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Abstract

Given a user’s input text, text-matching recommender systems output relevant items
by comparing the input text to available items’ description. As users’ interests and
item inventory are expected to change, it is important for a text-matching system
to generalize to out-of-distribution (OOD) data shifts. However, we find that the
popular approach of fine-tuning a base language model on paired item relevance
training data can be counter-productive. For a product recommendation task, fine-
tuning obtains worse accuracy than the base model when recommending items in a
new category or for a future time period. To explain this failure, we consider an
intervention-based importance metric, which shows that a fine-tuned model fails to
learn the causal features that determine the relevance between any two text inputs.
Moreover, standard methods for causal regularization do not apply in this setting,
because unlike in images, there exist no universally spurious features in a text-
matching task (the same token may be spurious or causal depending on the text it is
being matched to). For OOD generalization on text inputs, therefore, we highlight
a different goal, avoiding high importance scores for certain features, and build an
intervention-based regularizer. Results on Amazon product recommendation and
other datasets show that our proposed regularizer improves OOD generalization. 1

1 Introduction

In item-to-item recommendation [1], the goal is to output a list of relevant items given an input item.
Many such recommender systems utilize the text content of an item, such as recommending relevant
questions given a question in an online forum [19], suggesting relevant products given a product
title [13], or predicting relevant ads given a search engine query [4]. A popular way for training these
text-matching recommender systems is to fine-tune text embeddings from a base language model like
BERT using supervised user feedback (such as clicks). For example, one may use a contrastive loss
to ensure that given an input query, embedding of another user-labelled relevant item is closer [6, 23].

However, the generalizability of the fine-tuned embeddings to item distributions beyond the user-
labelled data has received little attention. Distribution shifts are common in recommendation systems,
such as when new product categories are added to an e-commerce platform, the list of recommendable
items is modified, or the popularity of items changes over time. As a result, after a recommender
model is deployed, it is likely to encounter out-of-distribution data compared to its training set. For
such out-of-distribution data, we find that fine-tuned models using relevance labels can be worse
than the pre-trained base model that they start from. On a product recommendations dataset from
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Amazon, while fine-tuning always increases in-distribution accuracy, the accuracy of the fine-tuned
model on unseen product categories is lower than that of the base model. We find a similar result on
question-to-question recommendation on online forums (sentence matching task [14, 18]).

To understand why, we characterize two common shifts in recommender systems: change in input
query’s distribution and change in candidate items’ distribution. Even without any change in the
relevance function, these distribution shifts lead to a change in association between relevance score
and the input tokens of a model. As a result, even though standard fine-tuned models obtain high
validation accuracy, they overfit to the training distribution by capturing spurious associations (e.g.,
between brand and a product category). We characterize model spuriousness through an intervention-
based importance score for input tokens. Using the score, we find that the fine-tuned embedding on
Amazon products learns a spuriously high importance for certain tokens while forgetting the rest.

To improve generalizability, we consider a causal graph for the relevance function’s computation
and highlight the difficulty of not having universally spurious tokens for the text-matching task.
As a result, we argue that avoiding disproportionately high importance scores for tokens can be
a viable way to regularize for OOD generalization. Specifically, we propose ITVReg, a method
that constrains the importance of tokens to be similar to that in the base model, which has been
trained on a larger and more diverse set and thus less likely to share the same spurious patterns. We
evaluate ITVReg on OOD data for product title and question recommendation tasks and find that it
improves OOD accuracy of naively finetuned models. Compared to a baseline of directly regularizing
a model’s predictions to the base model, ITVReg performs the best under reasonable OOD shifts,
where exploiting training data is useful. Interestingly, ITVReg also helps accuracy on an IID test set:
it increases accuracy over low-frequency, “tail” items while retaining high accuracy on others.

2 Distribution shifts in recommendation

Let X be the set of input queries and Z be the set of candidate items. Let the train data be
(Xi, Zi, Ri)1...N , where, Xi, Zi correspond to the query and item text respectively and Ri is the
relevance or similarity score between Xi, Zi. For training, state-of-the-art methods [6, 23] embed
both queries and items in a common space using a large, pre-trained base encoder like BERT,
fθ0 : X → RN , that provides the initial embeddings. To obtain the trained encoder, fθ, the
embeddings are fine-tuned using a supervised loss on the paired relevance labels, L = max(0, 1 +
fθ(X)⊤fθ(Z

−) − fθ(X)⊤fθ(Z
+)), where X , Z+ and Z− denote a query, relevant item, and a

non-relevant item respectively. For a new input query, the model provides a relevance score with jth
item, rj = fθ(X)⊤fθ(Zj), and the task is to rank the "ground-truth" relevant items highest on the
relevance score (e.g., metric may be precision at rank k). Method IID OOD

Base Model 20.01 30.61
Fine-tuned Model 38.74 28.31.

Table 1: Precision@1 for recom-
mending product titles on Amazon.
OOD denotes queries from five cat-
egories not in train data. Fine-
tuning results in lower precision
than the base model.

Types of distribution shift. We study three shifts: change
in queries P (X), items P (Z), and both queries and items
P (X,Z). Change in P(X). The distribution of queries changes
but the set of candidate recommendations may remain the same.
For example, the popularity of certain queries can shoot up
due to external events, or the system may be expanded to new
queries. Change in P(Z). The distribution of candidate items
changes while the queries remain the same. For example, an
e-commerce platform may alter the eligibility rules for an item
to be recommended, or recommend items from a partner website. Change in both P(X) and P(Z). A
final scenario is when the distribution of both queries and items changes. For example, introducing a
new item category in an online store leads to new queries that can be accessed by user and also be
recommended. While the criteria for relevance (i.e., user intent) can change over time, for simplicity,
we assume that the true relevance function, P (R|Z,X) remains constant.

Example: OOD failure on Amazon recommendation dataset. Consider the Amazon Titles dataset
(see Supp. E) where both the input query and candidate items are titles of products on Amazon.com.
We simulate a scenario where P (X) is changed by removing queries from five categories from the
train data and evaluate the model on those removed queries using precision@1 metric.Table 1 shows
that fine-tuned model (that is initialized with the base model) improves significantly over the base
model on IID test data, almost doubling the precision. However, on the queries from the unseen item
categories, the finetuned model performs worse than the base model.
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(a) General graph. (b) Example graph.

Figure 1: Graph for data-generating process for
query, item and relevance score, (X,Z,R). Spu-
rious tokens Xs or Zs do not cause query-item
relevance but are predictive of relevance score.
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Figure 2: Token-wise importance scores. Base
gives approximately equal importance scores to
all tokens whereas Finetuned model gives dis-
proportionately high weights to the token "rowe".

Explaining the OOD generalization failure through causal graph. To understand the failure,
consider the schematic causal diagram for the data-generating process of the training set. Figure 1
shows that each query can be broken down into its semantic (causal) component Xc and its spurious
component Xs. Same for candidate items, denoted by Zc and Zs. The semantic components Xc and
Zc together cause the relevance label. An ideal encoder should only learn the semantic components.
However, since the non-semantic components are correlated with the semantic component and can be
easier to learn, a fine-tuned encoder may learn the non-semantic components too.

Specifically, when new queries are introduced, the correlation between Xc and Xs can be broken,
even as P (R|X,Z) remains the same. Hence, Xs is no longer a good predictor of relevance and any
model relying on Xs will fail to generalize. For example, for certain queries in the Amazon data, Xs

may correspond to the brand of a query product and Xc the rest of its title . In the training data, the
brand (e.g., “samsung”) may be correlated with a single product category (e.g., “smartphone”) and
thus an encoder may learn a non-zero weight for the brand to determine the relevance score. However,
the correlation may be broken in the evaluation data where the same brand is associated with another
product category (e.g., “refrigerator”). We can reason analogously for a change in P (Z).

Explanation through intervention-based importance score. OOD generalization failure is more
intuitively understood through intervention-based analysis [15], where we change parts of a query and
inspect the model’s prediction. To understand which tokens a model learns as important, we define
an importance score s of each token, that corresponds to the causal effect of a token on the model’s
relevance score. To compute s for a token, we mask that token (intervention) and compute the dot
product similarity (relevance) of the masked input’s embedding with the original input’s embedding.
[2] sj = 1− fθ(X)⊺fθ(X

′
−j) where X ′

−j is X with its jth token masked.

Consider a candidate item in the Amazon dataset, "Rowenta Z100 Non Toxic Soleplate Cleaner
Kit". As Figure 2 shows, the base encoder gives almost equal importance to each token, whereas the
finetuned encoder is biased towards the token rowe, possibly because Rowenta products tend to be
relevant to other Rowenta products. This token obtains such a disproportionately high importance
score that the item’s representation (average of all tokens’ representation) is defined by it. Here
rowe ∈ Zs is a spurious token since relevance may depend on the brand rowenta, but not on rowe
alone. When we consider an OOD query having an actual brand called “Rowe”, "Rowe USA Spoke
Wrench - Bagged 09-0001", the model matches it to the Rowenta item and other products by Rowenta
(see Suppl. Table 9), exposing the spurious correlation learnt by the encoder. Another example is
the query, “Soleus Air MS-09 Oscillating Reflective Heater”. The importance scores are in Suppl.
Figure 4. Again, we see the finetuned encoder is biased towards the token reflective because reflective
is a strong matching signal in the train set: products with this token are often marked as relevant to
products that have it too. As a result, the top predicted item by the finetuned model is 3M Scotchlite
Reflective Tape, Silver, 1-Inch by 36-Inch (not a relevant item, see Suppl. Table 10).

3 Regularization for OOD generalization
The above analysis indicates that fine-tuning encourages a model to learn high importance for certain
tokens while forgetting the rest, which is undesirable if the tokens are spuriously associated with
the relevance label. However, it is non-trivial to identify the spurious versus causal/semantic tokens,
since spuriousness depends on context. For instance, in our example with “samsung” products
(“smartphone” and “refrigerator”), the brand was a spurious feature. However, when matching to
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Fine-tuning Method Temporal Shift Categorical Shift
Amazon131K (IID) Amazon1.3M (OOD) AmazonCatRemoved (IID) AmazonCatOOD (OOD)

Base 22.50 25.71 20.01 30.61
Finetuned 39.71 ± 0.14 26.02 ± 0.08 38.74 ± 0.08 28.31 ± 0.17
MaskReg 39.56 ± 0.01 26.65 ± 0.02 37.92 ± 0.11 29.09 ± 0.06
SimCSE 39.47 ± 0.11 26.05 ± 0.02 38.05 ± 0.56 28.52 ± 0.10
OutReg 38.03 ± 0.53 27.60 ± 0.03 37.66 ± 0.11 31.21 ± 0.03
ITVReg 39.72 ± 0.10 27.08 ± 0.01 38.77 ± 0.02 29.53 ± 0.04

Table 2: P@1 for Temporal and Categorical Shifts on Amazon Titles.

a smartphone accessory, the brand is no longer spurious (in fact, it is the causal feature). Thus, the
subset Xc for a query may change based on the label, and similarly, the subset Zc for a label may
change based on different queries. Therefore, fully removing the influence of any token, as in OOD
generalization for images that aims to remove spurious features [27], can be counter-productive.
Instead, we propose that our goal should be to ensure that no token is under-weighted such that it
is ignored for relevance prediction. Since finetuning models tends to assign very high weights to
certain tokens, it implies: avoid learning large importance scores for tokens such that other tokens are
ignored. To do so, we regularize the importance scores to be similar to the base model, since the base
model has been trained on larger, diverse data and is unlikely to encode the same spurious patterns.

Intervention-based regularization. Generalizing the importance score from Section 2, given
a text input, we define an intervention as an independent change to a subset of tokens without
affecting the rest of the input. Further, we consider any intervention that removes information
about the token subset, such as masking, deleting, replacing the token subset, etc. By definition,
an intervention deviates from the original distribution P (X) that generated the data, thus creating
an out-of-distribution sample. For each input X , we construct an interventional input X ′ using a
transformation on a random subset Xsub of the tokens. The key idea behind our regularizer is that
for any subset of tokens Xsub, its importance score using the finetuned model should be the same as
the importance score using the base model. This is a relaxation of the OOD generalization goal of
ensuring that the accuracy of the finetuned model remains the same for X and X ′. Using the equation
for importance score from Section 2, the regularizer can be written as,

[(1− fθ(X)⊺fθ(X
′))− (1− fθ0(X)⊺fθ0(X

′))]2 = (fθ(X)⊺fθ(X
′)− fθ0(X)⊺fθ0(X

′))2 (1)

We call this the Interventional regularizer (ITVReg). The full training loss (where LERM can be the
contrastive loss from Sec 2) is, LERM +λEX [(fθ(X)⊺fθ(X

′)− fθ0(X)⊺fθ0(X
′))2]. As a baseline,

we propose OutReg where the output prediction of the model is regularized to the base model.

4 Evaluation
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Figure 3: Percent gains in P@1 over
Finetuned for different item quantiles.

We use two product-to-product recommendation
datasets, namely AmazonTitles131K collected in
2013 and AmazonTitles1.3M [3] collected in 2014.
We also simulate a categorical shift setting in Amazon-
Titles131K, with OOD evaluation set termed Amazon-
CatOOD and the in-distribution evaluation set termed
AmazonCatRemoved. Precision@1 is used for evalu-
ation (details in Supp. E). For implementation details,
see Supp. H. More evaluations can be found in Supp.
D,F. Baselines. We compare OutReg and ITVReg
to the Base model, standard Finetuned model, and two baselines from past work adapted to the
OOD task, SimCSE [8] and MaskReg [21].

Results. Table 2 shows the IID and OOD P@1 metrics for different methods . We first analyze
the temporal distribution shift: train on Amazon131K and test on Amazon1.3M. On IID evaluation,
ITVReg and Finetuned both obtain the highest P@1 while OutReg obtains the lowest P@1.
On OOD evaluation, however, OutReg obtains the highest P@1 followed by ITVReg. Next, we
consider categorical distribution shift from Table 2. We obtain similar results as the temporal shift: on
the OOD evaluation, OutReg followed by ITVReg are the best performing models. Thus, ITVReg
provides a balance between IID and OOD accuracy. This becomes evident as we consider a more
realistic “temporal” shift where new items from Amazon1.3M are introduced gradually. As Suppl.
Fig 5 shows, ITVReg is the only method that performs better than Finetuned (line y = 0) on
P@1 on all such OOD datasets. Interestingly, the OOD regularization of ITVReg also helps in
accuracy on low-frequency, “tail” items while retaining high accuracy on high-frequency, “head”
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items. We bin the items according to their training set frequency in five quantiles i.e. 0-20%, . . . ,
80-100%, where lower quantiles denote low-frequency tail. Comparing the percentage gain in P@1
of methods wrt the Finetuned model (Figure 3), OutReg helps on the tail items but suffers a
huge drop in P@1 on head items. In comparison, ITVReg achieves best of both worlds, with the
same gains on tail and significantly lower drop on head items.

Importance Scores. Importance scores for the two examples in Sec. 2 after ITVReg regularisation
are in Suppl. Fig 4. The problematic tokens rowe and reflective no longer have an extreme score.
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A Related Work

Our work connects recommender systems, sentence matching, and OOD generalization literature.

Text-matching recommendation systems and Sentence matching. Among item-to-item recom-
mendation systems, text-matching is a popular technique since many items can be characterized
through their text, e.g., product-to-product recommendation on e-commerce websites or question-
to-question recommendation on online forums. Given an input query (such as a product’s title
or description), the goal is to find the most relevant items. State-of-the-art models use dense text
retrieval techniques [23, 11], based on a pre-trained base model like BERT [7] for the initial encoding.
Then, either a bi-encoder or cross-encoder architecture [18, 11] is trained for learning the similarity
between any two items. The former is computationally efficient while the latter is more accurate but
inefficient [14]. Since recommender systems often deal with a large number of items, we restrict
ourselves to bi-encoders. Contrastive loss with negative mining [26, 6, 10] is a popular way to train a
bi-encoder model because recommender systems usually have one-sided feedback on the relevant
pairs of items. Closer to our work, [18] tackled the problem of domain adaptation while our work
focuses on the harder domain generalization problem [27].

OOD generalization and fine-tuning. Domain generalization in the vision literature [27] aims
to identify spurious features in image data and remove them from a model’s representation using
data augmentation on the spurious feature [24] or through regularization [5]. While recent work has
attempted using data augmentations from vision [22], such augmentations are not always useful in text
data [25] since it is difficult to obtain universal augmentations. For instance, in the recommendation
scenario, certain tokens (e.g., brand of a product) may be both spurious and causal depending on
the user intent (e.g., substitute or accessory for a product). Given the prevalance of pre-trained base
models, another direction is to utilize the base models for OOD generalization since they are trained
on larger, diverse data [9]. Recent work proposes fine-tuning-based OOD generalization on image
classification [12, 20, 5], but this direction has not been explored for text models or contrastive loss,
especially in the recommendations context.

B Output-based regularization

We assume f outputs unit norm embeddings. Since both the fine-tuned model and the base model
have the same architecture, a straightforward way to avoid very high importance scores is to make the

7



neural network output be the same as the base model. In a bi-encoder architecture for text-matching,
we can implement this by enforcing that the finetuned and base encoders output exactly the same
representation for an input. Given the finetuning fθ(.) and base fθ0(.) encoders and an input query
X , the output regularizer (OutReg) can be written as, [fθ(X)− fθ0(X)]2.

This simple regularizer is expected to do well for extreme distribution shifts where learning from IID
data may not be that useful, since it constrains the encoder’s representation to be closer to the base
encoder. However, the same property is the biggest weakness of OutReg. As a regularization, it
is too strong and discourages learning from train data: with a high enough penalty term, the final
encoder may be exactly equal to the base encoder.

C Qualitative Analysis
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Figure 4: Token-wise importance scores for two example queries using the Base, Finetuned
and ITVReg. ITVReg is able to normalise the importance scores for "rowe" (as in Fig. 2) and
"reflective" tokens to be closer to Base model.

D Temporal Evolution

To understand the tradeoff between ITVReg and OutReg, we study how the accuracy of these
models would vary as different amounts of OOD data (from 1.3M dataset) is mixed with IID
data (131K validation) for evaluation. This simulates the real-world scenario where new items are
progressively added. Specifically, we progressively add 40K new items and their relevant queries from
1.3M to create multiple OOD datasets. As Suppl. Figure 5 shows, ITVReg is the only method that
performs better than Finetuned (line y = 0) on P@1 on all OOD datasets. As the distribution shift
becomes more extreme, (around 24% of 1.3M OOD data) OutReg surpasses ITVReg indicating
that OutReg is more suitable for large distribution shifts.

0 3 6 9 12 15 18 21 24 27

−0.5

0

Percentage of 1.3M Items (OOD) Added

P@
1

D
iff
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MaskReg SimCSE
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Figure 5: To simulate temporal evolution, we start with Amazon131K and add 39K new items
from Amazon1.3M dataset at each tick. ITVReg is the only method that is consistently better than
Finetuned on P@1.
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E Amazon Titles Recommendations

Dataset. We use two product-to-product recommendation datasets, namely AmazonTitles131K
and AmazonTitles1.3M [3]. These datasets contain titles of products that were recommended on a
focal product’s page. Only the product title can be used for recommendation. There is a time shift
though: 131K is collected from the year 2013 and 1.3M is collected from 2014. As both new queries
and labels are added while moving from 131K to 1.3M, this simulates the P (X,Y ) distribution shift
setup. For each dataset, the same candidate items (131K and 1.3M items respectively) are shared
across train and validation datasets. Each query in the train set has a labelled set of positive items
with relevance 1. The validation set contains unseen queries and we need to recommend the most
relevant items for them.

While going from 131K to 1.3M dataset represents a temporal shift where both queries and items’
distributions change (and possibly other factors), we simulate a more controlled setup using category
information.We exclude queries from the 5 most popular second-level categories from the train set,
and use them to construct the OOD evaluation set (AmazonCatOOD). The in-distribution validation
set also has the categories excluded (AmazonCatRemoved). Thus, the item distribution P (Z) remains
the same while the query distribution P (X) changes across train and evaluation. Since X,Z have
been treated symmetrically in our setup, this setups results can also be extrapolated to a case where
the label distribution P (Z) changes while the query distribution P (X) remains the same.

Fine-tuning. We follow the modeling procedure used in a recent state-of-the-art work [6]. We
initialize with MSMARCO-DistilBERT-v4 [16] and use contrastive loss with hard negative mining.
Details are in Supp I.1.

All experiments are run for 3 random seeds and the mean and standard deviation are reported.

Evaluation metric. We use the Precision@1 metric for evaluation. Given predicted similarities
R̂ ∈ RM and ground truth similarities R (where ri is 1 if its a relevant item, otherwise 0), P@k is
defined as P@k = 1

k

∑
l∈rankk(R̂)Rl.

F Question Recommendation Evaluation

Question Recommendations We also use the setup of [17] for numbers on question recommendations
task. More details are in Supp. F

Datasets. We use the setup of [17] for our experiments. The AskUbuntu and SuperUser data comes
from Stack Exchange, a family of technical community support forums. Both datasets contain around
one million pairs of sentences, labeled either zero or one denoting a negative and a positive pair.
Simulating a cold-start scenario with limited items, we present main results on 10% subsample of
these datasets. Results on the complete datasets are in Suppl M. To study generalization under an
extreme distribution shift, we additionally evaluate on a non-technical forum, Quora-Question Pairs
dataset [19].

Fine-tuning. We adopt the same modeling procedure as [18], training with a MSE loss between the
ground truth and the predicted relevance score. We initialize the models using two different Base
models: NLI-DistilBERT [16] MSMARCO-DistilBERT-v4 [16] the latter having a substantially
higher accuracy on our task. For more details on training, refer Supp I.2.

Evaluation metric. We use AUC(0.05) as the evaluation metric as in [17]. AUC(0.05) is the area
under the ROC curve when the false positive rate (fpr) ranges from 0 to 0.05.

Results. Table 3 shows the IID and OOD performance of models trained on the two forum datasets.
Let us first consider AUC on evaluation within the technical forums and using the less accurate
NLI-DistilBERT Base model. On both IID and OOD evaluation, ITVReg obtains the highest
AUC for both datasets. On OOD evaluation, MaskReg and ITVAug have the second-best AUC
for SuperUser and AskUbuntu evaluation sets respectively. OutReg has comparatively lower AUC
because the base model is not accurate: ITVReg obtains > 10 points higher AUC on both OOD
datasets.
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Base Model Method Train : AskUbuntu Train : Superuser
AskUbuntu Superuser Quora AskUbuntu Superuser Quora

NLI

Base 31.80 48.50 14.00 31.80 48.50 14.00
Finetuned 65.68 ± 0.54 72.70 ± 0.73 12.74 ± 0.43 47.98 ± 6.63 75.70 ± 1.49 12.82 ± 0.49
MaskReg 71.51 ± 1.16 77.55 ± 0.57 12.44 ± 0.48 33.83 ± 3.07 81.97 ± 0.33 13.13 ± 0.17
SimCSE 67.31 ± 1.28 73.46 ± 2.24 12.87 ± 0.36 45.03 ± 4.22 76.80 ± 0.68 13.41 ± 0.20
OutReg 56.86 ± 0.69 66.28 ± 0.66 14.09 ± 0.18 36.52 ± 1.53 71.11 ± 0.86 14.44 ± 0.28
ITVAug 70.10 ± 0.80 76.98 ± 0.33 13.74 ± 0.12 45.86 ± 4.10 81.34 ± 0.11 14.22 ± 0.45
ITVReg 71.24 ± 0.62 78.89 ± 0.59 13.57 ± 0.32 47.00 ± 1.58 83.40 ± 0.54 14.67 ± 0.18

MSMARCO

Base 54.01 80.73 18.39 54.01 80.73 18.39
Finetuned 68.11 ± 1.09 75.33 ± 0.74 14.05 ± 0.19 59.27 ± 2.16 79.28 ± 0.94 14.35 ± 0.20
MaskReg 72.59 ± 0.41 79.00 ± 0.08 12.63 ± 0.36 32.05 ± 6.53 83.53 ± 0.53 13.65 ± 0.20
SimCSE 70.07 ± 0.32 76.54 ± 1.43 14.98 ± 0.08 48.97 ± 3.28 80.51 ± 0.70 14.70 ± 0.05
OutReg 73.04 ± 0.77 84.09 ± 0.28 17.16 ± 0.13 60.75 ± 0.84 86.24 ± 0.13 17.64 ± 0.25
ITVAug 73.17 ± 0.46 80.53 ± 0.23 15.36 ± 0.48 54.85 ± 3.94 84.29 ± 0.35 15.64 ± 0.32
ITVReg 74.64 ± 0.56 82.86 ± 0.65 16.11 ± 0.36 60.07 ± 2.42 86.24 ± 0.24 16.39 ± 0.31

Table 3: AUC (0.05) using two different base models, NLI-DistilBERT-Base and MSMARCO-
DistilBERT-Base. First three columns correspond to training on AskUbuntu and the last three training
on SuperUser. When evaluated on technical forums with a weaker base model (NLI), ITVReg
obtains the best AUC on both IID and OOD evaluation.

Using the more accurate MSMARCO-DistilBERT-v4, accuracy of both OutReg and ITVReg
increases. P@1 on OOD data of OutReg is comparable to ITVReg on AskUbuntu evaluation and 1
point higher than ITVReg on SuperUser evaluation. In comparison, MaskReg and SimCSE fail to
utilise the better Base model. When evaluated on an extreme distribution shift (Quora), Base model
performs the best on OOD evaluation (Table 3) , followed by OutReg. Finetuning on AskUbuntu or
SuperUser adds no information.

In OOD setup (training on AskUbuntu or Superuser) we can see that base model does the best and
fine-tuning brings no gains.

Summary. Compared to other methods, ITVReg obtains high IID accuracy and OOD accuracy,
thus exploiting the best of the Base model and the training data. However, under extreme distribution
shifts, finetuning training data is not useful and thus OutReg or the Base model is more suitable.

G Dataset Details

Quora, SuperUser, AskUbuntu The ratio of positives to negatives in SuperUser, AskUbuntu is
1:100, while in Quora is 4:7.

Amazon131K In Amazon131K we have categorical information for 99K labels. The categorical
shift experiments are conducted on this filtered data.

H Implementation Details

H.1 Baselines

1) SimCSE: We adapt SimCSE [8], an augmentation method for pretraining sentence matching
models, for our fine-tuning task. During training, we use dropout (seeds s, s′) to pass an input
sentence twice through the model and obtain two embeddings, considered as a “relevant” pair. The
regulariser is (f(X, s)⊺f(X, s′)− 1)2. 2) MaskReg: [21] propose deleting a span of words in the
input as data augmentation. To adapt it for comparison to ITVReg, we mask a portion of tokens
instead. The regulariser is (f(X)⊺f(X ′)− 1)2, where X ′ is masked input.

H.2 Hyper-parameter Tuning

For SimCSE the only choice of hyperparameter is the λ regularisation coefficient. We search over 3
values of λ i.e. 0.01,0.1,1.0 and select 0.1 as the best value. For other methods also we fix λ as 0.1.
See Table 4

For MaskReg and ITVReg another hyperparameter choice is the masking fraction of the input. We
search over 2 choices of masking namely masking 50% of input, or 15% of input. We find that 15%
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Method Quora AskUbuntu Superuser
SimCSE 0.01 54.98 73.70 84.91
SimCSE 0.1 55.40 74.34 86.38
SimCSE 1.0 54.89 74.07 85.41

Table 4: SimCSE IID numbers finetuned with base model as MSMARCO-DistilBERT-v4 on
complete Quora,AskUbuntu,SuperUser datasets. This shows that 0.1 is the optimal hyperparameter
for SimCSE

Base Model Method Train : AskUbuntu Train : Superuser
AskUbuntu Superuser AskUbuntu Superuser

NLI
Base 31.80 48.50 31.80 48.50
MaskReg (0.15) 71.51 ± 1.16 77.55 ± 0.57 33.83 ± 3.07 81.97 ± 0.33
MaskReg (0.50) 64.57 ± 0.68 69.87 ± 0.36 19.85 ± 4.14 77.17 ± 0.98

MSMARCO
Base 54.01 80.73 54.01 80.73
MaskReg (0.15) 72.59 ± 0.41 79.00 ± 0.08 32.05 ± 6.53 83.53 ± 0.53
MaskReg (0.50) 64.42 ± 1.44 71.56 ± 0.56 20.36 ± 5.69 77.64 ± 0.94

Table 5: AUC (0.05) for MaskReg with 15% and 50% input token masking. 15% is the optimal
masking for MaskReg. The setup is same as in Table 3.

works best for MaskReg while 50% gives best results for ITVReg. We use these parameters for all
experiments. For MaskReg results are reported in Table 5, while for ITVReg results can be seen in
Table 11,13,12.

We also try running with lower learning rates but higher learning rate gives better numbers and hence
we work with 1e-4. See Table 6 for reference.

Since we deal with short sentences, the max token length is fixed at 32 which allows for bigger batch
sizes (900 for Amazon Titles, 250 for Question Recommendation).

For ITVReg and OutReg we report numbers for various values of hyperparameter λ in Table 7.
We can see that for higher values of λ behaves more like the Base model but the numbers for both
ITVReg and OutReg are stable across this wide range of λ.

I Training Details

I.1 AmazonTitle Recommendations Training Details

We follow the modeling procedure used in a recent state-of-the-art work [6]. For training, We use
contrastive loss with hard negative mining. we initialise the model as MSMARCO-DistilBERT
model, and fine-tune it for 200 epochs with a batch size of 900. The only difference from [6]’s setup
is that we train only till 200 epochs instead of convergence (300-400 epochs) due to computational
constraints. We use Adam optimizer with learning rate of 1e-4.

I.2 Question Recommendations Training Details

We train all the models for 5 epochs with a batch size of 250. We use learning rate of 1e-4 to
fine-tune the model. We train the model with a MSE loss between the ground truth and the predicted
similarities, as done in [18]. For Quora on the 10% subset, we train the model for 20 epochs with lr
of 1e-4.

Learning Rate 2 Epochs 4 Epochs 10 Epochs
1e-5 39.15 45.05 53.40
5e-5 50.67 54.87 57.20
1e-4 52.14 55.54 57.80

Table 6: AUC(0.05) on IID complete Quora with Finetuned method on NLI-DistilBERT-Base
model. Higher learning rate and more epochs help in training. For computational efficiency we hence
take 4 epochs for complete setting and 20 epochs for 10% Quora subset.
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Base Model Method Train : Quora
Quora AskUbuntu Superuser

MSMARCO-DistilBERT

Base 0.184 ± 0.000 0.540 ± 0.000 0.807 ± 0.000
ITVReg 0.01 0.550 ± 0.031 0.165 ± 0.023 0.293 ± 0.018
ITVReg 0.1 0.577 ± 0.002 0.175 ± 0.001 0.286 ± 0.011
ITVReg 1.0 0.577 ± 0.002 0.175 ± 0.001 0.286 ± 0.011
OutReg 0.01 0.570 ± 0.006 0.176 ± 0.023 0.278 ± 0.002
OutReg 0.1 0.558 ± 0.005 0.297 ± 0.022 0.438 ± 0.006
OutReg 1.0 0.491 ± 0.015 0.456 ± 0.001 0.646 ± 0.008

Table 7: AUC (0.05) for different values of the hyperparameter λ. We can see that both ITVReg and
OutReg behave well in these reasonable range of λ. OutReg on higher values of hyperparameter
imitates the Base model while ITVReg still learns useful information from the data

Fine-tuning Method Automobiles Kitchen and Dining Health and Personal Care Electronics Tools and Home Imp.
No Finetune 32.66 30.68 30.42 32.07 31.67
Std Finetune 31.41 ± 0.28 29.70 ± 0.27 29.17 ± 0.25 30.60 ± 0.13 30.59 ± 0.25
OutReg 34.16 ± 0.04 32.25 ± 0.16 31.75 ± 0.11 33.14 ± 0.07 33.18 ± 0.10
MaskReg 32.16 ± 0.23 30.30 ± 0.18 29.85 ± 0.24 31.24 ± 0.11 31.22 ± 0.23
SimCSE 31.45 ± 0.12 29.84 ± 0.04 29.38 ± 0.06 30.70 ± 0.19 30.61 ± 0.16
ITVReg 32.61 ± 0.02 30.76 ± 0.10 30.26 ± 0.18 31.73 ± 0.14 31.59 ± 0.08

Table 8: Category wise numbers OOD numbers for AmazonCatOOD (Table 2). All categories have
a similar trend as observed in Table 2. This shows that our results are agnostic to the choice of
categories and hold true for any category in general.

J Category-wise P@1 for AmazonCatOOD

We report category wise numbers OOD numbers for AmazonCatOOD (Table 2). All categories have
a similar trend. Results can be seen in Table 8.

K Evaluation Metrics

K.1 Precision@1

Given a query, the model outputs a vector R̂ ∈ RM , where M is the number of items and r̂j denotes
the similarity between the query and the j th item. We use the Precision@1 metric for evaluation,
interpreted as the fraction of queries where the top-predicted item is in the query’s ground-truth
relevant items. Given predicted similarities r̂ and ground truth similarities r (where ri is 1 if its a
relevant item, otherwise 0), P@k is defined as P@k = 1

k

∑
l∈rankk(r̂)

rl.

L Qualitative Samples

We give top 5 predicted labels as qualitative samples for "Soleus Air Oscillating Reflective Heater"
query in Table 10 and for query " Rowenta Z100 Non Toxic Soleplate Cleaner" in Table 9. Top-k
predictions for all methods are in Suppl. L.

M Complete Dataset Results

For the complete dataset results, we follow the same setup as described before, with the only difference
being number of epochs. We run Quora for 4 epochs and SuperUser, Askubuntu for 1 epoch. Results
can be seen in Table 11,13,12.

N 10% Dataset Subset Results

Results on 10% subset of the data (most of them are redundant as they overlap with results in main
paper) can be seen here: Table 14,16,15.
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Method Top 5 Predicted Items

Base

Ridgid 31105 24-Inch Aluminum Pipe Wrench
Ridgid 31115 48-Inch Aluminum Pipe Wrench
Ridgid 31110 36-Inch Aluminum Pipe Wrench
Ridgid 31100 18-Inch Aluminum Pipe Wrench
Craftsman 9-41796 Ratcheting Ready Bit Screwdriver

Finetuned

Rowenta ZD100 Non-Toxic Soleplate Cleaner Kit
Rowenta DR5015 800 Watt Ultra Steam Brush with Travel Pouch
Rowenta(R) Stainless Steel Soleplate Cleaning Kit ZD-110
Rowenta DR6015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
Rowenta DR6050 Ultrasteam Hand-Held Steam Brush Dual-Voltage with Travel Pouch, 800-watt

OutReg

Rowenta DR6015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
Rowenta DW4060 Auto Steam Iron 1700W with Airglide Stainless Steel Soleplate Auto-off Anti-Scale, Blue
Rowenta DR5015 800 Watt Ultra Steam Brush with Travel Pouch
Rowenta VU2531 Turbo Silence 4-Speed Oscillating Desk Fan, 12-Inch, Bronze
Rowenta(R) Stainless Steel Soleplate Cleaning Kit ZD-110

MaskReg

Rowenta(R) Stainless Steel Soleplate Cleaning Kit ZD-110
Rowenta ZD100 Non-Toxic Soleplate Cleaner Kit
Rowenta DG8430 Pro Precision Steam Station with 400 hole Stainless Steel soleplate 1800 Watt, Purple
Rowenta DR5015 800 Watt Ultra Steam Brush with Travel Pouch
Rowenta DR6015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt

SimCSE

Rowenta RH8559 Delta Force 18V Cordless Bagless Energy Star Rated Stick Vacuum Cleaner . . .
Rowenta ZD100 Non-Toxic Soleplate Cleaner Kit
Rowenta(R) Stainless Steel Soleplate Cleaning Kit ZD-110
Rowenta DR6015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
Rowenta DR6050 Ultrasteam Hand-Held Steam Brush Dual-Voltage with Travel Pouch, 800-watt

ITVReg

Wrench Set, Open End Metric 4mm-6mm - SCR-913.00
Craftsman 6 pc. Universal Wrench Set - Metric
Tusk Spoke Wrench Set
Crescent RD12BK 3/8-Inch Ratcheting Socket Wrench
Allen Wrench Set, 10 Pc. Heavy Duty, Extra Long 9 T-handle, Metric Sizes

Table 9: Top 5 predicted items for the query Rowe USA Spoke Wrench - Bagged 09-0001 given by
various methods sorted by relevance. Correct items should be about wrench and ITVReg and Base
model both give the same. Other models rely on spurious feature i.e. Rowe for predicting items,
which leads to wrong results

O Experimental Budget

Computing Infrastructure We use 16GB V100 GPUs for all our experiments

Training Time Our training time is around 1 hour for each run on Question Recommendation.
Amazon dataset takes 8 hrs for training.

Parameters Of Model We use DistilBERT model for all our experiments.
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Method Top 5 Predicted Items

Base

Camco 57723 Dust Cover for Portable Wave 6 Olympian Heater
Sylvania SA200 10 Amp Outdoor Timer with Light Sensor
Scosche CRAB Chrysler/Jeep Antenna Adapter
Lasko 6435 Designer Series Ceramic Oscillating Heater with Remote Control
Reusable Angel Ice Sculpture Mold

Finetuned

3M Scotchlite Reflective Tape, Silver, 2-Inch by 36-Inch
3M Scotchlite Reflective Tape, Red, 2-Inch by 36-Inch
Reflective Band - Made With Genuine Reflexite in America - By Jogalite (Pair of Two)
Sunlite 4 Piece Bicycle Reflector Set with Brackets
Road ID - Reflective Shoe Laces

OutReg

3M Scotchlite Reflective Tape, Silver, 1-Inch by 36-Inch
3M Scotchlite Reflective Tape, Red, 2-Inch by 36-Inch
Reflective Band - Made With Genuine Reflexite in America - By Jogalite (Pair of Two)
Casual Canine Reflective Jacket
Aspects 264 Weather Dome

MaskReg

Reflective Band - Made With Genuine Reflexite in America - By Jogalite (Pair of Two)
3M Scotchlite Reflective Tape, Red, 2-Inch by 36-Inch
Lasko 6435 Designer Series Ceramic Oscillating Heater with Remote Control
3M Scotchlite Reflective Tape, Silver, 1-Inch by 36-Inch
Skylink PS-101 AAA+ Motion Sensor

SimCSE

3M Scotchlite Reflective Tape, Silver, 2-Inch by 36-Inch
3M Scotchlite Reflective Tape, Red, 2-Inch by 36-Inch
Reflective Band - Made With Genuine Reflexite in America - By Jogalite (Pair of Two)
Gates T274 Timing Belt
Bell Automotive 22-5-00106-8 Heavy Duty Tubeless Tire Repair Kit

ITVReg

Reflective Band - Made With Genuine Reflexite in America - By Jogalite (Pair of Two)
Broan 679 Ventilation Fan and Light Combination
3M Scotchlite Reflective Tape, Silver, 1-Inch by 36-Inch
3M Scotchlite Reflective Tape, Red, 2-Inch by 36-Inch
Roadpro 12V Heater and Fan with Swing-out Handle

Table 10: Top 5 predicted items for the query Soleus Air Oscillating Reflective Heater given by
various methods sorted by relevance. Correct items should be about Heater and ITVReg and Base
model both give the same. Other models rely on spurious feature i.e. Reflective for predicting items,
which leads to wrong results

Pre-trained Model Fine-tuning Method Quora AskUbuntu Superuser

NLI-DistilBERT-Base

Base 14.00 31.80 48.50
Finetuned 54.84 ± 0.82 17.50 ± 2.41 29.25 ± 1.10
MaskReg 56.00 ± 1.15 19.79 ± 0.97 29.53 ± 1.59
SimCSE 56.24 ± 0.55 21.05 ± 1.57 29.04 ± 2.01
OutReg 52.69 ± 0.41 17.41 ± 1.16 27.33 ± 0.90
ITVReg (0.15) 57.19 ± 0.57 19.70 ± 1.33 28.67 ± 0.26
ITVReg (0.50) 56.64 ± 0.74 20.56 ± 1.07 28.57 ± 1.04

MSMARCO-DistilBERT-v4

Base 18.39 54.01
Finetuned 54.50 ± 0.31 19.79 ± 3.55 30.48 ± 1.33
MaskReg 56.00 ± 0.60 19.55 ± 3.12 33.71 ± 0.62
SimCSE 56.29 ± 1.62 19.57 ± 1.54 31.71 ± 0.93
OutReg 54.41 ± 0.04 32.01 ± 1.72 46.80 ± 1.75
ITVReg (0.15) 56.63 ± 0.65 20.09 ± 1.46 33.06 ± 1.65
ITVReg (0.50) 55.98 ± 0.68 19.50 ± 1.77 33.51 ± 0.62

Table 11: Trained on Complete Quora for 4 epochs (same hyperparameters as in paper)
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Pre-trained Model Fine-tuning Method Quora AskUbuntu Superuser

NLI-DistilBERT-Base

Base 14.00 31.80 48.50
Finetuned 11.02 ± 0.43 71.09 ± 1.05 74.90 ± 0.27
MaskReg 13.36 ± 0.38 77.62 ± 0.31 79.09 ± 0.21
SimCSE 12.41 ± 0.34 74.73 ± 0.79 77.58 ± 0.11
OutReg 14.75 ± 0.41 68.18 ± 0.64 72.88 ± 1.14
ITVReg (0.15) 13.90 ± 0.51 77.54 ± 0.33 79.70 ± 0.31
ITVReg (0.50) 13.77 ± 0.63 77.75 ± 0.49 81.06 ± 0.32

MSMARCO-DistilBERT-v4

Base 18.39 54.01 80.73
Finetuned 12.01 ± 0.33 70.70 ± 1.16 74.94 ± 0.22
MaskReg 13.66 ± 0.28 78.04 ± 0.44 79.94 ± 0.26
SimCSE 13.89 ± 0.37 75.39 ± 0.99 78.53 ± 0.15
OutReg 17.34 ± 0.26 78.84 ± 0.49 85.01 ± 1.41
ITVReg (0.15) 14.84 ± 0.53 78.10 ± 0.55 81.19 ± 0.67
ITVReg (0.50) 15.20 ± 0.41 78.47 ± 0.17 82.27 ± 0.36

Table 12: Trained on Complete AskUbuntu for 1 epoch (same hyperparameters as in paper)

Pre-trained Model Fine-tuning Method Quora AskUbuntu Superuser

NLI-DistilBERT-Base

Base 14.00 31.80 48.50
Finetuned 12.68 ± 0.37 50.90 ± 2.95 83.50 ± 0.97
MaskReg 13.65 ± 0.31 40.56 ± 2.66 87.79 ± 0.67
SimCSE 14.39 ± 0.64 53.64 ± 1.67 85.85 ± 0.58
OutReg 15.60 ± 0.13 35.41 ± 2.91 80.68 ± 0.73
ITVReg (0.15) 15.19 ± 0.20 44.38 ± 1.10 88.31 ± 0.65
ITVReg (0.50) 14.30 ± 0.18 45.83 ± 5.42 88.78 ± 0.39

MSMARCO-DistilBERT-v4

Base 18.39 54.01 80.73
Finetuned 12.61 ± 0.46 52.32 ± 3.07 84.60 ± 0.77
MaskReg 14.20 ± 0.22 38.32 ± 4.16 88.63 ± 0.44
SimCSE 14.08 ± 0.39 49.04 ± 3.56 86.55 ± 0.32
OutReg 17.42 ± 0.40 57.83 ± 1.31 89.94 ± 0.23
ITVReg (0.15) 16.03 ± 0.66 52.77 ± 2.07 88.85 ± 0.43
ITVReg (0.50) 16.24 ± 0.31 56.33 ± 1.91 89.90 ± 0.30

Table 13: Trained on Complete SuperUser for 1 epoch (same hyperparameters as in paper)

Pre-trained Model Fine-tuning Method Quora AskUbuntu Superuser

NLI-DistilBERT-Base

Base 14.00 31.80 48.50
Finetuned 33.22 ± 0.82 10.95 ± 1.45 18.56 ± 1.53
MaskReg 35.02 ± 0.85 12.94 ± 1.05 21.48 ± 1.65
SimCSE 32.52 ± 0.29 10.82 ± 1.19 20.99 ± 1.13
OutReg 33.41 ± 0.70 14.91 ± 1.26 25.63 ± 1.67
ITVReg (0.15) 33.94 ± 1.47 13.73 ± 0.66 22.74 ± 0.59
ITVReg (0.50) 32.93 ± 0.50 12.33 ± 0.89 20.91 ± 0.52

MSMARCO-DistilBERT-v4

Base 18.39 54.01 80.73
Finetuned 34.15 ± 0.30 13.31 ± 1.29 23.73 ± 1.63
MaskReg 36.49 ± 0.70 11.89 ± 1.70 25.88 ± 2.49
SimCSE 34.85 ± 1.32 11.34 ± 1.99 25.63 ± 0.64
OutReg 38.50 ± 0.29 31.96 ± 3.23 55.98 ± 1.49
ITVReg (0.15) 38.41 ± 1.09 15.91 ± 2.22 30.95 ± 1.49
ITVReg (0.50) 35.26 ± 1.09 12.28 ± 1.58 24.61 ± 0.95

Table 14: Trained on 10% Quora
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Pre-trained Model Fine-tuning Method Quora AskUbuntu Superuser

NLI-DistilBERT-Base

Base 14.00 31.80 48.50
Finetuned 12.74 ± 0.43 65.68 ± 0.54 72.70 ± 0.73
MaskReg 12.44 ± 0.48 71.51 ± 1.16 77.55 ± 0.57
SimCSE 12.87 ± 0.36 67.31 ± 1.28 73.46 ± 2.24
OutReg 14.09 ± 0.18 56.86 ± 0.69 66.28 ± 0.66
ITVReg (0.15) 13.62 ± 0.25 71.45 ± 1.17 78.32 ± 0.58
ITVReg (0.50) 13.57 ± 0.32 71.24 ± 0.62 78.89 ± 0.59

MSMARCO-DistilBERT-v4

Base 18.39 54.01 80.73
Finetuned 14.05 ± 0.19 68.11 ± 1.09 75.33 ± 0.74
MaskReg 12.63 ± 0.36 72.59 ± 0.41 79.00 ± 0.08
SimCSE 14.98 ± 0.08 70.07 ± 0.32 76.54 ± 1.43
OutReg 17.16 ± 0.13 73.04 ± 0.77 84.09 ± 0.28
ITVReg (0.15) 15.67 ± 0.22 74.11 ± 0.58 81.78 ± 0.28
ITVReg (0.50) 16.11 ± 0.36 74.64 ± 0.56 82.86 ± 0.65

Table 15: Trained on 10 % AskUbuntu

Pre-trained Model Fine-tuning Method Quora AskUbuntu Superuser

NLI-DistilBERT-Base

Base 14.00 31.80 48.50
Finetuned 12.82 ± 0.49 47.98 ± 6.63 75.70 ± 1.49
MaskReg 13.13 ± 0.17 33.83 ± 3.07 81.97 ± 0.33
SimCSE 13.41 ± 0.20 45.03 ± 4.22 76.80 ± 0.68
OutReg 14.44 ± 0.28 36.52 ± 1.53 71.11 ± 0.86
ITVReg (0.15) 14.35 ± 0.28 40.10 ± 3.68 82.27 ± 0.38
ITVReg (0.50) 14.67 ± 0.18 47.00 ± 1.58 83.40 ± 0.54

MSMARCO-DistilBERT-v4

Base 18.39 54.01
Finetuned 14.35 ± 0.20 59.27 ± 2.16 79.28 ± 0.94
MaskReg 13.65 ± 0.20 32.05 ± 6.53 83.53 ± 0.53
SimCSE 14.70 ± 0.05 48.97 ± 3.28 80.51 ± 0.70
OutReg 17.64 ± 0.25 60.75 ± 0.84 86.24 ± 0.13
ITVReg (0.15) 15.94 ± 0.15 53.02 ± 5.42 85.44 ± 0.23
ITVReg (0.50) 16.39 ± 0.31 60.07 ± 2.42 86.24 ± 0.24

Table 16: Trained on 10% SuperUser

Base Model Method Train : Quora Train : AskUbuntu Train : Superuser
Quora AskUbuntu Superuser Quora AskUbuntu Superuser Quora AskUbuntu Superuser

NLI

Base 0.140 ± 0.000 0.318 ± 0.000 0.486 ± 0.000 0.140 ± 0.000 0.318 ± 0.000 0.486 ± 0.000 0.140 ± 0.000 0.318 ± 0.000 0.486 ± 0.000
Finetuned 0.559 ± 0.016 0.181 ± 0.018 0.257 ± 0.021 0.092 ± 0.001 0.775 ± 0.000 0.762 ± 0.002 0.122 ± 0.014 0.632 ± 0.029 0.863 ± 0.005
MaskReg 0.529 ± 0.046 0.231 ± 0.014 0.331 ± 0.031 0.119 ± 0.010 0.810 ± 0.008 0.803 ± 0.010 0.132 ± 0.000 0.417 ± 0.057 0.901 ± 0.007
SimCSE 0.571 ± 0.003 0.176 ± 0.023 0.259 ± 0.004 0.118 ± 0.012 0.792 ± 0.001 0.794 ± 0.012 0.137 ± 0.003 0.587 ± 0.024 0.876 ± 0.005
OutReg 0.553 ± 0.002 0.149 ± 0.015 0.225 ± 0.005 0.146 ± 0.003 0.691 ± 0.009 0.737 ± 0.003 0.155 ± 0.000 0.383 ± 0.014 0.777 ± 0.019
ITVReg 0.566 ± 0.013 0.186 ± 0.011 0.295 ± 0.018 0.136 ± 0.001 0.820 ± 0.001 0.815 ± 0.001 0.151 ± 0.000 0.563 ± 0.015 0.903 ± 0.005

MSMARCO

Base 0.184 ± 0.000 0.540 ± 0.000 0.807 ± 0.000 0.184 ± 0.000 0.540 ± 0.000 0.807 ± 0.000 0.184 ± 0.000 0.540 ± 0.000 0.807 ± 0.000
Finetuned 0.564 ± 0.001 0.176 ± 0.005 0.265 ± 0.001 0.104 ± 0.007 0.776 ± 0.013 0.757 ± 0.011 0.144 ± 0.011 0.601 ± 0.020 0.862 ± 0.009
MaskReg 0.526 ± 0.008 0.225 ± 0.011 0.363 ± 0.017 0.108 ± 0.004 0.813 ± 0.004 0.810 ± 0.000 0.131 ± 0.005 0.434 ± 0.007 0.908 ± 0.005
SimCSE 0.574 ± 0.019 0.187 ± 0.006 0.301 ± 0.017 0.123 ± 0.004 0.797 ± 0.005 0.787 ± 0.007 0.125 ± 0.004 0.575 ± 0.050 0.887 ± 0.000
OutReg 0.558 ± 0.005 0.297 ± 0.022 0.438 ± 0.006 0.166 ± 0.001 0.805 ± 0.002 0.851 ± 0.001 0.173 ± 0.004 0.614 ± 0.013 0.903 ± 0.001
ITVReg 0.577 ± 0.002 0.175 ± 0.001 0.286 ± 0.011 0.134 ± 0.004 0.831 ± 0.004 0.826 ± 0.000 0.159 ± 0.002 0.575 ± 0.000 0.911 ± 0.008

Table 17: AUC (0.05) using two different base models, NLI-DistilBERT-Base and MSMARCO-
DistilBERT-Base. First three columns correspond to training on Quora, middle three to AskUbuntu
and the last three training on SuperUser. When evaluated on technical forums with a weaker base
model (NLI), ITVReg obtains the best AUC on both IID and OOD evaluation. These are different
from Table 3, they run with lower learning rate of 1e-5 and higher number of epochs with best model
numbers reported
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