
MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin∗, Neil Houlsby∗, Alexander Kolesnikov∗, Lucas Beyer∗,

Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy
∗equal contribution

Google Research, Brain Team

{tolstikhin, neilhoulsby, akolesnikov, lbeyer,
xzhai, unterthiner, jessicayung†, andstein,

keysers, usz, lucic, adosovitskiy}@google.com
†work done during Google AI Residency

Abstract

Convolutional Neural Networks (CNNs) are the go-to model for computer vision.
Recently, attention-based networks, such as the Vision Transformer, have also
become popular. In this paper we show that while convolutions and attention are
both sufficient for good performance, neither of them are necessary. We present
MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs).
MLP-Mixer contains two types of layers: one with MLPs applied independently to
image patches (i.e. “mixing” the per-location features), and one with MLPs applied
across patches (i.e. “mixing” spatial information). When trained on large datasets,
or with modern regularization schemes, MLP-Mixer attains competitive scores on
image classification benchmarks, with pre-training and inference cost comparable
to state-of-the-art models. We hope that these results spark further research beyond
the realms of well established CNNs and Transformers.1

1 Introduction

As the history of computer vision demonstrates, the availability of larger datasets coupled with in-
creased computational capacity often leads to a paradigm shift. While Convolutional Neural Networks
(CNNs) have been the de-facto standard for computer vision, recently Vision Transformers [14] (ViT),
an alternative based on self-attention layers, attained state-of-the-art performance. ViT continues the
long-lasting trend of removing hand-crafted visual features and inductive biases from models and
relies further on learning from raw data.

We propose the MLP-Mixer architecture (or “Mixer” for short), a competitive but conceptually and
technically simple alternative, that does not use convolutions or self-attention. Instead, Mixer’s
architecture is based entirely on multi-layer perceptrons (MLPs) that are repeatedly applied across
either spatial locations or feature channels. Mixer relies only on basic matrix multiplication routines,
changes to data layout (reshapes and transpositions), and scalar nonlinearities.

Figure 1 depicts the macro-structure of Mixer. It accepts a sequence of linearly projected image
patches (also referred to as tokens) shaped as a “patches× channels” table as an input, and maintains
this dimensionality. Mixer makes use of two types of MLP layers: channel-mixing MLPs and
token-mixing MLPs. The channel-mixing MLPs allow communication between different channels;

1MLP-Mixer code is available at https://github.com/google-research/vision_transformer

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/google-research/vision_transformer

Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classi�er head.
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

they operate on each token independently and take individual rows of the table as inputs. The
token-mixing MLPs allow communication between different spatial locations (tokens); they operate
on each channel independently and take individual columns of the table as inputs. These two types of
layers are interleaved to enable interaction of both input dimensions.

In the extreme case, our architecture can be seen as a very special CNN, which uses 1� 1 convolutions
for channel mixing, and single-channel depth-wise convolutions of a full receptive �eld and parameter
sharing fortoken mixing. However, the converse is not true as typical CNNs are not special cases of
Mixer. Furthermore, a convolution is more complex than the plain matrix multiplication in MLPs as
it requires an additional costly reduction to matrix multiplication and/or specialized implementation.

Despite its simplicity, Mixer attains competitive results. When pre-trained on large datasets (i.e.,
� 100M images), it reaches near state-of-the-art performance, previously claimed by CNNs and
Transformers, in terms of the accuracy/cost trade-off. This includes 87.94% top-1 validation accuracy
on ILSVRC2012 “ImageNet” [13]. When pre-trained on data of more modest scale (i.e.,� 1–
10M images), coupled with modern regularization techniques [49, 54], Mixer also achieves strong
performance. However, similar to ViT, it falls slightly short of specialized CNN architectures.

2 Mixer Architecture

Modern deep vision architectures consist of layers that mix features (i) at a given spatial location,
(ii) between different spatial locations, or both at once. In CNNs, (ii) is implemented withN � N
convolutions (forN > 1) and pooling. Neurons in deeper layers have a larger receptive �eld [1, 29].
At the same time, 1� 1 convolutions also perform (i), and larger kernels perform both (i) and (ii).
In Vision Transformers and other attention-based architectures, self-attention layers allow both (i)
and (ii) and the MLP-blocks perform (i). The idea behind the Mixer architecture is to clearly separate
the per-location (channel-mixing) operations (i) and cross-location (token-mixing) operations (ii).
Both operations are implemented with MLPs. Figure 1 summarizes the architecture.

Mixer takes as input a sequence ofS non-overlapping image patches, each one projected to a desired
hidden dimensionC. This results in a two-dimensional real-valued input table,X 2 RS� C . If the
original input image has resolution(H; W), and each patch has resolution(P; P), then the number of
patches isS = HW=P 2. All patches are linearly projected with thesameprojection matrix. Mixer
consists of multiple layers of identical size, and each layer consists of two MLP blocks. The �rst one
is thetoken-mixingMLP: it acts on columns ofX (i.e. it is applied to a transposed input tableX >),
mapsRS 7! RS , and is shared across all columns. The second one is thechannel-mixingMLP: it
acts on rows ofX , mapsRC 7! RC , and is shared across all rows. Each MLP block contains two

2

fully-connected layers and a nonlinearity applied independently to each row of its input data tensor.
Mixer layers can be written as follows (omitting layer indices):

U � ;i = X � ;i + W 2 �
�
W 1 LayerNorm(X) � ;i

�
; for i = 1 : : : C; (1)

Y j; � = U j; � + W 4 �
�
W 3 LayerNorm(U) j; �

�
; for j = 1 : : : S:

Here� is an element-wise nonlinearity (GELU [16]). DS andDC are tunable hidden widths in the
token-mixing and channel-mixing MLPs, respectively. Note thatDS is selected independently of the
number of input patches. Therefore, the computational complexity of the network is linear in the
number of input patches, unlike ViT whose complexity is quadratic. SinceDC is independent of the
patch size, the overall complexity is linear in the number of pixels in the image, as for a typical CNN.

As mentioned above, thesamechannel-mixing MLP (token-mixing MLP) is applied to every row
(column) ofX . Tying the parameters of the channel-mixing MLPs (within each layer) is a natural
choice—it provides positional invariance, a prominent feature of convolutions. However, tying
parameters across channels is much less common. For example, separable convolutions [9, 40], used
in some CNNs, apply convolutions to each channel independently of the other channels. However,
in separable convolutions, a different convolutional kernel is applied to each channel unlike the
token-mixing MLPs in Mixer that share the same kernel (of full receptive �eld) for all of the channels.
The parameter tying prevents the architecture from growing too fast when increasing the hidden
dimensionC or the sequence lengthS and leads to signi�cant memory savings. Surprisingly, this
choice does not affect the empirical performance, see Supplementary A.1.

Each layer in Mixer (except for the initial patch projection layer) takes an input of the same size. This
“isotropic” design is most similar to Transformers, or deep RNNs in other domains, that also use a
�xed width. This is unlike most CNNs, which have apyramidalstructure: deeper layers have a lower
resolution input, but more channels. Note that while these are the typical designs, other combinations
exist, such as isotropic ResNets [38] and pyramidal ViTs [52].

Aside from the MLP layers, Mixer uses other standard architectural components: skip-connec-
tions [15] and layer normalization [2]. Unlike ViTs, Mixer does not use position embeddings because
the token-mixing MLPs are sensitive to the order of the input tokens. Finally, Mixer uses a standard
classi�cation head with the global average pooling layer followed by a linear classi�er. Overall, the
architecture can be written compactly in JAX/Flax, the code is given in Supplementary F.

3 Experiments

We evaluate the performance of MLP-Mixer models, pre-trained with medium- to large-scale datasets,
on a range of small and mid-sized downstream classi�cation tasks. We are interested in three primary
quantities: (1) Accuracy on the downstream task; (2)Total computational cost of pre-training, which
is important when training the model from scratch on the upstream dataset; (3) Test-time throughput,
which is important to the practitioner. Our goal is not to demonstrate state-of-the-art results, but to
show that, remarkably, a simple MLP-based model is competitive with today's best convolutional and
attention-based models.

Downstream tasks We use popular downstream tasks such as ILSVRC2012 “ImageNet” (1.3M
training examples, 1k classes) with the original validation labels [13] and cleaned-up ReaL labels [5],
CIFAR-10/100 (50k examples, 10/100 classes) [23], Oxford-IIIT Pets (3.7k examples, 36 classes) [33],
and Oxford Flowers-102 (2k examples, 102 classes) [32]. We also use the Visual Task Adaptation
Benchmark (VTAB-1k), which consists of 19 diverse datasets, each with 1k training examples [58].

Pre-training We follow the standard transfer learning setup: pre-training followed by �ne-tuning
on the downstream tasks. We pre-train our models on two public datasets: ILSVRC2021 ImageNet,
and ImageNet-21k, a superset of ILSVRC2012 that contains 21k classes and 14M images [13]. To
assess performance at larger scale, we also train on JFT-300M, a proprietary dataset with 300M
examples and 18k classes [44]. We de-duplicate all pre-training datasets with respect to the test sets
of the downstream tasks as done in Dosovitskiy et al.[14], Kolesnikov et al.[22]. We pre-train all
models at resolution 224 using Adam with� 1 = 0 :9, � 2 = 0 :999, linear learning rate warmup of 10k
steps and linear decay, batch size 4 096, weight decay, and gradient clipping at global norm 1. For
JFT-300M, we pre-process images by applying the cropping technique from Szegedy et al.[45] in
addition to random horizontal �ipping. For ImageNet and ImageNet-21k, we employ additional data
augmentation and regularization techniques. In particular, we use RandAugment [12], mixup [60],

3

Table 1: Speci�cations of the Mixer architectures. The “B”, “L”, and “H” (base, large, and huge)
model scales follow Dosovitskiy et al.[14]. A brief notation “B/16” means the model of base scale
with patches of resolution 16� 16. The number of parameters is reported for an input resolution of
224 and does not include the weights of the classi�er head.

Speci�cation S/32 S/16 B/32 B/16 L/32 L/16 H/14

Number of layers 8 8 12 12 24 24 32
Patch resolutionP � P 32� 32 16� 16 32� 32 16� 16 32� 32 16� 16 14� 14
Hidden sizeC 512 512 768 768 1024 1024 1280
Sequence lengthS 49 196 49 196 49 196 256
MLP dimensionD C 2048 2048 3072 3072 4096 4096 5120
MLP dimensionD S 256 256 384 384 512 512 640
Parameters (M) 19 18 60 59 206 207 431

dropout [43], and stochastic depth [19]. This set of techniques was inspired by thetimm library [54]
and Touvron et al. [48]. More details on these hyperparameters are provided in Supplementary B.

Fine-tuning We �ne-tune using momentum SGD, batch size 512, gradient clipping at global norm 1,
and a cosine learning rate schedule with a linear warmup. We do not use weight decay when �ne-
tuning. Following common practice [22, 48], we also �ne-tune at higher resolutions with respect to
those used during pre-training. Since we keep the patch resolution �xed, this increases the number
of input patches (say fromS to S0) and thus requires modifying the shape of Mixer's token-mixing
MLP blocks. Formally, the input in Eq.(1) is left-multiplied by a weight matrixW 1 2 RD S � S and
this operation has to be adjusted when changing the input dimensionS. For this, we increase the
hidden layer width fromDS to DS0 in proportion to the number of patches and initialize the (now
larger) weight matrixW 0

2 2 RD S 0� S0
with a block-diagonal matrix containing copies ofW 2 on its

diagonal. This particular scheme only allows forS0 = K 2S with K 2 N. See Supplementary C for
further details. On the VTAB-1k benchmark we follow the BiT-HyperRule [22] and �ne-tune Mixer
models at resolution 224 and 448 on the datasets with small and large input images respectively.

Metrics We evaluate the trade-off between the model's computational cost and quality. For the
former we compute two metrics: (1) Total pre-training time on TPU-v3 accelerators, which combines
three relevant factors: the theoretical FLOPs for each training setup, the computational ef�ciency on
the relevant training hardware, and the data ef�ciency. (2) Throughput in images/sec/core on TPU-v3.
Since models of different sizes may bene�t from different batch sizes, we sweep the batch sizes and
report the highest throughput for each model. For model quality, we focus on top-1 downstream
accuracy after �ne-tuning. On two occasions (Figure 3, right and Figure 4), where �ne-tuning all of
the models is too costly, we report the few-shot accuracies obtained by solving the`2-regularized
linear regression problem between the frozen learned representations of images and the labels.

Models We compare various con�gurations of Mixer, summarized in Table 1, to the most recent,
state-of-the-art, CNNs and attention-based models. In all the �gures and tables, the MLP-based Mixer
models are marked with pink (), convolution-based models with yellow (), and attention-based
models with blue (). The Vision Transformers (ViTs) have model scales and patch resolutions
similar to Mixer. HaloNets are attention-based models that use a ResNet-like structure with local self-
attention layers instead of 3� 3 convolutions [51]. We focus on the particularly ef�cient “HaloNet-H4
(base 128, Conv-12)” model, which is a hybrid variant of the wider HaloNet-H4 architecture with
some of the self-attention layers replaced by convolutions. Note, we mark HaloNets with both
attention and convolutions with blue (). Big Transfer (BiT) [22] models are ResNets optimized for
transfer learning. NFNets [7] are normalizer-free ResNets with several optimizations for ImageNet
classi�cation. We consider the NFNet-F4+ model variant. We consider MPL [35] and ALIGN [21]
for Ef�cientNet architectures. MPL is pre-trained at very large-scale on JFT-300M images, using
meta-pseudo labelling from ImageNet instead of the original labels. We compare to the Ef�cientNet-
B6-Wide model variant. ALIGN pre-train image encoder and language encoder on noisy web image
text pairs in a contrastive way. We compare to their best Ef�cientNet-L2 image encoder.

3.1 Main results

Table 2 presents comparison of the largest Mixer models to state-of-the-art models from the literature.
“ImNet” and “ReaL” columns refer to the original ImageNet validation [13] and cleaned-up ReaL [5]

4

Table 2: Transfer performance, inference throughput, and training cost. The rows are sorted by
inference throughput (�fth column). Mixer has comparable transfer accuracy to state-of-the-art
models with similar cost. The Mixer models are �ne-tuned at resolution 448. Mixer performance
numbers are averaged over three �ne-tuning runs and standard deviations are smaller than0:1.

ImNet ReaL Avg 5 VTAB-1k Throughput TPUv3
top-1 top-1 top-1 19 tasks img/sec/core core-days

Pre-trained on ImageNet-21k (public)

HaloNet [51] 85.8 — — — 120 0.10k
Mixer-L/16 84.15 87.86 93.91 74.95 105 0.41k
ViT-L/16 [14] 85.30 88.62 94.39 72.72 32 0.18k
BiT-R152x4 [22] 85.39 — 94.04 70.64 26 0.94k

Pre-trained on JFT-300M (proprietary)

NFNet-F4+ [7] 89.2 — — — 46 1.86k
Mixer-H/14 87.94 90.18 95.71 75.33 40 1.01k
BiT-R152x4 [22] 87.54 90.54 95.33 76.29 26 9.90k
ViT-H/14 [14] 88.55 90.72 95.97 77.63 15 2.30k

Pre-trained on unlabelled or weakly labelled data (proprietary)

MPL [35] 90.0 91.12 — — — 20.48k
ALIGN [21] 88.64 — — 79.99 15 14.82k

labels. “Avg. 5” stands for the average performance across all �ve downstream tasks (ImageNet,
CIFAR-10, CIFAR-100, Pets, Flowers). Figure 2 (left) visualizes the accuracy-compute frontier.
When pre-trained on ImageNet-21k with additional regularization, Mixer achieves an overall strong
performance (84.15% top-1 on ImageNet), although slightly inferior to other models2. Regularization
in this scenario is necessary and Mixer over�ts without it, which is consistent with similar observations
for ViT [14]. The same conclusion holds when training Mixer from random initialization on ImageNet
(see Section 3.2): Mixer-B/16 attains a reasonable score of 76.4% at resolution 224, but tends to
over�t. This score is similar to a vanilla ResNet50, but behind state-of-the-art CNNs/hybrids for the
ImageNet “from scratch” setting, e.g. 84.7% BotNet [42] and 86.5% NFNet [7].

When the size of the upstream dataset increases, Mixer's performance improves signi�cantly. In par-
ticular, Mixer-H/14 achieves 87.94% top-1 accuracy on ImageNet, which is 0.5% better than BiT-
ResNet152x4 and only 0.5% lower than ViT-H/14. Remarkably, Mixer-H/14 runs 2.5 times faster
than ViT-H/14 and almost twice as fast as BiT. Overall, Figure 2 (left) supports our main claim that in
terms of the accuracy-compute trade-off Mixer is competitive with more conventional neural network
architectures. The �gure also demonstrates a clear correlation between the total pre-training cost and
the downstream accuracy, even across architecture classes.

BiT-ResNet152x4 in the table are pre-trained using SGD with momentum and a long schedule. Since
Adam tends to converge faster, we complete the picture in Figure 2 (left) with the BiT-R200x3 model
from Dosovitskiy et al.[14] pre-trained on JFT-300M using Adam. This ResNet has a slightly lower
accuracy, but considerably lower pre-training compute. Finally, the results of smaller ViT-L/16 and
Mixer-L/16 models are also reported in this �gure.

3.2 The role of the model scale

The results outlined in the previous section focus on (large) models at the upper end of the compute
spectrum. We now turn our attention to smaller Mixer models.

We may scale the model in two independent ways: (1) Increasing the model size (number of layers,
hidden dimension, MLP widths) when pre-training; (2) Increasing the input image resolution when

2In Table 2 we consider the highest accuracy models in each class for each pre-training dataset. These all
use the large resolutions (448 and above). However, �ne-tuning at smaller resolution can lead to substantial
improvements in the test-time throughput, with often only a small accuracy penalty. For instance, when pre-
training on ImageNet-21k, the Mixer-L/16 model �ne-tuned at 224 resolution achieves 82.84% ImageNet top-1
accuracy at throughput 420 img/sec/core; the ViT-L/16 model �ne-tuned at 384 resolution achieves 85.15% at
80 img/sec/core [14]; and HaloNet �ne-tuned at 384 resolution achieves 85.5% at 258 img/sec/core [51].

5

Figure 2:Left: ImageNet accuracy/training cost Pareto frontier (dashed line) for the SOTA models in
Table 2. Models are pre-trained on ImageNet-21k, or JFT (labelled, or pseudo-labelled for MPL), or
web image text pairs. Mixer is as good as these extremely performant ResNets, ViTs, and hybrid
models, and sits on frontier with HaloNet, ViT, NFNet, and MPL.Right: Mixer (solid) catches or
exceeds BiT (dotted) and ViT (dashed) as the data size grows. Every point on a curve uses the same
pre-training compute; they correspond to pre-training on 3%, 10%, 30%, and 100% of JFT-300M for
233, 70, 23, and 7 epochs, respectively. Additional points at� 3B correspond to pre-training on an
even larger JFT-3B dataset for the same number of total steps. Mixer improves more rapidly with
data than ResNets, or even ViT. The gap between large Mixer and ViT models shrinks.

Figure 3: The role of the model scale. ImageNet validation top-1 accuracy vs. total pre-training
compute (left) and throughput (right) of ViT, BiT, and Mixer models at various scales. All models
are pre-trained on JFT-300M and �ne-tuned at resolution 224, which is lower than in Figure 2 (left).

�ne-tuning. While the former affects both pre-training compute and test-time throughput, the latter
only affects the throughput. Unless stated otherwise, we �ne-tune at resolution 224.

We compare various con�gurations of Mixer (see Table 1) to ViT models of similar scales and BiT
models pre-trained with Adam. The results are summarized in Table 3 and Figure 3. When trained
from scratch on ImageNet, Mixer-B/16 achieves a reasonable top-1 accuracy of 76.44%. This is 3%
behind the ViT-B/16 model. The training curves (not reported) reveal that both models achieve very
similar values of the training loss. In other words, Mixer-B/16 over�ts more than ViT-B/16. For the
Mixer-L/16 and ViT-L/16 models this difference is even more pronounced.

As the pre-training dataset grows, Mixer's performance steadily improves. Remarkably, Mixer-H/14
pre-trained on JFT-300M and �ne-tuned at 224 resolution is only 0.3% behind ViT-H/14 on ImageNet
whilst running 2.2 times faster. Figure 3 clearly demonstrates that although Mixer is slightly below
the frontier on the lower end of model scales, it sits con�dently on the frontier at the high end.

3.3 The role of the pre-training dataset size

The results presented thus far demonstrate that pre-training on larger datasets signi�cantly improves
Mixer's performance. Here, we study this effect in more detail.

To study Mixer's ability to make use of the growing number of training examples we pre-train
Mixer-B/32, Mixer-L/32, and Mixer-L/16 models on random subsets of JFT-300M containing 3%,
10%, 30% and 100% of all the training examples for 233, 70, 23, and 7 epochs. Thus, every model is
pre-trained for the same number of total steps. We also pre-train Mixer-L/16 model on an even larger
JFT-3B dataset [59] containing roughly 3B images with 30k classes for the same number of total steps.

6

Table 3: Performance of Mixer and other models from the literature across various model and
pre-training dataset scales. “Avg. 5” denotes the average performance across �ve downstream tasks.
Mixer and ViT models are averaged over three �ne-tuning runs, standard deviations are smaller
than0:15. (z) Extrapolated from the numbers reported for the same models pre-trained on JFT-300M
without extra regularization. (T) Numbers provided by authors of Dosovitskiy et al.[14] through
personal communication. Rows are sorted by throughput.

Image Pre-Train ImNet ReaL Avg. 5 Throughput TPUv3
size Epochs top-1 top-1 top-1 (img/sec/core) core-days

Pre-trained on ImageNet (with extra regularization)

Mixer-B/16 224 300 76.44 82.36 88.33 1384 0.01k(z)

ViT-B/16 (T) 224 300 79.67 84.97 90.79 861 0.02k(z)

Mixer-L/16 224 300 71.76 77.08 87.25 419 0.04k(z)

ViT-L/16 (T) 224 300 76.11 80.93 89.66 280 0.05k(z)

Pre-trained on ImageNet-21k (with extra regularization)

Mixer-B/16 224 300 80.64 85.80 92.50 1384 0.15k(z)

ViT-B/16 (T) 224 300 84.59 88.93 94.16 861 0.18k(z)

Mixer-L/16 224 300 82.89 87.54 93.63 419 0.41k(z)

ViT-L/16 (T) 224 300 84.46 88.35 94.49 280 0.55k(z)

Mixer-L/16 448 300 83.91 87.75 93.86 105 0.41k(z)

Pre-trained on JFT-300M

Mixer-S/32 224 5 68.70 75.83 87.13 11489 0.01k
Mixer-B/32 224 7 75.53 81.94 90.99 4208 0.05k
Mixer-S/16 224 5 73.83 80.60 89.50 3994 0.03k
BiT-R50x1 224 7 73.69 81.92 — 2159 0.08k
Mixer-B/16 224 7 80.00 85.56 92.60 1384 0.08k
Mixer-L/32 224 7 80.67 85.62 93.24 1314 0.12k
BiT-R152x1 224 7 79.12 86.12 — 932 0.14k
BiT-R50x2 224 7 78.92 86.06 — 890 0.14k
BiT-R152x2 224 14 83.34 88.90 — 356 0.58k
Mixer-L/16 224 7 84.05 88.14 94.51 419 0.23k
Mixer-L/16 224 14 84.82 88.48 94.77 419 0.45k
ViT-L/16 224 14 85.63 89.16 95.21 280 0.65k
Mixer-H/14 224 14 86.32 89.14 95.49 194 1.01k
BiT-R200x3 224 14 84.73 89.58 — 141 1.78k
Mixer-L/16 448 14 86.78 89.72 95.13 105 0.45k
ViT-H/14 224 14 86.65 89.56 95.57 87 2.30k
ViT-L/16 [14] 512 14 87.76 90.54 95.63 32 0.65k

While not strictly comparable, this allows us to further extrapolate the effect of scale. We use the
linear 5-shot top-1 accuracy on ImageNet as a proxy for transfer quality. For every pre-training run
we perform early stopping based on the best upstream validation performance. Results are reported
in Figure 2 (right), where we also include ViT-B/32, ViT-L/32, ViT-L/16, and BiT-R152x2 models.

When pre-trained on the smallest subset of JFT-300M, all Mixer models strongly over�t. BiT models
also over�t, but to a lesser extent, possibly due to the strong inductive biases associated with the
convolutions. As the dataset increases, the performance of both Mixer-L/32 and Mixer-L/16 grows
faster than BiT; Mixer-L/16 keeps improving, while the BiT model plateaus.

The same conclusions hold for ViT, consistent with Dosovitskiy et al.[14]. However, the relative
improvement of larger Mixer models are even more pronounced. The performance gap between
Mixer-L/16 and ViT-L/16 shrinks with data scale. It appears that Mixer bene�ts from the growing
dataset size even more than ViT. One could speculate and explain it again with the difference in
inductive biases: self-attention layers in ViT lead to certain properties of the learned functions that are
less compatiblewith the true underlying distribution than those discovered with Mixer architecture.

3.4 Invariance to input permutations

In this section, we study the difference between inductive biases of Mixer and CNN architectures.
Speci�cally, we train Mixer-B/16 and ResNet50x1 models on JFT-300M following the pre-training

7

Figure 4:Top: Input examples from ImageNet before permuting the contents (left); after shuf�ing
the16 � 16 patches and pixels within the patches (center); after shuf�ing pixels globally (right).
Bottom: Mixer-B/16 (left) and ResNet50x1 (right) trained with three corresponding input pipelines.

Figure 5: Hidden units in the �rst (left), second (center), and third (right) token-mixing MLPs of
a Mixer-B/16 model trained on JFT-300M. Each unit has196weights, one for each of the14� 14
incoming patches. We pair the units to highlight the emergence of kernels of opposing phase. Pairs
are sorted by �lter frequency. In contrast to the kernels of convolutional �lters, where each weight
corresponds to one pixel in the input image, one weight in any plot from the left column corresponds
to a particular16� 16patch of the input image. Complete plots in Supplementary D.

setup described in Section 3 and using one of two different input transformations: (1) Shuf�e the
order of 16� 16 patches and permute pixels within each patch with a shared permutation; (2) Permute
the pixels globally in the entire image. Same permutation is used across all images. We report the
linear 5-shot top-1 accuracy of the trained models on ImageNet in Figure 4 (bottom). Some original
images along with their two transformed versions appear in Figure 4 (top). As could be expected,
Mixer is invariant to the order of patches and pixels within the patches (the blue and green curves
match perfectly). On the other hand, ResNet's strong inductive bias relies on a particular order
of pixels within an image and its performance drops signi�cantly when the patches are permuted.
Remarkably, when globally permuting the pixels, Mixer's performance drops much less (� 45% drop)
compared to the ResNet (� 75% drop).

3.5 Visualization

It is commonly observed that the �rst layers of CNNs tend to learn Gabor-like detectors that act on
pixels in local regions of the image. In contrast, Mixer allows for global information exchange in the
token-mixing MLPs, which begs the question whether it processes information in a similar fashion.
Figure 5 shows hidden units of the �rst three token-mixing MLPs of Mixer trained on JFT-300M.
Recall that the token-mixing MLPs allow global communication between different spatial locations.
Some of the learned features operate on the entire image, while others operate on smaller regions.
Deeper layers appear to have no clearly identi�able structure. Similar to CNNs, we observe many
pairs of feature detectors with opposite phases [39]. The structure of learned units depends on the
hyperparameters. Plots for the �rst embedding layer appear in Figure 2 of Supplementary D.

8

	Introduction
	Mixer Architecture
	Experiments
	Main results
	The role of the model scale
	The role of the pre-training dataset size
	Invariance to input permutations
	Visualization

	Related work
	Conclusions

