloud data. We select four high-difficulty tasks: SafetyPointButton2,
SafetyPointGoal2, SafetyCarButton2, and SafetyPointPushl, where the suffix “2” denotes the high-
est difficulty level. Detailed task descriptions are provided in Appendix [C.2}

Different from SafetyVelocity-v1, due to the sparse rewards and costs in SafeNavigation, truncating
too many atoms for cost-critics can suppress the learning of rewards. Therefore, we preserve the
mixed quantiles in TQC but do not apply truncation. Instead, we use the estimated CVaR-based
upper bound of cost to update the actor and Lagrangian multiplier, same as in Worst-Case SAC
(Yang et al., [2021)):

) ] NoMo
QP (s,a) = NOM—at1) Z:l z_: a(s,a). (22)

Baselines The experiments are conducted using OmniSafe (Ji et al., 2024)), a safe RL benchmark
platform. The off-policy baselines include the provided SACPID (Stooke et al.,[2020), CAL (UTD
= 1) (Wu et al.| 2024), and our implementation of the original IQN-based ORAC (McCarthy et al.,
20235) (added with step length auto-tuning), which is a strong safe RL baseline in safe navigation.
On-policy methods need significantly more interactions. Their performances are presented in Ap-
pendix [E] All hyperparameter settings are provided in Appendix
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Figure 2: Benchmark of COX-Q against off-policy baselines on safe navigation tasks (episode cost
limit is 10). The bottom figure is the cost value estimation bias, computed from cost critic outputs
and the recorded trajectories in the evaluation phase. Below 0 means underestimation.

Results The performance and cost estimation biases are presented in Figure[2] with corresponding
numerical results provided in Appendix E In general, conservative distributional safe RL methods
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(ORAC and COX-Q) have both higher returns and better cost constraint satisfaction than point-value
based safe RL (CAL with UTD=1 and SACPID). However, although using different exploration
strategies, COX-Q and ORAC exhibit close performance. This highlights two critical factors of
the task. (1) Gradient conflict in the action space is weak in SafeNavigation, so the exploration
gradients of ORAC and COX-Q become identical in most cases. In Appendix [E] the analysis shows
that the ratio of triggered gradient conflicts in the first 200K steps is below 10%, and even below
2% for SafetyPointPushl. Therefore, the difference in exploration policy is minor between ORAC
and COX-Q. (2) The learning of the cumulative cost in SafeNavigation is highly biased due to the
sparsity of cost signals. As shown at the bottom of Figure 2] the cost is underestimated in the first
three tasks during the early training stage. Correspondingly, the violation of cost constraints during
training and testing is observed in the same stage. The result indicates that, for constrained RL with
sparse costs, the underestimation bias in the cumulative cost is the major bottleneck, rather than the
exploration mechanism. For off-policy approaches, the cost learning can be made more robust by,
e.g., using multi-step returns / TD learning, prioritized experience replay (Schaul et al. 2015), or
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). These potential improvements
need more investigation.

6.3 SAFE AUTONOMOUS DRIVING IN SMARTS

The objects in the previous safe navigation tasks follow certain motion patterns or stay static. In the
third experiment, we evaluate COX-Q in challenging autonomous driving tasks in which surrounding
vehicles have closed-loop interactions with our RL agent.

The experiments are conducted on the SMARTS autonomous driving simulation platform (Zhou
et al.,[2020). We select three scenarios with intensive vehicle interactions. (1) Overtaking on a two-
lane highway. (2) Intersection without traffic lights. (3) T-junction without traffic lights. In the last
two scenarios, the vehicle needs to execute an unprotected left turn and a lane change sequentially.
Both the policy and critic networks employ a large WayFormer-like structure (Nayakanti et al.,
2023). The reward includes a small distance progress towards the goal and a big bonus if the vehicle
reaches the goal. The cost is -10 if the vehicle collides, drives off-road, or violates traffic rules
severely (drives into the opposite direction). Also, if a collision or off-road happens, the episode is
terminated immediately. If the vehicle fails to reach the goal in one minute, the episode terminates
(marked as a timeout). More details about this task are provided in Appendix [C.3] including a
discussion about our reward and cost design that might be useful for some interested readers.

Autonomous driving is a typical strict safety task. We set a nearly-zero cost limit (0.01) like in
SafetyDreamer’s MetaDrive task (Huang et al., 2023)). The vehicle stays in “unsafe” regions (the
cumulative cost is above 0.01) during data collection and aims to minimize the test cost as much
as possible. Unlike safe navigation, this setting in SMARTS intentionally increases the frequency
of exploration gradient conflict and the proportion of constrained exploration. Larger networks also
accelerate return approximation. We do not add the step length auto-tuning in equation [I9|to avoid
it converging to zero.

Baselines Due to the long training time, we selected 4 baselines and conducted one experiment
using a fixed random seed only. CPPOPID was selected as the only on-policy baseline. For off-
policy baselines, we selected SACLag, CAL, and TQC-based ORAC (which is essentially TQC+OAC
as explained in Sec. [6.I). After 512K steps of training, we run 2000 episodes with stochastic initial
states to obtain the test performance.

Results The test performance is presented in Table|[l| and the number of unsafe events (collisions
and off-road) during data collection is listed in Tablflzlb Overall, COX-Q achieves the best safety
performance in testing without incurring excessive exploration cost or exhibiting over-conservative
driving behaviours. Moreover, compared to ORAC, COX-Q significantly reduces both unsafe events
during data collection and timeouts during testing. This shows that resolving conflicting gradients
in a direction that simultaneously reduces cost and improves reward can effectively maximize return
while keeping exploration cost under control.

Another notable point is that the safety performance of all methods in the overtaking is relatively
worse than in the other scenarios. We found the reason is that SMARTS uses an instantaneous lane
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change model from SUMO (Krajzewicz et al.l |2012), making collision avoidance inherently hard
due to the lack of warning (e.g., turn signals).

Table 1: Test safety performance on SMARTS (512K steps, 2000 stochastic runs)

Scenario Metric CPPOPID SACLag CAL ORAC COX-Q (ours)

Collision 331 194 186 97 99

. Off-road 96 2 7 3 4
Overtaking L

Rule violation 3 0 0 0 0

Timeout 0 2 1 887 0

Collision 183 33 23 18 12

. Off-road 22 2 1 1 2
Intersection . .

Rule violation 9 18 0 0 0

Timeout 0 0 1 12 0

Collision 195 55 36 28 21

. . Off-road 91 2 0 5 0
T-junction . .

Rule violation 3 24 0 0 0

Timeout 0 0 17 86 5

Table 2: Number of unsafe events in data collection (512K steps, excluding the initial 5120 steps)
Scenario CPPOPID SACLag CAL ORAC COX-Q (ours)

Overtaking 3697 1570 1544 3215 1665
Intersection 4969 1755 739 3589 1123
T-junction 5513 1965 1675 3837 1794

7 CONCLUSIONS

This paper proposes an off-policy primal-dual safe RL method, constrained optimistic exploration
Q-learning, involving a novel cost-constrained optimistic exploration strategy and TQC-based con-
servative value learning. The proposed COX-Q is evaluated in three representative safe RL bench-
marks. The results demonstrate that COX-Q has significantly higher data efficiency than on-policy
baselines in all experiments. When the exploration gradient conflict between reward and cost is sig-
nificant, and the critic networks are large enough to approximate the cost return (in SafeVelocity-v1
and SMARTS), COX-Q shows superior safe performance in tests, meanwhile effectively controlling
exploration cost in data collection. When the exploration gradient conflict is weak or the bias in cost
estimation is high due to sparse cost signal (in safe navigation), COX-Q is on par with the state-
of-the-art method. In addition, the autonomous driving experiment showcases that the proposed
method can be used in complex environments with large neural networks. In conclusion, COX-Q is
a promising solution to RL applications with data efficiency and safety concerns.

Limitations The major limitation of this study is the reliability of quantified epistemic uncertainty.
TQC mixes quantiles from all critics and learns the entire return distribution. Therefore, the diversity
of critics for nearly Out-Of-Distribution samples might be suppressed due to highly correlated gra-
dients for all critics. Implementing improved methods such as diverse ensemble projection (Zanger
et al.} |2023)) or random priors (Osband et al., [2018)) to enhance the quality of epistemic uncertainty
quantification is a potential future research direction. Another future research direction is how to
effectively implement COX in sparse-cost tasks such as SafeNavigation. A key step is to use, e.g.,
HER (Andrychowicz et al.| 2017) or prioritized experience replay (Schaul et al.| |2015)) to robustify
the cost-critic learning.
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A PROOFS OF THE TWO LEMMAS

A.1 LEMMA-1

The solution of equation [IT]and equation [12]is given as follows. For simplicity, we denote g1 = g,
92 = —ge, and X = Y1 here.

Let S = span{gi, g2}. Decompose g; = gs + g1 with gs € S and (g,,91)s = (91,92)s =
0. Constraints depend only on gg. Therefore, it suffices to solve in S and then add back g .
This becomes a 2D problem. We next derive the KKT conditions. With the inequalities ¢1 (u) =

—(g1,u)s < 0and c2(u) = —(g2,u)s < 0, we add two non-negative multipliers to form the
Lagrangian:
1
Llus pr, p2) = 5 llu — 9el% + 1 (g1, w)x) + p2(— (g2, w)x). (A1)
Then the stationarity is:
Vol =%(u—gi) — mBg1 — peXge =0 = w=gi + p1g1 + pago (A2)
The primal feasibility gives:
(g1,u)2 =0, (g2, u)s > 0. (A3)
The complementary slackness gives
pi{g1,u)ys =0,  p2(ge,u)s = 0. (A4)
So, we define the so-called X-Gram scalars and target correlations as:
sij = (9, 9j)ss Vi = (i, Gt)ss (A.5)
and plug stationarity into the constraints:
s -
S21 S22 |M2 U2

Because the Gram matrix is apparently SPD if g; and g, are not co-linear, the solution is unique
whenever both constraints are active. For the degenerated co-linear cases, we assume that g; = ago.
If & > 0, then K is a half-space, then the solution is a direct projection:

* . v
g* = u = g; — min(0, —l)gl. (A7)
S11
If o < 0, constraints reduce to (g1, u}s, = 0 (hyper-plane):
. v
g =u=g——a, (A8)
511

and v = 0 18 trivial.

For non-degenerate cases, we apply the optimal active set A = {c;(u),co(u)}. There are four
possibilities:
(1) No constraint active: Then p; = pe =0, g* = gy.
(2) Only ¢ (u) active: Set g = 0. From (g1, u)x, = 0, we get:
U1 U1

=L o =g -y (A9)
S11 S11

(3) Only co(u) active: Similar to the previous case, we have:

« v
ut =g — égz (A.10)

(4) Both boundaries active: Then we solve equation[A.6] That gives:

—S20V1 + 51202 $1201 — S11V2 2
M1 qot e ot 0 de 511822 — 579 = ( )
u® = gy — 1191 — p2ga. (A.12)

Replace g1 and g5 by g, and —g.., respectively, then the proof of Lemma 1 is done.
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A.2 LEMMA-2

The solution of equation @] is derived based on two cases;

Case A: s < 0, which means moving along the »* does not increase the expected cost. The hinge
¢(n) is non-increasing w.r.t. 7. Therefore, minimal violation is achieved by taking the largest trust
region:

n* = kL (A.13)

Case B: s > 0, which means moving along the ©* increase the expected cost. Then we check the
feasibility of a zero-violation set on the ray {n : ns < r}. If » < 0, then the zero-violation set
is empty on [0, k1| and the hinge increases with 7). Therefore, the minimizer is trivial n* = 0. If
r > 0, simply take the boundary as the zero-violation set:

* . r
n* = min(ngL, ;) (A.14)
Case C: s = 0, which means the hinge becomes a constant. In this case. If r > 0, every n € [0, nkL]

is optimal. If » < 0, violation is unavoidable. We set n* = 0 by rule for conservativeness.

Combining the three cases above gives the complete proof of Lemma 2.

B IMPLEMENTATION DETAILS OF COX-Q

Algorithm 1 COX-Q based on SAC, with optional Augmented Lagrangian Method(ALM)

Input and initialization: policy network 7y (s), N reward quantile critic networks {qy, , }7* ;,
N cost quantile critic networks {gy, . }7¥_;, both with default 25 quantile heads.
replay buffer D, truncation parameters k,. and k., exploration optimism parameters /3, and S,
cost limit d, maximum trust region size 7k , Lagrangian multiplier A,
risk-level CVaR o
repeat
Observe State s,
if use COX then
Compute the target policy N (pur, X7) = 7(s¢)
Compute QUB, QLB Qme from critics using equation 20{and equation
Compute their gradients g,., g., gy W.I.t pir
if Qf:“"'a“ in safe area then
compute g* = gt = gr — Age
else
Compute aligned exploration gradient g* using equation
end if
Compute adjusted step length n* using equation [I8]
Compute action shift A using OAC formula from n* and g*
select action a; = clip(fte + €, Qlower, Gupper), Where € ~ N (A, %)
else
select action a; = clip(pg(s¢) + €, Giower, Gupper), Where € ~ N(0, ;)
end if
Execute a;, observe next state sy, reward 7, and cost c;
Store the transition (s, at, (14, ¢t), S¢4+1) in D
if critic/actor update then
Execute TQC or Worst-Case SAC updates, with optional ALM (used by default)
end if
if k. update then
Sample a recent N, transitions from D, compute the average cost
Update 7k using equation[T9]
end if
until Convergence
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In the pseudo-code of Algorithm [I] the updates of critics are the same as the original TQC

(Kuznetsov et al} 2020) or WCSAC (Yang et al.} 2021)). The actor update involves the ALM pro-

posed by [Luenberger et al.| (1984) and introduced in safe RL by (2024). ALM alters the
optimization objective of the actor by the following equations:

N N A A N
maXxsz }Esr\/pﬂ,a/vﬂ'(ﬁs) [Qr;lean - A(QEB - d) - g(Qlch - d)2]7 it —>d- ]E(QUCB)
A c
maXg IE‘sr\ap7r ,arvr(+]s) (leean)’ otherwise
(B.1)
The added quadratic term helps conform to cost constraints and move the optimization direction

towards the cost limit, which can accelerate the learning process. In our studies, we use ¢ = 10 for
all tasks. This ALM is used for CAL, ORAC, and COX-Q in all experiments

In addition, off-policy safe RL needs to set the cap on Q-values d in an “on-policy” approach, instead
of directly using the test episode costs as in on-policy methods. This is explained in the paper of

CVPO 2022)), using the following formula:

1-— fyT
T(1—9)
in which 7" is the episode length. In all off-policy methods used in this study, we use this formula to
convert the episode cost limit to the limit on Q)7 .

d= depisode (B.2)

C DESCRIPTION OF THE THREE SAFE RL ENVIRONMENTS

C.1 SAFETYVELOCITY-VI

walker2d ant humanoid

Figure C.1: The four selected robots in Safety Velocity-v1 benchmark.

For the selected 4 robots, their configurations are shown in Figure[C.1] They share the same reward
structure as follows:
Tt = Wh X Thealth + Wy X Tyelocity — We X Tewd (C.1)

in which 7peqn i a binary reward. If the robot keeps upright, get +1 reward; otherwise, get 0 and
terminate the episode. 7velocity 1S @ reward equal to the moving velocity along a given direction.
Tyl 18 the control cost penalty, measuring how much torques are applied to the joints. wy, w, and
w, are three positive weights. Cost is binary. For hopper and walker2d, if the velocity along the
+x axis exceeds the threshold, the cost is +1; otherwise, 0. For ant and humanoid, if the velocity
along any direction exceeds the threshold, the cost is +1; otherwise, 0. The episodic cost limit
is set to 25, as recommended in the original paper (Zhang et al, [2020). The weight coefficients,
velocity thresholds, and the dimensionality of action spaces for different robots are listed in Table
[C.1] All implementations are based on the Brax (Freeman et al., 2021), using the same parameters
(e.g. velocity thresholds) as in Safety-Gymnasium (Ji et al., 2023). Brax supports fully parallelized
simulations on GPU, so it can save a lot of time for training. The default “generalized” backend is
used for simulation.

C.2 SAFE NAVIGATION IN SAFETY-GYMNASIUM

We select four tasks in the safe navigation benchmark: SafetyPointButton2, SafetyPointGoal2, Safe-
tyCarButton2, and SafetyPointPushl. The name is composed of two parts. “-Point-" or “-Car-" in
the middle indicates what is the type of robot used, as shown on the top of Figure[C.2} Point is a sim-
ple robot that has two actuators, one for rotation and the other for forward/backward movement. Car
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Table C.1: Weight coefficients and velocity threshold for Safety Velocity-v1
ROBOT  (wp,w,,w.) velocity threshold Action dimension

hopper (1, 1,0.001) 0.7402 3
walker2d (1,1, 0.001) 2.3415 6
ant (1, 1,0.5) 2.6222 8
humanoid (5, 1.25,0.1) 1.4119 17

is a more complex robot that can move in three dimensions. It is equipped with two independently
driven parallel wheels and a freely rotating rear wheel. Both steering and forward/backward mo-
tion require coordinated control of the two drive wheels, imposing more complex control dynamics.
Both robots are equipped with 2D Lidars to perceive the environment. Their action dimensionalities
are both 2.

The last part of the name indicates the type of task and its difficulty level. The three tasks used are
shown at the bottom of Figure[C.2]

* Goal2: The robot needs to reach a goal position (green pillar) while avoiding touching
hazard pitfalls (blue circles) or move fragile vases (while cubes).

* Button2: The robot needs to reach the correct button (orange spheres) among 4 buttons,
while avoiding touching blue-circle pitfalls or being hit by the moving gremlins (purple
cubes moving in a circle).

* Pushli: The robot needs to push the yellow object to the green goal position while avoiding
blue pitfalls and the tall pillar.

Point Car

o

<, :d D % ‘e . )
%o & © e r  $®e© &
® g - v ) ° 5 8

% feeh >
® e ©® ©® -
Goal-2 Button-2 Push-1

Figure C.2: The robots and the tasks in the safe navigation benchmark.

The reward and cost designs are complicated, depending on each specific task. We refer
the readers to the public webpage of the Safety-Gymnasium for more details:
|[gymnasium.readthedocs.10/en/latest/environments/safe_navigation.html}

Additionally, to accelerate the learning process, the simulation time step is modified to 2.5 times the
original value, according to the paper of CVPO (Liu et al.,[2022) and CAL (Wu et al.,|2024). While
ORAC (McCarthy et al., [2025) does not release its code, the final reward performance implies that
they probably used the same simulation settings. We therefore also keep the modification.

C.3 SMARTS AUTONOMOUS DRIVING

SMARTS is a scalable RL training platform for autonomous driving (Zhou et al., [2020)), providing
closed-loop simulation in diverse traffic scenarios. In this paper, we control an ego vehicle (red) to
drive through the scenario. The ego vehicle has two actions: accelerations (between £6.5 ms™2)
and steering rate (between 4-1.5rad s~ for intersections and 4-0.7 rad s~* for highways). Then the
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vehicle’s motion is controlled by a bicycle model (Gillespiel |2021). In the simulation, the vehicle
can only change its actions every 0.25s to avoid oscillating trajectories. Note that our settings are
more realistic than the original SMARTS. In their default action spaces, the ego vehicle has infinite
acceleration and can completely stop from the highest speed in 0.1s.

The three scenarios are illustrated in Figure For the intersection and the T-junction, the ego
vehicle needs to first pass an unsignalized area and execute an unprotected left turn, then change
to the right lane to reach the goal. For highway over-taking, the leading vehicle is slow, and other
vehicles can change their lanes arbitrarily. The ego vehicle needs to overtake the slow vehicle and
reach the goal on the same lane. All surrounding traffic vehicles are controlled by a set of predefined
driving models with a distribution of inner parameters, providing diverse interactions.

Intersection T-junction

Highway Overtaking

Figure C.3: The three autonomous driving scenarios in SMARTS benchmarks. Arrows are the
entering lane of the ego vehicle, and triangles are goal positions. Highlighted green lanes are the
“on-route” areas for the ego vehicle. White boxes are surrounding traffic vehicles.

The reward and cost design follows the minimalist principle:
R = rgistance + Tg0al - (C.2)

The first term is the travelled distance (in meters) within one decision step (0.25 s). The second term
is +30 if reaching the goal. The cost is 0 when staying safe. When collisions, off-road, driving on
the wrong side of the road, or off-route happen, the cost is -10. The first three situations also trigger
the termination of the episode.

We hereby give a short discussion about our reward and cost design that might be useful for inter-
ested readers. We actually tried many other different designs, but this simplest version works the
best. The observed issues of other settings are summarized below:

* Do not terminate the episode when an unsafe event happens: This is similar to the method
used in Safety Dreamer’s MetaDrive task (Huang et al.,[2023)). However, in our intersection
and T-junction scenarios, due to the complexity of the road layout, the replay buffer is filled
with meaningless, unsafe cases in the early stage of training. For example, when the ego
vehicle drives off-road, it may stay there for a long time until the episode ends. This
severely hinders policy learning.

* Assign different costs to different unsafe events: Many RL studies on autonomous driving
tasks (e.g., MetaDrive (Li et al., [2022)) give a higher penalty for severe events like col-
lisions, and a smaller penalty for traffic rule violations. In our trials, we found that the
agent tends to do “reward-hacking” in such settings. For example, the vehicle will choose
to drive off-road to get a lower penalty instead of learning how to avoid collisions. This
reward-hacking is particularly severe when the vehicle needs to do a series of actions to
solve the final potential collision, as is our case (restricting the acceleration and steering
rate).
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* Use risk field or Surrogate Safety Measures (SSMs) as costs: Using SSMs (Wang et al.,
2021)), such as Time-to-Collision (TTC) or risk field, to shape the reward is also a widely-
used technique in RL-based autonomous driving. Our trials found that using TTC and
the capsule risk field can indeed accelerate learning in the early stage. However, the final
performance is worse than our simplest setting. One of the possible reasons could be that
these SSMs add inductive biases to safety. They focus on one or several specific types
of unsafe (potential collision) cases. This may restrict the exploration power of RL. The
simple end-oriented costs, in contrast, can encourage exploring diverse and better solutions.

Both policy and critic networks use the WayFormer (Nayakanti et al., 2023) structure. For reward
and cost critics, they share the torso and use different MLP heads to give multiple predictions of
returns. Their network structures are briefly illustrated in Figure [C.4}
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Figure C.4: The policy and critic network structure for SMARTS.

D HYPERPARAMETER SETTINGS

For on-policy baselines, we use the same 1M step hyperparameter settings recommended by the
OmniSafe benchmark platform (Ji et al. 2024)) for all experiments. Details are provided on their
public webpage |https://github.com/PKU-Alignment/omnisafe]

For COX-Q, the implementation is based on SAC (Haarnoja et al., 2018)). The shared parameters
are listed in Table [D.T] and the environment-specific parameters are listed in Table [D.2] For CAL
(Wu et al., [2024), we use the same hyperparameters in the original paper, except for the randomized
ensemble and the UTD ratio (1 in our experiments). The code of ORAC (McCarthy et al., [2025)
is not available yet. For safe navigation tasks, we use the recommended hyperparameters in the
ORAC paper in our own implementation. While for SafetyVelocity-vl and SMARTS, we did not
find a proper set of hyperparameters for the original IQN-based ORAC. The performance is quite
unstable. Therefore, we choose to modify it based on our TQC-based implementation. We explicitly
mark that the used ORAC models are based on TQC or IQN throughout the experimental section.
For all off-policy methods, we use the same discount factor and episode length listed in Table
for consistency.

To accelerate the training for SafetyVelocity-vl and SMARTS, we use a high number of parallel
environments (128) and a lower offline update frequency (64). These choices are based on the
recommendation of Brax (Freeman et al., [2021)).

E SUPPLEMENTARY RESULTS

The performance of on-policy baselines on safe navigation tasks is listed in Table [E.T| and the
learning curves are presented in Figure[E.T] Although they adhere to the cost constraints, the rewards
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Table D.1: Shared off-policy parameters

Parameters Value)
Policy learning rate 3e-4
Critic learning rate 3e-4
Entropy learning rate 3e-4
Entropy auto-tuning True
Batch size 256
Tau 0.005
Convexification ¢ 10
Number of quantiles M 25
Number of cost critics 5
Number of reward critics 5

Table D.2: Environment-specific off-policy parameters

Parameters SafeVelocity-vl  SafeNavigation SMARTS
Episode length 1000 400 240
discount factor ~y 0.99 0.975 0.975
Episode cost limit 25 10 0.01
Number of parallel envs 128 1 128
Gradient steps 64 1 64
Policy update steps 64 1 64
Lagrangian initial value 1 0 1
Lagrangian learning rate 3e-4 Se-4 3e-4
Step length auto-tuning learning rate le-4 le-4 NA
Initial steps 16380 5000 5120
Buffer size 1024000 1000000 512000
Policy network 256 x 2 256 x 2 complex
Critic network 256 x 5 256 x 2 complex
Layer Normalization False False NA
Truncation (k;, k) (5,5 0,0) (1,0
Optimism (., Bc) (3,3) 4.1 (3.3)
Maximum step length nkr 3 4 3
Cost CVaR « 25 13 13
Target update frequence 64 2 64

are significantly lower than off-policy methods due to the low sample efficiency. Table further
lists the numerical results of off-policy methods for comparisons.

Figure gives the percentage of triggered exploration gradient conflicts for the first 200K steps
in the safe navigation benchmark using COX-Q. We see that the reward and cost objectives rarely
conflict with each other (< 10%); therefore, the differences between ORAC and COX-Q are small.
We hereby give a possible explanation. First, just like in conventional multi-task learning, the gradi-
ent conflicts often happen between two loss functions with significantly different scales. However,
for safe navigation, both reward and cost are on the same scale (0-30). Second, as both reward and
cost are sparse signals (or at least highly skewed), most exploration gradients are near zero, making
it highly stochastic.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used for polishing writing only, such as selecting proper words.
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Table E.1: Performance of on-policy baselines (1M steps) on safe navigation (mean = std)

Environment Metric CUP PPOSimmerPID PPOSaute RCPO CPPOPID
. Return 6.1 +34 -0.7+23 1.1 £0.3 10.7+1.8 59+39
PointButton2

ost 11.7+ 6.6 74+74 12.8 9.6 54+ 1.8 9.6 +2.6

. Return 32+29 2.1+02 25+03 4115 23+13
PointGoal2

Cost 10.3 £ 12.6 9.7+49 159+ 11.7 5.1+38 9.1+6.2

CarButton2 Return 0.8 £0.6 09+ 1.8 0.6 +0.2 41+ 1.7 0.8 +0.3

Cost 6.5+ 6.6 22+13 93+3.0 6.0£3.7 95427

. Return 19+ 1.1 33+0.8 41+£23 29+0.7 33423
PointPush1

Cost 3.1 52 0.6 £0.8 1.1 £2.0 1.1+14 19+£3.6
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Figure E.1: Training curves of on-policy baselines for safe navigation tasks

Table E.2: Performance of off-policy baselines (1M steps) on safe navigation (mean =+ std)

Environment Metric SACPID CAL IQN-ORAC COX-Q
PointButton2 Return 734+99 239+41 356403 355+22
Cost 13.5+ 8.5 3.6 1.7 5.74+0.6 6.1 £0.6
. Return 1.7+14 59426 23.1+£20 21.0£26
PointGoal2
Cost 104+ 7.6 24+ 1.7 6.1+14 6.0+ 1.6
Return  26.6 £5.3 7.84+23 176 £19 228 +3.1
CarButton2
Cost 2890+10.1 34+0.38 8.7+30 6.7+ 1.0
. Return 104 +£7.3 7.5+7.1 155+7.1 17.1 £ 8.1
PointPush1
Cost 0.4 4+0.5 0.24+0.3 2.8 1.7 3.0£1.5

Exploration gradient conflict ratio in the first 200K steps (Mean * Std)

ratio (%)

PointButton2

PointGoal2

CarButton2

PointPush1

Figure E.2: Exploration gradient conflict analysis for safe navigation tasks
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