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Abstract

Geometric Sensitive Hashing functions, a family of Local Sensitive Hashing func-
tions, are neural network models that learn class-specific manifold geometry in
supervised learning. However, given a set of supervised learning tasks, under-
standing the manifold geometries that can represent each task and the kinds of
relationships between the tasks based on them has received little attention. We
explore a formalization of this question by considering a generative process where
each task is associated with a high-dimensional manifold, which can be done in
brain-like models with neuromodulatory systems. Following this formulation,
we define Task-specific Geometric Sensitive Hashing (T-GSH) and show that a
randomly weighted neural network with a neuromodulation system can realize this
function.1

1 Introduction

Deep Neural Networks (DNNs) have shown outstanding performance in various fields due to their
ability to learn to transform complex objects into useful representations that can be easily separated
in the embedding space. However, due to their “black box” behavior, there is still little known about
exactly which information-rich features are captured by a DNN representation and what information-
poor variations are eliminated. To address the question, Dikkala et al. [10] considered the manifold
geometry of a generative process where each class is associated with a manifold and parameter
that shifts class examples along that manifold. Using this perspective, they could show that neural
representations in supervised learning could be viewed as a kind of Locality Sensitive Hash functions
that they coined Geometric Sensitive Hashing (GSH) [10].

In this work, we extend this geometric interpretation from one classification task to a series of
potentially related classification tasks. For example, in a video clip of digits rotating counterclockwise,
each possible digit within a single frame is a class associated with its own manifold, as in GSH,
and we focus on the relationship between the manfolds induced by the classification problem in

1All source codes and figures are available at https://github.com/PavlicLab/
NeurIPS2023-UniReps-Hong-TGSH-Randomly_Weighted_Neuromodulation_in_Neural_Networks.
git.

Proceedings of the I edition of the Workshop on Unifying Representations in Neural Models (UniReps 2023).

https://github.com/PavlicLab/NeurIPS2023-UniReps-Hong-TGSH-Randomly_Weighted_Neuromodulation_in_Neural_Networks.git
https://github.com/PavlicLab/NeurIPS2023-UniReps-Hong-TGSH-Randomly_Weighted_Neuromodulation_in_Neural_Networks.git
https://github.com/PavlicLab/NeurIPS2023-UniReps-Hong-TGSH-Randomly_Weighted_Neuromodulation_in_Neural_Networks.git


(a) Data gener-
ating process.

(b) A DNN as a Task-specific Geometry Sensitive Hash (T-GSH) function.

Figure 1: (a) Each task t consists of a set of points of classes on a simple manifold. Furthermore,
each point in the task can be characterized by three latent parameters: γt, δ,θt. Notably, we consider
a task-specific manifold broader than the class-level one in [10]. (b) Any set of points on the same
task manifold map to (approximately) the same representation (i.e., the penultimate layer feature
map), while a set of points from different task manifolds go to far away representations.

one frame (i.e., one rotation angle) and the other frames. Such a manifold-learning perspective
allows us to compare representations of tasks that are similar in principle so that we can identify
representational kernels that are shared among each individual classification task. In essence, for this
example digit-rotation task, we consider the possibility that rotated digit images may in fact map to
different points on the same induced digit manifold that is then combined with a rotation manifold to
represent the image and its orientation.

The geometry of low- and high-level perceptual spaces has been studied in cognitive science, and
changes in those behavioral and cognitive states have been associated with neuromodulatory systems
in the brain. Neuromodulation has been studied extensively in human and insect brains, where
neuromodulatory signals act as a kind of switchboard that can remap a neural representation in
different ways so as to include adaptive control of behavior based on internal state and environmental
context [16, 18]. In response to the importance of neuromodulatory systems in biological brains,
neuromodulation-inspired neural networks have been proposed in various domains, such as reinforce-
ment learning [4], modular networks [7], and adaptive behaviors [22]. For example, promising appli-
cations of neuromodulated neural networks to the problem of to Continual Learning (CL) [7, 14, 17]
can prevent catastrophic forgetting by modulating synapsis that remain persistently stable.

In this work, we connect neuromodulation-inspired neural networks for continual learning and
geometric manifold learning in supervised learning. We introduce the definition of task-specific
manifolds and demonstrate that DNNs with neuromodulators can learn these manifolds.

2 Task-Specific Geometric Sensitive Hashing

2.1 Problem Definition and Proposed Randomly Weighted Neuromodulation Method

Following [14], we consider a supervised continual-learning setup where T tasks arrive to a learner
in sequential order. Let Dt = {xi,t, yi,t}nt

t be the dataset of task t, composed of nt pairs of raw
instances and corresponding labels. For simplicity, we adopt a simple task-incremental continual
learning setup where C is the number of classes for every task. Next, we extend the manifolds
from Dikkala et al. [10] to represent task-specific manifolds. We assume that each input xi,t ∈ Rd is
drawn from a mixture distribution over T manifolds M1, . . . ,MT sharing similar topologies (Fig. 1a),
and each label yi,t ∈ [C] corresponds to the manifold of xi,t. Moreover, each point xt on manifold
Mt is determined by the latent vectors, γt ∈ Rs, δ ∈ Rp, and θt ∈ Rk, where:

• γt is the manifold identifier for the task t, and there is a one-to-one correspondence between
γt and Mt.
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• δ is a set of manifold identifiers for classes. This is an explicitly shared manifold, represent-
ing canonical representation objects and is shared across all task manifolds γ.

• θt is the transformation in the task t. So, if we fix γt, the manifold Mt can be generated by
sampling different values of θt.

Intuitively, γt represents the centroid of a cluster for the task t, δ includes explicitly shared clusters
for labels that every γ contains, and θt represents a small perturbation around the centroid. So, the
manifold Mγt is comprised of all inputs xt of the form {γt + δ + θt| ∥θt∥ ≤ ϵ}. In this setting, we
employ a Locality Sensitive Hashing (LSH) to map each input to a hash bucket. With appropriate
configuration, we empirically demonstrate that DNNs exhibit LSH-like behavior on the family of
manifolds with a shared geometry defined by a set of analytic functions. In particular, extending the
work of Dikkala et al. [10], we show that the penultimate “representation layer” r (Fig. 1b) of an
appropriately trained network will satisfy the following property:

Definition 1 (Task-specific Geometric Sensitive Hashing (T-GSH)) We say r is a T-GSH function
with respect to a set of task manifolds if:

a) For any two points on the same task manifold x1,t, x2,t ∈ Mt, the distance ∥r(x1,t) −
r(x2,t)∥ is small regardless of the associated classes.

b) For any two points on two well-separated task manifolds x1,t ∈ Mt and x2,t′ ∈
Mt′ , ∥r(x1,t)− r(x2,t′)∥ is large regardless of the associated classes.

That is, DNNs whose representations satisfy the T-GSH properly capture the shared task manifold
geometry similar to how LSH functions capture spatial locality. Finally, by employing the recover-
ability of the manifold [10], we give empirical evidence to support the recoverability of γt via simple
transformations on top of representations learned by DNNs which behave as T-GSH functions.

We consider task manifolds as subsets of points in Rd. Every manifold Mγt has an associated latent
vector γt ∈ Rs (where s ≤ d) which acts as an identifier of Mγt . The task manifold is then defined
to be the set of points xt = f(γt, δ,θt) = (f1(γ

t, δ,θt), . . . , fd(γ
t, δ,θt)) for δ ∈ ∆ ⊆ Rp, p <

d, and for θt ∈ Θ ⊆ Rk, k < d. Here, the manifold generating function f = {fi(·, ·)}di=1 where the
fi are all analytic functions. Without significant loss of generality, we assume our inputs x and γ are
normalized and lie on Sd−1, and Ss−1, the d and s-dimensional unit spheres, respectively. Given the
above generative process, we leverage the Assumption 1, which allows us to use a special form of the
DNN configuration used by Dikkala et al. [10].

Assumption 1 (Modified Invertibility [10]) There is an analytic function g(·) : Rd → Rs with
bounded norm Taylor expansion such that for every point xt = f(γt, δ,θt) on Mγt , g(xt) = γt.

The conventional GSH neural network [10] is defined as a single-hidden-layer network, y = A ·
B · σ(Cx), where the input x ∈ Rd passes through a wide, randomly initialized, fully connected,
non-trainable layer C ∈ RD×d followed by a ReLU activation σ(·). Then, there are two trainable,
fully connected layers A ∈ RC×T , B ∈ RT×D with no non-linearity between them. Following the
above configuration, we define a special-case T-GSH neural network as follows:

ŷt = R ·Bt · σ(Cx) (1)

for each task t. Thus, not only does a T-GSH differ from a GSH by the introduction of multiple task
labels, but the learnable matrix A from a standard GSH is replaced with another randomly weighted
matrix R that acts as the explicitly shared manifold δ in our definition (i.e., it is shared across all
tasks). Intuitively, a randomly weighted matrix is nearly orthogonal, and so learning task-specific
Bt must be enforced to learn the commonality in the task t. In the upcoming section, we connect a
T-GSH neural network with one of the examples of neuromodulation-inspired DNNs for continual
learning.

2.2 Revising Configurable Random Weight Networks

Configurable Random Weight Networks (CRWNs) [14] were proposed as a simple yet effective
form of artificial neuromodulatory systems for continual learning. The proposed approach consists
of two types of artificial neuromodulation, Global and Local modulation, and shows that their
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(a) A comparison of cosine similarities of
the points. (Intra similarity): the cosine
similarities of the points with the different
labels on the same task manifold. (Inter
similarity): the cosine similarities of the
points with the same label on the different
task manifolds.

(b) A confusion matrix of intra (same task manifold) VS inter (differ-
ent task manifolds) cosine similarity of task representations trained
on RotationMNIST. Cosine similarity between task context vectors
before (left) and after training (right). Notably, adjacent tasks are
expected to be the most similar to each other as they represent the
smallest angular difference in images.

Figure 2: Experiment results on RotationMNIST.

neuromodulatory signals learn how to adjust long-lasting/unchanging random synaptic weights for
specific tasks, enabling task-specific learning. Furthermore, the proposed neuromodulation can be
applied in a layer-wise fashion. To improve the efficiency of training and the applicability to any
network architecture, Hong and Pavlic [14] proposed two kinds of model architectures, which we
summarize in the single expression in Eq. (2),

ŷt = αt ·R · (vt ⊙ σ(Cx))

= R · ((αt · vt)⊙ σ(Cx))
(2)

where:

• R ∈ RC×D and C ∈ RD×d are non-trainable, randomly weighted matrices.

• αt ∈ R is a learnable constant acting as global neuromodulation.

• vt ∈ RD is a learnable vector mimicking local neuromodulation.

In the following, we view Eq. (2) through the lens of T-GSH in Eq. (1).

CRWN as a T-GSH function. CRWNs were first proposed as an efficient CL method by highlight-
ing the approach’s benefits concerning computational efficiency. However, we highlight here that
CRWNs are a T-GSH function achieved by the proposed artificial neuromodulatory systems and thus
can be used to shed light on the manifold learning facilitated by neuromodulatory processes. Below,
we compare Eq. (1) and (2).

ŷt =

Eq. (1)︷ ︸︸ ︷
R ·Bt · σ(Cx) =

Eq. (2)︷ ︸︸ ︷
R · ((αt · vt)︸ ︷︷ ︸

Bt

⊙ σ(Cx))

Thus, αt · vt from the CRWN in Eq. (2) plays the role of Bt in the T-GSH in Eq. (1), and so a CRWN
is a simple realization of a T-GSH. Following Dikkala et al. [10], it is important to use a proper
regularization term on the weights Bt in the classification loss for training a T-GSH function, and the
learnable constant αt in CRWNs acts as a similar regularizer for vt.

3 Experiments

In this section, we demonstrate the CRWN is a T-GSH function using variants of the MNIST [15]
dataset, including RotationMNIST, and our newly proposed experimental setup, ShiftMNIST and
AugmentMNIST.
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Figure 3: Empirical evidence of approximate data generating process with our defined invertibility
assumption on RotationMNIST. (Top Row) Reconstructed samples of digit “3”. (Bottom Row)
Reconstructed samples of digit “1”. (Left Column) Reconstructed samples of digits from the task
manifold MT1, which is 0°rotation. (Middle Column) the samples of digits from the task manifold
MT5, which is 40 °counterclockwise rotation. (Right Column) the samples of digits from the task
manifold MT10, which is 90 °counterclockwise rotation.

3.1 Experiments for showing that CRWN is a T-GSH function.

We first validate the CRWN on RotationMNIST to show it is a T-GSH function. RotationMNIST is
one of the popular CL benchmark datasets. Following Hong and Pavlic [14], we define the dataset so
that each of the 36 tasks corresponds to images counterclockwise rotated by a multiple of 10 degrees.

CRWNs as a GSH and T-GSH function. Using experimental results of CRWNs for continual
learning, we can empirically demonstrate that CRWNs are T-GSH functions. In particular, Hong
and Pavlic [14, Table 1] showed that CRWNs achieved about 95% test accuracy average over all 36
RotationMNIST tasks (FlyNet: 94.9% and NeuroModNet: 95.5%, respectively). This indicates that
CRWNs perform well as a GSH function that successfully classifies all labels for every task.

Figure 2a depicts a comparison of cosine similarities of latent CRWN task representations. Intra
similarity indicates the cosine similarities of the points with different labels on the same task manifold
(i.e., same RotationMNIST rotation angle). In contrast, Inter similarity means the cosine similarity of
the points with the same label, but on the different task manifolds (i.e., different RotationMNIST
rotational angles). This shows CRWN is a T-GSH function in Fig. 1b, showing that the similarity of
the points having different labels, but on the same task manifold must be larger than one of the points
with the same label, but on the different task manifolds.

Satisfaction of Assumption 1. We can also show that the inverse function of CRWNs can mimic
the data-generating process, satisfying our Assumption 1. Figure 3 depicts the reconstructed image
samples from CRWNs from the learned task manifolds.

Because of the ReLU function, we cannot obtain the complete inverse function of CRWNs. Thus, we
omitted ReLU and computed the pseudo-inverse of the weights of the learned CRWNs. Because we
fixed the manifolds for classes δ using the non-trainable matrix R, each row in R can be seen as the
canonical representations of objects. As shown in Fig. 3, the canonical representation for the digit “3”
is the 4th row, and for the digit “1” is the 2nd row. Thus, let f be the inverse CRWNs omitting the
ReLU function. We can reconstruct a digit sample with class i as follows:

x̄i,t = f(s) where s ∼ N (µi,t, σi,t), µi,t = R⊤
i ⊙ (αt · vt), σi,t = 1D · 1/D (3)

Ri is i-th row of the matrix R and 1D is the vector containing ones with the size D. In Fig. 3, despite
approximate reconstruction, the shape of digits and the rotation can be shown, indicating the CRWN
satisfies Assumption 1.
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(a) ShiftMNIST-1px tasks (b) ShiftMNIST-1px results

Figure 4: ShiftMNIST-1px. (a) The difference between the datasets of the two adjacent tasks, i and
i+ 1, is that the images of task i+ 1 are the images of task i shifted a single pixel to the right. Thus,
the total number of tasks to learn is 28. (b) Cosine similarity between the context vectors for each
task before (left) and after training (right).

(a) ShiftMNIST-2px tasks (b) ShiftMNIST-2px results

Figure 5: ShiftMNIST-2px. (a) The difference between the datasets of the two adjacent tasks, i and
i+ 1, is that the images of task i+ 1 are the images of task i shifted two pixels to the right. Thus, the
total number of tasks to learn is 14. (b) Cosine similarity between the context vectors for each task
before (left) and after training (right).

3.2 Experiments For Task Similarities

In this section, due to the architectural characteristic of a T-GSH function, we demonstrate unique
features of the CRWN that allow for computing the relationship among tasks. In particular, we
introduce the scalar–vector product ct ≜ αt · vt so that the CRWN expression becomes:

ŷt = R · ((αt · vt)⊙ σ(Cx)) = R(ct ⊙ σ(Cx)).

We refer to ct as a context vector. The following experiments on RotationMNIST, ShiftMNIST, and
AugmentMNIST demonstrate the semantic interpretation of the context vector ct among tasks.

RotationMNIST. Figure 2b shows the pairwise cosine similarity2 between context-vector pairs
(cj , ck) for every (j, k) pair of RotationMNIST tasks, shown both before training and after training.
In the task ordering, adjacent tasks are expected to be the most similar to each other as they represent
the smallest angular difference in images. In other words, networks trained for task i should have
minimal degradation in performance for test data from tasks i− 1 and i+ 1. Consistent with this
functional expectation, the mechanistic pattern Fig. 2b shows greatest similarity between adjacent
context vectors after training, and so trained context vectors exist in a representational space that
captures fundamental similarities among tasks.

ShiftMNIST. To test whether geometric adjacency generally implies similarity of trained vectors,
we introduce a new sequence of tasks, ShiftMNIST, as shown in Figs 4a and 5a. Whereas RotationM-
NIST rotates each of the MNIST characters, ShiftMNIST translates them laterally by a number of

2We compute 1− scipy.spatial.distance.cosine.
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Table 1: PyTorch routines used for AugmentMNIST. Here, TT is shorthand for
torchvision.transforms.

AugmentMNIST Task: PyTorch method and configuration

Horizontal Flip (T2): TT.RandomHorizontalFlip(p=1.0)
Vertical Flip (T3): TT.RandomVerticalFlip(p=1.0)

Gaussian Blur (T4): TT.GaussianBlur(kernel_size=5, sigma=2)
Perspective (T5): TT.RandomPerspective(distortion_scale=0.5, p=1.0)

Random Erasing (T6): TT.RandomErasing(p=1.0)
Invert (T7): TT.RandomInvert(p=1.0)

RandomResizedCrop (T8): TT.RandomResizedCrop(size=28)

Figure 6: AugmentMNIST task. The list of variants of augmentation methods applied to produce the
task. See the implementation details in Table 1.

pixels (with periodic boundaries). Adjacent ShiftMNIST-1px tasks in Fig. 4a are separated by 1 pixel,
and so an image in Task 3 is the same as an image in Task 2 shifted to the right by 1 pixel. Similarly,
adjacent ShiftMNIST-2px tasks in Fig. 5a are separated by 2 pixels. Because MNIST images are each
28 pixels wide, there are 28 distinct ShiftMNIST-1px tasks and 14 distinct ShiftMNIST-2px tasks.
We conduct two experimental setups separately using different random seeds and check whether
meaningful relationships with each other can be derived. The cosine similarities of context vectors
before and after training for ShiftMNIST-1px and ShiftMNIST-2px are shown in Figs 4b and 5b,
respectively. The diagonal pattern in both cases matches that of Fig. 2b, which confirms that the
similarity vectors for ShiftMNIST have encoded geometric relationships among tasks in a similar
way as with RotationMNIST. Furthermore, Fig. 5b appears as a more coarsely subsampled version of
Fig. 4b, which demonstrates that cosine similarity differences are repeatable and a function of the
tasks themselves and not an artifact of the architecture of the network. Thus, training these compact
context vectors extracts meaningful semantic information about individual tasks.

AugmentMNIST. Here, we propose AugmentMNIST, which employs a sequence of 8 off-the-shelf,
commonly used data-augmentation tasks as shown in Fig. 6 (e.g., Random Erasing [24] that is
provided by PyTorch). We list the details of the setting in Table 1. After training on each of the 8
tasks, we use hierarchical agglomerative clustering to sort the tasks so that adjacent tasks tend to
have highest similarity. Fig. 7 shows the resulting cosine similarities as well as a dendrogram of the
hierarchical clustering by cosine similarity. The results show that context-vector representations of
Random Erasing (T6), Gaussian Blur (T4), and Perspective (T5) are very close to that of the original
image (T1); in other words, the four tasks that maintain the shape, color, and orientation of the image
are grouped together. Furthermore, the inverted-image task (T7) is an outgroup as it has negative
cosine similarity with all other tasks, which is consistent with it being the only task operating on a
white background. Furthermore, the cosine similarities suggest a closer relationship between T1 and
T7 than between T2 and T7, indicating that the horizontal flip combined with the color inversion
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Figure 7: AugmentMNIST results. Sorted cosine similarity between the context vectors for each task
after training (left) and task-similarity clustering (right).

has an additive effect in terms of context vector dissimilarity. Thus, the geometry of the trained
context-vector space encodes semantic information about comparisons between tasks themselves.

4 Related Work

There have been various works on studying classification problems as manifold learning [3, 20].
Furthermore, manifold learning has been adapted in various literature, such as feature learning with
different modalities [19], explainability [11], speech recognition [21] and neuroscience [5]. We
leverage the concept of Locality Sensitive Hashing, and this property has been extensively studied
in insect-brain-like architecture [8], and several works have been proposed in novelty detection [9]
and relational learning [12, 13]. The connection between DNNs and Hash Functions was explored
before [23]. Another related work is the benefits of wide non-linear layers [6] and over-parameterized
networks [1, 2]. We empirically demonstrate that T-GSH holds for certain architectures under the
manifold data assumption given a series of classification tasks.

5 Discussion

We studied the problem of a sequence of multiple supervised classification tasks as a task manifold-
learning problem under a specific generative process wherein the manifolds share geometry. We
demonstrated empirically that properly trained DNNs with a neuromodulation-inspired architecture
satisfy the T-GSH property by recovering each task’s semantically meaningful latent representation γ.
Our work provides new geometric intuitions about the functioning of randomly weighted neuromodu-
lation systems found throughout nature and allows us to better understand how randomness helps
exploit finite representation spaces. We plan to extend our work to provide theoretical evidence in
various continual-learning setups, such as class-incremental and domain-incremental learning.
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