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ABSTRACT

Attention mechanisms have revolutionized machine learning (ML) by enabling
efficient modeling of global dependencies across inputs. Their inherently paral-
lelizable structures allow for efficient scaling with the exponentially increasing size
of both pretrained data and model parameters. Yet, despite their central role as the
computational backbone of modern large language models (LLMs), the theoretical
understanding of Attentions, especially in the nonlinear setting, remains limited.
In this paper, we provide a precise characterization of the in-context memorization
error for nonlinear Attention, in the high-dimensional regime where the number of
input tokens 𝑛 and their embedding dimension 𝑝 are both large and comparable.
Leveraging recent advances in the theory of large kernel random matrices, we show
that nonlinear Attention typically incurs higher memorization error than linear
regression on random inputs. However, this gap vanishes, and can even be reversed,
when the input exhibits statistical structure, particularly when the Attention weights
align with the input signal direction. Our theoretical insights are supported by
numerical experiments.

1 INTRODUCTION

Since its introduction, the Transformer architecture has become a cornerstone of modern machine
learning (ML) and artificial intelligence (AI) (Vaswani et al., 2017), powering large language models
(LLMs) such as BERT (Devlin et al., 2019), LLaMA (Touvron et al., 2023), and the GPT series (Ope-
nAI et al., 2024). Originally developed for sequence modeling tasks such as machine translation
and language modeling, Transformers have demonstrated remarkable versatility and now achieve
state-of-the-art performance across a wide range of applications, including those that are not inher-
ently sequential (Dosovitskiy et al., 2020). At the heart of this empirical success lies the Attention
mechanism, which enables flexible integration of information across positions and scales efficiently
with both data and model size. Despite its success, our theoretical understanding of Attention,
especially in the nonlinear setting, remains limited, particularly in terms of how it learns statistical
patterns from high-dimensional input tokens.

Recent years have seen an increasing use of high-dimensional statistics (Vershynin, 2018), statistical
physics (Carleo et al., 2019), and random matrix theory (RMT) (Couillet & Liao, 2022) to derive
insights in the design and optimization of large-scale ML models. In contrast to worst-case generaliza-
tion bounds that can sometimes be loose, high-dimensional analysis offers precise characterizations
and is able to explain phenomena such as the neural tangent kernel (Jacot et al., 2018), double descent
in generalization (Mei & Montanari, 2021; Liao et al., 2021; Nakkiran et al., 2020; Hastie et al., 2022),
and benign overfitting (Bartlett et al., 2020; 2021), which now inform core ML design principles. A
brief review of related work is provided in Section 1.2.

Yet, a precise characterization of nonlinear Attention, particularly on structural inputs, remains largely
elusive. The main technical challenges stem from the nonlinearity of the Attention operator and the
complex interactions between input tokens and Attention weights via queries, keys, and values. Prior
theoretical efforts often rely on restrictive assumptions: focusing on in-context learning by reducing
Attention to gradient descent on (generalized) linear model, which only holds under particular weight
configuration (Bai et al., 2023; Lu et al., 2025); assuming simplified Attention matrices (e.g., all-
ones (Noci et al., 2022) or random Markov matrices (Naderi et al., 2024)), or adopting stylized
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models from Bayesian learning (Tiberi et al., 2024), sequence multi-index models (Troiani et al.,
2025), or generalized Potts model (Rende et al., 2024) in statistical mechanics.

This paper fills this gap by presenting a precise analysis of the in-context memorization for nonlinear
Attention on structural inputs (Definition 2), in the high-dimensional regime where the input length 𝑛
and embedding dimension 𝑝 are both large and comparable. Building upon recent advances in the
eigenspectral analysis of nonlinear random kernel matrices, we derive precise expressions for the
in-context memorization error (see Definition 3) of nonlinear Attention having weights admitting a
full-plus-low-rank decomposition (Assumption 1).

Our result shows that the memorization error of nonlinear Attention is determined by a system of
nonlinear equations involving the dimension ratio 𝑝/𝑛, the alignment between input signal and
Attention weights, and the nonlinearity (via its Hermite coefficients). By focusing on this canonical
setting, our analysis takes a step forward to unveil the theoretical origin of many visually striking
features emerging in modern large-scale ML.

1.1 OUR CONTRIBUTION

The main contribution of this paper are summarized as follows.

1. In Theorem 1, we derive a precise characterization of the in-context memorization error (Defini-
tion 3) for nonlinear Attention, under a high-dimensional signal-plus-noise model (Definition 2)
for the input tokens. We show that the Attention memorization error is governed by a system of
nonlinear equations involving the dimension ratio 𝑝/𝑛, the interaction between input signal and
the Attention weights, and the nonlinearity via its Hermite coefficients.

2. In Section 4, we compare the memorization error of nonlinear Attention to that of linear regression
(see Proposition 2). While nonlinear Attention generally incurs higher error than linear regression
for random inputs, this disadvantage disappears—and can even be reversed—for structured inputs,
particularly when the Attentions weights are well-aligned to the input signal. We further show
that Attention lacking a linear component (i.e., with its first-order Hermite coefficient being zero)
are unable to effectively memorize random and/or structural inputs.

3. From a technical perspective, we establish in Proposition 1 a novel Deterministic Equivalent (see
Definition 4 for a formal definition) for the resolvent of a generalized sample covariance matrix
(SCM) of the form 𝐂𝐗𝐗⊤𝐂⊤. This extends classical SCM that has been extensively studied in the
literature, by considering a population covariance 𝐂 = 𝐂(𝐗) that depends on the input 𝐗, and may
be of independent interest beyond this paper.

1.2 RELATED WORK

Here we briefly review related work. A more detailed discussion is provided in Appendix A.

Theoretical understanding of Transformer and Attention. Theoretical studies of Transformers
have sought to characterize their expressive power and in-context learning (ICL) capabilities. For
example, it has been established that Transformers are universal sequence-to-sequence function
approximators (Yun et al., 2019). A growing body of work has focused on understanding the ICL
behavior of Transformers and Attention, that is, their ability to adapt to new downstream tasks from a
few example (Dong et al., 2024; Xie et al., 2021; Garg et al., 2022b; Li et al., 2023; Bai et al., 2023;
Oswald et al., 2023; Wu et al., 2024; Zhang et al., 2024; Chen et al., 2024; Li et al., 2025). However,
these analyses often rely on restrictive assumptions or idealized weight configurations. In contrast,
our work provides a random matrix analysis of nonlinear Attention that explicitly captures the generic
interaction between structured input signals and Attention weights, offering a more flexible and
data-dependent understanding of in-context memorization.

Memorization of neural networks. Classical results have characterized the memorization capacity
of shallow neural networks under various settings (Baum, 1988; Bubeck et al., 2020), with recent
extensions to deep nets (Park et al., 2021; Vardi et al., 2021) as well as single-layer Attention (Mahdavi
et al., 2023; Chen & Zou, 2024). These studies often focus on worst-case bounds, e.g., on the number
of distinct samples that can be memorized by a network. In contrast, here we focus on the statistical
(so average-case) in-context memorization of nonlinear Attention, by considering a signal-plus-noise
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model for the inputs. In particular, our analysis quantifies how the memorization performance depends
on the alignment between the Attention weights and the input signal.

Random matrix analyses of ML methods. Random matrix theory (RMT) has emerged as a
powerful and flexible tool to understand the dynamics and generalization properties of large-scale ML
models. It has been successfully applied to shallow (Pennington & Worah, 2017; Liao & Couillet,
2018b;a; Louart et al., 2018) and deep neural networks (Benigni & Péché, 2019; Fan & Wang, 2020;
Pastur, 2020), and more recently to linear Attention (Lu et al., 2025). These analyses encompass
both homogeneous (e.g., standard normal) (Pennington & Worah, 2017; Mei & Montanari, 2019)
and structured (e.g., mixture-type) input data (Liao & Couillet, 2018b; Ali et al., 2022; MAI & Liao,
2025). To the best of our knowledge, the present work provides the first precise characterization of
the statistical memorization error of nonlinear Attention on structured input, extending RMT analysis
to a broader and more realistic class of Attention-based models.

Notations. Scalars are denoted by lowercase letters, vectors by bold lowercase, and matrices by bold
uppercase. For a matrix 𝐗 ∈ ℝ𝑝×𝑛, we write 𝐗⊤ for its transpose, 𝐱𝑖 ∈ ℝ𝑝 for 𝑖th column, and ‖𝐗‖ for
its spectral norm. We use 𝐈𝑝 for the identity matrix of size 𝑝. For a vector 𝐱 ∈ ℝ𝑝, its Euclidean norm
is given by ‖𝐱‖ =

√
𝐱⊤𝐱. For a random variable 𝑥, we denote its expectation by 𝔼[𝑥].

2 PROBLEM SETTING AND PRELIMINARIES

We consider the following form of entry-wise nonlinear Attention.
Definition 1 (Nonlinear Attention). Let 𝐗 = [𝐱1, … , 𝐱𝑛] ∈ ℝ𝑝×𝑛 be the embedding of an input
sequence of tokens 𝐱1, … , 𝐱𝑛 ∈ ℝ𝑝 of length 𝑛. A (single-head) nonlinear Attention output 𝐀𝐗 ∈ ℝ𝑝×𝑛

with key, query, and value matrices 𝐖𝐾 ∈ ℝ𝑑×𝑝 ,𝐖𝑄 ∈ ℝ𝑑×𝑝 ,𝐖𝑉 ∈ ℝ𝑝×𝑝 and entry-wise nonlinearity
𝑓 ∶ ℝ → ℝ, is defined as:

𝐀𝐗 = 𝐖𝑉𝐗𝑓 (𝐗⊤𝐖⊤
𝐾𝐖𝑄𝐗/

√
𝑝)/

√
𝑝 ≡ 𝐖𝑉𝐗𝐊𝐗. (1)

The Attention in Definition 1 is practically compelling due to its computational advantage over
classical Softmax Attention (Wortsman et al., 2023; Ramapuram et al., 2024). Remarkably, under
Assumption 1 and for input tokens drawn from the signal-plus-noise model in Definition 2, taking
𝑓 to be truncated exponential function leads to approximately the same output 𝐀𝐗 as that using
Softmax nonlinearity; see Remark 5 in Appendix B for a detailed discussion. Intuitively, the matrix
𝐊𝐗 ≡ 𝑓 (𝐗⊤𝐖⊤

𝐾𝐖𝑄𝐗/
√𝑝)/√𝑝 ∈ ℝ𝑛×𝑛 defines an asymmetric kernel parameterized by 𝐖𝑄 ,𝐖𝐾 , and

captures the pairwise similarly of input tokens. The output 𝐀𝐗 is then obtained by “mixing” the
values 𝐖𝑉𝐗 according to the obtained similarities in 𝐊𝐗.

We consider that the product of key and query matrices 𝐖⊤
𝐾𝐖𝑄 in Definition 1 writes as the sum of a

full rank identity matrix and an asymmetric low-rank (in fact rank-one) matrix as follow.
Assumption 1 (Full-plus-low-rank decomposition of Attention weights). The key and query matrices
𝐖𝐾 ,𝐖𝑄 ∈ ℝ𝑑×𝑝 in Definition 1 satisfy, for some given 𝐰𝑄 , 𝐰𝐾 ∈ ℝ𝑝,

𝐖⊤
𝐾𝐖𝑄 = 𝐈𝑝 + 𝐰𝐾𝐰⊤

𝑄 ∈ ℝ𝑝×𝑝 . (2)

The full-plus-low-rank decomposition for 𝐖⊤
𝐾𝐖𝑄 in Assumption 1 is largely inspired by the empirical

success of Low-Rank Adaption (LoRA) in fine-tuning Transformer-based LLMs (Hu et al., 2021).
Note that Assumption 1 implies that 𝑑 ≥ 𝑝, though this condition is not essential and can be relaxed
by considering block decomposition of 𝐖⊤

𝐾𝐖𝑄 with one full-rank sub-block. Also, while here we
focus on the rank-one setting in Assumption 1 for clarity, our analysis extends to arbitrary but fixed
(compared to 𝑛, 𝑝, 𝑑) rank structure; see Remark 6 in Appendix B for further discussion on this point.

For the sake of our theoretical analysis, we assume the following for the nonlinearity 𝑓 in Definition 1.
Assumption 2 (Nonlinear function 𝑓 ). The function 𝑓 ∶ ℝ → ℝ in Definition 1 satisfies: (1)
lim𝑡→∞ |𝑓 (𝑡)| < ∞, |𝑓 (𝑥)| ≤ 𝐶1 exp(𝐶2|𝑥|) for some constants 𝐶1, 𝐶2 > 0; and (2) 𝑓 is centered
with respect to standard Gaussian measure, that is, 𝔼[𝑓 (𝜉)] = 0 and 𝑎1 ≡ 𝔼[𝜉𝑓 (𝜉)] ≠ 0,

√
2𝑎2 ≡

𝔼[𝜉2𝑓 (𝜉)] = 0, and 𝜈 ≡ 𝔼[𝑓 2(𝜉)] for 𝜉 ∼  (0, 1).

The first item of Assumption 2 holds for bounded nonlinearity such as sigmoid, truncated exponential,
or ReLU variants. For the second item, note that under Assumption 1 and for tokens 𝐱𝑖 drawn from
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the signal-plus-noise model in Definition 2 below, it follows from the Central Limit Theorem that
the non-diagonal entry of [𝐗⊤𝐖⊤

𝐾𝐖𝑄𝐗]𝑖𝑗/
√𝑝 →  (0, 1) in law as 𝑝 → ∞ and for 𝑖 ≠ 𝑗 , so that 𝑓 is

applied on a random matrix with asymptotically Gaussian (but strongly correlated) entries, justifying
the Gaussian-centric Hermite expansion. We consider in Assumption 2 that the zeroth-order Hermite
coefficient 𝔼[𝑓 (𝜉)] of 𝑓 is zero: This can be achieved by subtracting the same constant from all
non-diagonal entries of 𝐊𝐗 in (1) and should not alter the Attention memorization behavior.

We consider input tokens independently drawn from the following signal-plus-noise model, in the
high-dimensional regime where 𝑛, 𝑝, 𝑑 are all large and comparable.
Definition 2 (Signal-plus-noise model). Each token-target pair (𝐱𝑖, 𝑦𝑖) ∈ ℝ𝑝 × {±1}, 𝑖 ∈ {1, … , 𝑛} is
independently drawn from the following binary Gaussian signal-plus-noise model:

𝐱𝑖 = 𝑦𝑖𝝁 + 𝐳𝑖 ∈ ℝ𝑝 , 𝑦𝑖 ∈ {±1}, 𝐳𝑖 ∼  (𝟎, 𝐈𝑝), (3)

where 𝝁 ∈ ℝ𝑝 is a deterministic signal vector.

The model in Definition 2 considers that the inputs are as the sum of highly correlated signal (𝝁) and
i.i.d. random noise, and is widely used in the study of statistical learning under structured inputs.
Assumption 3 (High-dimensional asymptotics). As 𝑛 → ∞, we have that (1) 𝑝/𝑛 → 𝑐 ∈ (0,∞),
𝑑/𝑛 ∈ (0,∞); and (2) the mean vector 𝝁 ∈ ℝ𝑝 in Definition 2, the weight vectors in Assumption 1
𝐰𝑄 , 𝐰𝐾 ∈ ℝ𝑝 satisfy lim sup𝑛 max{‖𝝁‖, ‖𝐰𝑄‖, ‖𝐰𝐾 ‖} < ∞.

Under Definition 2 and Assumption 3, the matrix of input tokens writes 𝐗 = 𝝁𝐲⊤ + 𝐙, for 𝐲 =
[𝑦1, … , 𝑦𝑛]⊤ ∈ ℝ𝑛, and random noise matrix 𝐙 ∈ ℝ𝑝×𝑛 having i.i.d. standard Gaussian entries. Note
that both the rank-one signal 𝝁𝐲⊤ and the noise matrix 𝐙 have spectral norms of order 𝑂(

√
𝑛). so that

they are set on even ground in the high-dimensional regime as 𝑛, 𝑝 → ∞ under Assumption 3.
Remark 1 (Beyond the signal-plus-noise model in Definition 2). Our analysis can be extended
beyond the binary Gaussian signal-plus-noise model in Definition 2 in a few aspects. Such extensions
include, e.g., sub-exponential mixture model for 𝐳𝑖 ∈ ℝ𝑝 having i.i.d. sub-gaussian entries of zero
mean and unit variance; and multi-class settings where the number of classes is larger than two but
remains finite as 𝑛, 𝑝 → ∞. See Remark 7 in Appendix B for further discussion. Also, it would be
of future interest to to consider non i.i.d. input tokens, e.g., those having a temporally correlated
structure of the form 𝐗 = 𝐙𝐂 for Toeplitz 𝐂 ∈ ℝ𝑛×𝑛 to model an auto-regressive process.

In this paper, we aim to quantify the statistical memorization error of the nonlinear Attention
defined in Definition 1, under the signal-plus-noise input model in Definition 2. To this end, we
evaluate the performance of Attention as a feature extractor in downstream tasks via linear probing.
Let 𝐀𝐗 ∈ ℝ𝑝×𝑛 be the nonlinear Attention output defined in (1) of Definition 1 for input matrix
𝐗 = [𝐱1, … , 𝐱𝑛] ∈ ℝ𝑝×𝑛, and let 𝐲 = [𝑦1, … , 𝑦𝑛]⊤ ∈ ℝ𝑛 denote the associated labels. We define a
ridge-regularized linear probing vector 𝐰 ∈ ℝ𝑝 that minimizes the following mean squared error
(MSE) on the pair (𝐗, 𝐲):

𝐿(𝐰) =
1
𝑛
‖‖𝐲

⊤ − 𝐰⊤𝐀𝐗‖‖
2 + 𝛾‖𝐖⊤

𝑉𝐰‖2 =
1
𝑛
‖‖𝐲

⊤ − 𝐰⊤
𝑉𝐗𝐊𝐗‖‖

2 + 𝛾‖𝐰𝑉 ‖2 ≡ 𝐿(𝐰𝑉 ), (4)

where 𝐰𝑉 = 𝐖⊤
𝑉𝐰 ∈ ℝ𝑝, and 𝛾 ≥ 0 is the regularization penalty. For any 𝛾 > 0, the unique minimizer

of (4) admits the following closed-form expression:

𝐰∗
𝑉 = (𝐗𝐊𝐗𝐊⊤

𝐗𝐗
⊤ + 𝑛𝛾𝐈𝑝)

−1 𝐗𝐊𝐗𝐲 = 𝐗𝐊𝐗 (𝐊⊤
𝐗𝐗

⊤𝐗𝐊𝐗 + 𝑛𝛾𝐈𝑛)
−1 𝐲. (5)

With the explicit linear probing solution 𝐰∗
𝑉 given in (5), we now define the in-context memorization

error of the nonlinear Attention in Definition 1 as follow.
Definition 3 (In-context memorization error of nonlinear Attention). For (𝐗, 𝐲) ∈ ℝ𝑝×𝑛 × {±1}𝑛
drawn from the signal-plus-noise model in Definition 2, the in-context memorization error of nonlinear
Attention in Definition 1 is defined as the mean squared error of the optimal linear probe 𝐰∗

𝑉 in (5):

𝐸A =
1
𝑛
‖‖𝐲

⊤ − (𝐰∗
𝑉 )

⊤𝐗𝐊𝐗‖‖
2 = −

𝛾 2

𝑛
𝜕𝐲⊤𝐐(𝛾)𝐲

𝜕𝛾
, (6)

where we denote the nonlinear resolvent matrix

𝐐(𝛾) = (𝐊⊤
𝐗𝐗

⊤𝐗𝐊𝐗/𝑛 + 𝛾𝐈𝑛)
−1 . (7)
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By Equation (6), assessing the in-context memorization error of nonlinear Attention reduces to the
analysis of the quadratic form 𝐲⊤𝐐(𝛾)𝐲 of the random nonlinear resolvent 𝐐(𝛾) defined in (7). When
the random input tokens 𝐗 are drawn from the signal-plus-noise model in Definition 2, this analysis
presents the following technical challenges.

1. The resolvent matrix 𝐐 depends on the input 𝐗 in a highly nonlinear fashion: both through the
entry-wise nonlinearity 𝑓 (see Definition 1) and through the matrix inverse in (7).

2. The structure of 𝐐 is more complex than classical random matrix models (e.g., Wigner or Wishart
matrices) studied in RMT (Bai & Silverstein, 2010) or high-dimensional statistics (Vershynin,
2018). Specially, the matrix 𝐊⊤

𝐗𝐗⊤𝐗𝐊𝐗/𝑛 can be viewed as a nonlinear extension of the standard
sample covariance (or Gram) matrix (Marcenko & Pastur, 1967; Baik & Silverstein, 2006), but
with the key distinction that the population covariance taking the form of an Attention kernel
matrix that is itself dependent of 𝐗.

These challenges must be addressed to characterize the memorization error of nonlinear Attention.
To this end, we introduce the notion of Deterministic Equivalent, which provides a tractable surrogate
for analyzing the high-dimensional behavior of the random resolvent 𝐐(𝛾) defined in (7).
Definition 4 (Deterministic Equivalent, (Couillet & Liao, 2022, Definition 4)). Let 𝐐 ∈ ℝ𝑛×𝑛 be a
sequence of random matrices. A sequence of deterministic matrices 𝐐̄ (of the same size) is called
a Deterministic Equivalent for 𝐐, denoted 𝐐 ↔ 𝐐̄, if for all (sequences of) deterministic matrices
𝐀 ∈ ℝ𝑛×𝑛 and vectors 𝐚, 𝐛 ∈ ℝ𝑛 of unit spectral and Euclidean norm, we have,

𝐐 ↔ 𝐐̄ ∶
1
𝑛
tr (𝐀(𝐐 − 𝐐̄)) → 0, 𝐚⊤(𝐐 − 𝐐̄)𝐛 → 0, (8)

in probability as 𝑛 → ∞.

We aim to deriving a Deterministic Equivalent for the nonlinear resolvent 𝐐(𝛾) defined in (7), which
in turn enables high-dimensional characterization of the quadratic form 𝐲⊤𝐐(𝛾)𝐲/𝑛 and the in-context
memorization error 𝐸A in (6) of Definition 3. This is the focus of the next section.

3 MAIN TECHNICAL RESULTS

This section presents our main technical contributions. We begin with Lemma 1, which establishes a
high-dimensional linearization of the Attention kernel matrix 𝐊𝐗 defined in (1). Next, Proposition 1
provides a Deterministic Equivalent for the noise-only nonlinear Attention resolvent. Together,
these results enables a precise characterization of the in-context memorization error 𝐸A defined in
Definition 3, which we present in Theorem 1 at the end of this section.

To start with, note that under the full-plus-low-rank decomposition of the Attention weights in
Assumption 1, the Attention kernel matrix 𝐊𝐗 in (1) admits a more tractable approximation via a
Hermite polynomial expansion in the high-dimensional regime of Assumption 3. This is given in the
following result and proven in Appendix C.2.

Lemma 1 (High-dimensional linearization of Attention kernel matrix). Let Assumptions 1–3
hold. Then, the Attention kernel matrix 𝐊𝐗 = 𝑓 (𝐗⊤𝐖⊤

𝐾𝐖𝑄𝐗/
√𝑝)/√𝑝 defined in (1) satisfies

‖𝐊𝐗 − 𝐊̃𝐗‖ = 𝑂(𝑛−1/2) with 𝐊̃𝐗 = 𝐊𝑁 + 𝐔𝐾𝚺𝐊𝐕⊤
𝑄 , 𝚺𝐊 = 𝑎1 [

‖𝝁‖2+𝝁⊤𝐰𝐾𝐰⊤
𝑄𝝁 1 𝝁⊤𝐰𝐾

1 0 0
𝝁⊤𝐰𝑄 0 1 ] ∈ ℝ3×3, (9)

with probability approaching one as 𝑛, 𝑝 → ∞. Here, 𝑎1 is the first Hermite coefficient of 𝑓 (see
Assumption 2), 𝐊𝑁 ≡ 𝑓 (𝐙⊤𝐙/√𝑝)/√𝑝 − diag(⋅) is a symmetric noise-only kernel matrix and

𝐔𝐾 = [𝐲, 𝐙⊤𝝁, 𝐙⊤𝐰𝐾 ]/
√
𝑝 ∈ ℝ𝑛×3, 𝐕𝑄 = [𝐲, 𝐙⊤𝝁, 𝐙⊤𝐰𝑄]/

√
𝑝 ∈ ℝ𝑛×3. (10)

Moreover, we have that max{‖𝐊𝑁 ‖, ‖𝐔𝐾 ‖, ‖𝚺𝐊‖, ‖𝐕𝑄‖} = 𝑂(1) with high probability as 𝑛, 𝑝 → ∞.

Lemma 1 shows that the nonlinear kernel matrix 𝐊𝐗 can be decomposed as the sum of: (1) a symmetric
noisy-only random kernel matrix 𝐊𝑁 ;1 and (2) a low-rank, asymmetric informative matrix (rank at

1The noise-only kernel matrix 𝐊𝑁 is known in the literature as a random inner-product kernel matrix (Cheng,
2013; Fan & Montanari, 2019; Kammoun & Couillet, 2023), with connections to single-hidden-layer (random)
neural networks (Pennington & Worah, 2017; Benigni & Péché, 2019).
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most three), whose structure depends on the interaction between the signal 𝝁 and Attention weights
𝐰𝐾 , 𝐰𝑄 , and on the nonlinearity 𝑓 only via its first Hermite coefficient 𝑎1 = 𝔼[𝜉𝑓 (𝜉)], 𝜉 ∼  (0, 1).
Note that under Definition 2, the input matrix 𝐗 = 𝝁𝐲⊤ + 𝐙 also admits a rank-one signal-plus-noise
decomposition. As such, the matrix of interest 𝐊⊤

𝐗𝐗⊤𝐗𝐊𝐗/𝑛 can be approximated, per Lemma 1, as
the sum of some full-rank and low-rank matrices.

In the following result, we focus on the full-rank (and noise-only) part of the Attention matrix and
derive a Deterministic Equivalent for its resolvent, the proof of which is given in Appendix C.3.

Proposition 1 (Deterministic Equivalent for noise-only nonlinear Attention). Let 𝐙 ∈ ℝ𝑝×𝑛 be a
random matrix having i.i.d. standard Gaussian entries, and define the symmetric noise-only kernel
matrix 𝐊𝑁 = 𝑓 (𝐙⊤𝐙/√𝑝)/√𝑝 − diag(⋅) as in Lemma 1. Then, as 𝑛, 𝑝 → ∞ with 𝑝/𝑛 → 𝑐 ∈ (0,∞)
and 𝛾 > 0, the following Deterministic Equivalent (see Definition 4) holds

(𝐊𝑁𝐙⊤𝐙𝐊𝑁/𝑛 + 𝛾𝐈𝑛)
−1 ↔ 𝑚(𝛾)/𝑐 ⋅ 𝐈𝑛,

where 𝑚(𝛾) is the unique Stieltjes transform solution to the fixed-point equation

𝑚(𝛾) = (𝛾/𝑐 + 𝜈/𝑐 + 𝑎21/𝑐
2 − 𝐯⊤𝐓(𝛾)𝐯)

−1 ,

with 𝐯 = [ 𝑎21
𝑐2 (1 + 𝑐) 𝑎1

𝑐
𝑎1
𝑐 0 0 1]

⊤
∈ ℝ6 and 𝐓(𝛾) ∈ ℝ6×6 is a symmetric matrix whose

entries are polynomial involving 𝑚(𝛾), 𝛿1(𝛾 ), 𝛿2(𝛾 ), 𝛿3(𝛾 ), 𝛿4(𝛾 ) defined in (28) of Appendix C.3.
Notably, the system of equations depends on the regularization penalty 𝛾 , the dimension ratio 𝑐, and
the nonlinearity 𝑓 via its Hermite coefficients 𝑎1 and 𝜈 in Assumption 2.

Using Lemma 1 and Proposition 1, we obtain the following precise characterization of the in-context
memorization error 𝐸A for nonlinear Attention. The proof is given in Appendix C.4.

Theorem 1 (High-dimensional characterization of in-context memorization error). Let Assump-
tions 1–3 hold. Then, the in-context memorization error 𝐸A defined in (6) satisfies 𝐸A − 𝐸̄A → 0 in
probability as 𝑛, 𝑝 → ∞ with 𝑝/𝑛 → 𝑐 ∈ (0,∞), where

𝐸̄A = −𝛾 2𝑐2 ⋅ 𝐞⊤7 (𝑐𝐈9 + 𝚫(𝛾)𝚲)−1 𝚫′(𝛾 ) (𝑐𝐈9 + 𝚲𝚫(𝛾))−1 𝐞7. (11)

Here, 𝐞7 ∈ ℝ9 is the canonical basis vector with [𝐞𝑖]𝑗 = 𝛿𝑖𝑗 , 𝚲,𝚫(𝛾) ∈ ℝ9×9 are symmetric matrices
defined in Lemma 8 of Appendix C.4, and 𝚫′(𝛾 ) is the derivative of 𝚫(𝛾) with respect to 𝛾 .

4 MEMORIZATION OF NONLINEAR ATTENTION VERSUS LINEAR REGRESSION

In this section, we discuss the implications of our technical results in Theorem 1, by contrasting the
in-context memorization behavior of nonlinear Attention with that of linear regression.

4.1 IN-CONTEXT MEMORIZATION OF LINEAR REGRESSION

We begin by considering a classical baseline where the input embedding matrix 𝐗 is directly used for
linear probing, instead of the nonlinear Attention output 𝐀𝐗 defined in (1) of Definition 1. In this
case, the probing vector 𝐰LR ∈ ℝ𝑝 is obtained by minimizing the following ridge-regularized MSE:

𝐿LR(𝐰) =
1
𝑛
‖‖𝐲

⊤ − 𝐰⊤𝐗‖‖
2 + 𝛾‖𝐰‖2. (12)

This leads to the linear regression model defined below.
Definition 5 (Linear regression and its in-context memorization error). For (𝐗, 𝐲) ∈ ℝ𝑝×𝑛 × {±1}𝑛
drawn from the signal-plus-noise model in Definition 2, the linear regression solution 𝐰LR is given by

𝐰LR = (𝐗𝐗⊤ + 𝑛𝛾𝐈𝑝)
−1 𝐗𝐲 = 𝐗(𝐗⊤𝐗 + 𝑛𝛾𝐈𝑛)

−1 𝐲, 𝛾 > 0. (13)
Its associated in-context memorization error is given by

𝐸LR =
1
𝑛
‖‖𝐲

⊤ − 𝐰⊤
LR𝐗‖‖

2 = −
𝛾 2

𝑛
𝜕𝐲⊤ (𝐗⊤𝐗/𝑛 + 𝛾𝐈𝑛)−1 𝐲

𝜕𝛾
, (14)

which is also the derivative of the quadratic form of the linear resolvent (𝐗⊤𝐗/𝑛 + 𝛾𝐈𝑛)−1.
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Figure 1: Empirical memorization error 𝐸LR (red) of linear regression versus its high-dimensional
equivalent 𝐸̄LR (blue) in Proposition 2. Figure 1a: As a function of regularization strength 𝛾 , with
𝑝 = 2 048, 𝑛 = 512, and ‖𝝁‖2 = 1. Figure 1b: As a function of embedding dimension 𝑝, with
𝑛 = 4 096, 𝛾 = 10−5, and ‖𝝁‖2 = 1. Figure 1c: As a function of signal-to-noise ratio (SNR) ‖𝝁‖2, with
𝑝 = 512, 𝑛 = 2 048, and 𝛾 = 10−5.

We now characterize the linear regression memorization error 𝐸LR in (14), in the high-dimensional
regime of Assumption 3. The proof is standard and included in Appendix C.5 for completeness.

Proposition 2 (High-dimensional characterization of in-context memorization for linear regres-
sion). Let Assumption 3 hold. Then, the in-context memorization error 𝐸LR defined in (14) of the
linear regression model in Definition 5 satisfies 𝐸LR − 𝐸̄LR → 0 in probability as 𝑛, 𝑝 → ∞, with

𝐸̄LR = −
𝑐𝛾 2𝑚′(𝛾 ) + 𝑐 − 1 + ‖𝝁‖2 (𝛾 2𝑚′(𝛾 ) + (1 − 𝑐 − 𝛾)(𝛾𝑚(𝛾) − 1))

(1 + ‖𝝁‖2 − ‖𝝁‖2𝛾𝑚LR(𝛾 ))2
, (15)

where 𝑚LR(𝛾 ) is the Stieltjes transform solution to the following Marc̆enko-Pastur equa-
tion (Marcenko & Pastur, 1967):

𝑐𝛾𝑚2
LR(𝛾 ) + (1 − 𝑐 + 𝛾)𝑚LR(𝛾 ) − 1 = 0, (16)

and 𝑚′
LR(𝛾 ) = − 𝑐𝑚2

LR(𝛾 )+𝑚LR(𝛾 )
2𝑐𝛾𝑚LR(𝛾 )+1−𝑐+𝛾 is its derivative with respect to 𝛾 .

In what follows, we leverage Proposition 2 to assess how the in-context memorization error 𝐸LR of
linear regression is influenced by: the regularization strength 𝛾 , the dimension ratio 𝑐 = lim𝑝/𝑛, and
the signal-to-noise ratio (SNR) ‖𝝁‖2.

Remark 2 (Effect of regularization strength for linear regression). Under the settings and notations
of Proposition 2, the in-context memorization error 𝐸LR is an increasing function of the regularization
strength 𝛾 . In the “ridgeless” limit 𝛾 → 0, the memorization error vanishes 𝐸LR → 0 for 𝑝 > 𝑛;
whereas in the strongly regularized limit 𝛾 → ∞ we have 𝐸LR → 1. Interestingly, when 𝛾 → 0 and
𝑐 = lim𝑝/𝑛 → 0, the Stieltjes transform 𝑚LR(𝛾 ) becomes singular, which is connected to the now
well-known “double descent” phenomenon in test error curves (Bartlett et al., 2020; Mei & Montanari,
2021; Liao et al., 2020; Hastie et al., 2022).

Remark 3 (Effect of embedding dimension for linear regression). The in-context memorization
error 𝐸LR of linear regression is a decreasing function of the dimension ratio 𝑐 = lim𝑝/𝑛. For fixed
𝑛, increasing the embedding dimension 𝑝 thus improves memorization. In the limit 𝑐 → 0 and for
𝛾 = 0, the memorization error converges to 𝐸LR → 1/(1 + ‖𝝁‖2). Moreover, in the under-parametrized
setting with 𝑝 < 𝑛 and 𝛾 = 0, the memorization error 𝐸LR scales approximately with the embedding
dimension 𝑝 as 1 − 𝑐 = 1 − 𝑝/𝑛, in line with classical statistical learning theory (Bach, 2024).

Remark 4 (Effect of SNR for linear regression). The in-context memorization error 𝐸LR decreases
with the SNR ‖𝝁‖2. In the limit ‖𝝁‖ → ∞, one has 𝐸LR → 0. In particular, for 𝛾 = 0 and 𝑝 < 𝑛, the
error scales as 𝐸LR ∝ 1/(1 + ‖𝝁‖2), a trend clearly illustrated in Figure 1c.

Remarks 2, 3, and 4 are confirmed empirically in Figure 1, where we compare the theoretical 𝐸̄LR to
the empirical 𝐸LR over varying regularization strength, embedding dimension, and SNR.
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Figure 2: Empirical memorization error 𝐸 (red) of nonlinear Attention versus its high-dimensional
equivalent 𝐸̄ (blue) from Theorem 1, and the theoretical memorization error of linear regression
(green) from Proposition 2, with 𝑓 (𝑡) = tanh(𝑡). Figure 2a: As a function of regularization strength
𝛾 , under null model with 𝝁 = 𝐰𝐾 = 𝐰𝑄 = 𝟎, 𝑝 = 4 096, and 𝑛 = 1 024. Figure 2b: As a function of
embedding dimension 𝑝, under null model with 𝑛 = 4 096, 𝛾 = 10−2. Figure 2c: As a function of
SNR ‖𝝁‖2, with 𝑝 = 512, 𝑛 = 2 048, 𝛾 = 10−2, and 𝐰𝐾 = 𝐰𝑄 = 𝝁.

4.2 IN-CONTEXT MEMORIZATION OF NONLINEAR ATTENTION VERSUS LINEAR REGRESSION

Similar to the discussions of linear regression and the empirical trends shown in Figure 1, we compare
in Figure 2 the empirical memorization error 𝐸A of nonlinear Attention with its theoretical counterpart
𝐸̄A in Theorem 1, as well as with linear regression under the same setting.

In Figure 2a and Figure 2b, we consider the null model with no statistical signal (𝝁 = 𝟎) and for
identity Attention weights (𝐰𝐾 = 𝐰𝑄 = 𝟎). We observe that the in-context memorization error of
nonlinear Attention exhibits the same qualitative trends as linear regression: increasing with the
regularization strength 𝛾 and decreasing with the embedding dimension 𝑝. Quantitatively, however,
nonlinear Attention (with tanh nonlinearity at least in Figure 2) incurs a higher memorization error
than linear regression, but only in the absence signal.

In contrast, in the presence of structured input signals (𝝁 ≠ 𝟎) and when the Attention weights
𝐰𝐾 , 𝐰𝑄 are aligned with the signal, we find in Figure 2c that the memorization error of Attention are
visually indistinguishable from linear regression as the SNR ‖𝝁‖2 increase. This illustrates that the
disadvantage of nonlinear Attention in memorization vanishes when it is tuned to the input structure.

We provide further numerical results in Appendix D showing that this disadvantage can even be
reversed and Attention has a significantly better statistical pattern memorization than linear regression,
particularly in the high SNR and/or limited sample regime, see, e.g., Figure 5 in Appendix D.

Figure 2 only concerns with tanh Attention. In the following, we show that the (scaling laws of)
in-context memorization error of nonlinear Attention strongly depend on the nonlinearity.

4.3 IMPORTANCE OF LINEAR COMPONENT FOR NONLINEAR ATTENTION

Figure 3 illustrates the role played by the linear component of the Attention nonlinearity 𝑓 , quantified
by its first Hermite coefficient 𝑎1 = 𝔼𝜉∼ (0,1)[𝜉𝑓 (𝜉)], in improving memorization performance.

In Figure 3a, we consider a one-parameter family of nonlinearities parameterized by 𝑟 > 0, 𝑓𝑟 (𝑡) =
max (−5,min(5, 𝑟He1(𝑡) +

√
1 − 𝑟2He3(𝑡))), where He1(𝑡) = 𝑡 and He3(𝑡) = (𝑡3 − 3𝑡)/

√
6 is the

first and third normalized Hermite polynomial, respectively. Fixing the “total energy” of 𝑓 to 𝜈 =
𝔼𝜉∼ (0,1)[𝑓 2(𝜉)] ≈ 1, we observe that memorization error decreases with increasing 𝑎1, highlighting
the crucial role of the linear component in 𝑓 .

To further support this, we compare, in Figure 3b and Figure 3c respectively, the trends of in-context
memorization errors as a function of the embedding dimension 𝑝 and SNR, for three nonlinearities
𝑓 (𝑡) = tanh(𝑡) (with 𝑎1 = 0.6057), bounded linear 𝑓 (𝑡) = max(−5,min(5, 𝑡)) (with 𝑎1 ≈ 1), and
𝑓 (𝑡) = cos(𝑡) (with 𝑎1 ≈ 0). As shown in Figure 3b, when 𝑝 increases, only Attentions having a linear
component (𝑎1 ≠ 0) exhibit a meaningful gain in memorization performance. Similarly, in Figure 3c,
cosine-based Attention shows almost no improvement as SNR increases, whereas Attentions having
a linear component consistently improve.
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Figure 3: Effect of linear component in Attention memorization. Figure 3a: Empirical (red) and
theoretical (cyan) memorization error for 𝑓 (𝑡) = max(−5,min(5, 𝑟𝑡 +

√
1 − 𝑟2(𝑡3 − 3𝑡)/

√
6)) as

a function of the Hermite coefficient 𝑎1 ≈ 𝑟 for 𝑝 = 𝑛 = 4 096, 𝛾 = 1, and ‖𝝁‖2 = 1. Figure 3b:
Empirical (red) and theoretical (cyan) for 𝑓 (𝑡) = cos(𝑡), versus the theoretical error of 𝑓 (𝑡) = tanh(𝑡)
(blue) and the theoretical error of 𝑓 (𝑡) = max(−5,min(5, 𝑡)) (purple), as a function of the embedding
dimension 𝑝, for in-context sample size 𝑛 = 4 096, 𝛾 = 1, and ‖𝝁‖2 = 1. Figure 3c: Empirical
(red) and theoretical (cyan) for 𝑓 (𝑡) = cos(𝑡), versus the theoretical error of 𝑓 (𝑡) = tanh(𝑡) (blue)
and the theoretical error of 𝑓 (𝑡) = max(−5,min(5, 𝑡)) (purple), as a function of the SNR ‖𝝁‖2, for
𝑝 = 512, 𝑛 = 2 048, 𝛾 = 10−2, and 𝐰𝐾 = 𝐰𝑄 = 𝝁.

These findings suggest that retaining a sufficient linear component in the Attention nonlinearity
is not merely beneficial but essential for efficient information integration and memorization in
Transformer-based architectures.

Further experiments are presented in Appendix D to illustrate in greater detail the impact of the
dimension ratio 𝑝/𝑛, the SNR, the Attention nonlinearity, and the alignment between Attention
weights and input data signal 𝝁 on in-context memorization performance. Additionally, numerical
results based on pretrained GPT-2 weights are included, showing trends that closely align with the
theoretical predictions derived in Theorem 1.

5 CONCLUSION AND PERSPECTIVES

In this paper, we provide a precise high-dimensional characterization of the in-context memorization
error for nonlinear Attention on structured inputs. We show that, although nonlinear Attention
typically incurs slighter higher memorization error than linear regression for random inputs, this
disadvantage vanishes—and can even be reversed—when the input possesses structure, particularly
when the Attentions weights are aligned with the underlying input signal.

A natural extension of this work is to incorporate more realistic architectural components used
in practical Transformers, such as skip connections or multi-head Attention. Another interesting
direction is to go beyond the i.i.d. signal-plus-noise model in Definition 2. In real-world scenarios
such as natural language processing or time series analysis, the input (tokenized) sequences typically
exhibit strong temporal correlations. For instance, the case of linear temporal correlation has been
recently studied in (Moniri & Hassani, 2024), though limited to linear regression model. It would be
of interest to extend our nonlinear random matrix analysis to such structured input settings.

ETHICS STATEMENT

This submission focuses on the theoretical analysis of nonlinear Attention using random matrix
theory. We do not feel that this submission raises any ethical concerns regarding, e.g., human subjects
or potentially harmful insights.

REPRODUCIBILITY STATEMENT

The numerical experiments are obtained using synthetic data drawn from the binary Gaussian signal-
plus-noise model defined in Definition 2. The experimental settings, hyperparameter choices, and
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results are fully described in the main text and the appendix. Consequently, the numerical results
reported in this paper can be independently reproduced without relying on any proprietary datasets or
external resources.
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Supplementary Material of
A Random Matrix Analysis of In-context Memorization for Nonlinear Attention

The technical appendices of this paper are organized as follows. An extended discussion of related
work is given in Appendix A. Some auxiliary results and discussions are placed in Appendix B. The
detailed proofs of our technical results are given in Appendix C. Additional numerical results are
provided in Appendix D.

A FURTHER DISCUSSIONS OF PRIOR EFFORTS

Transformers and empirical scaling laws. A growing body of work has established empirical
scaling laws for Transformer models with respect to data size, model size, and computational budget.
Early studies demonstrated power-law curves between generalization performance and model size for
Transformer-based LLMs (Kaplan et al., 2020; Henighan et al., 2020), with subsequent extensions
to transfer and multitask learning (Hernandez et al., 2021; Wei et al., 2022). Notably, it has been
shown in (Hoffmann et al., 2022) that smaller models trained on more data can outperform larger
“undertrained” models under fixed compute budget. Other studies have explored the effects of
overparameterization, initialization, and depth-width trade-offs in the scaling laws of Transformer-
based models (Bahri et al., 2024; Zhai et al., 2022; Xiao et al., 2021). Emergent phenomena and
scaling transitions such as double descent (Nakkiran et al., 2020), in-context induction (Olsson
et al., 2022b), and phase shifts in predictability (Ganguli et al., 2022) have also been empirically
observed. Investigations on Vision Transformers and instruction-tuned models (Dosovitskiy et al.,
2020; Chowdhery et al., 2023) further support the universality of scaling behaviors across different
modalities.

Our work complements these empirical findings by providing a precise theoretical characterization
on the scaling law of in-context memorization error of nonlinear Attention as a function of the
sample-to-dimension ratio (𝑛/𝑝) and the SNR of the input data.

Efficient Transformer variants and low-rank adaptation. The quadratic complexity of vanilla
Attention with respect to sequence length has motivated a wide range of approximation-based
methods to improve computational efficiency. Performer has replaced the Softmax nonlinearity
with kernel-based random projections to achieve near-linear complexity (Krzysztof et al., 2021);
Linformer has projected keys and values into a low-dimensional subspace (Wang et al., 2020);
Nyströmformer approximates the Attention matrix using the Nyström method (Xiong et al., 2021); and
Reformer has combined locality-sensitive hashing with reversible layers for memory savings (Kitaev
et al., 2020). In parallel, a series of works have proposed low-rank adaptation techniques for
efficient fine-tuning of Transformer-based LLMs. LoRA has introduced trainable low-rank updates
to frozen weights (Hu et al., 2022); QLoRA has extended this idea to quantized models with minimal
performance degradation (Dettmers et al., 2023); LoRA-FA has improved memory efficiency via
factorized updates (Zhang et al., 2023); and UniPELT has unified multiple parameter-efficient tuning
strategies into a single framework (Mao et al., 2021).

Motivated by these low-rank structures in computing and/or fine-tuning Transformer-based models,
we assume in Assumption 1 a full-plus-low-rank decomposition of the Attention weights, and
characterizes how such structure affects the memorization capacity of nonlinear Attention.

Theoretical understanding of DNN, LLMs, and in-context learning. Recent theoretical advances
in the optimization and generalization of over-parameterized deep neural networks (DNNs) have laid
the groundwork for understanding the training behavior of modern large language models (LLMs).
Despite the fact that LLMs typically operate in a regime where the number of model parameters
far exceeds the number of training samples, first-order methods such as stochastic gradient descent
have been shown to converge reliably and generalize effectively under specific conditions (Li &
Liang, 2018; Allen-Zhu et al., 2019) for DNNs. Notably, the “edge of stability” phenomenon has
emerged as a key concept, capturing the peculiar yet effective optimization dynamics commonly
observed during the training of DNNs and LLMs (Cohen et al., 2021; Arora et al., 2022; Wang
et al., 2022). Building on these insights, a growing body of work has investigated the mechanisms
underlying in-context learning (ICL). Transformers have been shown to approximate gradient descent
steps via Attention blocks (Von Oswald et al., 2023; Mahankali et al., 2023), and even to implement
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general-purpose learning algorithms directly from contextual input (Akyürek et al., 2022; Garg
et al., 2022a). Alternative viewpoints interpret ICL as a form of implicit Bayesian inference (Xie
et al., 2021; Falck et al., 2024), offering probabilistic frameworks to explain generalization from
prompts. At the mechanistic level, recent work has identified “induction heads” within Transformer
architectures than enable token-level pattern recognition and generalization (Olsson et al., 2022a).

B AUXILIARY RESULTS AND FURTHER DISCUSSIONS

In this section, we provide further discussions on possible extensions of our theoretical results. We
discuss in Remark 5 the connection between the entry-wise Attention in Definition 1 to the standard
Softmax Attention, in Remark 6 the extension of Assumption 1 beyond the rank-one setting, and
in Remark 7 the possibility to relax the binary Gaussian mixture model in Definition 2 to, e.g.,
multi-class sub-gaussian mixture model.
Remark 5 (On Softmax Attention). As already mentioned in ??, while Definition 1 corresponds to
entry-wise Attention (such the sigmoid or ReLU Attention (Wortsman et al., 2023; Ramapuram et al.,
2024)) instead of commonly used Softmax Attention, under the setting of Assumptions 1 and 3 and
for input token drawn from the signal-plus-noise model in Definition 2 taking a truncated exponential
function 𝑓 (𝑡) = min(exp(𝑡), 𝐶) for some 𝐶 > 0 large, leads to approximately the same Attention
matrix 𝐀𝐗 as that of Softmax nonlinearity, up to a scaling factor.

Precisely, note from the proof of Lemma 1 below in Appendix C.2 that the (𝑖, 𝑗) entry of 𝐗⊤𝐖⊤
𝐾𝐖𝑄𝐗

is given, for 𝑖 ≠ 𝑗 , by

𝐱⊤𝑖 𝐖
⊤
𝐾𝐖𝑄𝐱𝑗 = 𝐱⊤𝑖 𝐱𝑗 + 𝐱⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝐱𝑗
= 𝐳⊤𝑖 𝐳𝑗⏟⏞⏞⏟⏞⏞⏟

𝑂(√𝑝)

+𝑦𝑖𝑦𝑗 ‖𝝁‖2 + (𝑦𝑗𝐳𝑖 + 𝑦𝑖𝐳𝑗 )⊤𝝁 + 𝑦𝑗𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝝁 + 𝑦𝑖𝝁⊤𝐰𝐾𝐰⊤

𝑄𝐳𝑗 + 𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝐳𝑗 + 𝑦𝑖𝑦𝑗𝝁⊤𝐰𝐾𝐰⊤

𝑄𝝁⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂(1)

,

and for 𝑖 = 𝑗 , by

𝐱⊤𝑖 𝐖
⊤
𝐾𝐖𝑄𝐱𝑖 = ‖𝐱𝑖‖2 + 𝐱⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝐱𝑖
= ‖𝐳𝑖‖2⏟⏞⏞⏟⏞⏞⏟

𝑂(𝑝)

+ ‖𝝁‖2 + 2𝑦𝑖𝐳⊤𝑖 𝝁 + 𝑦𝑖𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝝁 + 𝑦𝑖𝝁⊤𝐰𝐾𝐰⊤

𝑄𝐳𝑖 + 𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝐳𝑖 + 𝝁⊤𝐰𝐾𝐰⊤

𝑄𝝁⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂(1)

.

As such, the 𝑖th column of 𝐗⊤𝐖⊤
𝐾𝐖𝑄𝐗/

√𝑝 (on which the Softmax function is applied) writes

𝐗⊤𝐖⊤
𝐾𝐖𝑄𝐱𝑖/

√
𝑝 =

1
√𝑝

⎡
⎢
⎢
⎢
⎢
⎣

𝐳⊤1 𝐳𝑖
⋮

‖𝐳𝑖‖2 = 𝑝 + 𝑂(√𝑝)
⋮

𝐳⊤𝑛𝐳𝑖

⎤
⎥
⎥
⎥
⎥
⎦

+ 𝑂‖⋅‖∞(𝑝
−1/2), (17)

for 𝐳𝑖 ∼  (𝟎, 𝐈𝑝), where we denote 𝑂‖⋅‖∞(𝑝−1/2) for random vector of infinity norm 𝑂(𝑝−1/2) with
high probability. As such, for 𝑗 ≠ 𝑖, we have, conditioned on 𝐳𝑖 that 𝐳⊤𝑗 𝐳𝑗/

√𝑝 ∼  (0, ‖𝐳𝑖‖2/𝑝) which
is approximately  (0, 1) for 𝑝 large. Thus, by Taylor-expansion of 𝑓 (𝑡) = min{exp(𝑡), 𝐶}, we have,
for large enough 𝐶 that with high probability

min
{
exp (𝐱⊤𝑗 𝐖

⊤
𝐾𝐖𝑄𝐱𝑖/

√
𝑝) , 𝐶

}
= exp (𝐳⊤𝑗 𝐳𝑖/

√
𝑝) + 𝑂(𝑝−1/2), (18)

for 𝑗 ≠ 𝑖 and similarly
min

{
exp (𝐱⊤𝑖 𝐖

⊤
𝐾𝐖𝑄𝐱𝑖/

√
𝑝) , 𝐶

}
= 𝐶, (19)

as a consequence of the fact that ‖𝐳𝑖‖2/
√𝑝 ≃ 𝔼[‖𝐳𝑖‖2]/

√𝑝 = √𝑝.

Also, we have
𝑛

∑
𝑗=1

exp (𝐱⊤𝑗 𝐖
⊤
𝐾𝐖𝑄𝐱𝑖/

√
𝑝) = ∑

𝑗≠𝑖
exp (𝐳⊤𝑗 𝐳𝑖/

√
𝑝)+𝑂(

√
𝑝)+𝐶 = 𝑛𝔼[exp( (0, 1))] +𝑂(

√
𝑝), (20)

so that for truncated Softmax function Softmax∶ ℝ𝑛 → ℝ𝑛 defined as

Softmax(𝐳) =
1

∑𝑛
𝑗=1 min{exp(𝑧𝑗 ), 𝐶} [

min{exp(𝑧1), 𝐶}
⋮

min{exp(𝑧𝑛), 𝐶}]
, (21)
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we have that the normalization factor for each column of 𝐗⊤𝐖⊤
𝐾𝐖𝑄𝐗/

√𝑝 is asymptotically the same,
and that Assumptions 1 and 3, the entry-wise truncated exponential function 𝑓 (𝑡) = min(exp(𝑡), 𝐶)
leads to approximately the same Attention matrix 𝐀𝐗 as the Softmax Attention, up to a scaling
factor. Nonetheless, it remains unclear how this entry-wise approximation of Attention matrix could
translate into, e.g., the approximation of Softmax using truncated exponential function in terms of
the in-context memorization error in Definition 3. See Figure 7 below for numerical results showing
such examples and counterexamples.

Remark 6 (Extension beyond rank-one setting). While we consider in Assumption 1 that the
Attention weights admits a full-plus-low-rank decomposition of the form 𝐖⊤

𝐾𝐖𝑄 = 𝐈𝑝 +𝐰𝐾𝐰⊤
𝑄 , with

𝐰𝐾𝐰⊤
𝑄 being of rank one, it is possible to extend the analysis beyond the rank-one setting and consider

a low-rank part of rank 𝐾 (with 𝐾 fixed as 𝑛, 𝑝 → ∞). Notably, in that setting, the linearization result
in Lemma 1 must be modified so that the term 𝐔𝐾𝚺𝐊𝐕⊤

𝑄 takes account of the rank-𝐾 structure in the
product 𝐖⊤

𝐾𝐖𝑄 .

Remark 7 (Extension beyond binary Gaussian signal-plus-noise model). The Gaussian signal-plus-
noise model in Definition 2 can be extended (at least) in the following two ways.

1. By considering more sophisticated structure in the statistical signal, for instance with
𝐗 = 𝐌𝐉⊤ where 𝐌 = [𝝁1, … , 𝝁𝐾 ] ∈ ℝ𝑝×𝐾 is the matrix containing the means of the 𝐾 > 2
classes, and 𝐉 = [𝐣1, … , 𝐣𝐾 ] ∈ ℝ𝑛×𝐾 is the canonical vector of class 𝑘 ∈ {1, …𝐾}, with
[𝐣𝑘]𝑖 = 1 if 𝐱𝑖 belongs to class 𝑘 and zero otherwise.

2. By considering not necessarily Gaussian noise in the input tokens. An example is the
sub-gaussian distribution that is symmetric in law. It has been long known in RMT that
eigenspectra of large random matrices enjoy universal properties for Gaussian and non-
Gaussian entries (Tao et al., 2010; Pastur & Shcherbina, 2011), and we expect that most
of our technical results also hold for sub-gaussian distributions, see for example Lemma 2
below.

C MATHEMATICAL PROOFS

In this section, we present the proofs of the technical results in this paper. We first recall in
Appendix C.1 a few lemmas that will be used in the proofs. The proof of Lemma 1 is given in
Appendix C.2, the proof of Proposition 1 is given in Appendix C.3, the proof of Theorem 1 is given
in Appendix C.4, and finally the proof of Proposition 2 in Appendix C.5.

C.1 USEFUL LEMMAS

Lemma 2 (Spectral norm of kernel random matrix, (Fan & Montanari, 2019)). For a random matrix
𝐙 ∈ ℝ𝑝×𝑛 having i.i.d. sub-gaussian entries that are symmetric in law, of zero mean and unit variance,
and function 𝑓 ∶ ℝ → ℝ such that |𝑓 (𝑥)| ≤ 𝐶1 exp(𝐶2|𝑥|) for some constants 𝐶1, 𝐶2 > 0, the random
kernel matrix

𝐊 = 𝑓 (𝐙⊤𝐙/
√
𝑝)/

√
𝑝 − diag(⋅) ∈ ℝ𝑛×𝑛, (22)

satisfies, with high probability as 𝑛, 𝑝 → ∞ at the same pace, that

1. ‖𝐊‖ = 𝑂(1) if 𝔼𝜉∼ (0,1)[𝑓 (𝜉)] = 0; and

2. ‖𝐊‖ = 𝑂(√𝑝) with ‖𝐊 − 𝔼[𝑓 (𝜉)]𝟏𝑛𝟏⊤𝑛/
√𝑝‖ = 𝑂(1) otherwise.

Lemma 3 (Matrix norm controls). We have the following facts on the operator norm of matrices and
Hadamard product between matrices.

1. For 𝐀 ∈ ℝ𝑛×𝑛, we have ‖𝐀‖max ≤ ‖𝐀‖ ≤ 𝑛‖𝐀‖max with ‖𝐀‖max ≡ max𝑖,𝑗 |𝐴𝑖𝑗 |.

2. For 𝐀, 𝐁 ∈ ℝ𝑁×𝑛, we have ‖𝐀 ⊙ 𝐁‖ ≤ max(
√
𝑛,
√
𝑁)‖𝐀‖max ⋅ ‖𝐁‖.

3. If 𝐀 ∈ ℝ𝑁×𝑛 is of rank one with 𝐀 = 𝐮𝐯⊤, 𝐮 ∈ ℝ𝑁 , 𝐯 ∈ ℝ𝑛, we have 𝐀⊙𝐁 = diag(𝐮)𝐁 diag(𝐯)
so that

‖𝐀 ⊙ 𝐁‖ ≤ ‖𝐮‖∞ ⋅ ‖𝐯‖∞ ⋅ ‖𝐁‖, (23)
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see (Ba et al., 2022, Fact 13). More generally, if 𝐀 is of rank 𝐾 with 𝐀 = ∑𝐾
𝑘=1 𝐮𝑘𝐰⊤

𝐾 , we
similarly have

‖𝐀 ⊙ 𝐁‖ = ‖(
𝐾

∑
𝑘=1

𝐮𝑘𝐰⊤
𝑘 ) ⊙ 𝐁‖ = ‖

𝐾

∑
𝑘=1

(𝐮𝑘𝐰⊤
𝑘 ) ⊙ 𝐁‖

≤
𝐾

∑
𝑘=1

‖(𝐮𝑘𝐰⊤
𝑘 ) ⊙ 𝐁‖ ≤

𝐾

∑
𝑘=1

‖𝐮𝑘‖∞ ⋅ ‖𝐰𝑘‖∞ ⋅ ‖𝐁‖.

C.2 PROOF OF LEMMA 1

Here, we present the proof of Lemma 1 by “linearizing” the nonlinear kernel matrix

𝐊𝐗 = 𝑓 (𝐗⊤𝐖⊤
𝐾𝐖𝑄𝐗/

√
𝑝)/

√
𝑝 ∈ ℝ𝑛×𝑛, (24)

defined in (1) of Definition 1.

To start, note that for the binary mixture model in Definition 2 and under Assumptions 1 and 3, we
have 𝐱𝑖 = 𝑦𝑖𝝁 + 𝐳𝑖 and 𝐖⊤

𝐾𝐖𝑄 = 𝐈𝑝 + 𝐰𝐾𝐰⊤
𝑄 , so that for 𝑖 ≠ 𝑗 ,

𝐱⊤𝑖 𝐖
⊤
𝐾𝐖𝑄𝐱𝑗 = 𝐱⊤𝑖 𝐱𝑗 + 𝐱⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝐱𝑗
= 𝐳⊤𝑖 𝐳𝑗⏟⏞⏞⏟⏞⏞⏟

𝑂(√𝑝)

+𝑦𝑖𝑦𝑗 ‖𝝁‖2 + (𝑦𝑗𝐳𝑖 + 𝑦𝑖𝐳𝑗 )⊤𝝁 + 𝑦𝑗𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝝁 + 𝑦𝑖𝝁⊤𝐰𝐾𝐰⊤

𝑄𝐳𝑗 + 𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝐳𝑗 + 𝑦𝑖𝑦𝑗𝝁⊤𝐰𝐾𝐰⊤

𝑄𝝁⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂(1)

,

for 𝑦𝑖, 𝑦𝑗 ∈ {±1} and independent 𝐳𝑖, 𝐳𝑗 ∼  (𝟎, 𝐈𝑝), where we used the fact that max{‖𝝁‖, ‖𝐰𝐾 ‖, ‖𝐰𝑄‖} =
𝑂(1) under Assumption 3. Similarly, for 𝑖 = 𝑗 ,

𝐱⊤𝑖 𝐖
⊤
𝐾𝐖𝑄𝐱𝑖 = ‖𝐱𝑖‖2 + 𝐱⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝐱𝑖
= ‖𝐳𝑖‖2⏟⏞⏞⏟⏞⏞⏟

𝑂(𝑝)

+ ‖𝝁‖2 + 2𝑦𝑖𝐳⊤𝑖 𝝁 + 𝑦𝑖𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝝁 + 𝑦𝑖𝝁⊤𝐰𝐾𝐰⊤

𝑄𝐳𝑖 + 𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝐳𝑖 + 𝝁⊤𝐰𝐾𝐰⊤

𝑄𝝁⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂(1)

,

where we used the fact that for any deterministic vector 𝐰 ∈ ℝ𝑝 of bounded norm, one has 𝐳⊤𝑖 𝐰 ∼
 (0, ‖𝐰‖2). As a consequence, we can Taylor-expand the smooth function 𝑓 in 𝐊𝐗 defined in (1) of
Definition 1. We first treat its non-diagonal entry (𝑖, 𝑗), for 𝑖 ≠ 𝑗 , as
√
𝑝[𝐊𝐗]𝑖𝑗 = 𝑓 (𝐳⊤𝑖 𝐳𝑗/

√
𝑝) + 𝑓 ′(𝐳⊤𝑖 𝐳𝑗/

√
𝑝)(𝑦𝑖𝑦𝑗 ‖𝝁‖2 + (𝑦𝑗𝐳𝑖 + 𝑦𝑖𝐳𝑗 )⊤𝝁 + 𝑦𝑗𝐳⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝝁 + 𝑦𝑖𝝁⊤𝐰𝐾𝐰⊤
𝑄𝐳𝑗

+ 𝐳⊤𝑖 𝐰𝐾𝐰⊤
𝑄𝐳𝑗 + 𝑦𝑖𝑦𝑗𝝁⊤𝐰𝐾𝐰⊤

𝑄𝝁)/
√
𝑝 + 𝑂(𝑝−1),

and for its diagonal entries as
√
𝑝[𝐊𝐗]𝑖𝑖 = 𝑓 (‖𝐳𝑖‖2/

√
𝑝) + 𝑓 ′(‖𝐳𝑖‖2/

√
𝑝)(‖𝝁‖2 + 2𝑦𝑖𝐳⊤𝑖 𝝁 + 𝑦𝑖𝐳⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝝁 + 𝑦𝑖𝝁⊤𝐰𝐾𝐰⊤
𝑄𝐳𝑖 + 𝐳⊤𝑖 𝐰𝐾𝐰⊤

𝑄𝐳𝑖 + 𝝁⊤𝐰𝐾𝐰⊤
𝑄𝝁)/

√
𝑝

+ 𝑂(𝑝−1).

Note that under Assumption 2, one has lim𝑡→∞ 𝑓 (𝑡) < ∞ so that as 𝑛, 𝑝 → ∞,
√
𝑝[𝐊𝐗]𝑖𝑖 = 𝑂(1).

This leads to the following spectral norm approximation of 𝐊𝐗 as
√
𝑝𝐊𝐗 = 𝑓 (𝐙⊤𝐙/

√
𝑝) − diag(⋅)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

+ 𝑓 ′(𝐙⊤𝐙/
√
𝑝) ⊙ (‖𝝁‖2𝐲𝐲⊤ + 𝐲𝝁⊤𝐙 + 𝐙⊤𝝁𝐲⊤ + 𝝁⊤𝐰𝑄 ⋅ 𝐙⊤𝐰𝐾𝐲⊤ + 𝝁⊤𝐰𝐾 ⋅ 𝐲𝐰⊤

𝑄𝐙)/
√
𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

+ 𝝁⊤𝐰𝐾𝐰⊤
𝑄𝝁 ⋅ 𝑓 ′(𝐙⊤𝐙/

√
𝑝) ⊙ (𝐲𝐲⊤)/

√
𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

+𝐙⊤𝐰𝐾𝐰⊤
𝑄𝐙 ⊙ 𝑓 ′(𝐙⊤𝐙/

√
𝑝)/

√
𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

−diag(⋅) + 𝑂‖⋅‖(1)

= 𝑓 (𝐙⊤𝐙/
√
𝑝) − diag(⋅)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

+𝑎1((‖𝝁‖2 + 𝝁⊤𝐰𝐾𝐰⊤
𝑄𝝁)𝐲𝐲

⊤ + 𝐲𝝁⊤𝐙 + 𝐙⊤𝝁𝐲⊤ + 𝝁⊤𝐰𝑄 ⋅ 𝐙⊤𝐰𝐾𝐲⊤ + 𝝁⊤𝐰𝐾 ⋅ 𝐲𝐰⊤
𝑄𝐙)/

√
𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

+ 𝑎1𝐙⊤𝐰𝐾𝐰⊤
𝑄𝐙/

√
𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂‖⋅‖(

√𝑝)

−diag(⋅) + 𝑂‖⋅‖(1),
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where we used the fact that under Assumption 2 for 𝔼[𝑓 (𝜉)] = 0 and 𝔼[𝑓 ′(𝜉)] = 𝑎1 ≠ 0, it follows
from Lemma 2 that 𝑓 (𝐙⊤𝐙/√𝑝) − diag(⋅) = 𝑂‖⋅‖(

√𝑝) and 𝑓 ′(𝐙⊤𝐙/√𝑝) = 𝔼[𝑓 ′(𝜉)]𝟏𝑛𝟏⊤𝑛 + 𝑂‖⋅‖(
√𝑝),

and then Item 3 of Lemma 3.

Let 𝐔𝐾 = [𝐲, 𝐙⊤𝝁, 𝐙⊤𝐰𝐾 ]/
√𝑝 ∈ ℝ𝑛×3, 𝐕𝑄 = [𝐲, 𝐙⊤𝝁, 𝐙⊤𝐰𝑄]/

√𝑝 ∈ ℝ𝑛×3, and

𝚺𝐊 = 𝑎1 [

‖𝝁‖2 + 𝝁⊤𝐰𝐾𝐰⊤
𝑄𝝁 1 𝝁⊤𝐰𝐾

1 0 0
𝝁⊤𝐰𝑄 0 1 ]

∈ ℝ3×3. (25)

Putting everything in matrix form, we conclude the proof of Lemma 1.

C.3 PROOF OF PROPOSITION 1

For the sake of presentation, we provide here the derivation of the Deterministic Equivalent for the
resolvent2

𝐐(𝛾) = (
1
𝑝
𝐊𝐙⊤𝐙𝐊 +

𝛾
𝑐
𝐈𝑛)

−1

, 𝛾 > 0, (26)

where we denote, with a slight abuse of notation that 𝐊 = 𝐊𝑁 = 𝑓 (𝐙⊤𝐙/√𝑝)/√𝑝 − diag(⋅) for the
noise-only kernel matrix 𝐊𝑁 defined in Lemma 1. The result in Proposition 1 can be obtained with a
simple scaling.

Consider the following normalized traces involving 𝐐(𝛾) defined in (26):
1
𝑛
tr𝐐(𝛾),

1
𝑝
tr(𝐐(𝛾)𝐊),

1
𝑝
tr(𝐐(𝛾)𝐊⋅𝐙⊤𝐙/𝑝)

1
𝑝
tr(𝐊𝐐(𝛾)𝐊),

1
𝑝
tr(𝐙⊤𝐙/𝑝⋅𝐊𝐐(𝛾)𝐊⋅𝐙⊤𝐙/𝑝),

for which we shall subsequently prove that
1
𝑛
tr𝐐(𝛾) − 𝑚(𝛾) → 0,

1
𝑝
tr(𝐐(𝛾)𝐊) − 𝛿1(𝛾 ) → 0,

1
𝑝
tr(𝐐(𝛾)𝐊𝐙⊤𝐙/𝑝) − 𝛿2(𝛾 ) → 0,

1
𝑝
tr(𝐊𝐐(𝛾)𝐊) − 𝛿3(𝛾 ) → 0,

1
𝑝
tr(𝐙⊤𝐙/𝑝 ⋅ 𝐊𝐐(𝛾)𝐊 ⋅ 𝐙⊤𝐙/𝑝) − 𝛿4(𝛾 ) → 0,

(27)

in probability as 𝑛, 𝑝 → ∞, where 𝑚(𝛾) and 𝛿1(𝛾 ), 𝛿2(𝛾 ), 𝛿3(𝛾 ), 𝛿4(𝛾 ) are Stieltjes transforms satisfy-
ing the following self-consistent system of equations

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝑚(𝛾) = (
𝛾
𝑐 +

𝜈
𝑐 + 𝑎21

𝑐2 − 𝐯⊤𝐓(𝛾)𝐯)
−1

𝑐𝛿1(𝛾 ) = −𝑚(𝛾)𝐯⊤𝐓(𝛾)𝐯1
𝑐𝛿2(𝛾 ) = 𝐯⊤2𝐓(𝛾)𝐯1 + 𝑐𝛿1(𝛾 ) (1 − 𝐯⊤2𝐓(𝛾)𝐯)
𝑐𝛿3(𝛾 ) = 𝐯⊤1𝐓(𝛾)𝐯1 +

𝑐2𝛿21 (𝛾 )
𝑚(𝛾)

𝑐𝛿4(𝛾 ) = 𝐯⊤4𝐓(𝛾)𝐯4 + 𝑚(𝛾) (𝐯⊤4𝐓(𝛾)𝐯 −
𝑎1
𝑐 )

2

(28)

where we denote
𝐓(𝛾) ≡ 𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1 ∈ ℝ6×6, (29)

that is symmetric, for

𝚫0(𝛾 ) ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑚(𝛾)
𝑐

𝑎1
𝑐 𝑚(𝛾) 𝛿1(𝛾 ) 𝑎1𝛿1(𝛾 ) 𝛿2(𝛾 ) 𝑎1𝛿2(𝛾 )

𝑎1
𝑐 𝑚(𝛾)

𝜈
𝑐𝑚(𝛾) 𝑎1𝛿1(𝛾 ) 𝜈𝛿1(𝛾 ) 𝑎1𝛿2(𝛾 ) 𝜈𝛿2(𝛾 )

𝛿1(𝛾 ) 𝑎1𝛿1(𝛾 ) 𝛿3(𝛾 ) 𝑎1𝛿3(𝛾 ) 1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝑎1𝛿1(𝛾 ) 𝜈𝛿1(𝛾 ) 𝑎1𝛿3(𝛾 ) 𝜈𝛿3(𝛾 ) 𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝜈
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝛿2(𝛾 ) 𝑎1𝛿2(𝛾 ) 1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾)) 𝛿4(𝛾 ) 𝑎1𝛿4(𝛾 )

𝑎1𝛿2(𝛾 ) 𝜈𝛿2(𝛾 ) 𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝜈
𝑐 (1 −

𝛾
𝑐𝑚(𝛾)) 𝑎1𝛿4(𝛾 ) 𝜈𝛿4(𝛾 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ6×6,

(30)
and

𝚲0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎21
𝑐2 (𝑐 + 1) 𝑎1/𝑐 𝑎1/𝑐 0 𝑎1 0
𝑎1/𝑐 1 1 0 0 0
𝑎1/𝑐 1 1 0 0 0
0 0 0 0 0 0
𝑎1 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ6×6, (31)

2Note that this is not the same 𝐐(𝛾) as in (3) of Definition 3. It is used here for the sake of notational
convenience and only within the proof of Proposition 1.
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that are both symmetric, as well as
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝐯 = [ 𝑎21
𝑐2 (1 + 𝑐) 𝑎1

𝑐
𝑎1
𝑐 0 0 1]

⊤
∈ ℝ6

𝐯1 = [0 1 0 0 0 0]
⊤ ∈ ℝ6

𝐯2 = [1 0 0 0 0 0]
⊤ ∈ ℝ6

𝐯4 = [
𝑎1
𝑐 1 1 0 0 0]

⊤ ∈ ℝ6.

(32)

C.3.1 PRELIMINARIES

First, let us introduce some notations and preliminary results that will be used in the proof of
Proposition 1.

Following (Couillet & Liao, 2022, Section 4.3.3), we can decompose, up to permutation, the nonlinear
kernel matrix 𝐊 as

𝐊 = [
𝐊−𝑖 𝑓 (𝐙⊤

−𝑖𝐳𝑖/
√𝑝)/√𝑝

𝑓 (𝐳⊤𝑖 𝐙−𝑖/
√𝑝)/√𝑝 0 ] = [

𝐊−𝑖 𝑓 (𝜶−𝑖)/
√𝑝

𝑓 (𝜶−𝑖)⊤/
√𝑝 0 ] , (33)

where we denote 𝐊−𝑖 ≡ 𝑓 (𝐙⊤
−𝑖𝐙−𝑖/

√𝑝)/√𝑝 − diag(⋅) ∈ ℝ(𝑛−1)×(𝑛−1),

𝜶−𝑖 ≡ 𝐙⊤
−𝑖𝐳𝑖/

√
𝑝 ∈ ℝ𝑛−1, (34)

for 𝐙−𝑖 ∈ ℝ𝑝×(𝑛−1) the Gaussian random matrix 𝐙 with its 𝑖th column removed, and 𝐳𝑖 ∈ ℝ𝑝 is the 𝑖th
column of 𝐙. Note that in the large 𝑝 limit, the random vector 𝜶−𝑖 is standard Gaussian  (𝟎, 𝐈𝑛−1).

Denote the shortcut 𝐙̌ = 1
𝑝𝐙

⊤𝐙, we can similarly decompose 𝐙̌ as

𝐙̌ =
1
𝑝
𝐙⊤𝐙 = [

𝐙⊤
−𝑖𝐙−𝑖/𝑝 𝜶−𝑖/

√𝑝
𝜶⊤

−𝑖/
√𝑝 1 ] + 𝑂‖⋅‖(𝑝−1/2) = [

𝐙̌−𝑖 𝜶−𝑖/
√𝑝

𝜶⊤
−𝑖/

√𝑝 1 ] + 𝑂‖⋅‖(𝑝−1/2), (35)

where the 𝑂‖⋅‖(𝑝−1/2) error term is due to the approximation ‖𝐳𝑖‖2/𝑝 = 1 + 𝑂(𝑝−1/2) with a CLT
argument.

Note that, by the decomposition 𝑓 (𝑥) = 𝑎1𝑥 + 𝑓>1(𝑥) for 𝑎1 the first Hermite polynomial of 𝑓 as
defined in Assumption 2, we have

𝑓 (𝜶−𝑖) = 𝑎1𝜶−𝑖 + 𝑓>1(𝜶−𝑖), (36)

and, for any 𝐀 ∈ ℝ(𝑛−1)×(𝑛−1) independent of 𝜶−𝑖,

1
𝑝
𝑓 (𝜶−𝑖)⊤𝐀𝜶−𝑖 = 𝑎1 ⋅

1
𝑝
tr 𝐀 + 𝑜(1),

1
𝑝
𝑓 (𝜶−𝑖)⊤𝐀𝑓 (𝜶−𝑖) = 𝜈 ⋅

1
𝑝
tr 𝐀 + 𝑜(1). (37)

In particular, for 𝐀 = 𝐈𝑛−1, we get 1
𝑝 𝑓 (𝜶−𝑖)⊤𝐀𝜶−𝑖 = 𝑎1

𝑐 + 𝑜(1) and 1
𝑝 𝑓 (𝜶−𝑖)⊤𝐀𝑓 (𝜶−𝑖) = 𝜈

𝑐 + 𝑜(1),
where 𝑐 = lim𝑝/𝑛 as in Assumption 3.

Further denote

𝐔0 = [𝜶−𝑖 𝑓 (𝜶−𝑖) 𝐊⟂
−𝑖𝜶−𝑖 𝐊⟂

−𝑖𝑓 (𝜶−𝑖) 𝐊⟂
−𝑖𝐙̌⟂

−𝑖𝜶−𝑖 𝐊⟂
−𝑖𝐙̌⟂

−𝑖𝑓 (𝜶−𝑖)] /
√
𝑝 ∈ ℝ(𝑛−1)×6, (38)

as well as

𝐊⟂
−𝑖 = {𝑓 ((𝐳⟂𝑗 )

⊤𝐳⟂𝑘/
√
𝑝)}𝑗 ,𝑘≠𝑖/

√
𝑝 − diag(⋅) ∈ ℝ(𝑛−1)×(𝑛−1), 𝐙̌⟂

−𝑖 ≡ {(𝐳⟂𝑗 )
⊤𝐳⟂𝑘/𝑝}𝑗 ,𝑘≠𝑖 ∈ ℝ(𝑛−1)×(𝑛−1),

(39)
where, for given 𝑖,

𝐳⟂𝑗 ≡ 𝐳𝑗 −
𝐳⊤𝑖 𝐳𝑗
‖𝐳𝑖‖

𝐳𝑖
‖𝐳𝑖‖

, (40)

that is orthogonal to and asymptotically independent of 𝐳⊤𝑖 𝐳𝑗/‖𝐳𝑖‖ ≈ [𝜶−𝑖]𝑗 in (34). For the two
“leave-one-out” matrices 𝐊−𝑖 and 𝐙̌−𝑖 defined in (33) and (35), we have the following result.

Lemma 4 (Approximations of 𝐊−𝑖 and 𝐙̌−𝑖, (Couillet & Liao, 2022, Section 4.3.3)). For 𝐊−𝑖 and 𝐙̌−𝑖
defined respectively in (33) and (35), we have the following approximations in spectral norm:

1. 𝐊−𝑖 = 𝐊⟂
−𝑖 +

𝑎1
𝑝 𝜶−𝑖𝜶⊤

−𝑖 + 𝑜‖⋅‖(1); and
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2. 𝐙̌−𝑖 = 𝐙̌⟂
−𝑖 + 1

𝑝𝜶−𝑖𝜶⊤
−𝑖 + 𝑜‖⋅‖(1);

for 𝐊⟂
−𝑖 and 𝐙̌⟂

−𝑖 defined in (39) that is asymptotically independent of 𝜶−𝑖 in (34).

With these preliminary results at hand, we are ready to derive a Deterministic Equivalent for 𝐐(𝛾)
defined in (26).

C.3.2 SELF-CONSISTENT EQUATION FOR 𝑚(𝑧)

Here we present the derivation for the Deterministic Equivalent (of the diagonal entries) of 𝐐(𝑧).
With the block decomposition of 𝐊 and 𝐙̌ in (33) and (35), we obtain for 𝐐(𝛾) ≡ 𝐐 in (26) (where
we drop the argument 𝛾 ) that

𝐐−1 ≡ 𝐊𝐙̌𝐊 +
𝛾
𝑐
𝐈𝑛 = [

[𝐐−1]11 [𝐐−1]12 ≡ [𝐐−1]⊤21
[𝐐−1]21 [𝐐−1]22 ] (41)

with

[𝐐−1]11 ≡ 𝐊−𝑖𝐙̌−𝑖𝐊−𝑖 +
1
𝑝
𝑓 (𝜶−𝑖)𝜶⊤

−𝑖𝐊−𝑖 +
1
𝑝
𝐊−𝑖𝜶−𝑖𝑓 (𝜶−𝑖)⊤ +

1
𝑝
𝑓 (𝜶−𝑖)𝑓 (𝜶−𝑖)⊤ +

𝛾
𝑐
𝐈𝑛−1,

[𝐐−1]21 ≡
1
√𝑝

𝑓 (𝜶−𝑖)⊤𝐙̌−𝑖𝐊−𝑖 +
𝑎1
𝑐
𝑓 (𝜶−𝑖)⊤√𝑝

,

[𝐐−1]22 ≡
1
𝑝
𝑓 (𝜶−𝑖)⊤𝐙̌−𝑖𝑓 (𝜶−𝑖) +

𝛾
𝑐
,

for which we have, per Lemma 4,

1. 𝐊−𝑖 = 𝐊⟂
−𝑖 +

𝑎1
𝑝 𝜶−𝑖𝜶⊤

−𝑖 + 𝑜‖⋅‖(1); and

2. 𝐙̌−𝑖 = 𝐙̌⟂
−𝑖 + 1

𝑝𝜶−𝑖𝜶⊤
−𝑖 + 𝑜‖⋅‖(1);

where 𝐊⟂
−𝑖 and 𝐙̌⟂

−𝑖 as defined in (39) that are both asymptotically independent of 𝜶−𝑖. This allows for
the first approximation of [𝐐−1]22 as

[𝐐−1]22 =
1
𝑝
𝑓 (𝜶−𝑖)⊤𝐙̌−𝑖𝑓 (𝜶−𝑖) +

𝛾
𝑐
=

1
𝑝
𝑓 (𝜶−𝑖)⊤ (

1
𝑝
𝜶−𝑖𝜶⊤

−𝑖 + 𝐙̌⟂
−𝑖)𝑓 (𝜶−𝑖) +

𝛾
𝑐
+ 𝑜(1)

=
𝑎21
𝑐2

+
𝜈
𝑐
+
𝛾
𝑐
+ 𝑜(1). (42)

Let

𝐐⟂
−𝑖 = (𝐊

⟂
−𝑖𝐙̌

⟂
−𝑖𝐊

⟂
−𝑖 +

𝛾
𝑐
𝐈𝑛−1)

−1
∈ ℝ(𝑛−1)×(𝑛−1), (43)

for 𝐊⟂
−𝑖, 𝐙̌⟂

−𝑖 defined in (39), so that 𝐐⟂
−𝑖 is asymptotically independent of 𝜶−𝑖 satisfying tr(𝐐 − 𝐐⟂

−𝑖) =
𝑂(1). We have the following approximation.

Lemma 5 (Approximation of 𝐔⊤
0𝐐⟂

−𝑖𝐔0). For 𝐐⟂
−𝑖 ∈ ℝ(𝑛−1)×(𝑛−1) as in (43) and 𝐔0 ∈ ℝ(𝑛−1)×6 in (38),

we have
𝐔⊤
0𝐐

⟂
−𝑖𝐔0 = 𝚫0(𝛾 ) + 𝑜‖⋅‖(1), (44)

with

𝚫0(𝑧) ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑚(𝛾)
𝑐

𝑎1
𝑐 𝑚(𝛾) 𝛿1(𝛾 ) 𝑎1𝛿1(𝛾 ) 𝛿2(𝛾 ) 𝑎1𝛿2(𝛾 )

𝑎1
𝑐 𝑚(𝛾)

𝜈
𝑐𝑚(𝛾) 𝑎1𝛿1(𝛾 ) 𝜈𝛿1(𝛾 ) 𝑎1𝛿2(𝛾 ) 𝜈𝛿2(𝛾 )

𝛿1(𝛾 ) 𝑎1𝛿1(𝛾 ) 𝛿3(𝛾 ) 𝑎1𝛿3(𝛾 ) 1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝑎1𝛿1(𝛾 ) 𝜈𝛿1(𝛾 ) 𝑎1𝛿3(𝛾 ) 𝜈𝛿3(𝛾 ) 𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝜈
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝛿2(𝛾 ) 𝑎1𝛿2(𝛾 ) 1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾)) 𝛿4(𝛾 ) 𝑎1𝛿4(𝛾 )

𝑎1𝛿2(𝛾 ) 𝜈𝛿2(𝛾 ) 𝑎1
𝑐 (1 −

𝛾
𝑐𝑚(𝛾))

𝜈
𝑐 (1 −

𝛾
𝑐𝑚(𝛾)) 𝑎1𝛿4(𝛾 ) 𝜈𝛿4(𝛾 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ6×6,

(45)
as in (30), for 𝑚(𝛾), 𝛿1(𝛾 ), 𝛿2(𝛾 ), 𝛿3(𝛾 ), 𝛿4(𝛾 ) as defined in (27) and (28).
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Proof of Lemma 5. Since 𝐐⟂
−𝑖 is asymptotically independent of

𝐔0 = [𝜶−𝑖 𝑓 (𝜶−𝑖) 𝐊⟂
−𝑖𝜶−𝑖 𝐊⟂

−𝑖𝑓 (𝜶−𝑖) 𝐊⟂
−𝑖𝐙̌⟂

−𝑖𝜶−𝑖 𝐊⟂
−𝑖𝐙̌⟂

−𝑖𝑓 (𝜶−𝑖)] /
√
𝑝 ∈ ℝ(𝑛−1)×6, (46)

we obtain

𝐔⊤
0𝐐

⟂
−𝑖𝐔0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑝 tr 𝐐 𝑎1 1

𝑝 tr 𝐐
1
𝑝 tr(𝐐𝐊) 𝑎1 1

𝑝 tr(𝐐𝐊)
1
𝑝 tr(𝐐𝐊𝐙̌) 𝑎1 1

𝑝 tr(𝐐𝐊𝐙̌)
𝑎1 1

𝑝 tr 𝐐 𝜈 1
𝑝 tr 𝐐 𝑎1 1

𝑝 tr(𝐐𝐊) 𝜈 1
𝑝 tr(𝐐𝐊) 𝑎1 1

𝑝 tr(𝐐𝐊𝐙̌) 𝜈 1
𝑝 tr(𝐐𝐊𝐙̌)

1
𝑝 tr(𝐐𝐊) 𝑎1 1

𝑝 tr(𝐐𝐊)
1
𝑝 tr(𝐊𝐐𝐊) 𝑎1 tr(𝐊𝐐𝐊) 1

𝑝 tr(𝐊𝐐𝐊𝐙̌) 𝑎1 1
𝑝 tr(𝐊𝐐𝐊𝐙̌)

𝑎1 1
𝑝 tr(𝐐𝐊) 𝜈 1

𝑝 tr(𝐐𝐊) 𝑎1 1
𝑝 tr(𝐊𝐐𝐊) 𝜈 tr(𝐊𝐐𝐊) 𝑎1 1

𝑝 tr(𝐊𝐐𝐊𝐙̌) 𝜈 1
𝑝 tr(𝐊𝐐𝐊𝐙̌)

1
𝑝 tr(𝐙̌𝐊𝐐) 𝑎1 1

𝑝 tr(𝐙̌𝐊𝐐)
1
𝑝 tr(𝐊𝐐𝐊𝐙̌) 𝑎1 1

𝑝 tr(𝐊𝐐𝐊𝐙̌)
1
𝑝 tr(𝐙̌𝐊𝐐𝐊𝐙̌) 𝑎1 1

𝑝 tr(𝐙̌𝐊𝐐𝐊𝐙̌)
𝑎1 1

𝑝 tr(𝐙̌𝐊𝐐) 𝜈 1
𝑝 tr(𝐙̌𝐊𝐐) 𝑎1 1

𝑝 tr(𝐊𝐐𝐊𝐙̌) 𝜈 1
𝑝 tr(𝐊𝐐𝐊𝐙̌) 𝑎1 1

𝑝 tr(𝐙̌𝐊𝐐𝐊𝐙̌) 𝜈 1
𝑝 tr(𝐙̌𝐊𝐐𝐊𝐙̌)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝑜‖⋅‖(1)

= 𝚫0(𝛾 ) + 𝑜‖⋅‖(1),

where we recall from (27) that

𝑚(𝛾) =
1
𝑛
tr𝐐(𝛾) + 𝑜(1) =

1
𝑛
tr𝐐⟂

−𝑖(𝛾 ) + 𝑜(1)

𝛿1(𝛾 ) =
1
𝑝
tr(𝐐(𝛾)𝐊) + 𝑜(1) =

1
𝑝
tr (𝐐⟂

−𝑖(𝛾 )𝐊
⟂
−𝑖) + 𝑜(1)

𝛿2(𝛾 ) =
1
𝑝
tr(𝐐(𝛾)𝐊𝐙̌) + 𝑜(1) =

1
𝑝
tr(𝐐⟂

−𝑖(𝛾 )𝐊
⟂
−𝑖𝐙̌

⟂
−𝑖) + 𝑜(1)

𝛿3(𝛾 ) =
1
𝑝
tr(𝐊𝐐(𝛾)𝐊) + 𝑜(1) =

1
𝑝
tr(𝐊⟂

−𝑖𝐐
⟂
−𝑖(𝛾 )𝐊

⟂
−𝑖) + 𝑜(1)

𝛿4(𝛾 ) =
1
𝑝
tr(𝐙̌𝐊𝐐(𝛾)𝐊𝐙̌) + 𝑜(1) =

1
𝑝
tr(𝐙̌⟂

−𝑖𝐊
⟂
−𝑖𝐐

⟂
−𝑖(𝛾 )𝐊

⟂
−𝑖𝐙̌

⟂
−𝑖) + 𝑜(1),

and we use the fact that by (Silverstein & Bai, 1995, Lemma 2.6) and (Couillet & Liao, 2022,
Lemma 2.9), when evaluating normalized traces forms as in (27) for 𝑛, 𝑝 large, we can ignore
terms of finite rank inside the trace, by adding an error term 𝑜(1) with high probability, as well
as tr(𝐊̃𝐐𝐊̃𝐙̌) = tr(𝐐𝐊̃𝐙̌𝐊̃) = tr[𝐐(𝐐−1 − 𝛾𝐈𝑛)] = tr[𝐈𝑛 − 𝛾𝐐] = tr(𝐈𝑛) − 𝛾 tr(𝐐) = 𝑛 − 𝑛𝛾𝑚(𝛾) =
𝑛(1 − 𝛾𝑚(𝛾)), This concludes the proof of Lemma 5.

Our objective is to compute the (𝑖, 𝑖)th diagonal entries of the inverse 𝐐 = (𝐊𝐙̌𝐊 + 𝛾𝐈𝑛)−1. Using the
block inversion lemma, we get

[𝐐]𝑖𝑖 = ([𝐐−1]22 − [𝐐−1]21([𝐐−1]11)−1[𝐐−1]12)
−1 , (47)

and

𝐐 = [
([𝐐−1]11 − [𝐐−1]12([𝐐−1]22)−1[𝐐−1]21)−1 −([𝐐−1]11)−1[𝐐−1]12[𝐐]𝑖𝑖

−[𝐐]𝑖𝑖[𝐐−1]21([𝐐−1]11)−1 [𝐐]𝑖𝑖 ] . (48)

We start with the inverse ([𝐐−1]11)−1, for which we have the following result.

Lemma 6 (Approximation of ([𝐐−1]11)−1). For [𝐐−1]11 ∈ ℝ(𝑛−1)×(𝑛−1) defined in (41), we have

([𝐐−1]11)−1 = 𝐐⟂
−𝑖 − 𝐐⟂

−𝑖𝐔0 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝚲0𝐔⊤
0𝐐

⟂
−𝑖 + 𝑜‖⋅‖(1), (49)

where we recall 𝚫0(𝛾 ) ∈ ℝ6×6 as in (30), 𝐔0 ∈ ℝ(𝑛−1)×6 as defined in (38), and

𝚲0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎21
𝑐2 (𝑐 + 1) 𝑎1/𝑐 𝑎1/𝑐 0 𝑎1 0
𝑎1/𝑐 1 1 0 0 0
𝑎1/𝑐 1 1 0 0 0
0 0 0 0 0 0
𝑎1 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ6×6, (50)

as in (31).
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Proof of Lemma 6. Per its definition in (41), we have

[𝐐−1]11 ≡ 𝐊−𝑖𝐙̌−𝑖𝐊−𝑖 +
1
𝑝
𝑓 (𝜶−𝑖)𝜶⊤

−𝑖𝐊−𝑖 +
1
𝑝
𝐊−𝑖𝜶−𝑖𝑓 (𝜶−𝑖)⊤ +

1
𝑝
𝑓 (𝜶−𝑖)𝑓 (𝜶−𝑖)⊤ +

𝛾
𝑐
𝐈𝑛−1

= 𝐊⟂
−𝑖𝐙̌

⟂
−𝑖𝐊

⟂
−𝑖 + 𝐔0𝚲0𝐔⊤

0 +
𝛾
𝑐
𝐈𝑛−1 + 𝑜‖⋅‖(1),

for 𝐔0, 𝚲 defined in (31), 𝐊⟂
−𝑖, 𝐙̌⟂

−𝑖 defined in (39) such that 𝐊−𝑖 = 𝐊⟂
−𝑖 +

𝑎1
𝑝 𝜶−𝑖𝜶⊤

−𝑖 + 𝑜‖⋅‖(1) and

𝐙̌−𝑖 = 𝐙̌⟂
−𝑖 + 1

𝑝𝜶−𝑖𝜶⊤
−𝑖 + 𝑜‖⋅‖(1) by Lemma 4. As such, by Woodbury identity,

([𝐐−1]11)−1 = (𝐊
⟂
−𝑖𝐙̌

⟂
−𝑖𝐊

⟂
−𝑖 +

𝛾
𝑐
𝐈𝑛−1 + 𝐔0𝚲𝐔⊤

0)
−1

+ 𝑜‖⋅‖(1)

= 𝐐⟂
−𝑖 − 𝐐⟂

−𝑖𝐔0 (𝐈6 + 𝚲0𝐔⊤
0𝐐

⟂
−𝑖𝐔0)

−1 𝚲0𝐔⊤
0𝐐

⟂
−𝑖 + 𝑜‖⋅‖(1),

for 𝐐⟂
−𝑖 defined in (43). Using Lemma 5 to approximate 𝐔⊤

0𝐐⟂
−𝑖𝐔0 = 𝚫0(𝛾 ) + 𝑜‖⋅‖(1), we conclude the

proof of Lemma 6.

With Lemmas 5 and 6, we get the following (block-wise) approximation for 𝐐.

Lemma 7 (Block approximation of 𝐐). We have

𝐐 = [
𝐐⟂

−𝑖 − 𝐐⟂
−𝑖𝐔0(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤

0𝐐⟂
−𝑖 −𝑚(𝛾)𝐐⟂

−𝑖𝐔0 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝐯
−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤

0𝐐⟂
−𝑖 [𝐐]𝑖𝑖 ] + 𝑜‖⋅‖(1),

(51)
where we recall 𝚫0(𝛾 ) ∈ ℂ6×6 as in (30), 𝚲0 as in (31), 𝐔0 ∈ ℝ(𝑛−1)×6 as defined in (38), and

𝚲1(𝛾 ) = 𝚲0 − (
𝑎21
𝑐2

+
𝜈
𝑐
+
𝛾
𝑐 )

−1

𝐯𝐯⊤ ∈ ℝ6×6, 𝐯⊤ = [ 𝑎21
𝑐2 (1 + 𝑐) 𝑎1

𝑐
𝑎1
𝑐 0 0 1] ∈ ℝ6, (52)

as in (32). We also have, by (52) and Sherman–Morrison identity that

𝚫0(𝛾 )(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1 = 𝚫0(𝛾 )(
𝐈6 + 𝚲0𝚫0(𝛾 ) − (

𝑎21
𝑐2

+
𝜈
𝑐
+
𝛾
𝑐 )

−1

𝐯𝐯⊤𝚫0(𝛾 ))

−1

= 𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1 +
𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1

𝑎21
𝑐2 +

𝜈
𝑐 + 𝛾

𝑐 − 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯
, (53)

and

𝐔⊤
0 (𝐐

⟂
−𝑖 − 𝐐⟂

−𝑖𝐔0(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤
0𝐐

⟂
−𝑖)𝐔0 = 𝚫0(𝛾 )(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1 + 𝑜‖⋅‖(1). (54)

Proof of Lemma 7. We first work on [𝐐−1]21 by expanding the term 1√𝑝 𝑓 (𝜶−𝑖)⊤𝐙̌−𝑖𝐊−𝑖 as

𝑓 (𝜶−𝑖)⊤√𝑝
𝐙̌−𝑖𝐊−𝑖 =

𝑓 (𝜶−𝑖)⊤√𝑝
(𝐙̌⟂

−𝑖 +
1
𝑝
𝜶−𝑖𝜶⊤

−𝑖)(𝐊
⟂
−𝑖 +

𝑎1
𝑝
𝜶−𝑖𝜶⊤

−𝑖) + 𝑜‖⋅‖(1)

=
𝑓 (𝜶−𝑖)⊤√𝑝

𝐙̌⟂
−𝑖𝐊

⟂
−𝑖 + 𝑎1

𝑛
𝑝

1
√𝑝

𝜶⊤
−𝑖𝐊

⟂
−𝑖 + 𝑎21

𝑛
𝑝 (1 +

𝑛
𝑝)

𝜶⊤
−𝑖√𝑝

+ 𝑜‖⋅‖(1),

so that

[𝐐−1]21 =
𝑓 (𝜶−𝑖)⊤√𝑝

𝐙̌−𝑖𝐊−𝑖 + 𝑎1
𝑛
𝑝
𝑓 (𝜶−𝑖)⊤√𝑝

+ 𝑜‖⋅‖(1) = 𝐯⊤𝐔⊤
0 + 𝑜‖⋅‖(1), (55)

with 𝐯 ∈ ℝ6 defined in (52).

So that

[𝐐]𝑖𝑖[𝐐−1]21([𝐐−1]11)−1 = 𝑚(𝛾)𝐯⊤𝐔⊤
0 (𝐐

⟂
−𝑖 − 𝐐⟂

−𝑖𝐔0 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝚲0𝐔⊤
0𝐐

⟂
−𝑖) + 𝑜‖⋅‖(1)

= 𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤
0𝐐

⟂
−𝑖 + 𝑜‖⋅‖(1).
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Then, with the approximation of the inverse ([𝐐−1]11)−1 in Lemma 6 and that of [𝐐−1]21 above, we
obtain

([𝐐−1]11 − [𝐐−1]12([𝐐−1]22)−1[𝐐−1]21)−1 = (𝐊⟂
−𝑖𝐙̌

⟂
−𝑖𝐊

⟂
−𝑖 + 𝐔0𝚲0𝐔⊤

0 +
𝛾
𝑐
𝐈𝑛−1 − ([𝐐−1]22)−1𝐔0𝐯𝐯⊤𝐔⊤

0 )
−1 + 𝑜‖⋅‖(1)

= (𝐊⟂
−𝑖𝐙̌

⟂
−𝑖𝐊

⟂
−𝑖 + 𝐔0𝚲1𝐔⊤

0 +
𝛾
𝑐
𝐈𝑛−1)−1 + 𝑜‖⋅‖(1)

= 𝐐⟂
−𝑖 − 𝐐⟂

−𝑖𝐔0(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤
0𝐐

⟂
−𝑖 + 𝑜‖⋅‖(1),

by (42) and Woodbury identity, for

𝚲1(𝛾 ) = 𝚲0 − ([𝐐−1]22)−1𝐯𝐯⊤ + 𝑜‖⋅‖(1) = 𝚲0 − (
𝑎21
𝑐2

+
𝜈
𝑐
+
𝛾
𝑐 )

−1

𝐯𝐯⊤ + 𝑜‖⋅‖(1), (56)

as defined in (52). This concludes the proof of Lemma 7.

Following the same idea, we expand the quadratic form [𝐐−1]21([𝐐−1]11)−1[𝐐−1]12 in (47) as

[𝐐−1]21([𝐐−1]11)−1[𝐐−1]12 = 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 + 𝑜(1), (57)

for 𝐯 ∈ ℝ6 defined in (52). Plugging this approximation back to (47) and ignoring the terms in 𝑜(1),
we obtain the following self-consistent equation on 𝑚(𝛾),

1
𝑚(𝛾)

=
𝛾
𝑐
+
𝜈
𝑐
+
𝑎21
𝑐2

− 𝐯⊤𝐓(𝛾)𝐯, 𝐓(𝛾) = 𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1. (58)

In the following, we determine the (self-consistent) equations for 𝛿1(𝛾 ), 𝛿2(𝛾 ), 𝛿3(𝛾 ) and 𝛿4(𝛾 ) in
𝐓(𝛾), so as to retrieve the final self-consistent equations in (27).

C.3.3 ESTABLISHING SELF-CONSISTENT EQUATIONS FOR 𝛿(𝛾)S

Following the same idea above in Appendix C.3.2, we now establish self-consistent equations for the
intermediate variables 𝛿1(𝛾 ), 𝛿2(𝛾 ), 𝛿3(𝛾 ), 𝛿4(𝛾 ) defined in (27).

Self-consistent equation for 𝛿1(𝛾 ). We start with 𝛿1(𝛾 ) = 1
𝑝 tr(𝐐(𝛾)𝐊) + 𝑜(1) by writing

𝛿1(𝛾 ) =
1
𝑝
tr(𝐐𝐊) + 𝑜(1) =

1
𝑝

𝑛

∑
𝑖=1

[𝐐𝐊]𝑖𝑖 + 𝑜(1) =
1
𝑐
[𝐐𝐊]𝑖𝑖 + 𝑜(1)

= −[𝐐]𝑖𝑖
1
𝑐
[𝐐−1]21([𝐐−1]11)−1𝑓 (𝜶−𝑖)/

√
𝑝 + 𝑜(1)

= −
𝑚(𝛾)
𝑐

𝐯⊤𝐔⊤
0 ([𝐐

−1]11)−1𝐔0𝐯1 + 𝑜(1) = −
𝑚(𝛾)
𝑐

𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1 + 𝑜(1)

= −
𝑚(𝛾)
𝑐

𝐯⊤𝐓(𝛾)𝐯1 + 𝑜(1),

for

𝐯⊤1 = [0 1 0 0 0 0] ∈ ℝ6. (59)

where we used the fact that 𝑓 (𝜶−𝑖)/
√𝑝 = 𝐔0𝐯1, (55), and Lemma 6.
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Self-consistent equation for 𝛿2(𝛾 ). We consider now 𝛿2(𝛾 ) = 1
𝑝 tr(𝐐(𝛾)𝐊𝐙̌) + 𝑜(1) and write

𝛿2(𝛾 ) =
1
𝑝
tr(𝐐𝐊𝐙̌) + 𝑜(1) =

1
𝑐
[𝐙̌𝐐𝐊]𝑖𝑖 + 𝑜(1)

=
1
𝑐 [

𝜶⊤
−𝑖/

√𝑝 1] [
𝐐⟂

−𝑖 − 𝐐⟂
−𝑖𝐔0(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤

0𝐐⟂
−𝑖 −𝑚(𝛾)𝐐⟂

−𝑖𝐔0 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝐯
−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤

0𝐐⟂
−𝑖 [𝐐]𝑖𝑖 ] [

𝑓 (𝜶−𝑖)/
√𝑝

0 ] + 𝑜(1)

=
1
𝑐 (

𝐯⊤2𝚫0(𝛾 )(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝐯1 − 𝑚(𝛾)𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1) + 𝑜(1)

=
1
𝑐 (

(𝐯2 − 𝑚(𝛾)𝐯)⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1 +
𝐯⊤2𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 × 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1

𝑎21
𝑐2 +

𝜈
𝑐 + 𝛾 − 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 )

+ 𝑜(1)

=
1
𝑐 (

(𝐯2 − 𝑚(𝛾)𝐯)⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1 + 𝑚(𝛾)𝐯⊤2𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 × 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1) + 𝑜(1)

=
1
𝑐 (

𝐯⊤2𝐓(𝛾)𝐯1 + 𝑐𝛿1(𝛾 ) (1 − 𝐯⊤2𝐓(𝛾)𝐯)) + 𝑜(1),

for 𝐯⊤1 = [0 1 0 0 0 0] ∈ ℝ6, 𝐯⊤2 = [1 0 0 0 0 0] ∈ ℝ6, where we used the fact that
𝜶−𝑖/

√𝑝 = 𝐔0𝐯2, 𝑓 (𝜶−𝑖)/
√𝑝 = 𝐔0𝐯1, Lemma 7, and the relation in (53).

Self-consistent equation for 𝛿3(𝛾 ). We consider now 𝛿3(𝛾 ) = 1
𝑝 tr(𝐊𝐐(𝛾)𝐊) + 𝑜(1) and write

𝛿3(𝛾 ) =
1
𝑝
tr(𝐊𝐐𝐊) + 𝑜(1) =

1
𝑐
[𝐊𝐐𝐊]𝑖𝑖 + 𝑜(1)

=
1
𝑐 [

𝑓 (𝜶−𝑖)⊤/
√𝑝 0] [

𝐐⟂
−𝑖 − 𝐐⟂

−𝑖𝐔0(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤
0𝐐⟂

−𝑖 −𝑚(𝛾)𝐐⟂
−𝑖𝐔0 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝐯

−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤
0𝐐⟂

−𝑖 [𝐐]𝑖𝑖 ]

× [
𝑓 (𝜶−𝑖)/

√𝑝
0 ] + 𝑜(1) =

1
𝑐
𝐯⊤1𝚫0(𝛾 )(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝐯1 + 𝑜(1)

=
1
𝑐 (

𝐯⊤1𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1 +
(𝐯⊤1𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯)2

𝑎21
𝑐2 +

𝜈
𝑐 + 𝛾 − 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯)

+ 𝑜(1)

=
1
𝑐 (

𝐯⊤1𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯1 + 𝑚(𝛾)(𝐯⊤1𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯)2) + 𝑜(1)

=
1
𝑐 (

𝐯⊤1𝐓(𝛾)𝐯1 + 𝑚(𝛾)(𝐯⊤1𝐓(𝛾)𝐯)
2) + 𝑜(1) =

1
𝑐 (

𝐯⊤1𝐓(𝛾)𝐯1 +
𝑐2𝛿21(𝛾 )
𝑚(𝛾) ) + 𝑜(1).

Self-consistent equation for 𝛿4(𝛾 ). We consider now 𝛿4(𝛾 ) = 1
𝑝 tr(𝐙̌𝐊𝐐(𝛾)𝐊𝐙̌) + 𝑜(1) and write

𝛿4(𝛾 ) =
1
𝑝
tr(𝐙̌𝐊𝐐𝐊𝐙̌) + 𝑜(1) =

1
𝑐
[𝐙̌𝐊𝐐𝐊𝐙̌]𝑖𝑖 + 𝑜(1)

=
1
𝑐 [

(𝐊⟂
−𝑖𝜶−𝑖 + 𝑎1

𝑐 𝜶−𝑖 + 𝑓 (𝜶−𝑖))⊤/
√𝑝 𝑎1

𝑐 ]

× [
𝐐⟂

−𝑖 − 𝐐⟂
−𝑖𝐔0(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤

0𝐐⟂
−𝑖 −𝑚(𝛾)𝐐⟂

−𝑖𝐔0 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝐯
−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤

0𝐐⟂
−𝑖 [𝐐]𝑖𝑖 ] [

∗
∗] + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝐯4 −
2𝑎1𝑚(𝛾)

𝑐
𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0(𝛾 )𝚫0(𝛾 ))−1𝐯 +

𝑎21
𝑐2
𝑚(𝛾)) + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯4 +
(𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯)2

𝑎21
𝑐2 +

𝜈
𝑐 + 𝛾 − 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯

−
2𝑎1𝑚(𝛾)

𝑐
𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0(𝛾 )𝚫0(𝛾 ))−1𝐯)

+
𝑎21

𝑐2 × 𝑐
𝑚(𝛾) + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯4 + 𝑚(𝛾) (𝐯
⊤
4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 −

𝑎1
𝑐 )

2

) + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝐓(𝛾)𝐯4 + 𝑚(𝛾) (𝐯
⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 )

2

) + 𝑜(1),
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for
𝐯⊤4 = [

𝑎1
𝑐 1 1 0 0 0] ∈ ℝ6. (60)

Putting these together, we obtain the system of equations as in (28).

We thus conclude the proof of Proposition 1.

C.4 PROOF OF THEOREM 1

Here, we provide detailed derivations of Theorem 1 on the Deterministic Equivalent of the in-context
memorization error 𝐸 in (6) Definition 3. To do this, recall the following structured nonlinear resolvent

𝐐(𝛾) = (
1
𝑛
𝐊⊤
𝐗𝐗

⊤𝐗𝐊𝐗 + 𝛾𝐈𝑛)

−1

, (61)

in (7) of Definition 3.

First note that by Lemma 1, we have

𝐊𝐗 = 𝐊𝑁 + 𝐔𝐾𝚺𝐊𝐕⊤
𝑄 + 𝑂‖⋅‖(𝑛−1/2), (62)

for 𝚺𝐊 ∈ ℝ3×3 defined in (9). Similarly, under Assumption 3, we have

1
𝑛
𝐗⊤𝐗 =

1
𝑛
𝐙⊤𝐙 + 𝐔𝐾𝚺𝐗𝐔⊤

𝐾 = 𝑐𝐙̌ + 𝐔𝐾𝚺𝐗𝐔⊤
𝐾 , 𝚺𝐗 ≡ 𝑐[

‖𝝁‖2 1 0
1 0 0
0 0 0 ]

, (63)

that is of bounded norm with probability one as 𝑛, 𝑝 → ∞ at the same rate. As such, we have

𝐐(𝛾) = (
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝐔𝚺𝐔⊤ + 𝛾𝐈𝑛)

−1

+ 𝑂‖⋅‖(𝑛−
1
2 )

= (
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

+ 𝑂‖⋅‖(𝑛−
1
2 )

− (
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

𝐔
(
𝚺−1 + 𝐔⊤

(
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

𝐔
)

−1

𝐔⊤
(
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

,

by Woodbury identity, for

𝐔 = [ 1
𝑛𝐊𝑁𝐙⊤𝐙𝐔𝐾 𝐊𝑁𝐔𝐾 𝐕𝑄] ∈ ℝ𝑛×9, (64)

with 𝐔𝐾 ∈ ℝ𝑛×3 and 𝐕𝑄 ∈ ℝ𝑛×3 defined in Lemma 1, and

𝚺 =
[

𝟎3 𝟎3 𝚺𝐊
𝟎3 𝚺𝐗 𝚺𝐗𝐔⊤

𝐾𝐔𝐾𝚺𝐊
𝚺⊤
𝐊 𝚺⊤

𝐊𝐔⊤
𝐾𝐔𝐾𝚺𝐗 𝚺⊤

𝐊(𝐔⊤
𝐾

1
𝑛𝐙

⊤𝐙𝐔𝐾 + 𝐔⊤
𝐾𝐔𝐾𝚺𝐗𝐔⊤

𝐾𝐔𝐾 )𝚺𝐊]
∈ ℝ9×9, (65)

Our objective of interest is the the memorization error 𝐸 defined in (7) of Definition 3 as

𝐸 = −
𝛾 2

𝑛
𝜕𝐲⊤𝐐(𝛾)𝐲

𝜕𝛾
. (66)

Note that 𝐲/√𝑝 is the first column of 𝐕𝑄 and thus the seventh column of 𝐔 defined in (64), so that

1
𝑛
𝐲⊤𝐐(𝛾)𝐲 = 𝑐 ⋅ 𝐞⊤7𝐔

⊤𝐐(𝛾)𝐔𝐞7

= 𝑐 ⋅ 𝐞⊤7𝐔
⊤
(
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

𝐔 ⋅
(
𝐈9 + 𝚺𝐔⊤

(
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

𝐔
)

−1

𝐞7 + 𝑂(𝑛−
1
2 ),

(67)

where 𝐞7 ∈ ℝ9 is the canonical vector at location seven.

We have the following approximation for the above objective of interest.
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Lemma 8 (Further approximations). For 𝚺 defined in (65) and 𝐔 in (64), we have the following
approximations in spectral norm holds with high probability as 𝑛, 𝑝 → ∞ with 𝑝/𝑛 → 𝑐 ∈ (0,∞),

𝚺 = 𝚲 + 𝑂‖⋅‖(𝑛−
1
2 ) (68)

𝐔⊤
(
1
𝑝
𝐊𝑁𝐙⊤𝐙𝐊𝑁 +

𝛾
𝑐
𝐈𝑛)

−1

𝐔 = 𝚫(𝛾) + 𝑂‖⋅‖(𝑛−
1
2 ), (69)

with 𝚲 =
[

𝟎3 𝟎3 𝚺𝐊
𝟎3 𝚺𝐗 [𝚲]2,3
𝚺⊤
𝐊 [𝚲]⊤2,3 [𝚲]3,3]

∈ ℝ9×9 and 𝚫(𝛾) =
[

[𝚫(𝛾)]1,1 [𝚫(𝛾)]1,2 [𝚫(𝛾)]1,3
[𝚫(𝛾)]⊤1,2 [𝚫(𝛾)]2,2 [𝚫(𝛾)]2,3
[𝚫(𝛾)]⊤1,3 [𝚫(𝛾)]⊤2,3 [𝚫(𝛾)]3,3]

∈ ℂ9×9 both

three-by-three block symmetric matrices with corresponding blocks given by

[𝚲]2,3 = 𝑎1 [

(‖𝝁‖2 + 1)𝑇1 ‖𝝁‖2 𝝁⊤𝐰𝐾 (‖𝝁‖2 + 1)
𝑇1 1 𝝁⊤𝐰𝐾
0 0 0 ]

[𝚲]3,3 = 𝑎21

⎡
⎢
⎢
⎢
⎣

2+𝑐+‖𝝁‖2
𝑐 𝑇 2

1 + 1+𝑐
𝑐 𝑇1 + 1+𝑐

𝑐 𝝁⊤𝐰𝑄 (𝝁⊤𝐰𝐾 + 𝝁⊤𝐰𝑄‖𝐰𝐾 ‖2) (∗) (∗)
1+𝑐+‖𝝁‖2

𝑐 𝑇1 1 + ‖𝝁‖2
𝑐

1+𝑐+‖𝝁‖2
𝑐 𝝁⊤𝐰𝐾

2+𝑐+‖𝝁‖2
𝑐 𝝁⊤𝐰𝐾𝑇1 + 1+𝑐

𝑐 (𝝁⊤𝐰𝐾 + 𝝁⊤𝐰𝑄‖𝐰𝐾 ‖2) (∗) 2+𝑐+‖𝝁‖2
𝑐 (𝝁⊤𝐰𝐾 )2 + 1+𝑐

𝑐 ‖𝐰𝐾 ‖2

⎤
⎥
⎥
⎥
⎦

for

𝑇1 = ‖𝝁‖2 + 𝝁⊤𝐰𝐾𝝁⊤𝐰𝑄 , (70)

and 𝚺𝐊 ≡ 𝑎1 [
𝑇1 1 𝝁⊤𝐰𝐾
1 0 0

𝝁⊤𝐰𝑄 0 1 ] ∈ ℝ3×3 defined in (9) of Lemma 1, 𝚺𝐗 ≡ 𝑐[
‖𝝁‖2 1 0
1 0 0
0 0 0 ]

∈ ℝ3×3, as well as

[𝚫(𝛾)]1,1 = [

𝑐2𝛿4(𝛾 ) 0 0
0 𝑐2‖𝝁‖2𝛿7(𝛾 ) 𝑐2𝝁⊤𝐰𝐾𝛿7(𝛾 )
0 (∗) 𝑐2‖𝐰𝐾 ‖2𝛿7(𝛾 ) ]

∈ ℝ3×3

[𝚫(𝛾)]1,2 = [

1 − 𝛾
𝑐𝑚(𝛾) 0 0
0 𝑐‖𝝁‖2𝛿4(𝛾 ) 𝑐𝝁⊤𝐰𝐾𝛿4(𝛾 )
0 𝑐𝝁⊤𝐰𝐾𝛿4(𝛾 ) 𝑐‖𝐰𝐾 ‖2𝛿4(𝛾 )]

∈ ℝ3×3

[𝚫(𝛾)]1,3 = [

𝑐𝛿2(𝛾 ) 0 0
0 𝑐‖𝝁‖2𝛿6(𝛾 ) 𝑐𝝁⊤𝐰𝑄𝛿6(𝛾 )
0 𝑐𝝁⊤𝐰𝐾𝛿6(𝛾 ) 𝑐𝐰⊤

𝐾𝐰𝑄𝛿6(𝛾 )]
∈ ℝ3×3

[𝚫(𝛾)]2,2 =
⎡
⎢
⎢
⎣

𝛿3(𝛾 ) 0 0
0 1

𝑐 ‖𝝁‖
2(1 − 𝛾

𝑐𝑚(𝛾))
1
𝑐𝝁

⊤𝐰𝐾 (1 − 𝛾
𝑐𝑚(𝛾))

0 (∗) 1
𝑐 ‖𝐰𝐾 ‖2(1 − 𝛾

𝑐𝑚(𝛾))

⎤
⎥
⎥
⎦
∈ ℝ3×3

[𝚫(𝛾)]2,3 = [

𝛿1(𝛾 ) 0 0
0 ‖𝝁‖2𝛿2(𝛾 ) 𝝁⊤𝐰𝑄𝛿2(𝛾 )
0 𝝁⊤𝐰𝐾𝛿2(𝛾 ) 𝐰⊤

𝐾𝐰𝑄𝛿2(𝛾 )]
∈ ℝ3×3

[𝚫(𝛾)]3,3 =
⎡
⎢
⎢
⎣

1
𝑐𝑚(𝛾) 0 0
0 ‖𝝁‖2𝛿5(𝛾 ) 𝝁⊤𝐰𝑄𝛿5(𝛾 )
0 (∗) ‖𝐰𝑄‖2𝛿5(𝛾 )

⎤
⎥
⎥
⎦
∈ ℝ3×3,

for 𝛿1(𝛾 ), 𝛿2(𝛾 ), 𝛿3(𝛾 ), 𝛿4(𝛾 ) as defined in (27) of the proof of Proposition 1, and

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑐𝛿5(𝛾 ) = 𝑚(𝛾) (1 − 𝐯⊤2𝐓(𝛾)𝐯)
𝑐𝛿6(𝛾 ) = 𝐯⊤4𝐓(𝛾)𝐯2 + 𝑚(𝛾)(𝐯⊤2𝐓(𝛾)𝐯 − 1) (𝐯⊤4𝐓(𝛾)𝐯 −

𝑎1
𝑐 )

𝑐𝛿7(𝛾 ) = 𝐯⊤4𝐓(𝛾)𝐯7 + 𝑚(𝛾) (𝐯⊤4𝐓(𝛾)𝐯 −
𝑎1
𝑐 ) (𝐯

⊤
7𝐓(𝛾)𝐯 −

𝑎1
𝑐 (2 + 1

𝑐 ))
(71)

with

𝐯⊤7 = [2 𝑎1
𝑐 + 𝑎1

𝑐2
1
𝑐 + 1 1

𝑐 + 1 0 1 0] ∈ ℝ6. (72)
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Proof of Lemma 8. We first work on the approximation of 𝚺 defined in (65), for which we exploit
the following concentration results:

𝐔⊤
𝐾𝐔𝐾 =

1
𝑐 [

1 0 0
0 ‖𝝁‖2 𝝁⊤𝐰𝐾
0 𝝁⊤𝐰𝐾 ‖𝐰𝐾 ‖2]

+ 𝑂‖⋅‖(𝑛−
1
2 ),

1
𝑛
𝐔⊤
𝐾𝐙

⊤𝐙𝐔𝐾 =
⎡
⎢
⎢
⎣

1 0 0
0 1+𝑐

𝑐 ‖𝝁‖2 1+𝑐
𝑐 𝝁⊤𝐰𝐾

0 1+𝑐
𝑐 𝝁⊤𝐰𝐾

1+𝑐
𝑐 ‖𝐰𝐾 ‖2

⎤
⎥
⎥
⎦
+ 𝑂‖⋅‖(𝑛−

1
2 ),

where we used the Gaussian moments, we thus get

𝐔⊤
𝐾
1
𝑛
𝐙⊤𝐙𝐔𝐾 + 𝐔⊤

𝐾𝐔𝐾𝚺𝐗𝐔⊤
𝐾𝐔𝐾 =

⎡
⎢
⎢
⎣

1 + ‖𝝁‖2/𝑐 ‖𝝁‖2/𝑐 𝝁⊤𝐰𝐾/𝑐
‖𝝁‖2/𝑐 1+𝑐

𝑐 ‖𝝁‖2 1+𝑐
𝑐 𝝁⊤𝐰𝐾

𝝁⊤𝐰𝐾/𝑐 1+𝑐
𝑐 𝝁⊤𝐰𝐾

1+𝑐
𝑐 ‖𝐰𝐾 ‖2

⎤
⎥
⎥
⎦
+ 𝑂‖⋅‖(𝑛−

1
2 ), (73)

and therefore 𝚺 = 𝚲 + 𝑂‖⋅‖(𝑛−
1
2 ) with

𝚺 =
[

𝟎3 𝟎3 𝚺𝐊
𝟎3 𝚺𝐗 [𝚲]2,3
𝚺⊤
𝐊 [𝚲]⊤2,3 [𝚲]3,3]

, (74)

and

[𝚲]2,3 = 𝑎1 [

(‖𝝁‖2 + 1)𝑇1 ‖𝝁‖2 𝝁⊤𝐰𝐾 (‖𝝁‖2 + 1)
𝑇1 1 𝝁⊤𝐰𝐾
0 0 0 ]

[𝚲]3,3 = 𝑎21

⎡
⎢
⎢
⎢
⎣

2+𝑐+‖𝝁‖2
𝑐 𝑇 2

1 + 1+𝑐
𝑐 𝑇1 + 1+𝑐

𝑐 𝝁⊤𝐰𝑄 (𝝁⊤𝐰𝐾 + 𝝁⊤𝐰𝑄‖𝐰𝐾 ‖2) (∗) (∗)
1+𝑐+‖𝝁‖2

𝑐 𝑇1 1 + ‖𝝁‖2
𝑐

1+𝑐+‖𝝁‖2
𝑐 𝝁⊤𝐰𝐾

2+𝑐+‖𝝁‖2
𝑐 𝝁⊤𝐰𝐾𝑇1 + 1+𝑐

𝑐 (𝝁⊤𝐰𝐾 + 𝝁⊤𝐰𝑄‖𝐰𝐾 ‖2) (∗) 2+𝑐+‖𝝁‖2
𝑐 (𝝁⊤𝐰𝐾 )2 + 1+𝑐

𝑐 ‖𝐰𝐾 ‖2

⎤
⎥
⎥
⎥
⎦

.

where we denote the shortcut 𝑇1 = ‖𝝁‖2 +𝝁⊤𝐰𝐾𝝁⊤𝐰𝑄 , This concludes the proof of the approximation
of 𝚺 in Lemma 8.

We then proceed to the approximation of 𝐔⊤ ( 1
𝑛𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1 𝐔. Note that for 𝐔 defined in
(64) and

𝐐0 ≡ (
1
𝑝
𝐊𝑁𝐙⊤𝐙𝐊𝑁 +

𝛾
𝑐
𝐈𝑛)

−1

, (75)

we have

𝐔⊤𝐐0𝐔 =
⎡
⎢
⎢
⎣

𝐔⊤
𝐾

1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0
1
𝑛𝐊𝑁𝐙⊤𝐙𝐔𝐾 𝐔⊤

𝐾
1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐔𝐾 𝐔⊤
𝐾

1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐕𝑄
𝐔⊤
𝐾𝐊𝑁𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐔𝐾 𝐔⊤

𝐾𝐊𝑁𝐐0𝐊𝑁𝐔𝐾 𝐔⊤
𝐾𝐊𝑁𝐐0𝐕𝑄

𝐕⊤
𝑄𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐔𝐾 𝐕⊤

𝑄𝐐0𝐊𝑁𝐔𝐾 𝐕⊤
𝑄𝐐0𝐕𝑄

⎤
⎥
⎥
⎦
∈ ℝ9×9, (76)

which writes as a three-by-three block matrix, for 𝐔𝐾 = [𝐲, 𝐙⊤𝝁, 𝐙⊤𝐰𝐾 ]/
√𝑝 ∈ ℝ𝑛×3, 𝐕𝑄 =

[𝐲, 𝐙⊤𝝁, 𝐙⊤𝐰𝑄]/
√𝑝 ∈ ℝ𝑛×3 as in Lemma 1.

In the following, we further evaluate the nine (in fact six by symmetry) blocks of 𝐔⊤𝐐0𝐔, in the limit
of 𝑛, 𝑝 → ∞ with 𝑝/𝑛 → 𝑐 ∈ (0,∞). To that end, we need the following intermediate results.
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Lemma 9 (Further Deterministic Equivalents). Under the same settings and notations as in Proposi-
tion 1, we have the following Deterministic Equivalent results (in the sense of Definition 4)

1
𝑛2

𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐙 ↔ 𝑐3𝛿4(𝛾 ) ⋅ 𝐈𝑛,

1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁 ↔ (𝑐 − 𝛾𝑚(𝛾)) ⋅ 𝐈𝑛,

1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0 ↔ 𝑐2𝛿2(𝛾 ) ⋅ 𝐈𝑛,

𝐊𝑁𝐐0𝐊𝑁 ↔ 𝑐𝛿3(𝛾 ) ⋅ 𝐈𝑛,
𝐊𝑁𝐐0 ↔ 𝑐𝛿1(𝛾 ) ⋅ 𝐈𝑛,

1
𝑝
𝐙
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0

1
𝑛
𝐊𝑁𝐙⊤𝐙𝐙⊤ ↔ 𝑐2𝛿7(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤ ↔ 𝑐𝛿4(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐙⊤ ↔ 𝑐𝛿6(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤ ↔

1
𝑐 (

1 −
𝛾
𝑐
𝑚(𝛾)) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙𝐊𝑁𝐐0𝐙⊤ ↔ 𝛿2(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙𝐐0𝐙⊤ ↔ 𝛿5(𝛾 ) ⋅ 𝐈𝑝 .

Proof of Lemma 9. Note that for 𝐐0 defined in (75), we have, by the proof of Proposition 1 in
Appendix C.3., the following Deterministic Equivalent results.
1
𝑛2

𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐙 ↔
1
𝑛2

𝔼[𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐙] ↔
𝑝3

𝑛3
tr

1
𝑝 (

1
𝑝
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑛 ↔ 𝑐3𝛿4(𝛾 ) ⋅ 𝐈𝑛,

1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁 ↔

1
𝑛
𝔼[𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁 ] ↔

𝑝
𝑛
1
𝑛
tr(

1
𝑝
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁) ⋅ 𝐈𝑛 ↔ (𝑐 − 𝛾𝑚(𝛾)) ⋅ 𝐈𝑛,

1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0 ↔

1
𝑛
𝔼[𝐙⊤𝐙𝐊𝑁𝐐0] ↔

𝑝2

𝑛2
1
𝑝
tr(

1
𝑝
𝐙⊤𝐙𝐊𝑁𝐐0) ⋅ 𝐈𝑛 ↔ 𝑐2𝛿2(𝛾 ) ⋅ 𝐈𝑛,

𝐊𝑁𝐐0𝐊𝑁 ↔ 𝔼[𝐊𝑁𝐐0𝐊𝑁 ] ↔
𝑝
𝑛
1
𝑝
tr (𝐊𝑁𝐐0𝐊𝑁 ) ⋅ 𝐈𝑛 ↔ 𝑐𝛿3(𝛾 ) ⋅ 𝐈𝑛,

𝐊𝑁𝐐0 ↔ 𝔼[𝐊𝑁𝐐0] ↔
𝑝
𝑛
1
𝑝
tr (𝐊𝑁𝐐0) ⋅ 𝐈𝑛 ↔ 𝑐𝛿1(𝛾 ) ⋅ 𝐈𝑛,

𝐐0 ↔ 𝑚(𝛾) ⋅ 𝐈𝑛.
Similarly, we have

1
𝑝
𝐙
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0

1
𝑛
𝐊𝑁𝐙⊤𝐙𝐙⊤ ↔

𝑝2

𝑛2
1
𝑝
tr(

1
𝑝
𝐙⊤𝐙𝐊𝑁𝐐0

1
𝑝
𝐊𝑁𝐙⊤𝐙

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑝 ↔ 𝑐2𝛿7(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤ ↔

𝑝
𝑛
1
𝑝
tr(

1
𝑝
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑝 ↔ 𝑐𝛿4(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐙⊤ ↔

𝑝
𝑛
1
𝑝
tr(

1
𝑝
𝐙⊤𝐙𝐊𝑁𝐐0

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑝 ↔ 𝑐𝛿6(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤ ↔

1
𝑝
tr(𝐊𝑁𝐐0𝐊𝑁

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑝 ↔

1
𝑐 (

1 −
𝛾
𝑐
𝑚(𝛾)) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙𝐊𝑁𝐐0𝐙⊤ ↔

1
𝑝
tr(𝐊𝑁𝐐0

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑝 ↔ 𝛿2(𝛾 ) ⋅ 𝐈𝑝 ,

1
𝑝
𝐙𝐐0𝐙⊤ ↔

1
𝑝
tr(𝐐0

1
𝑝
𝐙⊤𝐙) ⋅ 𝐈𝑝 ↔ 𝛿5(𝛾 ) ⋅ 𝐈𝑝 ,
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for 𝛿5(𝛾 ), 𝛿6(𝛾 ), 𝛿7(𝛾 ) as defined in (71).

To complete the proof of Lemma 9, we establish, in the following as similar to Appendix C.3.3,
self-consistent equations for 𝛿5(𝛾 ), 𝛿6(𝛾 ) and 𝛿7(𝛾 ).

Self-consistent equation for 𝛿5(𝛾 ). Consider 𝛿5(𝛾 ) = 1
𝑝 tr(𝐐𝐙̌) + 𝑜(1) and write

𝛿5(𝛾 ) =
1
𝑝
tr(𝐐𝐙̌) + 𝑜(1) =

1
𝑐
[𝐐𝐙̌]𝑖𝑖 + 𝑜(1)

=
1
𝑐 [

−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤𝐐⟂
−𝑖 [𝐐]𝑖𝑖] [

𝜶−𝑖/
√𝑝

1 ] + 𝑜(1)

=
1
𝑐 (

−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤𝐐⟂
−𝑖𝐔𝐯2 + 𝑚(𝛾)) + 𝑜(1)

=
𝑚(𝛾)
𝑐 (−𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝚫0(𝛾 )𝐯2 + 1) + 𝑜(1)

=
𝑚(𝛾)
𝑐 (−𝐯⊤2𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 + 1) + 𝑜(1)

=
𝑚(𝛾)
𝑐 (1 − 𝐯⊤2𝐓(𝛾)𝐯) + 𝑜(1).

Self-consistent equation for 𝛿6(𝛾 ). Consider now 𝛿6(𝛾 ) = 1
𝑝 tr(𝐙̌𝐊𝐐𝐙̌) + 𝑜(1) and write

𝛿6(𝛾 ) =
1
𝑝
tr(𝐙̌𝐊𝐐𝐙̌) + 𝑜(1) =

1
𝑐
[𝐙̌𝐊𝐐𝐙̌]𝑖𝑖 + 𝑜(1)

=
1
𝑐 [

𝐯⊤4𝐔⊤ 𝑎1
𝑐 ] [

𝐐⟂
−𝑖 − 𝐐⟂

−𝑖𝐔(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝚲1(𝛾 )𝐔⊤𝐐⟂
−𝑖 −𝑚(𝛾)𝐐⟂

−𝑖𝐔 (𝐈6 + 𝚲0𝚫0(𝛾 ))−1 𝐯
−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫0(𝛾 )𝚲0)−1 𝐔⊤𝐐⟂

−𝑖 [𝐐]𝑖𝑖 ] [
𝐔𝐯2
1 ] + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲1(𝛾 )𝚫0(𝛾 ))−1𝐯2 − 𝑚(𝛾)𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯

−
𝑎1
𝑐
𝑚(𝛾)𝐯⊤(𝐈6 + 𝚫0(𝛾 )𝚲0)−1𝚫0(𝛾 )𝐯2 +

𝑎1
𝑐
𝑚(𝛾)) + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯2 + 𝑚(𝛾)𝐯⊤4𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 × 𝐯⊤𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯2

−𝑚(𝛾) (
𝑎1
𝑐
𝐯2 + 𝐯4)

⊤
𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝐯 +

𝑎1
𝑐
𝑚(𝛾)) + 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝐓(𝛾)𝐯2 + 𝑚(𝛾)(𝐯⊤2𝐓(𝛾)𝐯 − 1) (𝐯
⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 )) + 𝑜(1).

Self-consistent equation for 𝛿7(𝛾 ). Consider 𝛿7(𝛾 ) = 1
𝑝 tr(𝐙̌𝐊𝐐𝐊𝐙̌𝐙̌) + 𝑜(1) and write

𝛿7(𝛾 ) =
1
𝑝
tr(𝐙̌𝐊𝐐𝐊𝐙̌𝐙̌) + 𝑜(1) =

1
𝑐
[𝐙̌𝐊𝐐𝐊𝐙̌𝐙̌]𝑖𝑖 + 𝑜(1)

=
1
𝑐 [

𝐯⊤4𝐔⊤ 𝑎1
𝑐 ] [

𝐐⟂
−𝑖 − 𝐐⟂

−𝑖𝐔(𝐈6 + 𝚲1(𝛾 )𝚫(𝛾))−1𝚲1(𝛾 )𝐔⊤𝐐⟂
−𝑖 −𝑚(𝛾)𝐐⟂

−𝑖𝐔 (𝐈6 + 𝚲0𝚫(𝛾))−1 𝐯
−𝑚(𝛾)𝐯⊤ (𝐈6 + 𝚫(𝛾)𝚲0)−1 𝐔⊤𝐐⟂

−𝑖 [𝐐]𝑖𝑖 ] [
𝐔𝐯7

2 𝑎1
𝑐 + 𝑎1

𝑐2 ]
+ 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫(𝛾)(𝐈6 + 𝚲1(𝛾 )𝚫(𝛾))−1𝐯7 − (2
𝑎1
𝑐

+
𝑎1
𝑐2 )

𝑚(𝛾)𝐯⊤4𝚫(𝛾)(𝐈6 + 𝚲0𝚫(𝛾))−1𝐯

−
𝑎1
𝑐
𝑚(𝛾) (𝐯

⊤(𝐈6 + 𝚫(𝛾)𝚲0)−1𝚫(𝛾)𝐯7 − (2
𝑎1
𝑐

+
𝑎1
𝑐2 )))

+ 𝑜(1)

=
1
𝑐 (

𝐯⊤4𝚫(𝐈6 + 𝚲0𝚫(𝛾))−1𝐯7 + 𝑚(𝛾)𝐯⊤4𝚫(𝐈6 + 𝚲0𝚫(𝛾))−1𝐯𝐯⊤𝚫(𝐈6 + 𝚲0𝚫(𝛾))−1𝐯7

−
𝑎1
𝑐
𝑚(𝛾)((

1
𝑐
+ 2)𝐯4 + 𝐯7)

⊤

𝚫(𝛾)(𝐈6 + 𝚲0𝚫(𝛾))−1𝐯 +
𝑎21
𝑐2 (

1
𝑐
+ 2)𝑚(𝛾)) + 𝑜(1).

With these self-consistent equations for 𝛿5(𝛾 ), 𝛿6(𝛾 ), 𝛿7(𝛾 ), we conclude the proof of Lemma 9.

With Lemma 9 at hand, we are now ready to evaluate the blocks of 𝐔⊤𝐐0𝐔 as follows.
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Approximation of the (1, 1) block of 𝐔⊤𝐐0𝐔.

𝐔⊤
𝐾
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0(𝛾 )

1
𝑛
𝐊𝑁𝐙⊤𝐙𝐔𝐾 =

1
𝑝 [

𝐲⊤
𝝁⊤𝐙
𝐰⊤

𝐾𝐙]
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0

1
𝑛
𝐊𝑁𝐙⊤𝐙 [𝐲 𝐙⊤𝝁 𝐙⊤𝐰𝐾]

=
1
𝑝

⎡
⎢
⎢
⎣

𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0
1
𝑛𝐊𝑁𝐙⊤𝐙𝐲 𝐲⊤ 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐙⊤𝝁 𝐲⊤ 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐙⊤𝐰𝐾

𝝁⊤𝐙 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0
1
𝑛𝐊𝑁𝐙⊤𝐙𝐲 𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐙⊤𝝁 𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐙⊤𝐰𝐾

𝐰⊤
𝐾𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0

1
𝑛𝐊𝑁𝐙⊤𝐙𝐲 𝐰⊤

𝐾𝐙 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0
1
𝑛𝐊𝑁𝐙⊤𝐙𝐙⊤𝝁 𝐰⊤

𝐾𝐙 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0
1
𝑛𝐊𝑁𝐙⊤𝐙𝐙⊤𝐰𝐾

⎤
⎥
⎥
⎦

= 𝑐2
[

𝛿4(𝛾 ) 0 0
0 ‖𝝁‖2𝛿7(𝛾 ) 𝝁⊤𝐰𝐾𝛿7(𝛾 )
0 𝝁⊤𝐰𝐾𝛿7(𝛾 ) ‖𝐰𝐾 ‖2𝛿7(𝛾 )]

+ 𝑂‖⋅‖(𝑛−1/2),

where we used Lemma 9 for the approximation in the last line.

Approximation of the (1, 2) block of 𝐔⊤𝐐0𝐔.

𝐔⊤
𝐾
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0(𝛾 )𝐊𝑁𝐔𝐾 =

1
𝑝 [

𝐲⊤
𝝁⊤𝐙
𝐰⊤

𝐾𝐙]
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0𝐊𝑁 [𝐲 𝐙⊤𝝁 𝐙⊤𝐰𝐾]

=
1
𝑝

⎡
⎢
⎢
⎣

𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐲 𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝝁 𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐰𝐾
𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐲 𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝝁 𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐰𝐾

𝐰⊤
𝐾𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐲 𝐰⊤

𝐾𝐙 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝝁 𝐰⊤
𝐾𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐰𝐾

⎤
⎥
⎥
⎦

=
[

1 − 𝛾
𝑐𝑚(𝛾) 0 0
0 𝑐‖𝝁‖2𝛿4(𝛾 ) 𝑐𝝁⊤𝐰𝐾𝛿4(𝛾 )
0 𝑐𝝁⊤𝐰𝐾𝛿4(𝛾 ) 𝑐‖𝐰𝐾 ‖2𝛿4(𝛾 )]

+ 𝑂‖⋅‖(𝑛−1/2),

where we used Lemma 9 for the approximation in the last line.

Approximation of the (1, 3) block of 𝐔⊤𝐐0𝐔.

𝐔⊤
𝐾
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0(𝛾 )𝐕𝑄 =

1
𝑝 [

𝐲⊤
𝝁⊤𝐙
𝐰⊤

𝐾𝐙]
1
𝑛
𝐙⊤𝐙𝐊𝑁𝐐0 [𝐲 𝐙⊤𝝁 𝐙⊤𝐰𝑄]

=
1
𝑝

⎡
⎢
⎢
⎣

𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐲 𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐙⊤𝝁 𝐲⊤ 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐙⊤𝐰𝑄
𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐲 𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐙⊤𝝁 𝝁⊤𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐙⊤𝐰𝑄

𝐰⊤
𝐾𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐲 𝐰⊤

𝐾𝐙 1
𝑛𝐙

⊤𝐙𝐊𝑁𝐐0𝐙⊤𝝁 𝐰⊤
𝐾𝐙 1

𝑛𝐙
⊤𝐙𝐊𝑁𝐐0𝐙⊤𝐰𝑄

⎤
⎥
⎥
⎦

= 𝑐
[

𝛿2(𝛾 ) 0 0
0 ‖𝝁‖2𝛿6(𝛾 ) 𝝁⊤𝐰𝑄𝛿6(𝛾 )
0 𝝁⊤𝐰𝐾𝛿6(𝛾 ) 𝐰⊤

𝐾𝐰𝑄𝛿6(𝛾 )]
+ 𝑂‖⋅‖(𝑛−1/2),

where we used Lemma 9 for the approximation in the last line.

Approximation of the (2, 2) block of 𝐔⊤𝐐0𝐔.

𝐔⊤
𝐾𝐊𝑁𝐐0(𝛾 )𝐊𝑁𝐔𝐾 =

1
𝑝 [

𝐲⊤
𝝁⊤𝐙
𝐰⊤

𝐾𝐙]
𝐊𝑁𝐐0𝐊𝑁 [𝐲 𝐙⊤𝝁 𝐙⊤𝐰𝐾]

=
1
𝑝 [

𝐲⊤𝐊𝑁𝐐0𝐊𝑁𝐲 𝐲⊤𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝝁 𝐲⊤𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐰𝐾
𝝁⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐲 𝝁⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝝁 𝝁⊤𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐰𝐾
𝐰⊤

𝐾𝐙𝐊𝑁𝐐0𝐊𝑁𝐲 𝐰⊤
𝐾𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝝁 𝐰⊤

𝐾𝐙𝐊𝑁𝐐0𝐊𝑁𝐙⊤𝐰𝐾]

=
1
𝑐 [

𝑐𝛿3(𝛾 ) 0 0
0 ‖𝝁‖2(1 − 𝛾

𝑐𝑚(𝛾)) 𝝁⊤𝐰𝐾 (1 − 𝛾
𝑐𝑚(𝛾))

0 𝝁⊤𝐰𝐾 (1 − 𝛾
𝑐𝑚(𝛾)) ‖𝐰𝐾 ‖2(1 − 𝛾

𝑐𝑚(𝛾))]
+ 𝑂‖⋅‖(𝑛−1/2),

where we used Lemma 9 for the approximation in the last line.
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Approximation of the (2, 3) block of 𝐔⊤𝐐0𝐔.

𝐔⊤
𝐾𝐊𝑁𝐐0(𝛾 )𝐕𝑄 =

1
𝑝 [

𝐲⊤
𝝁⊤𝐙
𝐰⊤

𝐾𝐙]
𝐊𝑁𝐐0 [𝐲 𝐙⊤𝝁 𝐙⊤𝐰𝑄]

=
1
𝑝 [

𝐲⊤𝐊𝑁𝐐0𝐲 𝐲⊤𝐊𝑁𝐐0𝐙⊤𝝁 𝐲⊤𝐊𝑁𝐐0𝐙⊤𝐰𝑄
𝝁⊤𝐙𝐊𝑁𝐐0𝐲 𝝁⊤𝐙𝐊𝑁𝐐0𝐙⊤𝝁 𝝁⊤𝐙𝐊𝑁𝐐0𝐙⊤𝐰𝑄
𝐰⊤

𝐾𝐙𝐊𝑁𝐐0𝐲 𝐰⊤
𝐾𝐙𝐊𝑁𝐐0𝐙⊤𝝁 𝐰⊤

𝐾𝐙𝐊𝑁𝐐0𝐙⊤𝐰𝑄]

=
[

𝛿1(𝛾 ) 0 0
0 ‖𝝁‖2𝛿2(𝛾 ) 𝝁⊤𝐰𝑄𝛿2(𝛾 )
0 𝝁⊤𝐰𝐾𝛿2(𝛾 ) 𝐰⊤

𝐾𝐰𝑄𝛿2(𝛾 )]
+ 𝑂‖⋅‖(𝑛−1/2),

where we again use Lemma 9 for the approximation in the last line.

Approximation of the (3, 3) block of 𝐔⊤𝐐0𝐔.

𝐕⊤
𝑄𝐐0(𝛾 )𝐕𝑄 =

1
𝑝 [

𝐲⊤
𝝁⊤𝐙
𝐰⊤

𝑄𝐙]
𝐊𝑁𝐐0𝐊𝑁 [𝐲 𝐙⊤𝝁 𝐙⊤𝐰𝑄]

=
1
𝑝 [

𝐲⊤𝐐0𝐲 𝐲⊤𝐐0𝐙⊤𝝁 𝐲⊤𝐐0𝐙⊤𝐰𝑄
𝝁⊤𝐙𝐐0𝐲 𝝁⊤𝐙𝐐0𝐙⊤𝝁 𝝁⊤𝐙𝐐0𝐙⊤𝐰𝑄
𝐰⊤

𝑄𝐙𝐐0𝐲 𝐰⊤
𝑄𝐙𝐐0𝐙⊤𝝁 𝐰⊤

𝑄𝐙𝐐0𝐙⊤𝐰𝑄]

=
⎡
⎢
⎢
⎣

𝑛
𝑝𝑚(𝛾) 0 0
0 ‖𝝁‖2𝛿5(𝛾 ) 𝝁⊤𝐰𝑄𝛿5(𝛾 )
0 𝝁⊤𝐰𝑄𝛿5(𝛾 ) ‖𝐰𝑄‖2𝛿5(𝛾 )

⎤
⎥
⎥
⎦
+ 𝑂‖⋅‖(𝑛−1/2),

where we used Lemma 9 for the approximation in the last line. This concludes the proof of the
approximation of the quadratic form 𝐔⊤ ( 1

𝑛𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)
−1 𝐔 in Lemma 8.

With Lemma 8 at hand, it follows from (67) that

1
𝑛
𝐲⊤𝐐(𝛾)𝐲 = 𝑐 ⋅ 𝐞⊤7𝐔

⊤
(
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

𝐔 ⋅
(
𝐈9 + 𝚺𝐔⊤

(
1
𝑛
𝐊𝑁𝐙⊤𝐙𝐊𝑁 + 𝛾𝐈𝑛)

−1

𝐔
)

−1

𝐞7 + 𝑂(𝑛−
1
2 )

= 𝑐 ⋅ 𝐞⊤7𝚫(𝛾) ⋅ (𝐈9 + 𝚲𝚫(𝛾))−1 𝐞7 + 𝑂(𝑛−
1
2 ).

To assess the high-dimensional behavior of the memorization error 𝐸 defined in (7) of Definition 3, it
thus remains to evaluate the following derivative (with respective to 𝛾 ) as

𝐸 = −
𝛾 2

𝑛
𝜕𝑦⊤𝐐(𝛾)𝑦

𝜕𝛾
= −𝛾 2𝑐2 ⋅ 𝐞⊤7 (𝑐𝐈9 + 𝚫(𝛾)𝚲)−1 𝚫′(𝛾 ) (𝑐𝐈9 + 𝚲𝚫(𝛾))−1 𝐞7 + 𝑂(𝑛−

1
2 ),

where we denote 𝚫′(𝛾 ) the derivative (with respect to 𝛾 ) of 𝚫(𝛾) defined in (69).

To evaluate 𝚫′(𝛾 ), we need the following result on the derivatives of 𝑚′(𝛾 ) and 𝛿(𝛾)s.

Lemma 10 (Derivatives of the 𝛿(𝛾)s). Under the settings and notations of Theorem 1, we have that
𝑚′(𝛾 ), 𝛿′1(𝛾 ), 𝛿′2(𝛾 ), 𝛿′3(𝛾 ), 𝛿′4(𝛾 ) satisfy the following system of equations

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝑚′(𝛾 ) = (𝐯⊤𝐓′(𝛾 )𝐯 − 1
𝑐 )𝑚

2(𝛾 )
𝑐𝛿′1(𝛾 ) = −𝑚′(𝛾 )𝐯⊤𝐓(𝛾)𝐯1 − 𝑚(𝛾)𝐯⊤𝐓′(𝛾 )𝐯1
𝑐𝛿′2(𝛾 ) = 𝐯⊤2𝐓′(𝛾 )(𝐯1 − 𝑐𝛿1(𝛾 )𝐯) + 𝑐𝛿′1(𝛾 )(1 − 𝐯⊤2𝐓(𝛾)𝐯)
𝑐𝛿′3(𝛾 ) = 𝐯⊤1𝐓′(𝛾 )𝐯1 +

𝑐2𝛿1(𝛾 )(2𝛿′1(𝛾 )𝑚(𝛾)−𝛿1(𝛾 )𝑚′(𝛾 ))
𝑚2(𝛾 )

𝑐𝛿′4(𝛾 ) = 𝐯⊤4𝐓′(𝛾 )𝐯4 + 𝑚′(𝛾 ) (𝐯⊤4𝐓(𝛾)𝐯 −
𝑎1
𝑐 )

2 + 2𝑚(𝛾) (𝐯⊤4𝐓(𝛾)𝐯 −
𝑎1
𝑐 ) 𝐯

⊤
4𝐓′(𝛾 )𝐯

(77)

for 𝐓(𝛾) and 𝚫0(𝛾 ) defined in (29) and (30), receptively, so that their derivatives (with respective to
𝛾 ) satisfy

𝐓′(𝛾 ) = (𝐈6 + 𝚫0(𝛾 )𝚲0)−1𝚫′
0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1,
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and

𝚫′
0(𝛾 ) ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑚′(𝛾 )
𝑐

𝑎1
𝑐 𝑚

′(𝛾 ) 𝛿′1(𝛾 ) 𝑎1𝛿′1(𝛾 ) 𝛿′2(𝛾 ) 𝑎1𝛿′2(𝛾 )𝑎1
𝑐 𝑚

′(𝛾 ) 𝜈
𝑐𝑚

′(𝛾 ) 𝑎1𝛿′1(𝛾 ) 𝜈𝛿′1(𝛾 ) 𝑎1𝛿′2(𝛾 ) 𝜈𝛿′2(𝛾 )
𝛿′1(𝛾 ) 𝑎1𝛿′1(𝛾 ) 𝛿′3(𝛾 ) 𝑎1𝛿′3(𝛾 ) − 1

𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 )) − 𝑎1
𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 ))

𝑎1𝛿′1(𝛾 ) 𝜈𝛿′1(𝛾 ) 𝑎1𝛿′3(𝛾 ) 𝜈𝛿′3(𝛾 ) − 𝑎1
𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 )) − 𝜈

𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 ))
𝛿′2(𝛾 ) 𝑎1𝛿′2(𝛾 ) − 1

𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 )) − 𝑎1
𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 )) 𝛿′4(𝛾 ) 𝑎1𝛿′4(𝛾 )

𝑎1𝛿′2(𝛾 ) 𝜈𝛿′2(𝛾 ) − 𝑎1
𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 )) − 𝜈

𝑐2 (𝑚(𝛾) + 𝛾𝑚′(𝛾 )) 𝑎1𝛿′4(𝛾 ) 𝜈𝛿′4(𝛾 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Also, the derivatives 𝛿′5(𝛾 ), 𝛿′6(𝛾 ), 𝛿′7(𝛾 ) are given by

𝑐𝛿′5(𝛾 ) = 𝑚′(𝛾 ) (−𝐯⊤2𝐓(𝛾)𝐯 + 1) − 𝑚(𝛾)𝐯⊤2𝐓
′(𝛾 )𝐯

𝑐𝛿′6(𝛾 ) = 𝐯⊤4𝐓
′(𝛾 )𝐯2 + 𝑚′(𝛾 ) (𝐯⊤2𝐓(𝛾)𝐯 − 1) (𝐯

⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 ) + 𝑚(𝛾)𝐯⊤2𝐓

′(𝛾 )𝐯 (𝐯
⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 )

+ 𝑚(𝛾)𝐯⊤4𝐓
′(𝛾 )𝐯 (𝐯⊤2𝐓(𝛾)𝐯 − 1)

𝑐𝛿′7(𝛾 ) = 𝐯⊤4𝐓
′(𝛾 )𝐯7 + 𝑚′(𝛾 ) (𝐯

⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 )(𝐯⊤7𝐓(𝛾)𝐯 −

𝑎1
𝑐 (1 +

1
𝑐)) + 𝑚(𝛾)𝐯⊤4𝐓

′(𝛾 )𝐯(𝐯⊤7𝐓(𝛾)𝐯 −
𝑎1
𝑐 (1 +

1
𝑐))

+ 𝑚(𝛾)𝐯⊤7𝐓
′(𝛾 )𝐯 (𝐯

⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 ) .

Proof of Lemma 10. By their definitions in Proposition 1 and Lemma 8, we have

𝑚′(𝛾 ) = −
1
𝑐 − 𝐯⊤𝐓′(𝛾 )𝐯

(
𝛾
𝑐 +

𝜈
𝑐 + 𝑎21

𝑐2 − 𝐯⊤𝐓(𝛾)𝐯)
2 = (𝐯⊤𝐓′(𝛾 )𝐯 −

1
𝑐)

𝑚2(𝛾 )

𝑐𝛿′1(𝛾 ) = − (𝑚′(𝛾 )𝐯⊤𝐓(𝛾)𝐯1 + 𝑚(𝛾)𝐯⊤𝐓′(𝛾 )𝐯1)
𝑐𝛿′2(𝛾 ) = 𝐯⊤2𝐓

′(𝛾 )𝐯1 + 𝑐𝛿′1(𝛾 )(1 − 𝐯⊤2𝐓(𝛾)𝐯) − 𝑐𝛿1(𝛾 )𝐯⊤2𝐓
′(𝛾 )𝐯 = 𝐯⊤2𝐓

′(𝛾 )(𝐯1 − 𝑐𝛿1(𝛾 )𝐯) + 𝑐𝛿′1(𝛾 )(1 − 𝐯⊤2𝐓(𝛾)𝐯)

𝑐𝛿′3(𝛾 ) = 𝐯⊤1𝐓
′(𝛾 )𝐯1 +

𝑐2𝛿1(𝛾 ) (2𝛿′1(𝛾 )𝑚(𝛾) − 𝛿1(𝛾 )𝑚′(𝛾 ))
𝑚2(𝛾 )

𝑐𝛿′4(𝛾 ) = 𝐯⊤4𝐓
′(𝛾 )𝐯4 + 𝑚′(𝛾 ) (𝐯

⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 )

2
+ 2𝑚(𝛾) (𝐯

⊤
4𝐓(𝛾)𝐯 −

𝑎1
𝑐 ) 𝐯⊤4𝐓

′(𝛾 )𝐯,

with

𝐓′(𝛾 ) = 𝚫′
0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1 − 𝚫0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1𝚲0𝚫′

0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1

= (𝐈6 + 𝚫0(𝛾 )𝚲0)−1𝚫′
0(𝛾 )(𝐈6 + 𝚲0𝚫0(𝛾 ))−1,

and 𝚫′
0(𝛾 ) as in the statement of Lemma 10.

Similarly, by their definition in Lemma 9, we obtain the derivatives of 𝛿5, 𝛿6 and 𝛿7 as

𝛿′5(𝛾 ) =
1
𝑐 (

𝑚′(𝛾 ) (−𝐯⊤2𝐓(𝛾)𝐯 + 1) − 𝑚(𝛾)𝐯⊤2𝐓
′(𝛾 )𝐯)

𝛿′6(𝛾 ) =
1
𝑐 (

𝐯⊤4𝐓
′(𝛾 )𝐯2 + 𝑚′(𝛾 )𝐯⊤4𝐓(𝛾)𝐯𝐯

⊤𝐓(𝛾)𝐯2 + 𝑚(𝛾)𝐯⊤4𝐓
′(𝛾 )𝐯𝐯⊤𝐓(𝛾)𝐯2

+𝑚(𝛾)𝐯⊤4𝐓(𝛾)𝐯𝐯
⊤𝐓′(𝛾 )𝐯2 − 𝑚′(𝛾 ) (

𝑎1
𝑐
𝐯2 + 𝐯4)

⊤
𝐓(𝛾)𝐯 − 𝑚(𝛾) (

𝑎1
𝑐
𝐯2 + 𝐯4)

⊤
𝐓′(𝛾 )𝐯 +

𝑎1
𝑐
𝑚′(𝛾 ))

𝛿′7(𝛾 ) =
1
𝑐 (

𝐯⊤4𝐓
′(𝛾 )𝐯7 + 𝑚′(𝛾 )𝐯⊤4𝐓(𝛾)𝐯𝐯

⊤𝐓(𝛾)𝐯7 + 𝑚(𝛾)𝐯⊤4𝐓
′(𝛾 )𝐯𝐯⊤𝐓(𝛾)𝐯7 + 𝑚(𝛾)𝐯⊤4𝐓(𝛾)𝐯𝐯

⊤𝐓′(𝛾 )𝐯7

−
𝑎1
𝑐
𝑚′(𝛾 )((

1
𝑐
+ 2)𝐯4 + 𝐯7)

⊤

𝐓(𝛾)𝐯 −
𝑎1
𝑐
𝑚(𝛾)((

1
𝑐
+ 2)𝐯4 + 𝐯7)

⊤

𝐓′(𝛾 )𝐯 +
𝑎21
𝑐2 (

1
𝑐
+ 2)𝑚′(𝛾 )) .

This concludes the proof of Lemma 10.

Putting these together, we conclude the proof of Theorem 1.
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C.5 PROOF OF PROPOSITION 2

Here, we provide the proof of Proposition 2. By the definition of linear regression (in-context)
memorization error 𝐸LR in (14) of Definition 5, it suffices to evaluate the following quadratic form

1
𝑛
𝐲⊤ (

1
𝑛
𝐗⊤𝐗 + 𝛾𝐈𝑛)

−1

𝐲, (78)

and its derivative with respect to 𝛾 , for 𝐗 = 𝝁𝐲⊤ + 𝐙 ∈ ℝ𝑝×𝑛 as in Theorem 1.

By Woodbury identity, we have

1
𝑛
𝐲⊤ (

1
𝑛
𝐗⊤𝐗 + 𝛾𝐈𝑛)

−1

𝐲 = 𝐞⊤1𝐔
⊤
(
1
𝑛
𝐙⊤𝐙 + 𝛾𝐈𝑛 + 𝐔𝚲𝐔⊤

)

−1

𝐔𝐞1

= 𝐞⊤1𝐔
⊤𝐐0(𝛾 )𝐔 (𝐈2 + 𝚲𝐔⊤𝐐0(𝛾 )𝐔)

−1 𝐞1,

where 𝐞1 = [1, 0]⊤ and with a slight abuse of notations, we denote

𝐔 = [𝐲, 𝐙⊤𝝁]/
√
𝑛 ∈ ℝ𝑛×2, 𝚲 = [

‖𝝁‖2 1
1 0] ∈ ℝ2×2, 𝐐0(𝛾 ) = (

1
𝑛
𝐙⊤𝐙 + 𝛾𝐈𝑛)

−1

. (79)

Similar to Proposition 1, we have the following Deterministic Equivalent result for the linear resolvent
𝐐0(𝛾 ).
Lemma 11 (Deterministic Equivalent for 𝐐0, (Couillet & Liao, 2022, Theorem 2.4)). Let 𝐙 ∈ ℝ𝑝×𝑛

have i.i.d. standard Gaussian entries. Then, as 𝑛, 𝑝 → ∞ at the same pace with 𝑝/𝑛 → 𝑐 ∈ (0,∞)
and 𝛾 > 0, the following Deterministic Equivalent (see Definition 4) holds

(
1
𝑛
𝐙𝐙⊤ + 𝛾𝐈𝑝)

−1

↔ 𝑚LR(𝛾 ) ⋅ 𝐈𝑝 , (
1
𝑛
𝐙⊤𝐙 + 𝛾𝐈𝑛)

−1

↔ (𝑐𝑚LR(𝛾 ) +
1 − 𝑐
𝛾 ) 𝐈𝑛.

with 𝑚(𝛾) is the unique Stieltjes transform solution to the following Marc̆enko-Pastur equa-
tion (Marcenko & Pastur, 1967; Couillet & Liao, 2022)

𝑐𝛾𝑚2
LR(𝛾 ) + (1 − 𝑐 + 𝛾)𝑚LR(𝛾 ) − 1 = 0. (80)

By Lemma 11, we have

1
𝑛
𝐲⊤ (

1
𝑛
𝐗⊤𝐗 + 𝛾𝐈𝑛)

−1

𝐲 = 𝐞⊤1𝐔
⊤𝐐0(𝛾 )𝐔 (𝐈2 + 𝚲𝐔⊤𝐐0(𝛾 )𝐔)

−1 𝐞1

=
⎡
⎢
⎢
⎣
[
𝑐𝑚LR(𝛾 ) + 1−𝑐

𝛾 0
0 ‖𝝁‖2(1 − 𝛾𝑚LR(𝛾 ))] [

1 + ‖𝝁‖2 (𝑐𝑚LR(𝛾 ) + 1−𝑐
𝛾 ) ‖𝝁‖2(1 − 𝛾𝑚LR(𝛾 ))

𝑐𝑚LR(𝛾 ) + 1−𝑐
𝛾 1 ]

−1⎤
⎥
⎥
⎦1,1

=
𝑐𝑚LR(𝛾 ) + 1−𝑐

𝛾

1 + ‖𝝁‖2(1 − 𝛾𝑚LR(𝛾 ))
,

so that by (14), we obtain

𝐸LR − 𝐸̄LR → 0, 𝐸̄LR = −
𝑐𝛾 2𝑚′(𝛾 ) + 𝑐 − 1 + ‖𝝁‖2 (𝛾 2𝑚′(𝛾 ) + (1 − 𝑐 − 𝛾)(𝛾𝑚(𝛾) − 1))

(1 + ‖𝝁‖2 − ‖𝝁‖2𝛾𝑚LR(𝛾 ))2
, (81)

in probability as 𝑛, 𝑝 → ∞, with 𝑚LR(𝛾 ) the Stieltjes transform solution to the Marc̆enko-Pastur
equation in (80), and 𝑚′

LR(𝛾 ) = − 𝑐𝑚2(𝛾 )+𝑚(𝛾)
2𝑐𝛾𝑚(𝛾)+1−𝑐+𝛾 its derivative with respect to 𝛾 .

This concludes the proof of Proposition 2.

D ADDITIONAL NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present additional numerical results.
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Figure 4: Theoretical in-context memorization error for 𝑓 (𝑡) = tanh(𝑡) (blue) from Theorem 1
versus that of linear regression (green) from Proposition 2, as a function of SNR, for different
dimension ratio 𝑝/𝑛, synthetic data drawn from the Gaussian signal-plus-noise model in Definition 2
with 𝐰𝐾 = 𝐰𝑄 = 𝝁base ∼  (𝟎, 𝟏𝑝/𝑝), 𝝁 ∝ 𝝁base, and 𝛾 = 1.

Figure 4 compare the theoretical in-context memorization errors of nonlinear Attention (as character-
ized in Theorem 1) with those of linear linear regression (from Proposition 2) on synthetic Gaussian
mixture data. We observe that, while linear regression generally achieves lower memorization error
than nonlinear Attention in the under-determined 𝑝 > 𝑛 regime, this advantage is reversed in the
over-determined setting with 𝑝/𝑛 < 1. In such cases, nonlinear Attention yields lowers error, for
structured inputs and Attention weights aligned to the data signal. Furthermore, compared to linear
regression, the memorization error of nonlinear Attention exhibits remarkably less sensitivity to the
dimension ratio 𝑝/𝑛, especially when the Attention weights are well aligned with the underlying
signal in the input data.

Figure 5 further illustrates the impact of the Attention nonlinearity, the dimension ratio 𝑝/𝑛, and the
regularization parameter 𝛾 on the in-context memorization errors of nonlinear/linear Attention and
linear linear regression. Reading the subfigures from left to right, we observe that the difference in
memorization error between different Attention (i.e., tanh nonlinear or truncated linear) and linear
regression vanishes either as the regularization strength 𝛾 decreases or as the SNR increases. More-
over, the advantage of nonlinear Attention over linear regression—in terms of reduced memorization
error—critically depends on both the dimension ratio 𝑝/𝑛 (as already confirmed in Figure 4) and the
choice of regularization 𝛾 , see for example Figure 5d versus Figure 5e. Reading the subfigures from
top to bottom, we further observe that in the over-determined 𝑝/𝑛 < 1 regime, the memorization
error of nonlinear Attention is considerably less sensitive to the changes in the dimension ratio 𝑝/𝑛
compared to linear regression.

Figure 6 illustrates the impact of alignment between the Attention weights (the query 𝐰𝑄 and key
𝐰𝐾 vectors in Assumption 1) and the input data signal 𝝁. A consistent pattern emerges from Figure 6:
when the Attention weights are aligned in direction with 𝝁, the resulting in-context memorization
error is significantly lower compared to the case where the weights are orthogonal to 𝝁. This effect
is observed across both nonlinearities considered: 𝑓 (𝑡) = tanh(𝑡) and truncated linear function
𝑓 (𝑡) = max(−5,min(5, 𝑡)), and persists across a range of SNR values and dimension ratios 𝑝/𝑛.
The performance gain from the weight alignment is particularly pronounced in the over-determined
𝑝/𝑛 < 1 setting.

Figure 7 compares the in-context memorization error curves of nonlinear Attention using weights
extracted from a pretrained GPT-2 model against our theoretical predictions from Theorem 1, across
varying regularization strengths, SNR levels, and activation nonlinearities. This numerical experiment
serves to empirically validate the full-plus-low-rank decomposition of Attention weights posited in
Assumption 1.

To extract the Attention weights 𝐖𝑄 and 𝐖𝐾 , we use the first Attention head from the 1st,
7th, and 12th Transformer layers of a pretrained GPT-2 model (accessed via HuggingFace).
Specifically, we extract the first and second 𝑚-sized column blocks from the projection matrix
model.transformer.h[l].attn.c_attn.weight (of shape 𝑚 × 3𝑚 with 𝑚 = 768) as
query and key weight matrices. The weights for a single head are then obtained by selecting the
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Figure 5: Theoretical in-context memorization error for 𝑓 (𝑡) = tanh(𝑡) (blue) versus 𝑓 (𝑡) =
max(−5,min(5, 𝑡)) (purple) and that of linear regression (green) in the over-determined regime,
as a function of SNR, for different dimension ratio 𝑝/𝑛 and regularization parameter 𝛾 , synthetic
data drawn from the Gaussian signal-plus-noise model in Definition 2 with 𝐰𝐾 = 𝐰𝑄 = 𝝁base ∼
 (𝟎, 𝐈𝑝/𝑝), 𝝁 ∝ 𝝁base.

first 𝑚head = 𝑚/𝑛heads = 64 columns from each matrix, consistent with the model’s 𝑛heads = 12-head
configuration.

As shown in Figure 7, the empirical memorization curves obtained from pretrained Attention weights
closely match the theoretical trends predicted by Theorem 1, as a function of both regularization
strength 𝛾 and SNR. In particular, we observe that
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Figure 6: Theoretical in-context memorization error of tanh (blue) and truncated linear (with
𝑓 (𝑡) = max(−5,min(5, 𝑡)) in purple) Transformer, for key/query weights aligned with the signal
direction in solid lines: 𝐰𝐾 = 𝐰𝑄 = 𝝁base ∼  (𝟎, 𝐈𝑝/𝑝) and 𝝁 ∝ 𝝁base; versus the case where both
weights orthogonal to the signal in dotted lines: 𝐰𝐾 ⟂ 𝝁base, 𝐰𝑄 ⟂ 𝝁base, 𝐰𝐾 ⟂ 𝐰𝑄 and 𝝁 ∝ 𝝁base; for
regularization strength 𝛾 = 1.

1. in the absence of input data signal (𝝁 = 𝟎), pretrained Attention weights yield slightly lower
errors than theory; and

2. in the presence of signal, pretrained Attentions perform marginally worse than theory from
(manually) aligned weights.

These discrepancies are generally modest in scale and consistent across both the tanh and truncated
exponential nonlinearities. Additionally, we observe that Softmax Attention incurs substantially
higher memorization error than entrywise exponential Attention, but only when meaningful input
structure is present.
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(a) 1st layer, 𝑝/𝑛 = 4, and 𝝁 = 𝟎
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(b) 1st layer, 𝑝/𝑛 = 1/4, and 𝛾 = 1
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(c) 7th layer, 𝑝/𝑛 = 4, and 𝝁 = 𝟎
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(d) 7th layer, 𝑝/𝑛 = 1/4, and 𝛾 = 1
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(e) 12th layer, 𝑝/𝑛 = 4, and 𝝁 = 𝟎
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(f) 12th layer, 𝑝/𝑛 = 1/4, 𝛾 = 1

Figure 7: Theoretical in-context memorization error of Softmax (cyan) and entry-wise tanh (blue),
truncated exponential (𝑓 (𝑡) = min(5, exp(𝑡)) in red) Attention. Theoretical predictions under
Assumption 1 in solid lines and key/query weights using pretrained Attention weights in dotted
lines. Figure 7a, Figure 7c, and Figure 7e: theoretical predictions obtained by assuming 𝐰𝐾 =
𝐰𝑄 = 𝝁 = 𝟎; Figure 7b, Figure 7d, and Figure 7f: theoretical predictions obtained by assuming
𝐰𝐾 = 𝐰𝑄 = 𝝁base ∼  (𝟎, 𝐈𝑝/𝑝), 𝝁 ∝ 𝝁base and 𝛾 = 1.
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