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Abstract

Understanding tables is an important aspect001
of natural language understanding. Existing002
models for table understanding require lin-003
earization of the table structure, where row004
or column order is encoded as an unwanted005
bias. Such spurious biases make the model006
vulnerable to row and column order perturba-007
tions. Additionally, prior work has not ex-008
plicitly modeled the table structure, hinder-009
ing the table-text modeling ability. In this010
work, we propose a robust and structurally011
aware table-text encoding architecture TABLE-012
FORMER, where tabular structural biases are013
incorporated completely through learnable at-014
tention biases. TABLEFORMER is strictly in-015
variant to row and column orders, and could016
understand tables better due to its tabular in-017
ductive biases. Our evaluations showed that018
TABLEFORMER outperforms strong baselines019
in all settings on SQA, WTQ and TABFACT020
table reasoning datasets, and achieves state-of-021
the-art performance on SQA, especially when022
facing answer-invariant row and column or-023
der perturbations (6% improvement over the024
best baseline), because previous SOTA mod-025
els’ performance drops by 4% - 6% when fac-026
ing such perturbations while TABLEFORMER027
is not affected.028

1 Introduction029

Recently, semi-structured data (e.g. variable length030

tables without a fixed data schema) has attracted031

more attention because of its ubiquitous presence032

on the web. On a wide range of various table rea-033

soning tasks, Transformer based architecture along034

with pretraining has shown to perform well (Eisen-035

schlos et al., 2021; Liu et al., 2021).036

In a nutshell, prior work used the Transformer037

architecture in a BERT like fashion by serializing038

tables or rows into word sequences (Yu et al., 2020;039

Liu et al., 2021), where original position ids are040

used as positional information. Due to the usage041

of row/column ids and global position ids, prior042

Title Length
Screwed Up 5:02

Ghetto Queen & NOVA 5:00

Question: Of all song lengths, which one is the longest?
Gold Answer: 5:02
TAPAS: 5:00
TAPAS after row order perturbation: 5:02
TABLEFORMER: 5:02
(a) TAPAS predicts incorrect answer based on the original table,
while it gives the correct answer if the first row is moved to
the end of the table.

Nation Gold Silver Bronze
Great Britain 2 1 2

Spain 1 2 0
Ukraine 0 2 0

Question: Which nation received 2 silver medals?
Gold Answer: Spain, Ukraine
TAPAS: Spain
TABLEFORMER: Spain, Ukraine
TABLEFORMER w/o a proposed structural bias: Spain

(b) TAPAS gives incomplete answer due to its limited cell
grounding ability.

Figure 1: Examples showing the limitations of exist-
ing models (a) vulnerable to perturbations, and (b) lack-
ing structural biases. In contrast, our proposed TABLE-
FORMER predicts correct answers for both questions.

strategies to linearize table structures introduced 043

spurious row and column order biases (Herzig et al., 044

2020; Eisenschlos et al., 2020, 2021; Zhang et al., 045

2020; Yin et al., 2020). Therefore, those models are 046

vulnerable to row or column order perturbations. 047

But, ideally, the model should make consistent pre- 048

dictions regardless of the row or column ordering 049

for all practical purposes. For instance, in Figure 1, 050

the predicted answer of TAPAS model (Herzig et al., 051

2020) for Question (a) “Of all song lengths, which 052

one is the longest?” based on the original table is 053

“5:00”, which is incorrect. However, if the first row 054

is adjusted to the end of the table during inference, 055

the model gives the correct length “5:02” as an- 056

swer. This probing example shows that the model 057

being aware of row order information is inclined 058

to select length values to the end of the table due 059
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to spurious training data bias. In our experiments060

on the SQA dataset, TAPAS models exhibit a 4% -061

6% absolute performance drop when facing such062

answer-invariant perturbations.063

Besides, most prior work (Chen et al., 2019; Yin064

et al., 2020) did not incorporate enough structural065

biases to models to address the limitation of sequen-066

tial Transformer architecture, while others induc-067

tive biases which are either too strict (Zhang et al.,068

2020; Eisenschlos et al., 2021) or computationally069

expensive (Yin et al., 2020).070

To this end, we propose TABLEFORMER, a071

Transformer architecture that is robust to row and072

column order perturbations, by incorporating struc-073

tural biases more naturally. TABLEFORMER re-074

lies on 13 types of task-independent table↔text075

attention biases that respect the table structure and076

table-text relations. For Question (a) in Figure 1,077

TABLEFORMER could predict the correct answer078

regardless of perturbation, because the model could079

identify the same row information with our “same080

row” bias, avoiding spurious biases introduced by081

row and global positional embeddings. For Ques-082

tion (b), TAPAS predicted only partially correct083

answer, while TABLEFORMER could correctly pre-084

dict “Spain, Ukraine” as answers. That’s because085

our “cell to sentence” bias could help table cells086

ground to the paired sentence.087

Experiments on 3 table reasoning datasets show088

that TABLEFORMER consistently outperforms orig-089

inal TAPAS in all pretraining and intermediate090

pretraining settings with fewer parameters. Also,091

TABLEFORMER’s invariance to row and column092

perturbations, leads to even larger improvement093

over those strong baselines when tested on pertur-094

bations. Our contributions are as follows:095

• We identified the limitation of current table-096

text encoding models when facing row or col-097

umn perturbation.098

• We propose TABLEFORMER, which is guaran-099

teed to be invariant to row and column order100

perturbations, unlike current models.101

• TABLEFORMER encodes table-text structures102

better, leading to SoTA performance on SQA103

dataset, and ablation studies show the effec-104

tiveness of most inductive biases.105

2 Preliminaries: TAPAS for Table106

Encoding107

TAPAS (Herzig et al., 2020) uses Transformer ar-108

chitecture in a BERT like fashion to pretrain and109

finetune on tabular data for table-text understand- 110

ing tasks. This is achieved by using linearized table 111

and texts for masked language model pre-training. 112

In the fine-tuning stage, texts in the linearized table 113

and text pairs are queries or statements in table QA 114

or table-text entailment tasks, respectively. 115

Specifically, TAPAS uses the tokenized and flat- 116

tened text and table as input, separated by [SEP] 117

token, and prefixed by [CLS]. Besides token , 118

segment, and global positional embedding intro- 119

duced in BERT (Devlin et al., 2018), it also uses 120

rank embedding for better numerical understanding. 121

Moreover, it uses column and row id embedding to 122

encode table structures. 123

Concretely, for any table-text linearized se- 124

quence S = {v1, v2, · · · , vn}, where n is the 125

length of table-text sequence, the input to TAPAS 126

is summation of embedding of the following: 127

token id: W = {wv1 , wv2 , · · · , wvn}, 128

global positional id: B = {b1, b2, · · · , bn}, 129

segment id: G = {gseg1 , gseg2 , · · · , gsegn}, 130

column id: C = {ccol1 , ccol2 , · · · , ccoln}, 131

row id: R = {rrow1 , rrow2 , · · · , rrown}, and 132

rank id: Z = {zrank1 , zrank2 , · · · , zrankn}, 133

where segi, coli, rowi, ranki correspond to the 134

segment, column, row, and rank id for the ith token, 135

respectively. 136

As for the model, TAPAS uses BERT architecture 137

(Vaswani et al., 2017) off-the-shelf. Each Trans- 138

former layer includes a multi-head self-attention 139

sub-layer, where each token attends to all the to- 140

kens. Let the layer inputH = [h1, h2, · · · , hn]> ∈ 141

Rn×d corresponding to S, where d is the hidden 142

dimension, and hi ∈ Rd×1 is the hidden repre- 143

sentation at position i. For a single-head self- 144

attention sub-layer, the input H is projected by 145

three matrices WQ ∈ Rd×dK , WK ∈ Rd×dK , and 146

W V ∈ Rd×dV to the corresponding representations 147

Q, K, and V : 148

Q = HWQ, V = HW V , K = HWK (1) 149

Then, the output of this single-head self- 150

attention sub-layer is calculated as: 151

Attn(H) = softmax(
QK>√
dK

)V (2) 152

3 TABLEFORMER: Robust Structural 153

Table Encoding 154

As shown in Figure 2, TABLEFORMER encodes the 155

general table structure along with the associated 156
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[SEP] h1
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[SEP] hn
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TABLEFORMER does not use 
explicit linear row or 
column id information in 
the input

Self-attention modules of 
the Transformer networks 
are explicitly given 
structural attention 
biases

Learnable structure enforced 
attention bias scalars. We use 13 
types of attention biases based on 
task independent relation between 
header, row, column, text, etc. 
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Figure 2: TABLEFORMER input and attention biases in the self attention module. This example corresponds to
table (a) in Figure 1 and its paired question “query”. Different colors in the attention bias matrix denote different
types of task independent biases derived based on the table structure and the associated text.

text by introducing task-independent relative atten-157

tion biases for table-text encoding to facilitate the158

following: (a) structural inductive bias for better159

table understanding and table-text alignment, (b)160

robustness to table row/column perturbation.161

Input of TABLEFORMER. TABLEFORMER162

uses the same token embeddings W , segment163

embeddings G, and rank embeddings Z as TAPAS.164

However, we make 2 major modifications: 1)165

No row or column ids. We do not use row166

embeddings R or column embeddings C to avoid167

any potential spurious row and column order biases.168

2) Per cell positional ids. To further remove any169

inter-cell order information, global positional170

embeddings B are replaced by per cell positional171

embeddings P = {ppos1 , ppos2 , · · · , pposn}, where172

we follow Eisenschlos et al. (2021) to reset the173

index of positional embeddings at the beginning174

of each cell, and posi correspond to the per cell175

positional id for the ith token.176

Positional Encoding in TABLEFORMER. Note177

that the Transformer model either needs to spec-178

ify different positions in the input (i.e. absolute179

positional encoding of Vaswani et al. (2017)) or180

encode the positional dependency in the layers (i.e.181

relative positional encoding of Shaw et al. (2018)).182

TABLEFORMER does not consume any sort of183

column and row order information in the input. The184

main intuition is that, for cells in the table, the only185

useful positional information is whether two cells186

are in the same row or column and the column187

header of each cell, instead of the absolute order 188

of the row and column containing them. Thus, in- 189

spired by relative positional encoding (Shaw et al., 190

2018) and graph encoding (Ying et al., 2021), we 191

capture this with a same column/row relation as 192

one kind of relative position between two linearized 193

tokens. Similarly, we uses 12 such table-text struc- 194

ture relevant relations (including same cell, cell 195

to header and so on) and one extra type represent- 196

ing all other relations not explicitly defined. All 197

of them are introduced in the form of learnable 198

attention bias scalars. 199

Formally, we consider a function φ(vi, vj) : V × 200

V → N, which measures the relation between vi 201

and vj in the sequence (vi, vj ∈ S). The function φ 202

can be defined by any relations between the tokens 203

in the table-text pair. 204

Attention Biases in TABLEFORMER. In our 205

work, φ(vi, vj) is chosen from 13 bias type ids, cor- 206

responding to 13 table-text structural biases. All 207

the chosen attention biases are applicable to any 208

table-text pair and can be used for any downstream 209

task: 210

• “same row” identifies the same row infor- 211

mation without ordered row id embedding or 212

global positional embedding, which help the 213

model to be invariant to row perturbations, 214

• “same column”, “header to column cell ”, 215

and “cell to column header” incorporates the 216

same column information without ordered col- 217

umn id embedding, 218

• “cell to column header” makes each cell 219
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aware of its column header without repeated220

column header as features,221

• “header to sentence” and “cell to sentence”222

help column grounding and cell grounding of223

the paired text,224

• “sentence to header”, “sentence to cell”, and225

“sentence to sentence” helps to understand the226

sentence with the table as context,227

• “header to same header” and “header to228

other header” for better understanding of ta-229

ble schema, and “same cell bias” for cell con-230

tent understanding.231

Note that, each cell can still attend to other cells232

in the different columns or rows through “others”233

instead of masking them out strictly.234

We assign each bias type id a learnable scalar,235

which will serve as a bias term in the self-attention236

module. Specifically, each self-attention head237

in each layer have a set of learnable scalars238

{b1, b2, · · · , b13} corresponding to all types of in-239

troduced biases. For one head in one self-attention240

sub-layer of TABLEFORMER, Equation 2 in the241

Transformer is replaced by:242

Ā =
QK>√
dK

, A = Ā+ Â (3)243

244

Attn(H) = softmax(A)V (4)245

where Ā is a matrix capturing the similarity be-246

tween queries and keys, Â is the Attention Bias247

Matrix, and Âi,j = bφ(vi,vj).248

Relation between TABLEFORMER and ETC.249

ETC (Ainslie et al., 2020) uses vectors to repre-250

sent relative position labels, although not directly251

applied to table-text pairs due to its large computa-252

tional overhead (Eisenschlos et al., 2021). TABLE-253

FORMER differs from ETC in the following as-254

pects (1) ETC uses relative positional embeddings255

while TABLEFORMER uses attention bias scalars.256

In practice, we observe a large overhead by using257

relative positional embeddings (more than 7× train-258

ing time), (2) ETC uses global memory and local259

attention, while TABLEFORMER uses pairwise at-260

tention without any global memory overhead, (3)261

ETC leverages local sparse attention with masking,262

limiting its ability to attend to all tokens, (4) ETC263

did not explore table-text attention bias types ex-264

haustively. Another table encoding model MATE265

(Eisenschlos et al., 2021) is vulnerable to row and266

column perturbations, and shares limitation (3) (4).267

4 Experimental Setup 268

4.1 Datasets and Evaluation 269

Table Question Answering. For the table QA 270

task, we conducted experiments on WikiTableQues- 271

tions (WTQ) (Pasupat and Liang, 2015) and Se- 272

quential QA (SQA) (Iyyer et al., 2017) datasets. 273

WTQ was crowd-sourced based on complex ques- 274

tions on Wikipedia tables. SQA is composed of 275

6, 066 question sequences (2.9 question per se- 276

quence on average), constructed by decomposing a 277

subset of highly compositional WTQ questions. 278

Table-Text Entailment. For the table-text en- 279

tailment task, we used TABFACT dataset (Chen 280

et al., 2019), where the tables were extracted from 281

Wikipedia and the sentences were written by crowd 282

workers. Among total 118, 000 sentences, each 283

one is a positive (entailed) or negative sentence. 284

Perturbation Evaluation Set. For SQA and 285

TABFACT, we also created new test sets to measure 286

models’ robustness to answer-invariant row and col- 287

umn perturbations during inference. Specifically, 288

row and column orders are randomly perturbed for 289

all tables in the standard test sets.1 290

Pre-training All the models are first tuned on 291

the Wikipidia text-table pretraining dataset, option- 292

ally tuned on synthetic dataset at an intermediate 293

stage (“inter”) (Eisenschlos et al., 2020), and finally 294

fine-tuned on the target dataset. To get better per- 295

formance on WTQ, we follow Herzig et al. (2020) 296

to further pretrain on SQA dataset after the inter- 297

mediate pretraining stage in the “inter-sqa” setting. 298

Evaluation For SQA, we report the cell selec- 299

tion accuracy for all questions (ALL) using the 300

official evaluation script, cell selection accuracy 301

for all sequences (SEQ), and the denotation ac- 302

curacy for all questions (ALLd). To evaluate 303

the models’ robustness in the instance level af- 304

ter perturbations, we also report a lower bound 305

of example prediction variation percentage: vp 306

= (t2f+ f2t)/(t2t+ t2f+ f2t+ f2f)), where t2t, t2f, 307

f2t, and f2f represents how many example predic- 308

tions turning from correct to correct, from correct 309

to incorrect, from incorrect to correct and from in- 310

correct to incorrect, respectively, after perturbation. 311

On WTQ, we report denotation accuracy. Binary 312

classification accracy is reported on TABFACT. 313

1We fixed perturbation random seeds as 4 to make our
results reproducible.
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4.2 Baselines314

We use TAPASBASE and TAPASLARGE as base-315

lines, where Transformer architectures are exactly316

same as BERTBASE and BERTLARGE (Devlin317

et al., 2018), and parameters are initialized from318

BERTBASE and BERTLARGE respectively. Cor-319

respondingly, we have our TABLEFORMERBASE320

and TABLEFORMERLARGE, where attention bias321

scalars are initialized to zero, and all other pa-322

rameters are initialized from BERTBASE and323

BERTLARGE.324

4.3 Perturbing Tables as Augmented Data325

Could we alleviate the spurious ordering biases326

by data augmentation alone, without making any327

modeling changes? To answer this, we train an-328

other set of models by augmenting the training data329

for TAPAS through random row and column order330

perturbations2.331

For each table in the training set, we randomly332

shuffle all rows and columns (including corre-333

sponding column headers), creating a new table334

with the same content but different orders of rows335

and columns. Multiple perturbed versions of the336

same table were created by repeating this process337

{1, 2, 4, 8, 16} times with different random seeds.338

For table QA tasks, selected cell positions are also339

adjusted as final answers according to the perturbed340

table. The perturbed table-text pairs are then used341

to augment the data used to train the model. During342

training, the model takes data created by one spe-343

cific random seed in one epoch in a cyclic manner.344

5 Experiments and Results345

Besides standard testing results to compare TABLE-346

FORMER and baselines, we also answer the follow-347

ing questions through experiments:348

• How robust are existing (near) state-of-the-349

art table-text encoding models to semantic350

preserving perturbations in the input?351

• How does TABLEFORMER compare with ex-352

isting table-text encoding models when tested353

on similar perturbations, both in terms of per-354

formance and robustness?355

• Can we use perturbation based data augmen-356

tation to achieve robustness at test time?357

• Which attention biases in TABLEFORMER358

contribute the most to performance?359

2By perturbation, we mean shuffling row and columns
instead of changing/swapping content blindly.

Before Perturb After Perturb

ALL SEQ ALLd ALL vp

Herzig et al. (2020) 67.2 40.4 – – –
Eisenschlos et al. (2020) 71.0 44.8 – – –
Eisenschlos et al. (2021) 71.7 46.1 – – –

Liu et al. (2021) – – 74.5 – –

TAPASBASE 61.1 31.3 – 57.4 14.0%
TABLEFORMERBASE 66.7 39.7 – 66.7 0.2%

TAPASLARGE 66.8 39.9 – 60.5 15.1%
TABLEFORMERLARGE 70.3 44.8 – 70.3 0.1%

TAPASBASE inter 67.5 38.8 – 61.0 14.3%
TABLEFORMERBASE inter 69.4 43.5 – 69.3 0.1%

TAPASLARGE inter 70.6 43.9 – 66.1 10.8%
TABLEFORMERLARGE inter 72.4 47.5 75.9 72.3 0.1%

Table 1: Results on SQA test set before and after per-
turbation during inference. ALL is cell selection accu-
racy. SEQ is cell selection accuracy for all question se-
quences. Our best denotation accuracy for all questions
(ALLd) is reported to compare with Liu et al. (2021).
vp is model prediction variation percentage after per-
turbation. Median of 5 independent runs are reported.
Missing values are those not reported in the original
paper.

5.1 Main Results 360

Table 1, 2, and 3 shows TABLEFORMER perfor- 361

mance on SQA, TABFACT, and WTQ, respec- 362

tively. As can be seen, TABLEFORMER outper- 363

forms corresponding TAPAS baseline models in all 364

settings on SQA and WTQ datasets, which shows 365

the general effectiveness of TABLEFORMER’s 366

structural biases in Table QA datasets. Specifi- 367

cally, TABLEFORMERLARGE combined with inter- 368

mediate pretraining achieves new state-of-the-art 369

performance on SQA dataset. 370

Similarly, in Table 2, we can see that TABLE- 371

FORMER also outperforms TAPAS baseline models 372

in all settings, which shows the effectiveness of 373

TABLEFORMER in the table entailment task. Note 374

that, Liu et al. (2021) is not comparable to our re- 375

sults, because they used different pretraining data, 376

different pretraining objectives, and BART NLG 377

model instead of BERT NLU model. But TABLE- 378

FORMER attention bias is compatible with BART 379

model. Thus, we would test TABLEFORMER with 380

Liu et al. (2021)’s SOTA method on TABFACT and 381

WTQ dataset in the future. 382

5.2 Perturbation Results 383

One of our major contributions is to systematically 384

evaluate models’ performance when facing row 385

and column order perturbation in the testing stage. 386

Ideally, model predictions should be consistent on 387

table QA and entailment tasks when facing such 388
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Before Perturb After Perturb

dev test testsimple testcomplex testsmall test testsimple testcomplex testsmall

Eisenschlos et al. (2020) 81.0 81.0 92.3 75.6 83.9 – – – –
Eisenschlos et al. (2021) – 81.4 – – – – – – –

TAPASBASE 72.8 72.3 84.8 66.2 74.4 71.2 83.4 65.2 72.5
TABLEFORMERBASE 75.1 75.0 88.2 68.5 77.1 75.0 88.2 68.5 77.1

TAPASLARGE 74.7 74.5 86.6 68.6 76.8 73.7 86.0 67.7 76.1
TABLEFORMERLARGE 77.2 77.0 90.2 70.5 80.3 77.0 90.2 70.5 80.3

TAPASBASE inter 78.4 77.9 90.1 71.9 80.5 76.8 89.5 70.5 79.7
TABLEFORMERBASE inter 79.7 79.2 91.6 73.1 81.7 79.2 91.6 73.1 81.7

TAPASLARGE inter 80.6 80.6 92.0 74.9 83.1 79.2 91.7 73.0 83.0
TABLEFORMERLARGE inter 82.0 81.6 93.3 75.9 84.6 81.6 93.3 75.9 84.6

Table 2: Binary classification accuracy on TABFACT development and 4 splits of test set, as well as performance
on test sets with our perturbation evaluation. Median of 5 independent runs are reported. Missing values are those
not reported in the original paper.

Model dev test

Herzig et al. (2020) – 48.8
Eisenschlos et al. (2021) – 51.5

TAPASBASE 23.6 24.1
TABLEFORMERBASE 34.4 34.8

TAPASLARGE 40.8 41.7
TABLEFORMERLARGE 42.5 43.9

TAPASBASE inter-sqa 44.8 45.1
TABLEFORMERBASE inter-sqa 46.7 46.5

TAPASLARGE inter-sqa 49.9 50.4
TABLEFORMERLARGE inter-sqa 51.3 52.6

Table 3: Denotation accuracy on WTQ development
and test set. Median of 5 independent runs are reported.

perturbation, because the table semantics remains389

the same after perturbation. However, in Table 1390

and 2, we can see that in our perturbed test set, per-391

formance of all TAPAS models drops significantly392

in both tasks. TAPAS models drops by at least 3.7%393

and up to 6.5% in all settings on SQA dataset in394

terms of ALL accuracy, while our TABLEFORMER395

being strictly invariant to such row and column or-396

der perturbation leads to no drop in performance3.397

Thus, in the perturbation setting, TABLEFORMER398

outperforms all TAPAS baselines even more signifi-399

cantly, with at least 6.2% and 2.4% improvements400

on SQA and TABFACT dataset, respectively. In the401

instance level, we can see that, with TAPAS, there402

are many example predictions changed due to high403

vp, while there is nearly no example predictions404

changed with TABLEFORMER (around zero vp).405

3In SQA dataset, there is at most absolute 0.1% perfor-
mance drop because of some bad data point issues.

Model Number of parameters

TAPASBASE 110 M

TABLEFORMERBASE

110 M - 2*512*768
+ 12*12*13 =

110 M - 0.8 M + 0.002 M

TAPASLARGE 340 M

TABLEFORMERLARGE

340 M - 2*512*1024
+ 24*16*13 =

340 M - 1.0 M + 0.005M

Table 4: Model size comparison.

5.3 Model Size Comparison 406

We compare the model sizes of TABLEFORMER 407

and TAPAS in Table 4. We added only a few atten- 408

tion bias scalar parameters (13 parameters per head 409

per layer) in TABLEFORMER, which is negligible 410

compared with the BERT model size. Meanwhile, 411

we delete two large embedding metrics (512 row 412

ids and 512 column ids). Thus, TABLEFORMER 413

outperforms TAPAS with fewer parameters. 414

5.4 Analysis of TABLEFORMER Submodules 415

In this section, we experiment with several variants 416

of TABLEFORMER to understand the effectiveness 417

of its submodules. The performance of all variants 418

of TAPAS and TABLEFORMER that we tried on the 419

SQA development set is shown in Table 5. 420

Learnable Attention Biases v/s Masking. In- 421

stead of adding learnable bias scalars, we mask out 422

some attention scores to restrict attention to those 423

tokens in the same columns and rows, as well as 424

the paired sentence, similar to Zhang et al. (2020) 425

(SAT). We can see that TAPASBASE-SAT performs 426
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rc-gp c-gp gp pcp

TAPASBASE 57.6 47.4 46.4 29.1
TAPASBASE-SAT 45.2 - - -

TABLEFORMERBASE-SO 60.0 60.2 59.8 60.7
TABLEFORMERBASE 62.2 61.5 61.7 61.9

Table 5: ALL questions’ cell selection accuracy of
TABLEFORMER variants on SQA development set. “rc-
gp” represents the setting including row ids, column ids
and global positional ids, “c-gp” represents column ids
and global positional ids, “gp” represents global posi-
tional ids, and “pcp” represents per-cell positional ids.
“SAT” represents masking out some attention scores.
“SO” represents adding attention bias before scaling.

worse than TAPASBASE, which means that restrict-427

ing attention to only same columns and rows by428

masking reduce the modeling capacity. This led to429

choosing soft bias addition over hard masking.430

Attention Bias Scaling. Unlike TABLE-431

FORMER, we also tried to add attention biases432

before the scaling operation in the self-attention433

module (SO). Specifically, we compute pair-wise434

attention score by:435

Aij =
(h>i W

Q)(h>j W
K)> + Âij√

dK
(5)436

instead of using:437

Aij =
(h>i W

Q)(h>j W
K)>

√
dK

+ Âij , (6)438

which is the element-wise version of Equa-439
tion 1 and 3. However, Table 5 shows440

that TABLEFORMERBASE-SO performs worse than441

TABLEFORMERBASE, showing the necessity of442

adding attention biases after the scaling operation.443

We think the reason is that the attention bias term444

does not require scaling, because attention bias445

scalar magnitude is independent of dK , while the446

dot products grow large in magnitude for large val-447

ues of dK . Thus, such bias term could play an448

more important role without scaling, which helps449

each attention head know clearly what to pay more450

attention to according to stronger inductive biases.451

Effect of Row, Column, and Global Positional452

IDs. With TAPASBASE, TABLEFORMERBASE-SO,453

and TABLEFORMERBASE, we first tried the full-454

version where row ids, column ids, and global posi-455

tional ids exist as input (“rc-gp”). Then, we deleted456

row ids (“c-gp”), and column ids (“gp”) sequen-457

tially. Finally, we changed global positional ids458

Befor Perturb After Perturb

ALL SEQ ALL vp

TAPASBASE 61.1 31.3 57.4 14.0%

TAPASBASE 1p 63.4 34.6 63.4 9.9%
TAPASBASE 2p 64.6 35.6 64.5 8.4%
TAPASBASE 4p 65.1 37.0 65.0 8.1%
TAPASBASE 8p 65.1 37.3 64.3 7.2%
TAPASBASE 16p 62.4 33.6 62.2 7.0%

TABLEFORMERBASE 66.7 39.7 66.7 0.1%

Table 6: Comparison of TABLEFORMER and perturbed
data augmentation on SQA test set, where vp repre-
sents model prediction variation percentage after per-
turbation. Median of 5 independent runs are reported.

in “gp” to per-cell positional ids (“pcp”). In Ta- 459

ble 5, we can see that TAPASBASE performs sig- 460

nificantly worse from rc-gp to c-gp, to gp, to pcp, 461

because table structure information are deleted se- 462

quentially during such process. However, with 463

TABLEFORMERBASE, there is no obvious perfor- 464

mance drop during the same process. That shows 465

the structural inductive biases in TABLEFORMER 466

can provide complete table structure information. 467

Thus, row ids, column ids and global positional 468

ids are not necessary in TABLEFORMER. We pick 469

TABLEFORMER pcp setting as our final version 470

to conduct all other experiments in this paper. In 471

this way, TABLEFORMER is strictly invariant to 472

row and column order perturbation by avoiding 473

spurious biases in those original ids. 474

5.5 Comparison of TABLEFORMER and 475

Perturbed Data Augmentation 476

As stated in Section 4.3, perturbing row and col- 477

umn orders as augmented data during training can 478

serve as another possible solution to alleviate the 479

spurious row/column ids bias. Table 6 shows the 480

performance of TABPASBASE model trained with 481

additional {1, 2, 4, 8, 16 } perturbed versions of 482

each table as augmented data. 483

We can see that the performance of TAPASBASE 484

on SQA dataset improves with such augmentation. 485

Also, as the number of perturbed versions of each 486

table increases, model performance first increases 487

and then decreases, reaching the best results with 488

8 perturbed versions. We suspect that too many 489

versions of the same table confuse the model about 490

different row and column ids for the same table, 491

leading to decreased performance from 8p to 16p. 492

Despite its usefulness, such data perturbation is 493

still worse than TABLEFORMER, because it could 494
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ALL SEQ

TABLEFORMERBASE 62.1 38.4

- Same Row 32.1 2.8
- Same Column 62.1 37.7
- Same Cell 61.8 38.4
- Cell to Column Header 60.7 36.6
- Cell to Sentence 60.5 36.4
- Header to Column Cell 60.5 35.8
- Header to Other Header 60.6 35.8
- Header to Same Header 61.0 36.9
- Header to Sentence 61.1 36.3
- Sentence to Cell 60.8 36.2
- Sentence to Header 61.0 37.3
- Sentence to Sentence 60.0 35.3
- All Column Related (# 2, 4, 6) 54.5 29.3

Table 7: Ablation study of proposed attention biases.

not incorporate other relevant text-table structural495

inductive biases like TABLEFORMER.496

Although, such data augmentation makes the497

model more robust to row and column order per-498

turbation with smaller vp compared to standard499

TAPASBASE, there is still a significant prediction500

drift after perturbation. As shown in Table 6 vp501

deccreases from 1p to 16p, however, the best vp502

(7.0%) is still much higher than (nearly) no varia-503

tion (0.1%) of TABLEFORMER.504

To sum up, TABLEFORMER is superior to row505

and column order perturbation augmentation, be-506

cause of its additional structural biases and strictly507

consistent predictions after perturbation.508

5.6 Attention Bias Ablation Study509

We conduct ablation study to demonstrate the util-510

ity of all 12 types of defined attention biases. For511

each ablation, we set the corresponding attention512

bias type id to “others” bias id. Table 7 shows513

TAPASBASE’s performance SQA dev set. Over-514

all, all types of attention biases help the TABLE-515

FORMER performance to some extent, due to cer-516

tain performance drop after deleting each bias type.517

Amongst all the attention biases, deleting “same518

row” bias leads to most significant performance519

drop, showing its crucial role for encoding table520

row structures. There is little performance drop521

after deleting “same column” bias, that’s because522

TABLEFORMER could still infer the same column523

information through “cell to its column header”524

and “header to its column cell” biases. After525

deleting all same column information (“same col-526

umn”, “cell to column header” and “header to col-527

umn cell” biases), TABLEFORMER performs signif-528

icantly worse without encoding column structures.529

Similarly, there is little performance drop after530

deleting “same cell” bias, because TABLEFORMER 531

can still infer same cell information through “same 532

row” and “same column” biases. 533

6 Other Related Work 534

Transformers for Tabular Data. Yin et al. 535

(2020) prepended corresponding column headers 536

to cells contents, and Chen et al. (2019) used cor- 537

responding column headers as features for cells. 538

However, such methods encode each table header 539

multiple times, leading to duplicated computing 540

overhead. Also, tabular structures (e.g. same row 541

information) are not fully incorporated to such mod- 542

els. Meanwhile, Yin et al. (2020) leveraged row 543

encoder and column encoder sequentially, which 544

introduced much computational overhead, thus re- 545

quiring retrieving some rows as a preprocessing 546

step. Finally, SAT (Zhang et al., 2020) restricted 547

attention to same row or columns with attention 548

mask, where such inductive bias is too strict that 549

cells could not directly attend to those cells in dif- 550

ferent row and columns, hindering the modeling 551

ability according to Table 5. In all of those models 552

mentioned above including Liu et al. (2021), spuri- 553

ous inter-cell order biases still exist due to global 554

positional ids of Transformer, leading to the vulner- 555

ability to row or column order perturbations, while 556

our TABLEFORMER could avoid such problem. 557

Structural and Relative Attention. Modified 558

attention scores has been used to model relative 559

positions (Shaw et al., 2018), long documents (Dai 560

et al., 2019; Beltagy et al., 2020; Ainslie et al., 561

2020), and graphs (Ying et al., 2021). But adding 562

learnable attention biases to model tabular struc- 563

tures has been under-explored. 564

7 Conclusion 565

In this paper, we identified the vulnerability of 566

prior table encoding models along two axes: (a) 567

capturing the structural bias, and (b) robustness 568

to row and column perturbations. To tackle 569

this, we propose TABLEFORMER, where learnable 570

task-independent learnable structural attention bi- 571

ases are introduced, while making it invariant to 572

row/column order at the same time. Experimental 573

results showed that TABLEFORMER outperforms 574

strong baselines in 3 table reasoning tasks, achiev- 575

ing state-of-the-art performance on SQA dataset, 576

especially when facing row and column order per- 577

turbations, because of its invariance to row and 578

column orders. 579
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A Limitations of TABLEFORMER 661

TABLEFORMER increases the training time by 662

around 20%, which might not be ideal for very 663

long tables and would require a scoped approach. 664

Secondly, with the strict row and column order in- 665

variant property, TABLEFORMER could not deal 666

with questions based on absolute orders of rows in 667

tables. This however is not a practical requirement 668

based on the current dataset. Doing a manual study 669

of 1800 questions in SQA dataset, we found that 670

there are 4 questions4 (0.2% percentage) whose 671

answers depend on orders of rows. Three of them 672

asked “which one is at the top of the table”, an- 673

other asks “which one is listed first”. However, 674

these questions could be potentially answered by 675

adding back row and column ids based on TABLE- 676

FORMER. 677

4We find such 4 questions by manually looking at
all 125 questions where the model predictions turn from
correct to incorrect after replacing TAPASLARGE with
TABLEFORMERLARGE.
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