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Abstract

We describe a new setting for learning a deep graph generative model (GGM)
from aggregate graph statistics, rather than from the graph adjacency matrix.
Matching the statistics of observed training graphs is the main approach for learning
traditional GGMs (e.g, BTER, Chung-Lu, and Erdos-Renyi models). Privacy
researchers have proposed learning from graph statistics as a way to protect privacy.
We develop an architecture for training a deep GGM to match statistics while
preserving local differential privacy guarantees. Empirical evaluation on 8 datasets
indicates that our deep GGM generates more realistic graphs than the traditional
non-neural GGMs when both are learned from graph statistics only. We also
compare our deep GGM trained on statistics only, to state-of-the-art deep GGMs
that are trained on the entire adjacency matrix. The results show that graph statistics
are often sufficient to build a competitive deep GGM that generates realistic graphs
while protecting local privacy.

1 Introduction

Graph generative models (GGMs) have produced many insights into fundamental processes in
domains including biology, engineering, and social sciences. Current deep GGMs are based on
training data with complete adjacency matrices [6, 43, 88, 89]. This paper presents GenStat, a
new deep GGM architecture for a setting where the available graph data are summarized by graph
statistics, not a complete adjacency matrix. We refer to this setting as statistics-based graph generation.
Previous work in network analysis has introduced several parametric non-neural models that support
statistics-based graph generation, such as the Chung-Lu model [5], and the BTER model [67]. The
parametric models tend to generate less realistic graphs due to lack of expressive power.

Our main motivation for generating graphs from statistics is privacy preservation. There is a direct ten-
sion between releasing real graphs to the research community and privacy concerns of the individual
entities (graph nodes) [63, 85]. A promising proposal to address it is to release synthetic graphs that
preserve the original graph properties while guaranteeing a user-specified level of privacy [20, 41].
Benchmarking Graph Neural Networks (GNNs) is a use-case of GGMs with a privacy guarantee.
Synthetic graphs generated by GGMs enable GNN research without information leakage [87].

Statistics-based graph generation supports the challenging use case of decentralized graphs [86],
where privacy concerns rule out collecting adjacency matrices in a central repository. Common
examples are social graphs [58], e.g., users’ connections through their phone contact lists, face-to-
face interactions, sexual and friendship networks, or distributed social networks, e.g., Mastodon
[58]. A solution is to have each entity perturb its data and send the perturbed data to a curator [86].
However, collecting raw data locally, such as an entity’s neighbour list, requires heavy noise injection
to satisfy privacy, and may result in a dense, distorted graph with low utility. An alternative, used
widely in industry including Google, Apple, and Microsoft [11, 19, 71, 78], is to collect, from each
entity’s ego-graph, local node-level graph statistics [24][Ch.2], with a guarantee of Local Differential

∗Supported by NSERC Canada Discovery Grant R611341

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Privacy (LDP) as a strong privacy measure [58]. The perturbed node-level statistics are aggregated
to summarize important graph properties [58, 86, 91]. The idea is that coarser-grained information
requires much less noise to satisfy LDP [58]. The final step is to generate representative synthetic
graphs for public release. Previous works use a parametric statistics-based GGM [34, 35, 48, 58, 63].
Our GenStat system is a neural alternative that generates substantially more realistic graphs. Figure
1 summarizes the privacy-preserving workflow.

Figure 1: Generating realistic-looking graphs with Local Differential Privacy. See text for detail.

Evaluation. We evaluate the realism of the generated graph structures following previous work [6, 41,
58, 68, 72, 88]. Experiments on 8 datasets with diverse characteristics demonstrate the effectiveness
of GenStat. Compared to parametric statistics-based methods, GenStat generates graphs that are up to
10 times more realistic on Maximum Mean Discrepancy (MMD) metrics. Compared to state-of-the-
art GGMs (that require access to all adjacencies), the GenStat graphs reach very competitive graph
quality, especially on real graph datasets, such as datasets of molecules and chemical compounds.
Thus in many domains, graph statistics are sufficient for learning to generate realistic graphs. We also
evaluate the effectiveness of GenStat for benchmarking GNNs on link prediction as a downstream
task and we show GenStat is highly effective. Moreover, graph learning from statistics is much faster
than from adjacency matrices. The implementation and datasets are provided at GenStat repository
https://github.com/kiarashza/GenStat.git and explained in the Appendix Section 7.9.

Contributions.

• We introduce GenStat, a novel deep graph generative architecture that requires access only to
graph-level statistics. To our knowledge, GenStat is the first deep GGM that does not require
observations of individual nodes or edges.

• We show that given training statistics collected with a local differential privacy guarantee, Gen-
Stat also satisfies local differential privacy, while generating high-quality graphs.

• We identify permutation-invariant differentiable graph statistics that are based on aggregating
node-level information and support realistic graph generation across multiple diverse domains.

2 Related work

Realistic graph generation has been studied extensively for decades, leading to the development of
both parametric and neural approaches [24][Ch.8]. Figure 5 in the Appendix positions GenStat in
the GGM landscape. The objective of previous parametric statistics-based GGMs such as [1, 5, 18,
21, 40, 56, 67] is to generate graphs with similar statistical properties to observed graphs [46]. The
expressive power of their parameter space is limited. More recent machine learning models, including
Deep GGMs [6, 88, 89], have a higher capacity to generate realistic graphs [6]. However, to our
knowledge, they all assume access to a complete adjacency matrix. Such access is incompatible with
privacy concerns since adjacency matrices reveal the entities with which an entity has interacted. In
contrast, GenStat learns a deep GGM using only observed graph statistics and generates realistic
graphs for a variety of domains.

Graph statistics. Zahirnia et al. [89] recently introduced a joint probabilistic micro-macro model over
both adjacencies and graph statistics and showed that matching graph-level statistics is an effective
regularizer for the edge reconstruction loss, which assumes access to all adjacencies. GenStat operates
on permutation-invariant graph statistics that can be collected locally and privately, whereas some of
the statistics used in [89] require all adjacencies.
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Statistical databases are database systems that present only aggregate statistics (e.g., sample mean
and count) for a subset of the entities represented in the database and ensure that sensitive information
is safeguarded while still enabling valuable statistical analysis and research. An example is the
database maintained by the U.S. Census Bureau [39]. Statistical databases also protect privacy
through aggregate statistics and can be analyzed using the GenStat framework.

Permutation-invariance is a fundamental property of graph-structured data [24], which suggests that
a GGM should produce the same output irrespective of the node ordering employed in the training set.
It is satisfied by many GGMs [23, 28, 33, 54, 76], but not all [6, 88, 89]. Since GenStat takes as input
permutation-invariant statistics, its training and the generative graph distribution are permutation-
invariant as well (Section 3.3).

Differential privacy (DP) [15] enables the extraction of useful information about a population while
providing strong privacy guarantees for individuals. Local differential privacy (LDP) [36] is a stronger
guarantee for the decentralized setting [86]. Each entity perturbs its sensitive information before
transmitting it to an untrusted curator. Collecting decentralized network statistics under LDP has
been deployed by major technology companies, including Google, Apple, and Microsoft [11, 19, 71].
For example, Google’s RAPPOR [19] collects randomized statistics to enable analysis of popular
web destinations without revealing individual browsing habits.

Graphs and privacy. Privacy-preserving techniques have been proposed for the release and genera-
tion of graph data [41, 50, 51, 63]. Yang et al. [85] and Yoon et al. [87] leverage DP to enforce privacy
constraints on deep GGMs. Yoon et al. [87] advocate using generated graphs to replace original
graphs in GNN research. Therefore the GGM should generate effective benchmark graphs, meaning
that GNNs show similar task performance as on the original source graphs. In the decentralized
setting, entities perturb sensitive information locally to support the generation and release of synthetic
graphs [58, 78, 86, 91]. Theoretical analysis shows that perturbing local adjacencies impairs graph
quality too much for synthetic graphs to be useful [58]. Our experiments confirm this for SOTA
deep GGMs (Section 4.3). Therefore, recent studies train parametric GGMs with perturbed local
ego-graph statistics [58, 78] to achieve LDP. To our knowledge, GenStat is the first deep GGM that
can generate synthetic graphs under LDP.

Graph Anonymization is a procedure that disguises or modifies information in graphs, making it
anonymous. Anonymization techniques have two main limitations [50, 63]. These techniques 1) are
mainly applicable in a centralized setting and 2) typically protect only against specific known attacks.
Narayanan and Shmatikov [51] describe a de-anonymization algorithm for an anonymized binary
adjacency matrix that effectively re-identifies the nodes in real word graphs, Twitter and Flicker.

Federated Learning is a privacy-preserving paradigm for building models from separate data sources
[90]. [20, 25, 80] used federated learning to learn GNNs on graphs from multiple data sources. These
studies assume that each source has trusted access to a sufficiently large subgraph to locally train an
accurate GNN [80], and they do not target the construction of a GGM.

3 Problem definition and method

Given a set of observed graphs Ĝ = {G1, ...,GS}, with variable number of nodes, sampled from
a data distribution p(G), the goal of GGMs is to learn a model that can generate similar synthetic
graphs [6, 88, 89]. We introduce GenStat, a statistics-based architecture for probabilistic GGMs.

GenStat assumes that a training graph Gi is summarized by a set of observed M graph statistics,
denoted as Ii = {Iim}Mm=1, where the statistic Im is a vector of dimension Dm. Each statistic
is computed by a descriptor function φm : [0, 1]n×n → R+Dm that maps an adjacency matrix
representing a graph with n nodes to a vector; we write φm(Ai) = Iim and Φ(Ai) = Ii. Permutation-
invariant statistics satisfy Φ(Ai) = Φ(Aiπ) for all adjacency matrices obtained from Ai through a
permutation π [10, 52, Ch. 7]. Section 3.5 defines the statistics in our experiments, namely histograms
of triangles, neighborhood sizes, random walks and graph size.

3.1 Probabilistic model of graph statistics

Given a distribution p(A) over adjacency matrices, we let I denote the random variable defined by
applying the descriptor functions to a random graph A (i.e., I = {φm(A)}Mm=1). Following Ma et al.
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[45], we view the latent adjacency matrix A as a sample from an underlying probabilistic adjacency
matrix Ã with Ãu,v ∈ [0, 1] specifying independent link probabilities. We define the mixture model

p(A|Ã) =

n∏
u=1

n∏
v=1

Ã
Au,v
u,v (1− Ãu,v)1−Au,v (1)

p(A) =

∫
p(A|Ã)p(Ã) dÃ p(Ã) =

∫
p(Ã|Z)p(Z) dZ,

where Z1×d is a graph latent representation [24][Sec. 9.1] with associated prior p(Z). The marginal
distribution over graph statistics is:

pθ(I) =
∫ ∫

pθ(I|Ã)pθ(Ã|Z)p(Z) dÃ dZ. (2)

We assume graph statistics are independent given the probabilistic matrix Ã and model the conditional
distribution of each graph statistic as a Gaussian with diagonal variance parameter σ2

m,

pθ(I1, . . . , IM |Ã) =

M∏
m=1

N (Im|φm(Ã), σ2
mI). (3)

Given the conditional distribution Equation (3), the marginal distribution Equation (2) is a mixture of
Gaussians. Figure 2a illustrates the probabilistic graphical model of GenStat.

(a) (b)

Figure 2: (a) The proposed latent variable model. The diagram shows the dependency of graph
statistics {Iim}Mm=1 on the latent probabilistic adjacency Ã and graph-level latent representation Z.
(b) The model’s overall architecture.

3.2 Training and variational lower bound

For an i.i.d. sample of graphs with associated statistics, I1, . . . ,IS , the marginal log-likelihood is the
sum of the marginal log-likelihoods of the individual graphs, log pθ(I1, . . . ,IS) =

∑
i log pθ(Ii).

The double integral in Equation (2) is generally intractable. We approximate the mixture integral
with a Variational Auto-Encoder (VAE) to minimize the negative ELBO as an approximation of the
negative log-likelihood for graph statistics:
Proposition 1. Let pθ be the marginal likelihood defined in Equation (2). Then

− ln pθ(Ii) = − ln pθ(Ii1, . . . , IiM ) ≤EZ∼qθ(Z|Ii1,...,IiM )

[
− ln

∫
pθ(Ii1, . . . , IiM |Ã)pθ(Ã|Z)dÃ

]
+KL(qθ(Z|Ii1, . . . , IiM )||p(Z)). (4)

The proof is in the Appendix Section 7.1.1. We approximate the inner integral with a Monte Carlo
estimate of the expectation of pθ(Ii1, . . . , IiM |Ã) w.r.t. pθ(Ã|Z) as follows:∫

pθ(Ii1, . . . , IiM |Ã)pθ(Ã|Z)dÃ = Epθ(Ã|Z)[pθ(I
i
1, . . . , IiM |Ã)]

≈ 1

T

T∑
t=1

pθ(Ii1, . . . , IiM |Ã
t
) where Ã

t ∼ pθ(Ã|Z), (5)
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where the conditional distribution of the underlying probabilistic adjacency matrix can be modelled
as a Beta distribution [44].

We implement the GenStat objective (4) with an Auto-Encoder in which fully connected neural
networks (FCNNs) are used to jointly learn qθ(Z|Ii1, . . . , IiM ) and pθ(Ã|Z) with learning parameters
θ. Figure 2b illustrates the VAE design of GenStat. The prior p(Z) is a standard normal distribution.
The variational posterior qθ(Z|Ii1, . . . , IiM ) is a factored Gaussian with vector mean and variance.
See Appendix Section 7.2 for the neural network design and more details concerning implementation.

3.3 Permutation-invariant graph generation

Given permutation-invariant statistics, GenStat training is permutation-invariant in the sense that
the gradient updates are permutation-invariant [76]. Because training is permutation-invariant, the
model distribution pθ(A) from Equation (1) can be made permutation-invariant by applying a uniform
random permutation to the output of the decoder. In addition to generating synthetic graphs, a
major use of statistics-based generative models is to define an inference distribution to support
prediction tasks like link prediction and graph classification [60]. These inference models apply
to graph distributions that assign the same probability to graphs with the same statistics, which is
appropriate when the graph model is based on statistics only. Accordingly, we define the following
permutation-invariant inference distribution for a GenStat model:

Pθ(A) = pθ(Φ(A))/CΦ(A) , (6)

where the distribution pθ(I) over statistics follows Equation (2) and CΦ(A) is the number of graphs
that generate the same statistics as A (i.e., CΦ(A) = |{A′ : Φ(A′) = Φ(A)}|).
The following statement summarizes these observations. Appendix Section 7.1.2 provides a proof.

Observation 1. Suppose that a GGM parameterized by θ is trained with the GenStat architecture
and permutation-invariant descriptor functions Φ. Then the following hold.

1. The gradient updates of θ given a training graph Ai are permutation-invariant.

2. The model distribution pθ(A) is permutation-invariant if the generated adjacency matrix is
computed by applying a random permutation to the GenStat output.

3. The inference distribution Pθ(A) in Equation (6) is permutation-invariant.

3.4 GenStat privacy analysis

This section shows that training the GenStat architecture on statistics collected under an LDP
guarantee, also satisfies LDP. We employ a graph LDP concept known as Edge LDP [58, 78], which
guarantees plausible deniability for the inclusion or removal of a particular edge associated with
an individual (node). The neighbor list of u is an n-dimensional vector lu = [lu1, . . . , lun], with
luv ∈ {0, 1} and luv = 1 iff u and v are connected.

Definition 1 (ε-Edge LDP). A randomized algorithm R satisfies ε-Edge LDP if and only if, for
any two neighbour lists l and l′, such that l and l′ only differ in one bit, and for any output value
s ∈ range(R), the following inequality holds,

p(R(l) = s) ≤ eεp(R(l′) = s) . (7)

An example of a randomized algorithm R is a perturbed node degree: A user calculates her true
node degree, adds noise with a perturbation mechanism (e.g., the Laplace mechanism [13]), and
sends the resulting noisy degree to a data curator. The curator aggregates the perturbed node degrees
as local graph statistics that can be used to train statistics-based GGMs, such as GenStat. The
following proposition, with proof in Appendix Section 7.1.3, captures the LDP-preserving properties
of GenStat.

Proposition 2. Let R = (R1...RM ) be a set of independent randomized algorithms, outputting
perturbed node-level statistics, such that algorithmRm satisfies εm-Edge LDP. Then a GenStat GGM
trained on the outputs of R satisfies

∑M
m=1 εm-Edge LDP.
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3.5 Observed graph statistics

Graph statistics used in a GenStat model are computed by permutation-invariant descriptor functions
φ(Ã) that can be applied to probabilistic as well as binary adjacency matrices, and are differentiable
with respect to entries in the latent adjacency matrix Ã. To support local privacy, we use graph
statistics that aggregate node-level statistics:

F (G) = AGG
(
{f(Gu) : u ∈ {1, 2, . . . , n}}), (8)

where Gu denotes the node k-hop ego network of node u in graph G with n nodes, the local statistic
f(·) returns a real-valued vector for an ego-graph, and AGG(·) is a permutation invariant function
(e.g., average, sum, histogram) that takes as input the set of statistics (e.g., node degree) of the
ego-graphs and summarizes them into a vector representation. When A represents the graph G, we
have that φ(A) = F (G) is differentiable if the f(·) and AGG(·) functions are differentiable.

The representation of graphs based on local ego-graph properties has been widely studied [22, 64,
79, 83]. Recent studies proposed algorithms for estimating k-hop-based graph structural properties
under (L)DP [7, 17, 29, 30, 61, 66, 78, 81]. Our experiments use three histogram-based k-hop graph
statistics: 1) triangle histogram; 2) k-HOP neighbors histogram; 3) histogram of random walks, and
graph size. We use a differentiable soft histogram [77]; see Section 7.3. The histogram function h(·)
transforms a vector of counts into a real-valued soft histogram. We explain each graph statistic next.

Triangle histogram. A triangle histogram counts the number of nodes that participate in a given
number of triangles. The descriptor function is h( 12 (A

3)u,u).

k-HOP neighbors histogram for k = 1, 2, 3, 4. The k-HOP neighbor histogram counts the number
of nodes that have a given number of k-HOP neighbors. The 1-HOP neighbour histogram is
equivalent to the degree histogram. The k-Hop descriptor function is h(

∑
(min(

∑
k Ak, 1)) where

min(A, 1)u,v = min(Au,v, 1) and
∑

(A)u =
∑
v Au,v .

Random walk histogram of length r for r = 2, 3. The number of walks of length r between node u
and v is given by (Ar)u,v . The random walk histogram of length r counts the number of node pairs
with a given number of walks of length r connecting them. It is defined by h(Ar) [65].

Graph size. The size of a graph is its number of edges given by 1
2

∑
v

∑
u Av,u.

This paper uses these four statistics in the experiments as default statistics and demonstrates that
the default statistics are capable of modelling graphs with a wide range of structural characteristics;
see Section 4. The default statistics are known from prior research to be generally important for
graph modelling across different domains and are easy to interpret [24]. Different graph statistics are
important for different applications [55]. The default statistics can be combined with other statistics
of interest in a specific application.

4 Empirical evaluation

This section compares GenStat with parametric and Deep GGMs. Our design closely follows previous
studies on generating realistic graphs [6, 88, 89]. We report qualitative and quantitative evaluations
of the generated graphs’ quality. 1) We compare the performance of GenStat with popular statistics-
based GGMs. 2) We compare GenStat with popular deep GGMs. These models require access to
all node interactions, so this is not an apple-to-apples comparison. It measures how much graph
generation quality is lost when generation is based on aggregated local statistics, rather than node
interactions. 3) We compare GGMs trained under different Edge LDP budgets. 4) We compare
GGMs in terms of their benchmark effectiveness for GNNs on link prediction as a downstream task.
5) We also compare deep GGMs and GenStat in terms of generation and training time.

Comparison methods. We compare GenStat to statistics-based and deep adjacency-based GGMs.
Statistics-based baselines. Statistics-based GGMs that have been used with LDP guarantees [78]
include the Chung-Lu Model [5] and the Block Two-Level Erdos-Renyi Model (BTER) [67]. We
also evaluate the Stochastic Block Model (SBM) [1] and the Erdos-Renyi model [18], which have
been employed in previous comparisons with deep GGMs [88]. See Appendix Section 7.4 for further
details.
Deep adjacency-based baselines include GraphVAE-MM [89], BiGG [6], GRAN [43] and GraphRNN
[88]. To our knowledge, these are the SOTA models for generating realistic graphs.
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Datasets. Following previous studies, we use real and synthetic datasets [6, 88, 89]. As the datasets
are not new, we describe them briefly. We evaluate our model on 3 synthetic datasets: the Lobster
trees (Lobster), Grid [88] and Triangle-Grid [89] datasets, all of which consist of graphs with regular
structures. We also evaluate our models on 5 real datasets: ogbg-molbbbp (ogbg-mol) [27], Protein
[12], IMDb [84], PTC [73] and MUTAG [8]. We randomly partitioned the datasets into train (70%),
validation (10%), and test (20%) sets [6, 88, 89]. See Appendix Section 7.5 for detail.

Evaluating the generated graphs. Evaluating the sample quality of GGMs requires a comparison
between two sets of graphs — the generated graphs and the (held-out) test sets [6, 88, 89].
Qualitative evaluation compares the generated graphs by visual inspection.
Quantitative approaches compare the distance between the distribution of test graphs and the gen-
erated graphs. We use GNN-based [68, 72] and statistics-based [88] metrics to measure the fidelity
(realism) and the diversity of generated graphs. GNN-based metrics extract graph representations
with a reference GNN that is independent of graph statistics. The reference GNN is either randomly
initialized (Random-GNN) [72] or contrastively trained (Pretrained-GNN) [68]. Evaluation metrics
then compute the discrepancy between the test set representations and the generated set represen-
tations; we report F1 PR and MMD RBF. Statistic-based evaluation metrics compute the MMD
between the test set and generated set with respect to structural properties (orbit counts, degree
coefficients, clustering coefficients and diameter) [43]. For all GNN-based metrics, we used 10 GNNs
with different random initializations and reported mean ± standard deviation across different GNNs
[72]. Following O’Bray et al. [55] we report scores computed from a 50/50 split of the data sets as
the ideal score. As in previous work, all models are trained with one random weight initialization to
keep the training time feasible [6, 42, 88, 89]. Each trained model is used to generate S

′
new graphs

to compare them with the S
′

graphs in the test set. See Appendix Section 7.6 for further detail.

4.1 Comparison of GenStat with statistics-based GGMs on graph realism.

We compare GenStat to non-neural baseline models that are widely used in network science.
Qualitative evaluation. Figure 3 is a visual comparison of randomly selected test and generated
graphs graphs for statistics-based GGMs. The GenStat graphs are visually much more similar to the
test samples than the baseline graphs. For example, instead of Lobster trees, baselines often generate
samples that contain multiple cycles. IMDb graphs exhibit a community structure where multiple
small communities are interconnected through a central node. For instance, the left IMDb test sample
in Figure 3 consists of six communities. None of the baselines was able to generate a graph with high
modularity. The Protein samples generated by the baselines exhibit a higher density compared to the
test samples. The GenStat repository contains the complete collection of generated graphs.

Quantitative evaluation. The quantitative evaluation confirms that the quality of graphs generated by
GenStat is substantially higher. Table 1 reports the GNN-based MMD RBF scores. GenStat achieved
better MMD RBF scores than the baseline GGMs in 12 out of 16 cases. Notably, GenStat generated
samples have MMD RBF scores up to ten times smaller than the baselines for the Random-GNN
and Pretrained-GNN approaches. Appendix Table 3 reports the GNN-based F1 PR. The F1 PR of
generated graphs by GenStat is substantially higher than those of the baselines. For example, on
Protein, the GenStat F1 PR score is 83.72% vs. 71.08% for the next best method with Random-
GNN, and 79.95% vs. 23.76% for Pretrained-GNN. Appendix Table 4 shows the results for the
statistics-based evaluation metrics. GenStat generates graphs with up to 1-2 orders of magnitude
better statistics-based MMDs, at least in one of the reported MMDs, on almost all datasets.

4.2 Comparison of GenStat with deep adjacency-based GGMs on graph realism

Qualitative evaluation. Appendix Figure 7 provides a visual comparison of the graphs generated by
GenStat and deep SOTA adjacency-based GGMs. On the real-world datasets, the GRAN graphs are
less realistic than the GenStat graphs. For the other comparison methods, the quality of their graphs
is visually indistinguishable from those generated by GenStat.

Quantitative evaluation. Table 2 compares GenStat with adjacency-based GGMs in terms of the
GGN-based MMD RBF score of the generated graphs. Although GenStat is limited to graph statistics,
for real-world datasets, it ranks among the top two models in 9 out of 10 reported MMD RBF scores.
On the synthetic datasets the GenStat scores are competitive with the GraphRNN and GRAN scores
but do not reach the level of BiGG and GraphVAE-MM. The difference is that the synthetic datasets
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Figure 3: Visualization of generated graphs by the statistics-based GGMs. The top row shows
randomly selected graphs from the test set for each dataset, with varying structural characteristics.
The other rows show graphs generated by each model. The generated graphs shown are the two
visually most similar samples in the generated set.

Table 1: Comparison of GenStat with statistics-based GGMs for the GNN-Based MMD RBF score
(lower is better). The best result is in bold and the second best is underlined.

Dataset Descriptor 50/50 split GenStat* BTER Chung-Lu Erdos-Roni SBM

ogbg-mol Random-GNN 0.00± 0.00 0.05± 0.01 0.21± 0.12 0.05± 0.00 0.12± 0.07 0.10± 0.03
Pretrained-GNN 0.00± 0.00 0.01± 0.01 0.07± 0.00 0.07± 0.00 0.22± 0.02 0.21± 0.03

Protein Random-GNN 0.00± 0.00 0.00± 0.00 0.06± 0.02 0.64± 0.40 0.59± 0.36 0.27± 0.13
Pretrained-GNN 0.01± 0.00 0.00± 0.00 0.21± 0.04 0.60± 0.16 0.59± 0.07 0.50± 0.04

IMDb Random-GNN 0.00± 0.00 0.05± 0.03 0.20± 0.15 0.23± 0.15 0.16± 0.14 0.12± 0.03
Pretrained-GNN 0.01± 0.00 0.08± 0.02 0.07± 0.02 0.27± 0.07 0.16± 0.06 0.20± 0.09

PTC Random-GNN 0.01± 0.00 0.00± 0.00 0.04± 0.00 0.09± 0.00 0.10± 0.04 0.19± 0.04
Pretrained-GNN 0.02± 0.00 0.00± 0.00 0.08± 0.01 0.12± 0.01 0.17± 0.02 0.18± 0.02

MUTAG Random-GNN 0.00± 0.00 0.05± 0.05 0.25± 0.05 0.27± 0.07 0.37± 0.21 0.27± 0.16
Pretrained-GNN 0.01± 0.00 0.00± 0.00 0.18± 0.02 0.24± 0.03 0.41± 0.03 0.35± 0.06

Lobster Random-GNN 0.03± 0.00 0.35± 0.10 0.15± 0.04 0.14± 0.02 0.44± 0.10 0.22± 0.08
Pretrained-GNN 0.10± 0.00 0.04± 0.03 0.17± 0.01 0.11± 0.06 0.32± 0.03 0.27± 0.03

Grid Random-GNN 0.02± 0.00 0.53± 0.28 0.41± 0.28 0.59± 0.45 0.40± 0.27 0.61± 0.36
Pretrained-GNN 0.10± 0.00 1.17± 0.10 1.21± 0.13 1.39± 0.09 1.21± 0.13 1.25± 0.09

Triangle Grid Random-GNN 0.00± 0.00 0.33± 0.07 0.38± 0.29 1.18± 0.29 1.10± 0.27 0.78± 0.34
Pretrained-GNN 0.03± 0.00 1.11± 0.13 0.80± 0.17 1.30± 0.14 1.20± 0.12 1.20± 0.11

exhibit highly regular local structure (e.g., a grid pattern). We observed similar results for the F1 PR
and statistics-based scores (Appendix Tables 5 and 6). Apparently the global graph statistics used by
GenStat are insufficient for expressing strict local constraints.

In sum, our deep statistics-based GGM GenStat outperforms previous parametric statistics-based
GGMs by orders of magnitude. In an apples-to-oranges comparison with deep GGMs trained on
complete adjacency matrices, it is competitive or superior on real-world datasets, but not on synthetic
datasets with highly regular local structures such as grid patterns.

4.3 Graph realism and edge local differential privacy

We examine training both statistics-based and adjacency-based GGMs with an Edge LDP guarantee.
For adjacency-based GGMs, the randomized neighbour list (RNL) approach [58] can be used. Each
node randomly flips each bit in its neighbour list with probability 1

1+eε and sends the perturbed
neighbour list to the untrusted curator. A adjacency-based GGM can then be trained on the collected
perturbed adjacency matrix. For an ε-Edge LDP guarantee, GenStat was trained on local ego-graph
(node-level) statistics, each perturbed by the Laplace mechanism with variance 1

(Mε)2
[14].
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Table 2: Comparison of GenStat with adjacency-based GGMs for the GNN-Based MMD RBF score
(lower is better). The best result is in bold and the second best is underlined.

Dataset Descriptor 50/50 split GenStat* GraphVAE-MM BiGG GRAN GraphRNN-S GraphRNN

ogbg-mol Random-GNN 0.00± 0.00 0.05± 0.01 0.01± 0.00 0.04± 0.00 0.44± 0.02 0.44± 0.15 1.53± 0.03
Pretrained-GNN 0.00 ± 0.00 0.01 ± 0.01 0.04 ± 0.00 0.03 ± 0.00 0.25 ± 0.03 0.54 ± 0.04 0.86 ± 0.09

Protein Random-GNN 0.00± 0.00 0.00± 0.01 0.06± 0.01 0.17± 0.07 0.05± 0.02 0.56± 0.18 1.43± 0.32
Pretrained-GNN 0.01 ± 0.00 0.00 ± 0.00 0.17 ± 0.01 0.11 ± 0.00 0.11 ± 0.02 0.97 ± 0.06 1.73 ± 0.21

IMDb Random-GNN 0.00± 0.00 0.05± 0.03 0.08± 0.02 0.02± 0.00 0.02± 0.00 1.45± 0.03 0.99± 0.06
Pretrained-GNN 0.01 ± 0.00 0.08 ± 0.02 0.09 ± 0.03 0.03 ± 0.00 0.42 ± 0.27 1.2 ± 0.23 0.75 ± 0.12

PTC Random-GNN 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.14 ± 0.03 0.67 ± 0.11 0.81 ± 0.16
Pretrained-GNN 0.02 ± 0.00 0.00 ± 0.00 0.06 ± 0.00 0.03 ± 0.00 0.18 ± 0.03 0.53 ± 0.03 0.51 ± 0.11

MUTAG Random-GNN 0.00 ± 0.00 0.05 ± 0.05 0.09 ± 0.04 0.03 ± 0.00 0.09 ± 0.00 0.53 ± 0.12 1.08 ± 0.05
Pretrained-GNN 0.01 ± 0.00 0.00 ± 0.00 0.13 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.50 ± 0.14 0.31 ± 0.05

Lobster Random-GNN 0.03 ± 0.00 0.35 ± 0.10 0.09 ± 0.00 0.11 ± 0.00 0.16 ± 0.07 0.86 ± 0.08 0.62 ± 0.03
Pretrained-GNN 0.10 ± 0.00 0.04 ± 0.03 0.10 ± 0.00 0.11 ± 0.00 0.29 ± 0.03 0.74 ± 0.07 0.22 ± 0.01

Grid Random-GNN 0.02 ± 0.00 0.53 ± 0.28 0.14 ± 0.01 0.35 ± 0.00 0.40 ± 0.00 0.92 ± 0.05 1.04 ± 0.09
Pretrained-GNN 0.10 ± 0.00 1.17 ± 0.10 0.35 ± 0.14 0.29 ± 0.10 0.45 ± 0.09 1.27 ± 0.07 1.06 ± 0.05

Triangle Grid Random-GNN 0.00± 0.00 0.33± 0.07 0.18± 0.00 0.38 ± 0.10 0.31± 0.18 0.79± 0.14 0.94± 0.08
Pretrained-GNN 0.03 ± 0.00 1.11 ± 0.13 0.15 ± 0.02 0.34 ± 0.07 0.42 ± 0.27 0.88 ± 0.16 0.96 ± 0.10

We compare the quality of graphs generated by GenStat and BiGG, the best adjacency-based GGM,
against ground-truth test graphs, when each is trained under differential privacy. We also compare
perturbed adjacency matrices with the test graphs. This helps us understand the optimal score that
can be achieved by an adjacency-based GGM trained on the perturbed adjacency matrices. Graph
statistics used in the GenStat model for this experiment are triangle histogram and degree histogram.
Figure 4 compares the quality scores under the edge ε-LDP guarantee, for ε ∈ {0.1, 0.5, 1, 2, 3, 4},
using the three datasets on which BiGG showed the biggest advantage over GenStat when trained
without perturbations (Section 4.2); see the Appendix for other datasets. GenStat generates more
realistic graphs for almost all ε-privacy budgets, as indicated by much lower MMD-RBF scores.

(a) MUTAG (b) Lobster (c) Grid

Figure 4: Comparison of GenStat (statistics-based GGM) with BiGG (adjacency-based GGM) under
ε-Edge LDP guarantee, in terms of the Random GNN-Based MMD RBF score. A lower score is
better. The lower bound ε = 0 ensures perfect privacy.

4.4 Benchmark effectiveness

A use case for statistics-based GGMs is generating privacy-controlled synthetic graphs for bench-
marking the performance of GNNs on downstream tasks, when privacy concerns limit access to
the original adjacency matrices in a data collector. The idea behind benchmark effectiveness is
that “performance rankings among m GNN models on generated graphs should be similar to the
rankings among the same m GNN models on the original graphs” [87]. The methodology is to
evaluate each GNN model on the downstream task twice: first on the original dataset, and second
on a synthetic dataset generated by the GGM. The benchmark effectiveness of the GGM is then
measured by the correlation between the GNNs’ task scores from the original and the task scores
from the synthetic data. Following [87], we benchmark GNNs on link prediction; see Section 7.8 for
further detail. Table 8 compares the benchmark effectiveness of GenStat with that of BiGG, the SOTA
adjacency-based GGM. On 4 out of 8 datasets, the GenStat benchmark effectiveness is competitive
with or superior to the benchmark effectiveness of BiGG. For the other datasets, the benchmark
effectiveness of BiGG is better, but the GenStat graphs still show a substantive correlation (at least
0.5046 for Pearson correlation). For most of the datasets, the MSE of GenStat is smaller than that
of BiGG. In our opinion, the benchmark effectiveness of GenStat for link prediction is impressive,
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especially considering that the model does not observe specific links during training time, unlike
BiGG.

4.5 Generation and training time

Evaluating the edge reconstruction probability is expensive and tends to dominate the training time
of adjacency-based GGMs. Training statistics-based methods is therefore generally faster than
training adjacency-based methods. Specifically, the training time of GenStat is up to two orders of
magnitude lower than that of the fastest auto-regressive model, and up to 5 times lower than that of
GraphVAE-MM. In terms of generation time, both GraphVAE-MM and GenStat are much faster than
auto-regressive methods, because they generate graphs all-at-once rather than incrementally. Tables 9
and 10 in the Appendix give a detailed comparison of the train and generation time of deep GGMs.

5 Discussion and limitations

Graph generative models have a potential attack surface that reveals sensitive information about
individuals. Our model contributes to an effective analysis of network structure while maintaining
privacy guarantees and minimizing access to the sensitive information of individuals. We expect the
social impact of our work to be positive. We discuss the limitations of the GenStat +VAE design.

Attributed and heterogeneous graphs. Following [6, 88, 89], the reported research studies graph
generation issues with relatively simple homogeneous graphs. GenStat can be extended to at-
tributed/heterogeneous graphs, where nodes/edges possess attributes, including potentially sensitive
ones. The graph descriptors can be defined as functions of both feature matrices and edge tensors.

Computational complexity. In our implementation, we used matrix multiplication with O(N3)
complexity to exactly compute the descriptors Φ(·). Approximating graph statistics [16, 32, 59] and
exploiting the sparsity of real-word graphs are promising avenues for scaling to large graphs.

Neural network design. Following [70, 89], we used FCNN decoders to generate probabilistic
adjacency matrices. The all-at-once parallel edge generation of FCNN decoders enables fast training
and generation time [24, Ch.9.1.2]. However, they require specifying a maximum number of nodes,
and do not scale to large graphs. These limitations in our current system can be addressed with more
scalable decoders, e.g. graph transformers [76].

6 Conclusion and future work

A statistics-based graph generative model (GGM) is trained on graph statistics that summarize the
graph, rather than a complete adjacency matrix. Non-neural parametric models for statistics-based
graph generation have been developed in network science for decades. We have described a new
GenStat framework, which to our knowledge is the first deep GGM architecture based on statistics.
Our main motivation for statistics-based graph generation is to avoid requiring sensitive information
from individual network participants, especially in the decentralized setting without a single trusted
data curator. We show that if local node-level statistics are collected from individuals under edge local
differential privacy (LDP), applying GenStat to the statistics preserves LDP. In empirical evaluation
on eight datasets, graphs generated by GenStat were substantially more realistic than those generated
by previous statistics-based methods (e.g., by an order of magnitude on the standard MMD RBF
quality metric). On real-world datasets, GenStat graphs show competitive quality to SOTA GGMs
that are based on the entire adjacency matrix, even though GenStat sees only summary statistics. We
also show that because GenStat learns on compressed graph information, training time is much faster
than with adjacency-based methods.

A valuable direction for future work is extending statistics-based graph generation to attributed and
heterogeneous graphs. There are several directions for scaling GenStat architectures to large graphs,
such as approximating expected graph statistics, leveraging graph sparsity, and using more scalable
decoders. In terms of application tasks, it would be useful to evaluate how well GenStat supports
learning for downstream tasks (link prediction, node classification) with an LDP guarantee [87].

In sum, statistics-based graph generation is fast and effective in generating high-quality graphs. It
offers a strong option for graph learning that respects individuals privacy.
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