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ABSTRACT

Attention mechanisms have revolutionized machine learning (ML) by enabling
efficient modeling of global dependencies across inputs. Their inherently paral-
lelizable structures allow for efficient scaling with the exponentially increasing size
of both pretrained data and model parameters. Yet, despite their central role as the
computational backbone of modern large language models (LLMs), the theoretical
understanding of Attentions, especially in the nonlinear setting, remains limited.

In this paper, we provide a precise characterization of the in-context memorization
error for nonlinear Attention, in the high-dimensional regime where the number of
input tokens n and their embedding dimension p are both large and comparable.
Leveraging recent advances in the theory of large kernel random matrices, we show
that nonlinear Attention typically incurs higher memorization error than linear
regression on random inputs. However, this gap vanishes, and can even be reversed,
when the input exhibits statistical structure, particularly when the Attention weights
align with the input signal direction. Our theoretical insights are supported by
numerical experiments.

1 INTRODUCTION

Since its introduction, the Transformer architecture has become a cornerstone of modern machine
learning (ML) and artificial intelligence (AI) (Vaswani et al., 2017)), powering large language models
(LLMs) such as BERT (Devlin et al.;, 2019), LLaMA (Touvron et al.,|2023)), and the GPT series (Ope+
nAl et al.l [2024)). Originally developed for sequence modeling tasks such as machine translation
and language modeling, Transformers have demonstrated remarkable versatility and now achieve
state-of-the-art performance across a wide range of applications, including those that are not inher-
ently sequential (Dosovitskiy et al.,[2020). At the heart of this empirical success lies the Attention
mechanism, which enables flexible integration of information across positions and scales efficiently
with both data and model size. Despite its success, our theoretical understanding of Attention,
especially in the nonlinear setting, remains limited, particularly in terms of how it learns statistical
patterns from high-dimensional input tokens.

Recent years have seen an increasing use of high-dimensional statistics (Vershynin, 2018), statistical
physics (Carleo et al.| 2019), and random matrix theory (RMT) (Couillet & Liao, [2022) to derive
insights in the design and optimization of large-scale ML models. In contrast to worst-case generaliza-
tion bounds that can sometimes be loose, high-dimensional analysis offers precise characterizations
and is able to explain phenomena such as the neural tangent kernel (Jacot et al.,[2018)), double descent
in generalization (Mei1 & Montanaril [2021;|Liao et al., 2021} Nakkiran et al.,[2020; Hastie et al., 2022),
and benign overfitting (Bartlett et al., 2020} [2021)), which now inform core ML design principles. A
brief review of related work is provided in Section[I.2]

Yet, a precise characterization of nonlinear Attention, particularly on structural inputs, remains largely
elusive. The main technical challenges stem from the nonlinearity of the Attention operator and the
complex interactions between input tokens and Attention weights via queries, keys, and values. Prior
theoretical efforts often rely on restrictive assumptions: focusing on in-context learning by reducing
Attention to gradient descent on (generalized) linear model, which only holds under particular weight
configuration (Bai et al., 2023} [Lu et al.| 2025)); assuming simplified Attention matrices (e.g., all-
ones (Noct et al., 2022) or random Markov matrices (Naderi et al., [2024)), or adopting stylized
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models from Bayesian learning (Tiberi et al., 2024), sequence multi-index models (Troiani et al.|
2023)), or generalized Potts model (Rende et al.,[2024)) in statistical mechanics.

This paper fills this gap by presenting a precise analysis of the in-context memorization for nonlinear
Attention on structural inputs (Definition [2), in the high-dimensional regime where the input length n
and embedding dimension p are both large and comparable. Building upon recent advances in the
eigenspectral analysis of nonlinear random kernel matrices, we derive precise expressions for the
in-context memorization error (see Definition [3) of nonlinear Attention having weights admitting a
full-plus-low-rank decomposition (Assumption |I).

Our result shows that the memorization error of nonlinear Attention is determined by a system of
nonlinear equations involving the dimension ratio p/n, the alignment between input signal and
Attention weights, and the nonlinearity (via its Hermite coefficients). By focusing on this canonical
setting, our analysis takes a step forward to unveil the theoretical origin of many visually striking
features emerging in modern large-scale ML.

1.1 OUR CONTRIBUTION
The main contribution of this paper are summarized as follows.

1. In Theorem|[I} we derive a precise characterization of the in-context memorization error (Defini-
tion [3) for nonlinear Attention, under a high-dimensional signal-plus-noise model (Definition [2)
for the input tokens. We show that the Attention memorization error is governed by a system of
nonlinear equations involving the dimension ratio p/n, the interaction between input signal and
the Attention weights, and the nonlinearity via its Hermite coefficients.

2. In Sectiond] we compare the memorization error of nonlinear Attention to that of linear regression
(see Proposition [J). While nonlinear Attention generally incurs higher error than linear regression
for random inputs, this disadvantage disappears—and can even be reversed—for structured inputs,
particularly when the Attentions weights are well-aligned to the input signal. We further show
that Attention lacking a linear component (i.e., with its first-order Hermite coefficient being zero)
are unable to effectively memorize random and/or structural inputs.

3. From a technical perspective, we establish in Proposition[T]a novel Deterministic Equivalent (see
Definition @] for a formal definition) for the resolvent of a generalized sample covariance matrix
(SCM) of the form CXX"CT. This extends classical SCM that has been extensively studied in the
literature, by considering a population covariance C = C(X) that depends on the input X, and may
be of independent interest beyond this paper.

1.2 RELATED WORK

Here we briefly review related work. A more detailed discussion is provided in Appendix [A]

Theoretical understanding of Transformer and Attention. Theoretical studies of Transformers
have sought to characterize their expressive power and in-context learning (ICL) capabilities. For
example, it has been established that Transformers are universal sequence-to-sequence function
approximators (Yun et al.|[2019). A growing body of work has focused on understanding the ICL
behavior of Transformers and Attention, that is, their ability to adapt to new downstream tasks from a
few example (Dong et al.| 2024; Xie et al., 2021} |Garg et al., 2022b; |L1 et al., 2023 Bai et al., 2023}
Oswald et al.|[2023; Wu et al.||2024; Zhang et al.| 2024} (Chen et al.| |2024; [Li et al.|,|2025)). However,
these analyses often rely on restrictive assumptions or idealized weight configurations. In contrast,
our work provides a random matrix analysis of nonlinear Attention that explicitly captures the generic
interaction between structured input signals and Attention weights, offering a more flexible and
data-dependent understanding of in-context memorization.

Memorization of neural networks. Classical results have characterized the memorization capacity
of shallow neural networks under various settings (Baum, [1988; Bubeck et al.| 2020), with recent
extensions to deep nets (Park et al.,[2021;|Vardi et al.,|2021)) as well as single-layer Attention (Mahdavi
et al.,2023; |Chen & Zou, |2024)). These studies often focus on worst-case bounds, e.g., on the number
of distinct samples that can be memorized by a network. In contrast, here we focus on the szatistical
(so average-case) in-context memorization of nonlinear Attention, by considering a signal-plus-noise
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model for the inputs. In particular, our analysis quantifies how the memorization performance depends
on the alignment between the Attention weights and the input signal.

Random matrix analyses of ML methods. Random matrix theory (RMT) has emerged as a
powerful and flexible tool to understand the dynamics and generalization properties of large-scale ML
models. It has been successfully applied to shallow (Pennington & Worahl 2017} |Liao & Couillet,
2018bja; |[Louart et al., 2018) and deep neural networks (Benigni & Péché, [2019; Fan & Wang, 2020;
Pastur} [2020)), and more recently to linear Attention (Lu et al.| 2025). These analyses encompass
both homogeneous (e.g., standard normal) (Pennington & Worahl 2017; Mei & Montanari, [2019)
and structured (e.g., mixture-type) input data (Liao & Couillet, [2018b; |Ali et al., |2022; MAI & Liao}
2025)). To the best of our knowledge, the present work provides the first precise characterization of
the statistical memorization error of nonlinear Attention on structured input, extending RMT analysis
to a broader and more realistic class of Attention-based models.

Notations. Scalars are denoted by lowercase letters, vectors by bold lowercase, and matrices by bold
uppercase. For a matrix X € RP*", we write X' for its transpose, x; € R? for ith column, and |X] for
its spectral norm. We use I, for the identity matrix of size p. For a vector x € R?, its Euclidean norm

is given by |x| = vx"x. For a random variable x, we denote its expectation by E[x].

2 PROBLEM SETTING AND PRELIMINARIES

We consider the following form of entry-wise nonlinear Attention.

Definition 1 (Nonlinear Attention). Let X = [xy,...,X,]| € RP" be the embedding of an input
sequence of tokens X, ..., X, € R? of length n. A (single-head) nonlinear Attention output Ax € RP*"
with key, query, and value matrices Wx € R*P ,Wpo € R¥P, Wy € RP*P and entry-wise nonlinearity
f: R =R, is defined as:

Ax = Wy Xf(X"W WX/ /p)/Jp = WyXKx. (1)

The Attention in Definition [I]is practically compelling due to its computational advantage over
classical Softmax Attention (Wortsman et al., 2023} [Ramapuram et al., 2024)). Remarkably, under
Assumption [T]and for input tokens drawn from the signal-plus-noise model in Definition [2] taking
f to be truncated exponential function leads to approximately the same output Ax as that using
Softmax nonlinearity; see Remark [5]in Appendix [B|for a detailed discussion. Intuitively, the matrix
Kx = f(XTWWoX/ /p)/ /P € R™" defines an asymmetric kernel parameterized by W, W, and
captures the pairwise similarly of input tokens. The output Ay is then obtained by “mixing” the
values Wy X according to the obtained similarities in Kx.

We consider that the product of key and query matrices W W g in Definition 1| writes as the sum of a
full rank identity matrix and an asymmetric low-rank (in fact rank-one) matrix as follow.

Assumption 1 (Full-plus-low-rank decomposition of Attention weights). The key and query matrices
Wi, W € R¥? ipn Deﬁnitionsatisfy, for some given wg, wi € R?,

WEW, = I, + wgw), € RPP. @)

The full-plus-low-rank decomposition for Wi W, in Assumptionis largely inspired by the empirical
success of Low-Rank Adaption (LoRA) in fine-tuning Transformer-based LLMs (Hu et al.| 2021)).
Note that Assumption [I|implies that d > p, though this condition is not essential and can be relaxed
by considering block decomposition of Wi W with one full-rank sub-block. Also, while here we
focus on the rank-one setting in Assumption [I]for clarity, our analysis extends to arbitrary but fixed
(compared to n, p, d) rank structure; see Remark[6]in Appendix [B]for further discussion on this point.

For the sake of our theoretical analysis, we assume the following for the nonlinearity f in Definition|I]
Assumption 2 (Nonlinear function f). The function f: R — R in Definition l| satisfies: (1)
lim; o [f(2)] < o0, [f(x)| < Cyexp(Cylx|) for some constants Cy,Cy > 0; and (2) f is centered
with respect to standard Gaussian measure, that is, E[f(£)] = 0 and a; = E[Ef(§)] # 0, \2a, =
E[&f(£)] =0, and v = E[f*(£)] for £ ~ N'(0, 1).

The first item of Assumption [2holds for bounded nonlinearity such as sigmoid, truncated exponential,
or ReLU variants. For the second item, note that under Assumption|l|and for tokens x; drawn from
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the signal-plus-noise model in Definition 2] below, it follows from the Central Limit Theorem that
the non-diagonal entry of [X"W{WX];;/ Jp — N(0,1) in law as p — oo and for i # j, so that f is
applied on a random matrix with asymptotically Gaussian (but strongly correlated) entries, justifying
the Gaussian-centric Hermite expansion. We consider in Assumption 2] that the zeroth-order Hermite
coefficient E[ f(£)] of f is zero: This can be achieved by subtracting the same constant from all
non-diagonal entries of Kx in (T) and should nor alter the Attention memorization behavior.

We consider input tokens independently drawn from the following signal-plus-noise model, in the
high-dimensional regime where n, p, d are all large and comparable.

Definition 2 (Signal-plus-noise model). Each token-target pair (x;,y;) € RP x {+1},i € {1,...,n} is
independently drawn from the following binary Gaussian signal-plus-noise model:

X; = ylll +2z; € ]Rp, Vi € {:I:l}, Z; ~ .N.(O, Ip), (3)

where p € R? is a deterministic signal vector.

The model in Definition [2] considers that the inputs are as the sum of highly correlated signal (¢) and
i.i.d. random noise, and is widely used in the study of statistical learning under structured inputs.

Assumption 3 (High-dimensional asymptotics). As n — oo, we have that (1) p/n — ¢ € (0, ),
d/n € (0,); and (2) the mean vector u € R in Definition 2] the weight vectors in Assumption|I]
wo, Wi € R? satisfy lim sup, max{|ul, [wol, [wg[} < oo.

Under Definition [2| and Assumption [3} the matrix of input tokens writes X = py' + Z, fory =
[vi,..-s y,,]T € R", and random noise matrix Z € RP" having i.i.d. standard Gaussian entries. Note
that both the rank-one signal py' and the noise matrix Z have spectral norms of order O(/n). so that
they are set on even ground in the high-dimensional regime as n, p — co under Assumption 3}

Remark 1 (Beyond the signal-plus-noise model in Definition [2). Our analysis can be extended
beyond the binary Gaussian signal-plus-noise model in Definition [2]in a few aspects. Such extensions
include, e.g., sub-exponential mixture model for z; € R? having i.i.d. sub-gaussian entries of zero
mean and unit variance; and multi-class settings where the number of classes is larger than two but
remains finite as n, p — co. See Remark[7]in Appendix [B|for further discussion. Also, it would be
of future interest to to consider non i.i.d. input tokens, e.g., those having a temporally correlated
structure of the form X = ZC for Toeplitz C € R™" to model an auto-regressive process.

In this paper, we aim to quantify the statistical memorization error of the nonlinear Attention
defined in Definition [T} under the signal-plus-noise input model in Definition[2] To this end, we
evaluate the performance of Attention as a feature extractor in downstream tasks via linear probing.
Let Ax € R”*" be the nonlinear Attention output defined in of Definition (1| for input matrix
X = [x1,....,%X,] € R and lety = [y1,..., y»]" € R" denote the associated labels. We define a
ridge-regularized linear probing vector w € R? that minimizes the following mean squared error
(MSE) on the pair (X, y):

1 1
Lw) = —y" = wAx[ + (IWwl = — [yT = wiXKs[" + plwylf = Lwy), @)

where wy = W,w € R?, and y > 0 is the regularization penalty. For any y > 0, the unique minimizer
of (@) admits the following closed-form expression:

wi = (XKxKEXT + nyl,)” XKxy = XKx (KEX"XKx + nyl,) " y. )
With the explicit linear probing solution wj, given in (3), we now define the in-context memorization

error of the nonlinear Attention in Definition [Tl as follow.

Definition 3 (In-context memorization error of nonlinear Attention). For (X,y) € RP*" x {+1}"
drawn from the signal-plus-noise model in Definition[2] the in-context memorization error of nonlinear
Attention in Definition[l|is defined as the mean squared error of the optimal linear probe w3, in [)):

1 . 2 Yoy Q(yy
E = — T TXK = - 5 6
A= HY (wy) XH n 76)/ (6)
where we denote the nonlinear resolvent matrix
-1
Q(y) = (KxX"XKx/n +ylL,) . %)
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By Equation (6), assessing the in-context memorization error of nonlinear Attention reduces to the
analysis of the quadratic form y"Q(y)y of the random nonlinear resolvent Q(y) defined in (7). When
the random input tokens X are drawn from the signal-plus-noise model in Definition 2] this analysis
presents the following technical challenges.

1. The resolvent matrix Q depends on the input X in a highly nonlinear fashion: both through the
entry-wise nonlinearity f (see Definition[I)) and through the matrix inverse in (7).

2. The structure of Q is more complex than classical random matrix models (e.g., Wigner or Wishart
matrices) studied in RMT (Bai & Silverstein, 2010) or high-dimensional statistics (Vershynin,
2018). Specially, the matrix K3 X' XKx /n can be viewed as a nonlinear extension of the standard
sample covariance (or Gram) matrix (Marcenko & Pastur, [1967; Baik & Silverstein, 2006), but
with the key distinction that the population covariance taking the form of an Attention kernel
matrix that is itself dependent of X.

These challenges must be addressed to characterize the memorization error of nonlinear Attention.
To this end, we introduce the notion of Deterministic Equivalent, which provides a tractable surrogate
for analyzing the high-dimensional behavior of the random resolvent Q(y) defined in (7).

Definition 4 (Deterministic Equivalent, (Couillet & Liao, [2022, Definition 4)). Let Q € R™" be a
sequence of random matrices. A sequence of deterministic matrices Q (of the same size) is called
a Deterministic Equivalent for Q, denoted Q < Q, if for all (sequences of) deterministic matrices
A € R™" and vectors a,b € R" of unit spectral and Euclidean norm, we have,

Qo0Q: %tr(A(Q—Q))aO, a'(Q-Q)b -0, 8)
in probability as n — co.

We aim to deriving a Deterministic Equivalent for the nonlinear resolvent Q(y) defined in (7)), which
in turn enables high-dimensional characterization of the quadratic form y" Q(y)y/n and the in-context
memorization error E, in (@) of Definition[3] This is the focus of the next section.

3 MAIN TECHNICAL RESULTS

This section presents our main technical contributions. We begin with Lemma|[I] which establishes a
high-dimensional linearization of the Attention kernel matrix Kx defined in (I)). Next, Proposition|[I]
provides a Deterministic Equivalent for the noise-only nonlinear Attention resolvent. Together,
these results enables a precise characterization of the in-context memorization error E, defined in
Definition 3] which we present in Theorem [T at the end of this section.

To start with, note that under the full-plus-low-rank decomposition of the Attention weights in
Assumption |1} the Attention kernel matrix Kx in (1) admits a more tractable approximation via a
Hermite polynomial expansion in the high-dimensional regime of Assumption[3] This is given in the
following result and proven in Appendix [C.2]

Lemma 1 (High-dimensional linearization of Attention kernel matrix). Ler Assumptions[I}H3]
hold. Then, the Attention kernel matrix Kx = f(X"W WX/ /p)/ P defined in (1) satisfies

% = lulP+p"wrwhp 1 pTw,
IKx — Rxll = O(n™"/?) with Rx = Ky + UxZxVy, Tk = a 0 0 | eRPS,(9)
u'wo 0 1

with probability approaching one as n, p — oco. Here, a; is the first Hermite coefficient of f (see
Assumption , Ky = f(Z7Z/ \p)/ Jp — diag() is a symmetric noise-only kernel matrix and

Uk =y, Z'p, Z'wi]/Jp €R™, Vo=1Iy, Z'p, Z'wq]/Jp € R™. (10)
Moreover, we have that max{|Ky|, [Uk|, |Zl, [Vol} = O(1) with high probability as n, p — oo.

Lemmal[T|shows that the nonlinear kernel matrix Kx can be decomposed as the sum of: (1) a symmetric
noisy-only random kernel matrix KN;[H and (2) a low-rank, asymmetric informative matrix (rank at

I'The noise-only kernel matrix Ky is known in the literature as a random inner-product kernel matrix (Cheng,
2013} [Fan & Montanari, 2019} Kammoun & Couillet, |2023)), with connections to single-hidden-layer (random)
neural networks (Pennington & Worah} 2017;|Benigni & Péchél|2019).
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most three), whose structure depends on the interaction between the signal g and Attention weights
Wk, Wo, and on the nonlinearity f only via its first Hermite coefficient a; = E[¢ f(£)], £ ~ N(0, 1).
Note that under Deﬁnition the input matrix X = py' + Z also admits a rank-one signal-plus-noise
decomposition. As such, the matrix of interest Ki; X" XKy /n can be approximated, per Lemma as
the sum of some full-rank and low-rank matrices.

In the following result, we focus on the full-rank (and noise-only) part of the Attention matrix and
derive a Deterministic Equivalent for its resolvent, the proof of which is given in Appendix [C.3]

Proposition 1 (Deterministic Equivalent for noise-only nonlinear Attention). Let Z € R”*" be a

random matrix having i.i.d. standard Gaussian entries, and define the symmetric noise-only kernel
matrix Ky = f(Z"Z/ Jp)/ P — diag(’) as in Lemma Then, as n, p — o with p/n — c € (0,00)
and y > 0, the following Deterministic Equivalent (see Definition[d) holds

(KNZ"ZKy /n+ }/In)_1 o m(y)/c-1,,

where m(y) is the unique Stieltjes transform solution to the fixed-point equation
=il

m(y) = (y/c+v/c+a/* -V T(y)v) ,

.
with v = [2—5(1 +¢) 4 4 o o 1] €R®andT(y) € R® is a symmetric matrix whose

c c

entries are polynomial involving m(y), 8:(y), 62(y), 85(y), 84(y) defined in (28) oprpendix
Notably, the system of equations depends on the regularization penalty y, the dimension ratio c, and
the nonlinearity f via its Hermite coefficients a; and v in Assumption 2}

Using Lemma [I] and Proposition [I| we obtain the following precise characterization of the in-context
memorization error E, for nonlinear Attention. The proof is given in Appendix [C.4]

Theorem 1 (High-dimensional characterization of in-context memorization error). Let Assump-
tionshold. Then, the in-context memorization error E defined in @ satisfies En — Ex — 0 in
probability as n, p — o with p/n — ¢ € (0, ), where

Ea=—y*c el (cly + A(y)N) " A'(y) (cly + AA(y)) " e;. (11)

Here, e; € R’ is the canonical basis vector with [e;]; = &;j, A, A(y) € R”® are symmetric matrices
defined in Lemmaof Appendix and N (y) is the derivative of A(y) with respect to y.

4 MEMORIZATION OF NONLINEAR ATTENTION VERSUS LINEAR REGRESSION

In this section, we discuss the implications of our technical results in Theorem [T} by contrasting the
in-context memorization behavior of nonlinear Attention with that of linear regression.

4.1 IN-CONTEXT MEMORIZATION OF LINEAR REGRESSION

We begin by considering a classical baseline where the input embedding matrix X is directly used for
linear probing, instead of the nonlinear Attention output Ax defined in (I) of Definition[1} In this
case, the probing vector wir € R? is obtained by minimizing the following ridge-regularized MSE:

1
Lin(w) = ~ |y" = w'X[" + ylwl”. (12)

This leads to the linear regression model defined below.
Definition 5 (Linear regression and its in-context memorization error). For (X,y) € RP" x {+1}"
drawn from the signal-plus-noise model in Definition[2] the linear regression solution wy is given by
Wig = (XXT+nyIp)_l Xy:X(XTX+nyI,,)_1y, y > 0. (13)
Its associated in-context memorization error is given by
Yoy (X'X/n+ yL) 'y
n ay

1
Fu = |y~ wiX] = , (14)

which is also the derivative of the quadratic form of the linear resolvent (X' X/n + yI,,)fl.
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Figure 1: Empirical memorization error Err (red) of linear regression versus its high-dimensional
equivalent Erg (blue) in Proposition 2| Figure As a function of regularization strength y, with
p = 2048,n = 512, and |p|* = 1. Figure As a function of embedding dimension p, with
n =409,y =107, and |p|* = 1. Figure[L¢ As a function of signal-to-noise ratio (SNR) [ u|?, with
p=512,n=2048,and y = 107°.

We now characterize the linear regression memorization error Erg in @, in the high-dimensional
regime of Assumption [3] The proof is standard and included in Appendix [C.5]for completeness.

Proposition 2 (High-dimensional characterization of in-context memorization for linear regres-
sion). Let Assumption[3|hold. Then, the in-context memorization error Err defined in (T4) of the
linear regression model in Deﬁnitionsatisﬁes Eir — Eig — 0 in probability as n, p — oo, with
5o r'm )+ e— 1+l (y'm' () + (1 = e = p)(ym(y) - 1))
(1 + pl? = |l ymi(y))?

LR =
where mir(y) is the Stieltjes transform solution to the following Marenko-Pastur equa-
tion (Marcenko & Pastur, | 1967):

: (15)

cymip(y) + (1 —c+ y)mr(y) —1=0, (16)

emip(y)+mir(y)

/ —
and mig(y) = 2eymir(y)+1—c+y

is its derivative with respect to y.

In what follows, we leverage Proposition [2]to assess how the in-context memorization error Eig of
linear regression is influenced by: the regularization strength y, the dimension ratio ¢ = lim p/n, and
the signal-to-noise ratio (SNR) || u|%.

Remark 2 (Effect of regularization strength for linear regression). Under the settings and notations
of Proposition 2] the in-context memorization error Eig is an increasing function of the regularization
strength y. In the “ridgeless” limit y — 0, the memorization error vanishes Ejg — 0 for p > n;
whereas in the strongly regularized limit y — oo we have Ejg — 1. Interestingly, when y — 0 and
¢ = lim p/n — 0, the Stieltjes transform myr(y) becomes singular, which is connected to the now
well-known “double descent” phenomenon in test error curves (Bartlett et al.| 2020; Mei & Montanari,
2021} ILiao et al.| 2020; [Hastie et al.|, [2022).

Remark 3 (Effect of embedding dimension for linear regression). The in-context memorization
error Erg of linear regression is a decreasing function of the dimension ratio ¢ = lim p/n. For fixed
n, increasing the embedding dimension p thus improves memorization. In the limit ¢ — 0 and for
¥ = 0, the memorization error converges to E;g — 1/(1 + |u|?). Moreover, in the under-parametrized
setting with p < n and y = 0, the memorization error Erp scales approximately with the embedding
dimension p as 1 — ¢ = 1 — p/n, in line with classical statistical learning theory (Bach,2024).

Remark 4 (Effect of SNR for linear regression). The in-context memorization error Ej g decreases
with the SNR |||?. In the limit || — oo, one has E;g — 0. In particular, for y = 0 and p < n, the
error scales as Erg o 1/(1 + |p|?), a trend clearly illustrated in Figure

Remarks and E] are confirmed empirically in Figure|1| where we compare the theoretical Fig to
the empirical Ejx over varying regularization strength, embedding dimension, and SNR.
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Figure 2: Empirical memorization error E (red) of nonlinear Attention versus its high-dimensional
equivalent E (blue) from Theorem |1} and the theoretical memorization error of linear regression
(green) from Proposition with f(¢) = tanh(?). Figure As a function of regularization strength
¥, under null model with g = wg = wp = 0, p = 4096, and n = 1024. Figure[2b{ As a function of
embedding dimension p, under null model with n = 4096, y = 1072, Figure As a function of
SNR |u|?, with p = 512,n = 2048, y = 1072, and wx = wg = p.

4.2 IN-CONTEXT MEMORIZATION OF NONLINEAR ATTENTION VERSUS LINEAR REGRESSION

Similar to the discussions of linear regression and the empirical trends shown in Figure[I} we compare
in Figure [2]the empirical memorization error E4 of nonlinear Attention with its theoretical counterpart
Ea in Theorem|l} as well as with linear regression under the same setting.

In Figure [2a] and Figure [2b] we consider the null model with no statistical signal (¢ = 0) and for
identity Attention weights (wx = wp = 0). We observe that the in-context memorization error of
nonlinear Attention exhibits the same qualitative trends as linear regression: increasing with the
regularization strength y and decreasing with the embedding dimension p. Quantitatively, however,
nonlinear Attention (with tanh nonlinearity at least in Figure[2)) incurs a higher memorization error
than linear regression, but only in the absence signal.

In contrast, in the presence of structured input signals (z # 0) and when the Attention weights
W, W are aligned with the signal, we find in Figure 2c|that the memorization error of Attention are
visually indistinguishable from linear regression as the SNR |u|? increase. This illustrates that the
disadvantage of nonlinear Attention in memorization vanishes when it is tuned to the input structure.

We provide further numerical results in Appendix |D| showing that this disadvantage can even be
reversed and Attention has a significantly better statistical pattern memorization than linear regression,
particularly in the high SNR and/or limited sample regime, see, e.g., Figure[5]in Appendix

Figure [2] only concerns with tanh Attention. In the following, we show that the (scaling laws of)
in-context memorization error of nonlinear Attention strongly depend on the nonlinearity.

4.3 IMPORTANCE OF LINEAR COMPONENT FOR NONLINEAR ATTENTION

Figure [3]illustrates the role played by the linear component of the Attention nonlinearity f, quantified
by its first Hermite coefficient a; = E¢_yr(g1)[¢ f(£)], in improving memorization performance.

In Figure[3a} we consider a one-parameter family of nonlinearities parameterized by r > 0, f,(t) =
max (—5, min(5, rHe (t) + V1 — rZHeg(t))), where He;(t) = t and Hes(t) = (3 — 3t)/6 is the
first and third normalized Hermite polynomial, respectively. Fixing the “total energy” of f to v =
E; nvonlf 2(&)] = 1, we observe that memorization error decreases with increasing a;, highlighting
the crucial role of the linear component in f.

To further support this, we compare, in Figure [3bland Figure [3c|respectively, the trends of in-context
memorization errors as a function of the embedding dimension p and SNR, for three nonlinearities
f(t) = tanh(t) (with a; = 0.6057), bounded linear f(¢) = max(—5, min(5, t)) (with a; = 1), and
f(#) = cos(t) (with a; = 0). As shown in Figure[3b| when p increases, only Attentions having a linear
component (a; # 0) exhibit a meaningful gain in memorization performance. Similarly, in Figure
cosine-based Attention shows almost no improvement as SNR increases, whereas Attentions having
a linear component consistently improve.
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Figure 3: Effect of linear component in Attention memorization. Figure Empirical (red) and
theoretical (cyan) memorization error for f(t) = max(=5,min(5, rt + V1 — r2(t* — 3t)//6)) as
a function of the Hermite coefficient a; =~ r for p = n = 4096,y = 1, and |u|? = 1. Figure
Empirical (red) and theoretical (cyan) for f(¢) = cos(t), versus the theoretical error of f(t) = tanh(#)
(blue) and the theoretical error of f(¢) = max(—5, min(5, t)) (purple), as a function of the embedding
dimension p, for in-context sample size n = 4096,y = 1, and |u|* = 1. Figure Empirical
(red) and theoretical (cyan) for f(¢) = cos(t), versus the theoretical error of f(#) = tanh(z) (blue)
and the theoretical error of f(¢) = max(—5, min(5, t)) (purple), as a function of the SNR | u|?, for
p=512,n=2048,y = 1072, and wg = wo = p.

These findings suggest that retaining a sufficient linear component in the Attention nonlinearity
is not merely beneficial but essential for efficient information integration and memorization in
Transformer-based architectures.

Further experiments are presented in Appendix [D]to illustrate in greater detail the impact of the
dimension ratio p/n, the SNR, the Attention nonlinearity, and the alignment between Attention
weights and input data signal g on in-context memorization performance. Additionally, numerical
results based on pretrained GPT-2 weights are included, showing trends that closely align with the
theoretical predictions derived in Theorem [I]

5 CONCLUSION AND PERSPECTIVES

In this paper, we provide a precise high-dimensional characterization of the in-context memorization
error for nonlinear Attention on structured inputs. We show that, although nonlinear Attention
typically incurs slighter higher memorization error than linear regression for random inputs, this
disadvantage vanishes—and can even be reversed—when the input possesses structure, particularly
when the Attentions weights are aligned with the underlying input signal.

A natural extension of this work is to incorporate more realistic architectural components used
in practical Transformers, such as skip connections or multi-head Attention. Another interesting
direction is to go beyond the i.i.d. signal-plus-noise model in Definition[2] In real-world scenarios
such as natural language processing or time series analysis, the input (tokenized) sequences typically
exhibit strong temporal correlations. For instance, the case of linear temporal correlation has been
recently studied in (Moniri & Hassanil [2024), though limited to linear regression model. It would be
of interest to extend our nonlinear random matrix analysis to such structured input settings.

ETHICS STATEMENT

This submission focuses on the theoretical analysis of nonlinear Attention using random matrix
theory. We do not feel that this submission raises any ethical concerns regarding, e.g., human subjects
or potentially harmful insights.

REPRODUCIBILITY STATEMENT

The numerical experiments are obtained using synthetic data drawn from the binary Gaussian signal-
plus-noise model defined in Definition|2| The experimental settings, hyperparameter choices, and
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results are fully described in the main text and the appendix. Consequently, the numerical results
reported in this paper can be independently reproduced without relying on any proprietary datasets or
external resources.
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Supplementary Material of

A Random Matrix Analysis of In-context Memorization for Nonlinear Attention

The technical appendices of this paper are organized as follows. An extended discussion of related
work is given in Appendix [A] Some auxiliary results and discussions are placed in Appendix [B] The
detailed proofs of our technical results are given in Appendix [C| Additional numerical results are
provided in Appendix

A FURTHER DISCUSSIONS OF PRIOR EFFORTS

Transformers and empirical scaling laws. A growing body of work has established empirical
scaling laws for Transformer models with respect to data size, model size, and computational budget.
Early studies demonstrated power-law curves between generalization performance and model size for
Transformer-based LLMs (Kaplan et al.| 20205 Henighan et al., 2020), with subsequent extensions
to transfer and multitask learning (Hernandez et al.| [2021; [Wei et al., |2022). Notably, it has been
shown in (Hoffmann et al., [2022) that smaller models trained on more data can outperform larger
“undertrained” models under fixed compute budget. Other studies have explored the effects of
overparameterization, initialization, and depth-width trade-offs in the scaling laws of Transformer-
based models (Bahri et al., 2024} Zhai et al.| 2022} Xiao et al., [2021). Emergent phenomena and
scaling transitions such as double descent (Nakkiran et al., |2020), in-context induction (Olsson
et al., 2022b)), and phase shifts in predictability (Ganguli et al [2022)) have also been empirically
observed. Investigations on Vision Transformers and instruction-tuned models (Dosovitskiy et al.,
2020; (Chowdhery et al.,|2023)) further support the universality of scaling behaviors across different
modalities.

Our work complements these empirical findings by providing a precise theoretical characterization
on the scaling law of in-context memorization error of nonlinear Attention as a function of the
sample-to-dimension ratio (n/p) and the SNR of the input data.

Efficient Transformer variants and low-rank adaptation. The quadratic complexity of vanilla
Attention with respect to sequence length has motivated a wide range of approximation-based
methods to improve computational efficiency. Performer has replaced the Softmax nonlinearity
with kernel-based random projections to achieve near-linear complexity (Krzysztof et al., 2021));
Linformer has projected keys and values into a low-dimensional subspace (Wang et al.| 2020);
Nystromformer approximates the Attention matrix using the Nystrom method (Xiong et al.,[2021)); and
Reformer has combined locality-sensitive hashing with reversible layers for memory savings (Kitaev,
et al, 2020). In parallel, a series of works have proposed low-rank adaptation techniques for
efficient fine-tuning of Transformer-based LLMs. LoRA has introduced trainable low-rank updates
to frozen weights (Hu et al.l[2022)); QLoRA has extended this idea to quantized models with minimal
performance degradation (Dettmers et al., [2023); LoRA-FA has improved memory efficiency via
factorized updates (Zhang et al.| [2023)); and UniPELT has unified multiple parameter-efficient tuning
strategies into a single framework (Mao et al., 2021)).

Motivated by these low-rank structures in computing and/or fine-tuning Transformer-based models,
we assume in Assumption [I] a full-plus-low-rank decomposition of the Attention weights, and
characterizes how such structure affects the memorization capacity of nonlinear Attention.

Theoretical understanding of DNN, LLMs, and in-context learning. Recent theoretical advances
in the optimization and generalization of over-parameterized deep neural networks (DNNs) have laid
the groundwork for understanding the training behavior of modern large language models (LLMs).
Despite the fact that LLMs typically operate in a regime where the number of model parameters
far exceeds the number of training samples, first-order methods such as stochastic gradient descent
have been shown to converge reliably and generalize effectively under specific conditions (Li &
Liang, [2018};|Allen-Zhu et al.| 2019) for DNNs. Notably, the “edge of stability” phenomenon has
emerged as a key concept, capturing the peculiar yet effective optimization dynamics commonly
observed during the training of DNNs and LLMs (Cohen et al., 2021 |Arora et al., 2022} [Wang
et al}2022). Building on these insights, a growing body of work has investigated the mechanisms
underlying in-context learning (ICL). Transformers have been shown to approximate gradient descent
steps via Attention blocks (Von Oswald et al., 2023; Mahankali et al., [2023)), and even to implement
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general-purpose learning algorithms directly from contextual input (Akyiirek et al.l 2022; (Garg
et al.| |2022a). Alternative viewpoints interpret ICL as a form of implicit Bayesian inference (Xie
et al., 2021} |Falck et al., 2024), offering probabilistic frameworks to explain generalization from
prompts. At the mechanistic level, recent work has identified “induction heads” within Transformer
architectures than enable token-level pattern recognition and generalization (Olsson et al.| 2022a).

B AUXILIARY RESULTS AND FURTHER DISCUSSIONS

In this section, we provide further discussions on possible extensions of our theoretical results. We
discuss in Remark [5the connection between the entry-wise Attention in Definition [I]to the standard
Softmax Attention, in Remark [6] the extension of Assumption [I|beyond the rank-one setting, and
in Remark [7) the possibility to relax the binary Gaussian mixture model in Definition [2] to, e.g.,
multi-class sub-gaussian mixture model.

Remark 5 (On Softmax Attention). As already mentioned in ??, while Definition [I| corresponds to
entry-wise Attention (such the sigmoid or ReLU Attention (Wortsman et al., 2023 Ramapuram et al.|
2024)) instead of commonly used Softmax Attention, under the setting of Assumptions [I|and [3]and
for input token drawn from the signal-plus-noise model in Definition [2]taking a truncated exponential
function f(¢) = min(exp(t), C) for some C > 0 large, leads to approximately the same Attention
matrix Ax as that of Softmax nonlinearity, up to a scaling factor.

Precisely, note from the proof of Lemmabelow in Appendix that the (i, ) entry of X"W WX
is given, for i # j, by

Tyw T N T T
x; WWoX; = X; X; + X; WgWX;

= z]2; + iyl + iz + yiz) "+ yig wewop + v Wiew bz + 2l wiw iz + iy Wiw o,
N——

o({yp) o(1)
and fori = j, by
x; W Wox; = [xi[* + xiTwngTgxi
= |zil?
N——r
o(p) o(1)

As such, the ith column of X"W; WX/ /p (on which the Softmax function is applied) writes

+ |l + 2z p + y,«ziTwngp + yi[,lTwngzi + ziTwngz,« + pTwngp.

le.zl-
1 M
X'WEWoxi/ P = — [lzil? = p + O(yp) | + Oy (p™/2), (17)
VP :
)7

for z; ~ N'(0,1,), where we denote Oy (p~'/?) for random vector of infinity norm O(p~"/2) with
high probability. As such, for j # i, we have, conditioned on z; that z]z;/ \/p ~ N (0, |z;]?/p) which
is approximately N'(0, 1) for p large. Thus, by Taylor-expansion of f(t) = min{exp(t), C}, we have,
for large enough C that with high probability

min { exp (x;W}WQxi/ JP), C} =exp (z]Tzi/\/ﬁ) +0(p7?), (18)
for j # i and similarly

min {exp (X?W;WQX,-/\/?) , C} =C, (19)

as a consequence of the fact that |z;|*/ p = E[|z|*]/ yp = Jp-

Also, we have

n

Z exp (XIW;WQX,«/@) = Z exp (z;rz,»/ \/ﬁ) + O(p) + C = nE[exp(N (0, 1))] + O({/p), (20)

j=1 i
so that for truncated Softmax function Softmax : R” — R" defined as
1
Z;l:l min{exp(z;), C}

min{exp(z;), C}
Softmax(z) = :

, 21

min{e)q;(z,,), C}
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we have that the normalization factor for each column of X"W WX/ /p is asymptotically the same,
and that Assumptions[I]and 3] the entry-wise truncated exponential function f(t) = min(exp(t), C)
leads to approximately the same Attention matrix Ax as the Softmax Attention, up to a scaling
factor. Nonetheless, it remains unclear how this entry-wise approximation of Attention matrix could
translate into, e.g., the approximation of Softmax using truncated exponential function in terms of
the in-context memorization error in Definition[3] See Figure[7]below for numerical results showing
such examples and counterexamples.

Remark 6 (Extension beyond rank-one setting). While we consider in Assumption [I] that the
Attention weights admits a full-plus-low-rank decomposition of the form Wy Wy =1, + wKwZ), with
wng being of rank one, it is possible to extend the analysis beyond the rank-one setting and consider
a low-rank part of rank K (with K fixed as n, p — o0). Notably, in that setting, the linearization result
in Lemma|l{must be modified so that the term UKZKVE takes account of the rank-K structure in the
product W W,.

Remark 7 (Extension beyond binary Gaussian signal-plus-noise model). The Gaussian signal-plus-
noise model in Definition [2can be extended (at least) in the following two ways.

1. By considering more sophisticated structure in the statistical signal, for instance with
X = M]J" where M = gy, -, pgl € RP*K is the matrix containing the means of the K > 2
classes, and J = [ji, ..., jx] € R”K is the canonical vector of class C; € {1,... K}, with
Lix]: = 1if x; belongs to class C; and zero otherwise.

2. By considering not necessarily Gaussian noise in the input tokens. An example is the
sub-gaussian distribution that is symmetric in law. It has been long known in RMT that
eigenspectra of large random matrices enjoy universal properties for Gaussian and non-
Gaussian entries (Tao et al., [2010; |Pastur & Shcherbinal 2011), and we expect that most
of our technical results also hold for sub-gaussian distributions, see for example Lemma 2]
below.

C MATHEMATICAL PROOFS

In this section, we present the proofs of the technical results in this paper. We first recall in
Appendix [C.T] a few lemmas that will be used in the proofs. The proof of Lemma [I]is given in
Appendix the proof of Proposition|[I]is given in Appendix the proof of Theorem|[I]is given
in Appendix |[C.4] and finally the proof of Proposition[2]in Appendix [C.5]

C.1 USEFUL LEMMAS

Lemma 2 (Spectral norm of kernel random matrix, (Fan & Montanari, 2019)). For a random matrix
Z € RP*" having i.i.d. sub-gaussian entries that are symmetric in law, of zero mean and unit variance,
and function f : R — R such that | f(x)| < C; exp(Cs|x|) for some constants Cy, Cy > 0, the random
kernel matrix

K= f(Z'Z/p)/Jp — diag() € R™", (22)
satisfies, with high probability as n, p — oo at the same pace, that
1 [K| = O(1) if B¢ v o[ f(E)] = 0; and

2. K| = O({p) with |[K — E[f(E)]1.1)/ Pl = O(1) otherwise.

Lemma 3 (Matrix norm controls). We have the following facts on the operator norm of matrices and
Hadamard product between matrices.

1. For A € R™", we have |Almax < |A] < n|Almax with |Almax = max; ; |A;jl.
2. For A,B € RN we have |A © B| < max(\7, VN)|Almax - |BJ.

3. If A € RN*" s of rank one with A = uv', u € RY,v € R", we have AOB = diag(u)B diag(v)
so that
|A©B| < Julw - [Vl - [B], (23)
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see (Ba et al.| 2022, Fact 13). More generally, if A is of rank K with A = Zl,f:l wwi, we
similarly have

K K
|A©B| =) wwi) ©B| = | Y (uew}) © B
k=1 k=1

K K
< Y (wewD) @Bl < Y Jugleo - [Wiles - [B.
k=1 k=1

C.2 PROOF OF LEMMA[I]

Here, we present the proof of Lemma|[I]by “linearizing” the nonlinear kernel matrix
Kx = f(X"WWoX/\p)/p € R™", (24)
defined in (I)) of Definition [T}
To start, note that for the binary mixture model in Definition 2] and under Assumptions|[I]and 3| we
have x; = yip + z; and W W =1, + wgwy, so that for i # j,
x; Wi WoX; = X/ X + X{ WkW(X;
= z'z; + yiyilul + (yjz + yiz;) 'u + yjziTwngp + yi[,lTwngzj + ziTwngzj + y,»yjpTwngp,

N
o(yp) o)

for y;, y; € {1} and independent z;, z; ~ N'(0,1,,), where we used the fact that max{|ul, [wkl|, [wol} =
O(1) under Assumption 3] Similarly, for i = j,

x] Wi Wox; = x| + x/ wxw(x;

= |zl + |pl® + 2yiz] p + yiz] wiewop + yip " Wxw(zi + 2] wiew oz + p wrwhp,
N——r
o(p) o(1)

where we used the fact that for any deterministic vector w € R? of bounded norm, one has z/w ~
N (0, [w]?). As a consequence, we can Taylor-expand the smooth function f in Kx defined in (I)) of
Deﬁnition We first treat its non-diagonal entry (i, j), for i # j, as

JPIKxij = f(2 2/ ) + f' (2 2,/ VD) 3iyilul? + (vizi + yiz)) "+ yjz[ wewip + yip " wxw)yz;
+z/ wiwiz; + vy wrwop)/p+ O0(p),
and for its diagonal entries as
JPIKx i = fUzl?/Vp) + f/(zl?/ P pl® + 2yiz] p + yiz] wiewop + yip " wWiw(zi + 2] wiwhz; + p  wrwhp)/ p
+0(p™).
Note that under Assumption 2] one has lim; . f(t) < oo so that as n, p — oo,
JVp[Kxli = O(1).
This leads to the following spectral norm approximation of Kx as
JPKx = f(Z'Z/p) — diag() + f(Z"Z/\p) © (lulPyy" +yu'Z + ZTpy" + p"wo - Z'wiy" + p'wk - ywyZ)/ p
Oon(Vp) o(JP)
+p'wiwop - f(Z'Z/p) © (yy)/Np+Z wWixwoZ © f/(Z'Z/p)/ Jp — diag()) + Oy(1)
on(yp) Oon(yp)
= f(Z'Z/p) — diag() + ar((lpl® + p"wiewowyy " +yp'Z+ZTpy" + p'wo - ZTwiy" + p'wi - ywyZ)/ p
on(yp) Ou(yp)
+aZ"wgw,Z/ p —diag(:) + Op(1),
Ou(yp)
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where we used the fact that under Assumptionfor E[f(&)] = 0 and E[f'(£)] = a; # 0, it follows

from Lemmathat f(@Z7Z/ Jp) — diag(") = Oy(Jp) and f'(Z"Z/ Jp) = E[f'(E)]1.1] + O( D).
and then Item 3 of Lemmal[3]

LetUg =y, Z'u, Z'wk]/Jp € R™*, Vo =y, Z"n, Z"wy]/ Jp € R™, and

lul? + p"wrwhp 1 pTwg
Sk = 1 0 0 | eR¥. (25)
[ITWQ 0 1

Putting everything in matrix form, we conclude the proof of Lemmal[]

C.3 PROOF OF PROPOSITION(]]

For the sake of presentation, we provide here the derivation of the Deterministic Equivalent for the
resolven

-1

1

Qy) = (pKZTZK+ Y1n> . y>0, (26)
c

where we denote, with a slight abuse of notation that K = Ky = f(Z'Z/ /p)/ /P — diag(:) for the

noise-only kernel matrix Ky defined in Lemmal(I] The result in Proposition[I|can be obtained with a

simple scaling.

Consider the following normalized traces involving Q(y) defined in (26):
SO, QK. S nQIKZZ/p) L u(KQUK), L (Z Z/pKQKZZ/p),
for which we shall subsequently prove that

L Q) =M =0, QK 8 =0, QIKZ'Z/p) = 6(1) 0

27
1 1

» tr(KQ(y)K) — 65(y) — 0, » t(Z"Z/p - KQ(Y)K-Z"Z/p) — 84(y) = 0,
in probability as n, p — oo, where m(y) and §,(y), 52(y), 3(y), 84(y) are Stieltjes transforms satisfy-

ing the following self-consistent system of equations
1

m(y) =(L+v+ Z—; —v'T(y)v )

cdi(y) =-m(y)v'T(y)vs

cS(y) =v;T(y)vy + ci(y) (1 - V;T(y)v) (28)
c3(y) =viT(y)vy + Cr:(‘g)

e8u(y) = viT(yva +m(y) (V]T(y)v - 2)°

c
where we denote

T(y) = Ao(y)Ts + AoAo(y)) ™" € R, (29)
that is symmetric, for
mO - Gn(y) 81(y) a16,(y) 8:(y) a16:(y)
F s AR Yo T ROl <A
_| a1(y) @iy S5(y a;85(y (1= Im(y L= Im(y 6x6
MD=6m va) sy ey Ba-TmG) L - Emy | €N
O(y)  ad:(y) %(1—%;’1()/)) %(1—§m(y)) 34(y) a164(y)
ad(y) valy) E0-Tm(y) L0-ImG)  woi(p) o) |
and ,
A(c+1) ay/c aifc 0 a 0
a/c 1 1 0 0 O
AO _ al/c 1 1 0 0 0 € ]Réx() (31)
0 0 0 0 0 O ’
a 0 0 0 0 0
0 0 0 0O 0 O

?Note that this is not the same Q(y) as in (@) of Definition [3] It is used here for the sake of notational
convenience and only within the proof of Propositionm
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that are both symmetric, as well as

v=[401+¢) @ @ o o 1] €R

- K T c RS
vi=[0 1.0 0 0 O]TE]R (32)
v;=[1 0 0 0 0 0] €R®
vi=[% 1 1 0 0 0] eR"

C.3.1 PRELIMINARIES

First, let us introduce some notations and preliminary results that will be used in the proof of
Proposition [T}

Following (Couillet & Liaol [2022] Section 4.3.3), we can decompose, up to permutation, the nonlinear
kernel matrix K as

K = K f(ZLz/ yp)/p| _ K fla)/Jp (33)
f&Z./yp)/Jp 0 fle)"/Jp 0 '
where we denote K_; = f(ZI,Z_;/ /p)/ JP — diag(-) € Ri""D<(n=1),
a_; = Zjizi/\/ﬁ € ]Rn_l, (34)

for Z_; € RP*("™1 the Gaussian random matrix Z with its ith column removed, and z; € R is the ith
column of Z. Note that in the large p limit, the random vector «_; is standard Gaussian N'(0,1,_;).

Denote the shortcut Z = %ZTZ, we can similarly decompose Z as

. 1 ZI-Z—i —i - Z—i —i -
1=-7"7= alL/J/g * {@ +0(p™ = [aii/@ * {ﬁ +0u(p™?), (3%

where the Oyy(p~'/2) error term is due to the approximation [z;|?/p = 1+ O(p~/2) with a CLT
argument.

Note that, by the decomposition f(x) = a;x + f1(x) for a; the first Hermite polynomial of f as
defined in Assumption[2] we have

fla=) = aja_i + for(ay), (36)

and, for any A € R"~D*("-1 jndependent of a_;,
1 . 1 1 . 1
;f(a_,») Aa_j=a; - ; tr A + o(1), Ef(a_i) Af(a_)=v- 5 tr A+ o(1). (37)

In particular, for A = 1,_;, we get %f(a,i)TAa,,- = %4 4+ 0(1) and %f(a,i)TAf(a,i) =L +0(1),
where ¢ = lim p/n as in Assumption 3

Further denote
U= [a fla) Khao Kif(e) K4Zbe KLZ4fla)]/JpeRTVC, (38)

—177 =1

as well as
K, = {f(() 2t/ JP)}yes/ B — ding() € ROV 24 = ()t /pl s € R<"*1>X<H(>,39)
where, for given i,
-
. L (40)
R A A

that is orthogonal to and asymptotically independent of zz;/|z] = [@_;]; in (34). For the two
“leave-one-out” matrices K_; and Z_; defined in (33) and (33)), we have the following result.

Lemma 4 (Approximations of K_; and Z_;, (Couillet & Liaol 2022} Section 4.3.3)). ForK_; and Z_;
defined respectively in (33) and (33)), we have the following approximations in spectral norm:

1. K=K+ %a,iafi + op(1); and
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2. Zy=Z5+ yaal; + oy (1)

for Kt and Z*; defined in (39) that is asymptotically independent of e_; in (33).

With these preliminary results at hand, we are ready to derive a Deterministic Equivalent for Q(y)
defined in (26).

C.3.2 SELF-CONSISTENT EQUATION FOR m(z)

Here we present the derivation for the Deterministic Equivalent (of the diagonal entries) of Q(z).
With the block decomposition of K and Z in (33) and (33)), we obtain for Q(y) = Q in (26) (where
we drop the argument y) that

1 Yo 1O [Q7' =107
Q =KZK+;I,1_ [Q*l]zi [é*]zz 2 41)

with
[Q ]11 - K_IZ_IK_‘ + f(a_l)a K_' + pK—l —lf(a—l)T + f(‘:{—t)f((x—l)T 7In 15

[Q7 '] = ﬁf(afi)Tzfini + aclf(‘x\/ﬁl)

_ 1 v
[Q7'] = ;f(OLi)TZﬂ'f(OLi) + %
for which we have, per LemmaE],
1. K; = Kl la,,(l + o(1); and

2. Z,i = Zfi + ;(lﬂ-(ll + op(1);

where K, and Z*; as defined in (39) that are both asymptotically independent of ¢_;. This allows for
the first approximation of [Q™1],, as

197 = 2 fla) 2+ L= 2 flany” (el 424 ) fla+ Loty

2
=4 Yo 42)
C C c

Let

-1
Q .= (KJ_ ZJ. KJ. Xln—l) € ]R(n—l)x(n—l)’ (43)

1= =171

for K, ZL defined in (39), so that Q%; is asymptotically independent of «_; satisfying tr(Q — Q%) =

—i

0(1). We have the following appr0x1mat10n
Lemma 5 (Approximation of U] Q*,U,). For Q*, € R"(""D 45 i and Uy € RV jn ([33),

we have
Uy QLUo = Ag(y) + opy(1), (44)
with
0 an(y) &(y) a;8,(y) 8:(y) a:8,(y)
Im(y)  tm(y) a161(y) vdi(y) a185(y) va(y)
Ao(z) = 5(y)  ai6i(y) 33(y) a,65(y) - *m(y)) 41— *m(y))
a,6:(y) véi(y) a,85(y) vds(y) “‘(1 *m(y)) V(l *m(y))
5(y)  ab(y) (1- ém(y)) “(1- )fm(y)) 54(}/) a154(y)
a16,(y) véa(y) LA -Im(y)) (- Im(y)) a164(y) vé4(y) s
45)

as in B0), for m(y), 61(y), 62(y), 83(y), 84(y) as defined in 27) and (28).
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Proof of Lemmal3] Since QZ; is asymptotically independent of

U, = [afi f(a—i) Kfiafi Kfif(a—i) Klefia,i Kfizfif(afi)] /@ € ]R(n_l)X6’ (46)

we obtain
% trQ 611% trQ % tr(QK) aljll tr(QK) % tr(QKZ) alé tr(QKZ) -
ali trQ v% trQ a % tr(QK) v% tr(QK) ali tr(QK?) v% tr(QKZ?
UI0LU, = ; tr(QK) alé tr(QK) 1;) tr(KQK) a, tr(KQK) % tr(KQKZ) alé tr(KQKZ)

p
Do(y) + opy(1),
where we recall from that

p P

m(y) =~ Q() +o(1) = — QY (y) + o)

5i(y) = %tr(Q(y)K) +o(1) = %tr (Q4(PKY) +o(1)

52(y) = % tr(Q(YKZ) + o(1) = %tr(gi,-(nK:Z:) +o(1)

8(y) = %tr(KQ(y)K) +o(1) = % r(KLQ% (YKL + o(1)

8u(y) = %tr(ZKQ(y)KZ) T o(1) = % tr(ZE KL O (KEZE) + o(1),

and we use the fact that by (Silverstein & Bai, {1995, Lemma 2.6) and (Couillet & Liao, 2022}
Lemma 2.9), when evaluating normalized traces forms as in for n, p large, we can ignore
terms of finite rank inside the trace, by adding an error term o(1) with high probability, as well
as tr(KQKZ) = tr(QKZK) = tr[Q(Q™" - y1,)] = tr[L, — yQ] = tr(l,) = y tr(Q) = n — nym(y) =
n(1 — ym(y)), This concludes the proof of Lemrna O

Our objective is to compute the (i, i)th diagonal entries of the inverse Q = (KZK + yI,,)~". Using the
block inversion lemma, we get

[0 = ([Q7 ]2z — [Q " 1n([Q " 1) M [Q ') (47)
and
A i — [Q72([Q7 22) MO )™ —(1Q i) ' [Q M12[Qli
Q= —[QLIQ 1 (1Q 1) [0l : “48)

We start with the inverse ([Q™1];)™!, for which we have the following result.
Lemma 6 (Approximation of ([Q71];;)™). For [Q7'];; € R"™Y"D defined in [@T), we have

Q1) = Q% = Q5 U0 (Is + AoAo(y)) " AoUg Q% + 0y (1), (49)
where we recall N(y) € R as in @B0), Uy € R"D*¢ as defined in (38), and

2
A(c+1) a/c ai/c
a/c
A = a/c
0
a
0

N
fin

€ RS, (50)

S OO ==
S OO R
O OO O OO
(=N e NoBoX =]
S OO O OO

as in (31).
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Proof of Lemmal6] Per its definition in @IJ), we have
. 1 1 1
[Q7'n =K. Z. K + ;f(a’—i)a’:K—i + ;K—ia—if(a—i)-r + ;f(a—i)f(a—i)-r + 1,
= KA ZEKE + UgAoUT + L1, + oy (D),
c

for Uy, A defined in (31), K%, Z*; defined in (39) such that K_; = K*; + & Sa_ial; + oy (1) and

—>

7., =74+ %a-,—azi + op(1) by Lemmal As such, by Woodbury identity,

. -1
(Y (KfiZJ—-iKJ—-i + %Infl + UOAUOT) +op(1)
-1
= Q% — QLU (I + AUy Q5Us) AU QY + oy (1),

for Q1; defined in (@3). Using Lemmalto approximate UJ Q-,Uy = Aq(y) + op(1), we conclude the
proof of Lemmalg] O

With Lemmas [5|and[6] we get the following (block-wise) approximation for Q.
Lemma 7 (Block approximation of Q). We have

QL — QL UL + Ai(1)A(Y) A (NUFQY —m(1)Q%Uo (I + AgAg(y)) ™
—m(y)v" (Is + Do(y)Ao) ' UF QY [Ql:

where we recall Ny(y) € C¢ as in B0), Ao as in (B1), Uy € R(™D%6 g5 defined in (38), and

v + OH(I),
(51)

Q:

2 v -1
Al(y)=Ao—<Z;+c+)c/> wieR™, v =[%(1+c) @ @ o 0 1]€R’ (52)

‘1
c

as in (32). We also have, by (52) and Sherman—Morrison identity that

Ao(Y)Is + Ar(Y) DoY) = Ao(y) <16 +AoAo(y) — < + ; + Y) VVTAO(Y))

= Ao(1)(0e + AgDo(1)) ™ + Ao(Yzz(Ie + Ao Do() v T Ag(y)(Is + AOAO(Y))%, (53)
@t e+ L =vTA(s + AAo(y)) v

CZ

and

Ug (Q4 = Q1 Uo(Is + A (1)Ao(1) " As(y)Ug Q%) Up = Ag(y)(Ts + Ai(1)Ao(y) ! + 0y(1). (54)

Proof of Lemmal[7] We first work on [Q™],; by expanding the term % fla_)TZ_K_; as

f(j%) Z.K= f(ix/%) (Z4 el LK +%a—ial)+0u-u(1)
) LA 1 N T
= f((\x/ﬁ) 75K +a 1pﬁa_,K_, + alp (1 + p> % + oy (1),
so that .
Q' =? (j%) 7K+ lzf (‘j;) +op(1) = VUL + oyy(1), (55)

with v € R® defined in (52).
So that

[Q1:[Q7'1:([Q7 i)™ = m(y)v'Uy (in = QLU (Is + AgAg(y) ™! A0U3Q£i) + op(1)
=m(y)v" (Is + Ao(y)Ao) ™ Ug QL + opy(1).
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Then, with the approximation of the inverse ([Q~!];;)™" in Lemmal6]and that of [Q™'],; above, we
obtain

(9711 = [Q7112([Q 122) Q' o) ™! = (KHZEKE, + UpAgUL + %IH —([Q7']e2) ' Ugwv Ug) ™ + 0py(1)
= (K5, Z- K, + UpA, Up + %In—l)fl +op(1)
= QL — QLU I + A(1)A(¥) T As(1)UF Q2 + 0y (1),

by and Woodbury identity, for

2
a , vy

Al()/) = AO - ([Qil]zz)ilVVT + O||||(1) = A() - <(,‘2 + ; + c) VVT + OHH(l), (56)

as defined in (52). This concludes the proof of Lemma[7] O

Following the same idea, we expand the quadratic form [Q7* ], ([Q7' ;1) [Q '], in @7) as
[Q7 ' 1 ([Q ' i) ' Q iz = v Ag(1)s + AoAo(y)) v + 0(1), (57)

for v € R® defined in (32). Plugging this approximation back to (@7) and ignoring the terms in o(1),
we obtain the following self-consistent equation on m(y),

1 Yy v a% T -1
W}’) = + A + 2V T(y)v, T(y) = Ao(y)Ts + AoAo(y)) . (58)

In the following, we determine the (self-consistent) equations for 8;(y), 52(y), d3(y) and d4(y) in
T(y), so as to retrieve the final self-consistent equations in ([27).

C.3.3 ESTABLISHING SELF-CONSISTENT EQUATIONS FOR §(})S

Following the same idea above in Appendix [C.3.2] we now establish self-consistent equations for the
intermediate variables 6;(y), 82(y), 83(y), d4(y) defined in 7).

Self-consistent equation for §;(y). We start with §;(y) = % tr(Q(y)K) + o(1) by writing

(1) = (@) + o(1) = YKLy + 0(1) = [QKJy + o)

= —1Q1i Q7 a((Q 1) f(@-)/ VB + o)
=" IQ 1 Uovs + o) = =" A + Aoa(r) v, +0(1)
= —@VTT()/)Vl + o(1),
for
vi=[0 1 0 0 0 0]eR" (59)

where we used the fact that f(a_;)/Jp = Upvy, (33)), and Lemma@
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Self-consistent equation for 5,(y). We consider now 8,(y) = 1% tr(Q(y)KZ) + o(1) and write

() = m(QKD) + o(1) = L [ZQKly + o)

_ % lar/p 1] [ -Qrié%gﬁ (1,A+ Xzéo)(zo)))j% (&?KQ& —m(y)Q4 U, ([Ié ]+ AoDo(y)) ' v f(a_l)/ VPl 4 o)
% 20016 + A(P)D(1)) V1 = m(y VT Ag(y)(Ts + AoAg(y)) V1) + 0(1)
-1 (<v2 MO B0 + Aoa(y)) vy + 220 A1) v Bl A°A°(Y”1V1> Fo(1)
c FH 2y = VIA(Y)T + AgAg(y)) v
% ((v2 = m(y)V) " Mo(y)(Ts + Aoo(1)) V1 + m(yIv; Do(y)(Ts + AoAo(y)) v x v Ao(y)(Ts + AoDo(y))'v1) + o(1)
= = (T + e8i() (1= VIT(N)) + 01,

for v = [0 0 0 0 0] € R, 5 = [1 0 0 0 O O] € R®, where we used the fact that
a_i/\p =Uovs, f(a_)/ P = Upvy, Lemma and the relation in (33).

Self-consistent equation for 5;(y). We consider now 8;(y) = % tr(KQ(y)K) + o(1) and write
1 1
85(y) = ; tr(KQK) + o(1) = E[KQK]i,» +0(1)

_1 \r Q4 = Q5 Uo(s + Ai(1)A(y)  AUT QY —m(y)Q4Uo (Is + AAo(1)) ' v
- U/ p o] (S 2 ) ol

) [f(a(i))/\/?

+o(1) = *Vl 180(1) s + A (Y)Do(y)) V1 + 0(1)

r:\'—toM—k Q=

a

@ty = VIA(Y)Is + AgAg(y))tv
(Vi Ao(n)s + AgAo(y)) vy + m(Y)(VlTAo(Y)(Ie + AoDo(y)) V) + 0(1)

< TD(Y)Ts + ADo(y)) i + — O + ARl v > +0(1)

2 _ (T 53 (y)
( TT(y)vi + m(y)(v] T(y)v) ) +0(1) = v, T(y)vi + m(y) + o(1).

Self-consistent equation for 5,(y). We consider now §,(y) = % tr(ZKQ(y)KZ) + o(1) and write

5u(y) = %tr(ZKQKZ) +o(1) = %[ZKQKZ]ﬁ T o(1)

= % [(Kfia—i + %a_i + f(a—l))T/\/ﬁ %1]
X [QJ_-I — QL Uy(Is + Ay (P)A(Y) A (UT QY —m(y)Q-Up (I + AoAO(Y))_l v

—m(y)v" (I + Do(y)Ao) ™ Uy QY [Ql: | T o

= % <V4TA0(Y)(16 + A (NDA(Y) Vs — 2‘117':(}/)v}Ao(z/)(Ié + A(PA(y) v + Z;m(y)) +o(1)

= <VI Ao + Aalo() vy + B AMIY W 2am(y)

1805 + Ao()A(Y) !
@ T oty = VA + AgAo(y)) MY A AR V)

aj
2 cm(y) + 0(1)

= % <V4TAO(Y)(16 + AoAo(y)) vy + m(y) (VIAO(}/)(I(, + AoAo(y)) v — acl)2> +o(1)

= % <V4TT()/)V4 + m(y) <VIT()/)V — acl>2> + 0(1),
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for
vi=[% 11 0 0 0]eR" (60)

c

Putting these together, we obtain the system of equations as in (28).
We thus conclude the proof of Proposition|[T}
C.4 PROOF OF THEOREM/I]

Here, we provide detailed derivations of Theorem[I]on the Deterministic Equivalent of the in-context
memorization error E in (6) Definition[3] To do this, recall the following structured nonlinear resolvent

-1
Q(y) = <31K)T(XTXKX + yln> , ©61)

in (7) of Definition 3]
First note that by Lemma [I] we have
Kx =Ky + UKZKVE + O||.||(n71/2), (62)

for Xk € R®® defined in (@). Similarly, under Assumption 3] we have

lul? 10 ] (63)

1 1 .
SXTX = ~ZZ + UgSxUL = ¢Z + UgSxUL,  Zx = c[ oo
n n 0 00
that is of bounded norm with probability one as n, p — oo at the same rate. As such, we have
1 -1
1
Qly) = (KNZTZKN +UzU + y1n> + Opy(n72)
n

-1
1 ;

= (KNZTZKN + y1n> +Opy(n”2)
n

-1 -1 \! -1
1 1 1
- <KNZTZKN + yln) U <2‘1 +UT (KNZTZKN + yI,,) U) U’ (KNZTZKN + yI,,) ,
n n n

by Woodbury identity, for
U= [1KyZ'ZUx KyUx Vo] €R™, (64)

with Ux € R and V € R™ defined in Lemma and

03 03 Z:K
T =0 Zx TxUg Uk Xk eR™, (65)
%L TRULUkSx  BL(URLZTZUk + ULUEXUL U )Sk

Our objective of interest is the the memorization error E defined in (/) of Definition [3|as

_r oy oWy 66)
n ay

E =
Note that y/ /p is the first column of V, and thus the seventh column of U defined in (64)), so that

%yTQ(y)y =c-e;UTQ(y)Ue;

-1 -1 -1
1 1 1
=c-e,U" (KNZTZKN + yI,,) U- <19 +3U" (KNZTZKN + yI,,) U> e; + O(n?),
n n
(67)
where e; € R’ is the canonical vector at location seven.

We have the following approximation for the above objective of interest.
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Lemma 8 (Further approximations). For X defined in (63) and U in (64), we have the following
approximations in spectral norm holds with high probability as n, p — oo with p/n — ¢ € (0, 00),

YX=A+ OH.H(Ff%) (63)
Y

-1
U’ (;KNZTZKN + cln> U =A(y) + Oy (n2), (69)

0; 03 Xk AP [A(Ne  [A(]s
03 Xx [Alys AV, [AN]2 [A()]a3| € C° both
Tk (A7, [Alss AW, AN [AW)ss

three-by-three block symmetric matrices with corresponding blocks given by

with A = € R” and A(y) =

(plP+0T plP p"wg(pl? +1)
[Al2s = a T 1 u'wy
0 0 0
2L Ty 4 BT+ BT wo (T wk o+ T wolwk?) () ()
2ol T Ty 4+ B (T wi + T wlwilP) () T ) 4 e
for
Ty = |ul + p"wipwo, (70)
T 1ptwe 33 . Il 10 33
and Yx = a; 1 g (1) eR deﬁnedm@])ofLemmal ZXEC[ ! 88]EJR , as well as
)
[c¢?84(y) 0 0
[A(]ia = 0 AlplPs;(y)  Fptwidi(y) | € R
0 (%) Elwil?8:(y)
[1—Lm(y) 0 0
[A(P)2 = 0 clulPss(y)  ep"widi(y)| € R™®
[ 0 cu'wicdy(y)  clwk[?84(y)
[c¢d2(y) 0 0
[A(P]is = 0 clulPd6(y)  cp"wods(y) | € R*
0 cp'wide(y) ewgpwods(y)
[85(y) 0 0
ANz =| 0  HulPQ-Lim(y) ip'wg(-Lim(y))|eR>
| 0 () “Iwkl*(1 = Em(y))
[6:1(y) 0 0
ANz =] 0 lul?8:(y)  u"wody(y) | € R™
[ 0 pTwid(y) wiwod(y)
[1m(y) 0 0
[A(P]sz=| 0 lul?6s(y)  p"wods(y)| € R,
0 (*) Iwol?85(y)

Jor 61(y), 82(y), 85(y), 64(y) as defined in of the proof of Proposition|l| and

cds(y) =mly) (1 - VIT(y)V)
ds(y) = ViT(y)va + m()(v;T(y)v = 1) (viT(y)v — &) (71)
e8i(y) =viT(y)vs +m(y) (ViT(p)v = 2) (VT(y)v - 2 (2+ 1))

with

vi=[2%2+% 141 141 0 1 0]€eR" (72)

c c? c c
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Proof of Lemmal8] We first work on the approximation of ¥ defined in (63)), for which we exploit
the following concentration results:

1 0 0
0 |ulP  pwg
0 p'wi [wkl?
1 1 0 0 :
;UZZTZUK = g el SEpTwi |+ Opy(n ),

1 _1
U;UK = + O||.”(n 2),

c

Trutwg Hflwkl

where we used the Gaussian moments, we thus get

1 1+ |pl?/c l|l—l||2/c 1llTWK/C 1
U};ZTZUK + UgUZxUgUk = | [pl?/c Eopl EfpTwg|+0y(nT2),  (73)

p'wg/c ILCCIITWK % Iwkl?

and therefore ¥ = A + Oj(n"2) with

03 03 Yk
X=10s XEx [Als], 74
T [Alls [Alss
and
(el + DTl o wi(pl? +1)
[Alz3 = a T 1 uwy
0 0 0
2
z+czHuH T? + licch + %cpTWQ (”TWK +”TWQ||WK"2) () ()
[Alss = @’ LcHpl? T, 14 e 1+C+HIJH2’1TWK
> 2 c c 2 c
2+CJ;H;1H IlTWKT1 + %(”TWK +”TWQ”WK"2) (*) 2+Ct"”" (”TWK)Z + %”WKHZ

where we denote the shortcut Ty = |u|® + p"wg p"wg, This concludes the proof of the approximation
of ¥ in Lemmal8]

We then proceed to the approximation of U (1KyZ"ZKy + )/1,1)71 U. Note that for U defined in

(64) and

—1
1
Qo = (KNZTZKN n y1n> , (75)
p C
we have
Ug+Z"ZKNQo1KNZ'ZUx Ui ~Z"ZKNyQoKnUx  Ug 1ZTZKnQoVo
U'QU=| UxKnQyiKyZ ZUg UrKnQoKyUx UiKnQoVo | €R™, (76)

V5Q0, KnZ ZUx V5 QoKnUk VoQoVo

which writes as a three-by-three block matrix, for Uy = [y, ZTp, Z'wk]/Jp € R™?, Vo =
ly, Z'p, Z'wol/Jp € R” asin Lemma

In the following, we further evaluate the nine (in fact six by symmetry) blocks of UTQ,U, in the limit
of n,p — co with p/n — ¢ € (0, ). To that end, we need the following intermediate results.
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Lemma 9 (Further Deterministic Equivalents). Under the same settings and notations as in Proposi-
tion[I} we have the following Deterministic Equivalent results (in the sense of Definition )

1
;ZTZKNQOKNZTZ o 84(y) - L,
1
EZTZKNQOKN < (c—ym(y)) -1,

1
=Z"ZKNQy © ¢*85(y) - L,
n

KnQoKy < ¢d5(y) - 1,
KNQO < 651(}/) : In:

1_1 1
;Z*ZTZKNQO*KNZTZZT o ()1,
n n

1_1
;Z*ZTZKNQ()KNZT And C54(}/) . Ip,
n

1_1
;Z;ZTZKNQOZT © cde(y) - L,
L 7Kkv 00K zTel(l—Xm( ))-1
» NQoRy c c Y P
1
;ZKNQOZT © 8(y) -1y,

1
;ZQ()ZT <~ 55()/) . Ip.

Proof of Lemmal9] Note that for Qq defined in (75), we have, by the proof of Proposition ] in
Appendix [C.3], the following Deterministic Equivalent results.

P

1 1/1 1
—ZTZKNQOKNZTZ o SE[ZTZKNQKNZZ] & = tr — . (pzTZKNQOKNPzTZ> 1, o A8(y) -
T’l

1 1 1 1
~Z"ZKNQoKy < —E[ZTZKNQoKn] < Ply (pZTZKNQOKN> I, o (c—ym(y)) -1,
n n nn

1 1 21 1
SZTZKNQ, © —E[ZTZKn Q] o -~ tr <ZTZKNQO) 1, o 6(y) L,
n n n? p P
1
KnQoKy < E[KyQoKy] < %; tr (KyQoKn) - I, < ¢85(y) -1,

1
KnQo < E[KyQo] © %; tr (Kn Qo) - I © ¢81(y) -1,

Qo « m(y)-I,.
Similarly, we have
2

1.1 1 1 1 1 1
—Z-7"7ZKNQo-KNZ'ZZ" %7 tr (ZTZKNQOKNZTZZTZ) I, © 8,(y) 1,
pn n n“p \p p p

11 1
;ZfZTZKNQOKNZT P
n

1 1
tr ZTZKNQOKNZTZ> ‘I, & ¢84(y) - 1,
n <p P ? ?

1.1 p1 1 1
—Z-7"ZKNQZT & T tr [ 2ZTZKNQy—Z7Z ) - 1 ) -1,
p n N Qo (_)npr<P NQO ) p O Ty
1 T 1 Y
L KN QKNZT © S tr KnQuKy A AP <1 - fm(y)) 1,
p p C C
1 1
EZKNQOZT ;tr (KNQOZTZ> 1, © 8:(y) -1,

1 1 1
;ZQOZT ;tr (QOPZ > Ip <« 55(}/) Ip,
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for 85(y), 86(y), 6,(y) as defined in (7).

To complete the proof of Lemma[9] we establish, in the following as similar to Appendix [C.3.3]
self-consistent equations for d5(y), s(y) and §;(y).

Self-consistent equation for 55(y). Consider 85(y) = tr(QZ) + o(1) and write
1 . 1 .
5s(y) = > tr(QZ) + o(1) = E[Qz]ii +0(1)

= % [=m(y)vT (s + Ao()A) T UTQY Q]3] [""’{ VPl o)

= % (=m(y)v" (Is + Do(y)Ao) " UTQLUV, + m(y)) + o(1)
@ (=v" (Is + Do()A) ' Do(y)vz + 1) + 0(1)

") (o) + Aoy ) MY 1) + o)
") (1 _VIT(p)v) + 0(1).

c
Self-consistent equation for 5,(y). Consider now §¢(y) = % tr(ZKQZ) + o(1) and write

Se(y) = %tr(ZKQZ) +o(1) = %[ZKQZ]ii +o(1)

_ ot [Q5 = QLU + Ai(DA) A (NDUTQY —m(y)QEU (Is + AgAg(y)) ' v] [Uv
B ; [V4U ¢ ] —m(y)véT (I(, ':' AQ(YO)A())_I l}Tin [6Q]ii o 12 + 0(1)
- % (Vi Bo(s + As(1)Ao (1)) vz — m(yIvy Ao(y)(Ts + AAo(y)) v
=SV U+ Ao(Y)A0) Boy)vz + “tm(y) ) + o(1)
= % (VIAO(}/)(LB + Ao Do(1)) vz + m(y)vy Ao(y)Ts + AoAo(y)) v x v Ag(¥)(Is + AoNo(¥)) ' v2
() (2w 4 v4) Ao + o)) v + “;m(y)) +o(1)
= 2 (ViTGve + mOEE T =) (W T(v = 2 ) ) + 01,
Self-consistent equation for 6;(y). Consider §;(y) = % tr(ZKQKZZ) + o(1) and write
5y(y) = %tr(ZKQKZZ) +o(1) = %[ZKQKZZ],-i +o(1)
Sl o [0 QLU + A(p)A() TA(NDUTQE, —m(Y)QLU I + ApA(y) ' v] [ Uv
= U ST S o AA U i ] 29 1 & | o

1 _ a a _
= = (VAW + AAG) v = (22 + B ) mOVT A + AAG) Y
a; T -1 ap a
= Zmy) (VL + AR AV~ (25 + 5 )) ) + o(1)
1
= (ViAUs + AoA(y)) vy + m(y)vy Als + AeA(y)) ' vv T Als + AoA(y)) vy
a 1 T -1 a% 1
—7m(y) - +2 | vi+vr | A(y)Is + ApA(y)) v+ ol +2 ) m(y) ) + o(1).
With these self-consistent equations for d5(y), ¢(y), :(y), we conclude the proof of Lemma@ O

With Lemma@] at hand, we are now ready to evaluate the blocks of UTQ,U as follows.
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Approximation of the (1, 1) block of UTQ,U.

T

Y
n'z
wiZ

L[ YAZTZKNQuIKNZ'Zy Y 2 ZKNQUIKNZ ZZ Ty 12 ZRNQu KN Z 22 Wi
= — |WZIZTZKNQoIKNZ Zy p'ZiZTZKNQoIKNZTZZ'p  p'ZiZTZKNQoiKNZTZZwy
P\wiZiZTZKNQo1KNZZy WRZIZTZKNQoIKNZTZZTy WEZAZTZKNQoiKNZTZZ Wi

34(y) 0 0
= 0 uP&(y)  pTwkdi(y)
0 p'wid;(y)  wkl?8:(y)

1 1 1 1 1
U};ZTZKNQO(y);KNZTZUKz = ;ZTZKNQO;KNZTZ [y Z'p ZTwg]

+Opy(n™'/%),

where we used Lemma 9] for the approximation in the last line.

Approximation of the (1, 2) block of UTQ,U.

yT
p'z
wiZ
) Yy 1ZTZKNQoKny Yy iZTZKNQoKNZ'p  y'iZTZKNQoKNZ wk
— [ITZiZTZKNQ()KNy [JTZ%ZTZKNQ()KNZTII ﬂTZ%ZTZKNQ()KNZTWK
p Wi ZrZ"ZKNQoKNy WRZ1ZTZKNQKNZ 'y wiZ2Z ZKNQoKNZ Wi

1 1 1
U};ZTZKNQO()/)KNUK: ’ -Z"ZKNQKy [y Z'p ZTwi]

n

1= Im(y) 0 0
= 0 clpl?ds(y)  cp"wiSu(y)| + Opy(n '),
0 cu'widy(y)  clwkl*64(y)

where we used Lemma 9] for the approximation in the last line.

Approximation of the (1, 3) block of UTQ,U.

yT
p'z
wiZ

Y 1ZTZKNQoy Y iZTZKNQoZ'p Yy 1ZTZKNQyZ'wo
== yTZ%lZTZKNQOy pTZ%lZTZKNQOZTp pTZ%lZTZKNQOZTWQ
p W%ZEZTZKNQ()Y W%Z;ZTZKNQ()ZT” W%Z;ZTZKNQ()ZTWQ

3:(y) 0 0
=c

1 1 1
Uk 2T ZKNQu(r)Vo = ~Z'ZKyQy [y ZTp ZTwo]

0 lul?6(y)  p wods(y)

+ Opy(n™'/%),
0 p'wide(y) wiwods(y)

where we used Lemma 9] for the approximation in the last line.

Approximation of the (2, 2) block of UTQ,U.

.
1
UgKnQo(y)KnUk = = [ #'Z | KyQoKy [y ZTn ZTwi]
P \wiz
1 [ Y'KnvQoKny  y'KnQoKNZTp y 'KyQoKnZ wi
= — [ITZKNQ()KNY [ITZKNQ()KNZT[I [ITZKNQ()KNZTWK
P \WEZKNQoKny WERZKNQKNZTH  WEZKNQoKNZ Wi
1 053()/) 0 0
=21 ¢ lul?(1 = Lm(y)) ;fwK(l—;m(y)) + 0y,
0 p'wg(1—1Im(y)) [wkl?(1 - Im(y))

where we used Lemma 9] for the approximation in the last line.
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Approximation of the (2, 3) block of UTQ,U.
yT
p'z
wiZ

1
UxKnQo(y)Vo = > KvQo [y Z'n Z'wg]

1 [ YKNQoy  Y'KNQiZTp y'KnQoZ'wg

— [ ZKNQoy  pTZKNQoZTp  p'ZKNQoZ'wg

P |wiZKnQoy WEZKNQoZ'p WEZKnNQoZTwy
0 lpPo2(y) " woda(y)
0 pwi(y) wirwoda(y)

+Opy(n™'/%),

where we again use Lemma 9] for the approximation in the last line.

Approximation of the (3, 3) block of UTQ,U.

yT
VZQQO(Y)VQ:l H'Z|KyQKy [y Z'p ZTwyg]
p WEZ
1 [ Y'Qy ¥y QZ'p  y' QZ'wg
== | ZQuy p'ZQZ'p p'ZQyZ'wg
P whZQoy wWHZQoZ'u wHZQoZwg
“m(y) 0 0
=l 0 lpl?8s(y) T wods(y)| + Opy(n /2,

0 pwods(y)  Iwol?85(y)

where we used Lemma 9] for the approximation in the last line. This concludes the proof of the
approximation of the quadratic form U (%KNZTZKN + }/In)_1 Uin Lemma O

With Lemma [§]at hand, it follows from (67) that

1 1 -1
1 1 1 1
LYy =c-eU (KNZTZKN + yh) v (19 +3U” (KNZTZKN + y1n> U) e7 +0(n"?)
n n n

=c-efA(y) - (Ig + AA(y)) " es + o(n™2).

To assess the high-dimensional behavior of the memorization error E defined in (7) of Definition[3] it
thus remains to evaluate the following derivative (with respective to y) as

Yoy o)y _

T oy = Ve (et AWM AR (el + M) & + O,

E =

where we denote A’(y) the derivative (with respect to y) of A(y) defined in (69).

To evaluate A’(y), we need the following result on the derivatives of m’(y) and §(y)s.

Lemma 10 (Derivatives of the 6(y)s). Under the settings and notations of Theorem we have that
m'(y), 67(y), 85(y), 85(y), 81(y) satisfy the following system of equations

m'(y) =T ()v-1)miy)
cd(y) =-m'(Y)VTT(y)vi —m(y)v T’ (y)vy
cd5(y) =viT/(y)(vi — cbi(y)Iv) + b1 (y)(1 — vy T(y)v) (77)

*51()(287()m(y)=6:(yIm’ (y)
cc%(}/) = VIT/(Y)Vl + £ Y ( Ym’:l(;:) ey )

ci(y) =viT(yva+m'(y) (VIT(y)v - “71)2 + 2m(y) (VIT()/)V - “—cl) v; T'(y)v

Jor T(y) and N(y) defined in 29) and (B0), receptively, so that their derivatives (with respective to
y) satisfy

T'(y) = (Is + Do (1)A0) ALY s + AoAo(1))
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and
W apy () &1 (y) a18{(y) &(y)
“am'(y) ’(y) a;67(y) voi(y) a185(y)
A =] S @) 3(y) a185(y) =2 (m(y) + ym'(y))
° a8(y)  voi(y) a155(y) v&;(y) —&(m(y) + ym'(y))
8 ads(y) —zm(y)+ym'(y)) —%(m(y)+ym'(y)) 55(y)
ai8(y) v (y) —dm(y)+ym'(y)) —z(m(y)+ym'(y) a18,(y)

Also, the derivatives 8,(y), 8(y), 8.(y) are given by

c8i(y) =m'(y) (—v; T(y)v + 1) = m(y)v; T'(y)v

e8(y) = ViT()va +m'(y) (v Tv = 1) (VT = =) 4 m()v T (v (ViT(ov - )
+m(yViT (y)v (v T(y)v - 1)

c3107) = VT vy () (1w =2 (w7 Tw =2 (14 2) ) mtpi T v (wiTv =2 (147 )

+ m(y)v;T'(y)v (VIT()/)V - %) .

Proof of Lemma By their definitions in Proposition [[]and Lemma 8] we have
1 _ 1 4
c VZ (Y)V ;= ( TT/(Y)V_ ) 2(}/)
(% +L+4 —VTT(y)v)
c81(y) = = (m (Y T(y)vi + m(y)v' T'(y)v1)
cSo(y) = vy T/ (y)vi + ¢81(y)(A = vy T(y)v) — cS1(yIvy, T (y)v = v, T'(y)(vi — ¢61(y)v) + e8] (y)(1 —
c¢281(y) (28/(YIm(y) = 8:(y)m'(y))
m?(y)

cS4(y) = viT' (y)va + m'(y) ( v, T(y)v — %)2 +2m(y) (VIT()/)V — %) v, T'(y)v,

m'(y) = -

cdi(y) = viT'(y)vi +

with

T'(y) = Ay(y) s + AoAo(¥)) ™" = Ao(y)Ts + AoAo(¥))  AeAy(y) s + AgAo(y)) ™
= (I + Ao(1)A) ' AG(y) s + AoAo(y)) 7",

and A}(y) as in the statement of Lemma

Similarly, by their definition in Lemmal9] we obtain the derivatives of s, §s and &7 as
5(y) =

5(y) =

(m’(y) (v, T(y)v + 1) —m(y)v, T'(y)v)

( LT (v + m () T(y)v T(y)vy + m(y)v, T (y)vv T(y)v,

m\»—kc\

+m(y)vi T(y)vv T (y)vy, — m’(y) (—Vz + V4) T(y)v —m(y) (%Vg + V4)T T (y)v+ c?m'(y))

5 (y) = - ( LT ()vy + m (P TV T(y)vy + m(y)v, T (y)vv T(y)vs + m(y)v, T(y)vv T (y)v,

a:85(y)
v5(y)

—3(m(y) + ym'(y))
—z2(m(y) + ym'(y))

a:04(y)
vy(y)

c

v, T(y)v)

T T 2
—%m'(y) ((i + 2) vy + V7> T(y)v — a—clm(y) <<i + 2) vy + V7) T (y)v + % (i + 2) m’(y)) )

This concludes the proof of Lemma[I0}] O
Putting these together, we conclude the proof of Theorem I}
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C.5 PROOF OF PROPOSITION[Z]

Here, we provide the proof of Proposition 2] By the definition of linear regression (in-context)
memorization error Erg in of Definition 3 it suffices to evaluate the following quadratic form

Lo (Yoxan) -
nY n Yin Yy,

and its derivative with respect to y, for X = py" + Z € RP*" as in Theorem
By Woodbury identity, we have

1 1 1
;yT (nxTx + }/In> y=e/U" <nsz +yL, + UAUT> Ue,;
-1
=e/UTQu(U (I + AUTQy(P)U) ey,
where e; = [1, 0] and with a slight abuse of notations, we denote

1

2
U= [y’ ZTIJ]/\/E c ]Rn><2’ A= ["P;" 0

-1
eR*?, Q(y) = <711ZTZ + yI,,) . 79)

Similar to Proposition[I] we have the following Deterministic Equivalent result for the linear resolvent
Qo(y).

Lemma 11 (Deterministic Equivalent for Qg, (Couillet & Liao, 2022, Theorem 2.4)). Let Z € RP*"
have i.i.d. standard Gaussian entries. Then, as n, p — oo at the same pace with p/n — ¢ € (0,00)
and y > 0, the following Deterministic Equivalent (see Definition ) holds

1_
© (CmLR(Y) + c) L.
Y

with m(y) is the unique Stieltjes transform solution to the following Marcenko-Pastur equa-
tion (Marcenko & Pastun, 1967, |Couillet & Liao| 2022)

cymig(y) + (1 —c+y)mr(y) —1=0. (80)

-1

-1
1 1

<ZZT + y1p> o mr(y) -1, <ZTZ + yIn>
n n

By Lemmal|IT] we have

-1
1 1 -1
;yT (nxTx + y1n> y =e;UTQu(y)U (L, + AUTQy(y)U) e,

_ [CmLR(Y) + l;yc 0
0 lul*(1 = ymir(y))

L Tl (omun(n) + 5) PG = pmua()|
emr(y) + l%yc 1
1,1
emir(y) + 1;;
1+ UG = yma))
so that by (T4)), we obtain

ey’ m'(y) + e = 1+ |ul (y’m' () + (1 = c = P)(ym(y) - 1))
(1 + [l = [P ymig(y))*
in probability as n, p — oo, with mig(y) the Stieltjes transform solution to the Mar¢enko-Pastur

2
equation in (80), and m{z(y) = —% its derivative with respect to y.

Er—Er >0, Er=-

Y

This concludes the proof of Proposition 2]

D ADDITIONAL NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present additional numerical results.

36



Under review as a conference paper at ICLR 2026

59
— 1 T \\\HH\ T ILERAL 1 T \\\HH\ T ILERAL 1 T \\\HH\ T T T 11117
e
5 08k . . 0.8 - .
g 06| X 0.6 .
T o4l 04 F=manl
‘g 0.2 0.2 |
é) 0— L \HHH‘ L Ll 07 L \HHH‘ L L1111 0 L \HHH‘ L L L L1l
107! 10° 10! 107! 10° 10! 10~ 10° 10!
SNR |l SNR |ul? SNR |pf?
(@) p/n=1/4 (b) p/n=1 () p/n=4

Figure 4: Theoretical in-context memorization error for f(¢) = tanh(t) (blue) from Theorem
versus that of linear regression (green) from Proposition [2 as a function of SNR, for different
dimension ratio p/n, synthetic data drawn from the Gaussian signal-plus-noise model in Definition
with wg = wo = . ~ N(0,1,/p), po< py, ., and y = 1.

Figure [d compare the theoretical in-context memorization errors of nonlinear Attention (as character-
ized in Theorem|[T)) with those of linear linear regression (from Proposition[2) on synthetic Gaussian
mixture data. We observe that, while linear regression generally achieves lower memorization error
than nonlinear Attention in the under-determined p > n regime, this advantage is reversed in the
over-determined setting with p/n < 1. In such cases, nonlinear Attention yields lowers error, for
structured inputs and Attention weights aligned to the data signal. Furthermore, compared to linear
regression, the memorization error of nonlinear Attention exhibits remarkably less sensitivity to the
dimension ratio p/n, especially when the Attention weights are well aligned with the underlying
signal in the input data.

Figure 5| further illustrates the impact of the Attention nonlinearity, the dimension ratio p/n, and the
regularization parameter y on the in-context memorization errors of nonlinear/linear Attention and
linear linear regression. Reading the subfigures from left to right, we observe that the difference in
memorization error between different Attention (i.e., tanh nonlinear or truncated linear) and linear
regression vanishes either as the regularization strength y decreases or as the SNR increases. More-
over, the advantage of nonlinear Attention over linear regression—in terms of reduced memorization
error—critically depends on both the dimension ratio p/n (as already confirmed in Figure[d) and the
choice of regularization y, see for example Figure [5d| versus Figure[Se} Reading the subfigures from
top to bottom, we further observe that in the over-determined p/n < 1 regime, the memorization
error of nonlinear Attention is considerably less sensitive to the changes in the dimension ratio p/n
compared to linear regression.

Figure @ illustrates the impact of alighment between the Attention weights (the query wy and key
wy vectors in Assumption [T)) and the input data signal p. A consistent pattern emerges from Figure [6}
when the Attention weights are aligned in direction with p, the resulting in-context memorization
error is significantly lower compared to the case where the weights are orthogonal to p. This effect
is observed across both nonlinearities considered: f(t¢) = tanh(#) and truncated linear function
f(t) = max(—5, min(5, t)), and persists across a range of SNR values and dimension ratios p/n.
The performance gain from the weight alignment is particularly pronounced in the over-determined
p/n < 1 setting.

Figure [7|compares the in-context memorization error curves of nonlinear Attention using weights
extracted from a pretrained GPT-2 model against our theoretical predictions from Theorem 1] across
varying regularization strengths, SNR levels, and activation nonlinearities. This numerical experiment
serves to empirically validate the full-plus-low-rank decomposition of Attention weights posited in
Assumption|[T]

To extract the Attention weights Wy and Wg, we use the first Attention head from the Ist,
7th, and 12th Transformer layers of a pretrained GPT-2 model (accessed via HuggingFace).
Specifically, we extract the first and second m-sized column blocks from the projection matrix
model.transformer.h[1l].attn.c_attn.weight (of shape m x 3m with m = 768) as
query and key weight matrices. The weights for a single head are then obtained by selecting the
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Figure 5: Theoretical in-context memorization error for f(¢) = tanh(¢) (blue) versus f(t) =
max(—5, min(5, t)) (purple) and that of linear regression (green) in the over-determined regime,
as a function of SNR, for different dimension ratio p/n and regularization parameter y, synthetic
data drawn from the Gaussian signal-plus-noise model in Definition 2] with wx = wo = py,.. ~

N(O’ Ip/p), H X Hyage-

first Myead = M/ Npeads = 64 columns from each matrix, consistent with the model’s npe,qs = 12-head
configuration.

As shown in Figure[7] the empirical memorization curves obtained from pretrained Attention weights
closely match the theoretical trends predicted by Theorem [T} as a function of both regularization
strength y and SNR. In particular, we observe that
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Figure 6: Theoretical in-context memorization error of tanh (blue) and truncated linear (with
f(t) = max(—5, min(5, t)) in purple) Transformer, for key/query weights aligned with the signal
direction in solid lines: wx = wo = g, ~ N(0,1,/p) and p o< py . ; versus the case where both
weights orthogonal to the signal in dotted lines: wx L p ..., Wo L .., Wi L wWo and p o< py. . for
regularization strength y = 1.

1. in the absence of input data signal (u = 0), pretrained Attention weights yield slightly lower
errors than theory; and

2. in the presence of signal, pretrained Attentions perform marginally worse than theory from
(manually) aligned weights.

These discrepancies are generally modest in scale and consistent across both the tanh and truncated
exponential nonlinearities. Additionally, we observe that Softmax Attention incurs substantially
higher memorization error than entrywise exponential Attention, but only when meaningful input
structure is present.
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Figure 7: Theoretical in-context memorization error of Softmax (cyan) and entry-wise tanh (blue),
truncated exponential (f(¢#) = min(5, exp(#)) in red) Attention. Theoretical predictions under
Assumption [I] in solid lines and key/query weights using pretrained Attention weights in dotted
lines. Figurem-@ Figure and Figure [7e} theoretical predictions obtained by assuming wx =
wo = pu = 0; Figure Figure |7_H|, and Figure |7_ff theoretical predictions obtained by assuming

WK = W0 = Hppse ~ 0, IP/P)’ H X Hpase and y=1
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