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Abstract

Many Natural Language Processing tasks in-001
volve predicting structures, such as Syntax002
Parsing and Relation Extraction (RE). One003
central challenge in supervised structured pre-004
diction is the lack of high-quality annotated005
data. The recently proposed interpolation-006
based data augmentation (DA) algorithms (i.e.007
mixup) augment the training set via making008
convex interpolation between training data009
points (Zhang et al., 2018). However, current010
algorithms (e.g. SeqMix (Zhang et al., 2020),011
LADA (Chen et al., 2020a)) that apply mixup012
to language structured prediction tasks are not013
aware of the syntactic or output structures of014
the tasks, making their performance unstable015
and requiring additional heuristic constraints.016
Furthermore, SeqMix-like algorithms expect a017
linear encoding scheme of the output structure,018
such as BIO-Scheme for Named Entity Recog-019
nition (NER), restricting its applicability.020

To this end, we propose SegMix, a sim-021
ple framework of interpolation-based algo-022
rithms that can adapt to both the syntactic023
and output structures, making it robust to024
hyper-parameters and applicable to different025
tasks. We empirically show that SegMix con-026
sistently improves performance over several027
strong baseline models on two structured pre-028
diction tasks (NER and RE). SegMix is a029
flexible framework that unifies existing rule-030
based language DA methods, creating interest-031
ing mixtures of DA techniques. Furthermore,032
the method is easy to implement and adds neg-033
ligible overhead to training and inference.034

1 Introduction035

Data augmentation (DA), which introduces unob-036

served data based on the observed data (van Dyk037

and Meng, 2001), is a common strategy used in ma-038

chine learning to deal with data-scarcity problems.039

Recently DA has received increasing attention in040

Natural Language Processing (NLP) due to the041

emergence of tasks in low-resource languages and042

Figure 1: Example of SegMix for NER. On the left is
the training sentence with NER tags; the colored block
is the chosen segment (entity in this case). On the right
is a segment randomly chosen from a predefined pool.
A new segment is produced by performing a linear in-
terpolation between the two segments. Then finally, the
augmented data is generated by replacing the original
segment with the mixed one.

large-scale models that require large amounts of 043

data (Feng et al., 2021). Existing DA for NLP can 044

be categorized into rule-based, interpolation-based, 045

and model-based (Feng et al., 2021). 046

We focus on interpolation-based DA on struc- 047

tured prediction tasks, which interpolates the inputs 048

and labels of two or more training examples (Feng 049

et al., 2021). Proposed in mixup (Zhang et al., 050

2018), the interpolation DA method is initially used 051

in computer vision (CV) tasks. Zhang et al. 2018 052

argues that mixup regularizes the model to favor 053

simple linear behavior in-between training exam- 054

ples. Driven by the success of mixup on CV tasks, 055

several attempts have been made to apply similar 056

interpolations in language tasks (Chen et al. 2020b, 057

Cheng et al. 2020, Miao et al. 2020). 058

A challenge to perform mixup in NLP task its re- 059

quirements for continuous inputs and outputs (Feng 060

et al., 2021) since both need to be linearly interpo- 061
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Figure 2: Different variations of SegMix (MentionMix, SynonymMix, and RelationMix). The left is the original
training sequence. The colored blocks are the segments to be mixed. Segments on the right are returned randomly
from the predefined pool. Mention Pool and Relation Pair Pool are constructed from the training data, while the
Synonym Pool is constructed with a pretrained WordNet and returns a synonym of the chosen token.

lated to create augmented example. For instance,062

SeqMixS1 (Guo et al., 2020) proposed to interpo-063

late sentence embeddings under Seq2Seq settings.064

However, the proposed embedding-mix solution065

does not solve structured prediction tasks (predict-066

ing a predefined target structure extracted from an067

unstructured input (Smith, 2011)). For example, in068

Named Entity Recognition (NER), which aims to069

recognize mentions from text belonging to prede-070

fined semantic types such as person, location, or-071

ganization etc (Nadeau and Sekine, 2007). Mixing072

two sentences without a matching target structure073

will generate unsensible output structures (exam-074

ples provided in Fig. 4), potentially confusing the075

model. LADA (Chen et al., 2020a) validated this076

through experiments: when applying SeqMixS di-077

rectly to NER task, they found that the generated078

data was too “noisy”. SeqMixS sometimes breaks079

the syntactic and output structure, which is impor-080

tant for structured prediction tasks.081

Another example is Relation Extraction (RE)082

tasks, which aims to classify the relation type be-083

tween two predefined nominals in the sentence. Un-084

1Originally named SeqMix, we use SeqMixS to avoid
confusion with the other SeqMix (Zhang et al., 2020). “S”
stands for Seq2Seq.

like BIO tagging scheme commonly used in NER 085

tasks, most existing methods in RE do not have a 086

linear encoding scheme. Thus it is not straightfor- 087

ward to apply SeqMixS directly to RE. 088

Even in applicable tasks, existing work uses ex- 089

tra heuristic constraints to ensure high-quality aug- 090

mented data. For example, LADA mixes sentences 091

with a similar embedding only, SeqMix (Zhang 092

et al., 2020) uses an additional discriminator to 093

filter out “noisy” data. These constraints add com- 094

plexity to the methods and limit the explorable data 095

space. Empirically, we also find that these methods 096

are sensitive to hyperparameters like augmentation 097

rates (#of augmented data
#of training data ). A bad augmentation rate 098

sometimes harms model performance, leading to 099

worse scores than baseline. 100

To address these problems, we propose Segment 101

Mix (SegMix), a DA method that performs lin- 102

ear interpolations on meaningful, task-related seg- 103

ments to preserve the syntactic and output struc- 104

tures. The segments are randomly replaced with the 105

interpolation of the original segment and another 106

segment drawn from a predefined segment pool. 107

Specifically, we explore two popular structured pre- 108

diction tasks: Named Entity Recognition (NER) 109

and Relation Extraction (RE). We empirically show 110
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that SegMix improves model performance consis-111

tently on different experimental setups and hyper-112

parameters, demonstrating its robustness. Further-113

more, SegMix imposes few constraints on the orig-114

inal data or the mixing pairs, potentially allowing115

it to explore a much larger data space. The method116

can also be extended flexibly into other structured117

prediction tasks by defining task-related segments.118

SegMix connects several existing DA methods.119

The replacement-based DA methods are a “hard”120

version of SegMix which replaces the segments121

completely. The original SeqMixS is a variation122

with a segment defined as the whole sequence.123

2 Related Work124

Rule-based DA. Rule-based DA specifies rules125

to insert, delete, or replace part of the text (van Dyk126

and Meng, 2001). Easy Data Augmentation (Wei127

and Zou, 2019) proposed a set of token-level ran-128

dom perturbation operations (insertion, deletion,129

and swap) (Dai and Adel, 2020). SwitchOut (Wang130

et al., 2018) randomly replaces words in the sen-131

tence with other random words. WordDrop (Sen-132

nrich et al., 2016a) drops tokens at random. These133

methods explore the vicinity area around the data134

point and assume they share the same label.135

Interpolation-based DA. Originally proposed136

for image classification tasks, mixup (Zhang et al.,137

2018) performs convex combinations between a138

pair of data points and their labels. mixup improves139

the performance in image classification tasks by140

regularizing the neural network to favor simple lin-141

ear behavior in-between training examples (Zhang142

et al., 2018). There have been several adaptations143

of mixup on NLP tasks. TMix (Chen et al., 2020b)144

performs an interpolation of text in hidden space145

on text classification tasks. Snippext (Miao et al.,146

2020) mixes up BERT encodings and passes them147

through a classification layer for sentiment anal-148

ysis tasks. AdvAug (Cheng et al., 2020) mixes149

adversarial examples as an adversarial augmenta-150

tion method for Neural Machine Translation.151

However, direct application of whole sequence152

level mixup yields little improvement in struc-153

tured prediction tasks. As shown empirically in154

LADA (Chen et al., 2020a) on NER, direct mixing155

of two sentences changes both local token represen-156

tation and the context embeddings required to iden-157

tify the mention entity (Chen et al., 2020a). Thus158

LADA adds additional constraints by mixing the se-159

quences only with its k-nearest neighbors to reduce160

the noises (Chen et al., 2020a). SeqMix (Zhang 161

et al., 2020) scans both sequences with a fixed- 162

length sliding window and mixes the sub-sequence 163

within the windows. However, this approach does 164

not eliminate the problem of generating low-quality 165

data — extra constraints are needed ensure the qual- 166

ity of generated data. These constraints complicate 167

the method and constrain the explorable data space. 168

Structured Prediction. In structured prediction 169

tasks, a predefined target structure is extracted from 170

the input sequences (Smith, 2011). Common tasks 171

include POS tagging, Named Entity Recognition 172

(NER), and Relation Extraction (RE). There have 173

been several attempts applying mixup-like algo- 174

rithms to NER (Chen et al., 2020a; Zhang et al., 175

2020). Unlike NER, RE models typically do not 176

use a linear encoding scheme (i.e. BIO). Thus it is 177

not straightforward to apply SeqMix. To the best 178

of our knowledge, interpolation-based DA methods 179

have not been applied to RE tasks. 180

Model-based DA Model-based DA uses pre- 181

trained models to generate augmented data. Back- 182

translation translates the input sequence into an- 183

other language and back to the original (Sennrich 184

et al., 2016b). G-DAUGc (Yang et al., 2020) gener- 185

ates synthetic examples using pretrained language 186

models. Although useful for some sequence classi- 187

fication tasks, it is not straightforward to apply sim- 188

ilar techniques to structured prediction tasks since 189

the output structure is hard to be reconstructed after 190

replacement of the whole sequence. Unsupervised 191

Data Augmentation (Xie et al., 2019) noises unla- 192

beled examples produced by advanced DA methods 193

under the same consistency training framework. Hu 194

et al. 2019 proposes to learn different DA schemes 195

with the same gradient-based algorithm, which 196

adapts a reward learning algorithm from Reinforce- 197

ment Learning for joint data manipulation learning 198

and model training. These algorithms assume extra 199

models or change the model structure, while this 200

work focuses on simple DA methods by combining 201

rule-based and interpolation based methods. 202

3 Method 203

Consider a training dataset D = {(Xi, Yi)|i ∈ N} 204

of size N , where each input Xi is a sequence of 205

tokens Xi = (X1
i , X

2
i , . . . , ) and a task-dependent 206

structured output Yi, a structured prediction algo- 207

rithm generally encodes the output Yi using a task- 208

dependent scheme. For example, NER labels are 209
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Figure 3: F1 score with variant augmentation rates with MentionMix and SeqMix. The dashed line represents the
baseline performance. MentionMix constantly outperforms the baseline performance, while SeqMix is unstable
and sometimes oscillates below the baseline and less overall improvement.

often encoded with the BIO-scheme, such that each210

token in Xi is associated with a label. In Relation211

Extraction, a label is associated with a pair of nom-212

inal phrases. SegMix is flexible to adapt to differ-213

ent encoding schemes by designing task-dependent214

segments, easily applicable to different tasks.215

Formally, given a training instance, a seg-216

ment s(u, v) is a continuous sequence of tokens217

(Xu
i , X

u+1
i , . . . , Xv

i ), a segment list Sj is a list of218

segments from the instance. We choose segment219

lists that are meaningful to the task. For exam-220

ple, in Relation Extraction, we use segment lists of221

length 2, containing the pair of nominals of a rela-222

tion. We further associated each segment list with223

an appropriate label list Lj (more details below).224

Segment Pool: A segment pool of sizeM : Pk =225

{(Sj , Lj)|j ∈ M} is generated by collecting all226

segment lists Sj available for mixing. The pool can227

be constructed from the training data or an external228

resource. Here, k refers to the length of segment229

list, which is a constant for a specific task.230

Segment Mix: SegMix performs linear interpola-231

tion on a task-dependent segment lists. As demon-232

strated in Algo.1, with training data setD, Segment233

Pool Pk, mix rate r, SegMix (D,Pk, r) returns234

an augmented data set DA of size r ·N . For each235

data point (Xi, Yi) drawn from the training set,236

we randomly pick a segment list Sa and the corre-237

sponding label list La. We then draw the other pair238

(Sb, Lb) from the segment pool.239

Let Emb be an embedding function on RV 7→240

RD, here V is size of the vocabulary, and D is241

the embedding dimension. Let OHE be a func-242

tion that returns the one-hot encoding of a label. 243

For all sa, sb = Sa[i], Sb[i], 1 ≤ i ≤ len(Sa), 244

and la, lb = La[j], Lb[j], 1 ≤ j ≤ len(La). 245

Define ea, eb = Emb(sa),Emb(sb), oa, ob = 246

OHE(la),OHE(lb). The embeddings and one- 247

hot encodings are then padded according to se- 248

quence length. Let ẽa, ẽb, õa, õb be the padded ver- 249

sion of the embeddings and one-hot encodings. Fi- 250

nally, we perform a linear interpolation between 251

ẽa, ẽb and õa, õa with a mix rate λ chosen randomly 252

from a Beta distribution (see specifications in 4.1): 253

e′a ← ẽa · λ+ ẽb · (1− λ) (1) 254

o′a ← õa · λ+ õb · (1− λ) (2) 255

In Eq.1, 2, · is a scalar multiplication, and +,− 256

are vector element-wise operations. When λ = 1, 257

the augmented data falls back to the original one. 258

When λ = 0, the segments are completely replaced 259

by the segments drawn from the pool, equivalent 260

to replacement-based DA techniques. 261

Finally, the augmented data point is generated by 262

copying the original data and replacing the chosen 263

segment and labels with the mixed version. 264

We present 3 variations of SegMix for NER and 265

1 for RE with different types of Segment Pool Pk. 266

MentionMix Inspired by Mention Replace- 267

ment (MR), MentionMix performs linear interpola- 268

tions on a mention level (a contiguous segment of 269

tokens with the same entity label). A mention pool 270

P1 is constructed by scanning through the training 271

data set and extracting all mention segments and 272

their corresponding labels. Thus each segment list 273

is composed of a single mention and a list of entity 274
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Algorithm 1 SegMix (D,Pk, r)

1: DA ← {}
2: DS ← sample(D, len(D) · r)
3: for (Xi, Yi) in DS do
4: Ei, Oi ← Emb(Xi),OHE(Yi)
5: λ← Beta(α, α)
6: Sa, la ← random k segment lists in Xi, Yi
7: Sb, lb ← random k segment lists in P
8: X ′

i, Y
′
i ← Xi.copy(), Yi.copy()

9: for sja, sjb in Sa, Sb do
10: ea, eb = Emb(sa),Emb(sb)
11: start, end← index range of sja in Xi

12: ẽja, ẽ
j
b ←pad_to_longer(eja, e

j
b)

13: Ei[start : end]← s̃ja ·λ+ s̃jb · (1−λ)
14: end for
15: for lja, ljb in la, lb do
16: oa, ob = OHE(la),OHE(lb)
17: start, end← index range of lja in Yi
18: õja, õ

j
b ←pad_to_longer(oja, o

j
b)

19: Oi[start : end]← õja ·λ+ õjb · (1−λ)
20: end for
21: DA.add((Ei, Oi))
22: end for
23: Output DA

labels encoded with BIO-scheme.275

TokenMix Inspired by Label-wise Token Re-276

placement (LwTR), TokenMix performs linear in-277

terpolations on a token level. We use tokens278

with entity labels in BIO-scheme from the train-279

ing datasets as the Token Pool P1. Each segment280

list is composed of a single token and the label.281

SynonymMix Inspired by Synonym replace-282

ment (SR), we construct the Synonym Pool P1283

from an external resource. Specifically, the pool284

returns a synonym of the token in the original se-285

quence based on WordNet (Miller, 1995). We as-286

sume the two synonyms share the same label, thus287

interpolation only happens within input.288

RelationMix We also study RE as an example289

where SeqMix is not directly applicable. Since290

each relation is composed of two possibly non-291

adjacent nominals in a sentence, we construct a292

pool P2 with groups of two nominals and a relation293

label2. During mixing phase, the two nominals and294

2The order of nominals is contained in the labels. For
example, the label list contain both producer-product(e1,e2)
and producer-product(e2,e1)

their corresponding relation labels is mixed with 295

another pair of nominals from P2. 296

4 Experiments 297

We conduct experiments on two structured predic- 298

tion tasks: Name Entity Recognition (NER) and 299

relation Extraction (RE). The NER experiments are 300

on two datasets in different languages: CoNLL- 301

2003 (Sang and Meulder, 2003) in English with 4 302

entity types and GermEval (Benikova et al., 2014) 303

in German with 12 entity types. Given an input 304

sequence, the task is to identify all entities posi- 305

tions and their types, such as location, organization, 306

and person. We use the BIO-tagging scheme so 307

that I-XXX denotes the word inside an entity and 308

B-XXX denotes the word at the beginning. 309

The RE experiment is on SemEval-2010 Task 8: 310

Multi-Way Classification of Semantic Relations Be- 311

tween Pairs of Nominals (Hendrickx et al., 2019). 312

Given a sequence with two predefined nominals, 313

the task is to determine the semantic relations be- 314

tween the pair. For example, in the sentence “The 315

actress arrives at the airport”, nominal “actress” and 316

“airport” have an entity-destination relation. There 317

are 9 relation types in total, such as Cause-Effect, 318

Product-Producer, Entity-Destination, etc. 319

In order to create a data-scarce setting, we ran- 320

domly sample 5%, 10%, 30%3 of the original train- 321

ing data as training set. The validation dataset and 322

test dataset are unchanged. 323

To compare with existing interpolation-based 324

methods, we also run experiments on the best 325

model in LADA (Inter+Intra LADA, code avail- 326

able on Github4) without extra unlabeled data. To 327

compare with rule-based techniques, we implement 328

Mention Replacement, Synonym Replacement, La- 329

bel Replacement, and Relation Replacement as spe- 330

cial cases of SegMix - setting the mix rate λ to 1 331

so that the segment is entirely replaced. 332

Label Smoothing(LS), assigning data with a soft 333

“label” instead of 0/1 values is a common tech- 334

nique used to prevent the network from becoming 335

over-confident (Müller et al., 2019). To show that 336

SegMix can provide additional benefits on top of 337

LS, we also compare the results of the baseline 338

model with LS only and with both LS and SegMix. 339

3700, 1400, 4200 for CoNLL-2003; 1200, 2400, 7200 for
GermEval; 400, 800, 2400 for SemEval-2010 Task 8

4https://github.com/GT-SALT/LADA
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CoNLL-2003 GermEval

5% 10% 30% 5% 10% 30%

BERT 83.28 86.85 89.28 70.28 75.64 79.63

BERT + LADA (Chen et al., 2020a) 84.85 87.85 89.87 71.32 77.51 81.95

BERT + Mention Replacement 85.69 87.37 89.00 74.51 75.98 80.83
BERT + Synonym Replacement 86.09 87.95 89.25 73.77 73.26 75.52
BERT + Label Replacement 85.69 87.37 89.00 73.26 79.49 79.20

BERT + MentionMix † 86.81 88.78 90.14 76.06 80.32 83.48
BERT + SynonymMix † 87.07 88.39 89.87 75.07 78.64 80.89
BERT + TokenMix † 84.51 87.08 88.08 74.48 77.07 80.99

BERT + Label Smoothing 84.86 86.66 88.25 71.32 77.51 81.95
BERT + MentionMix †+ Label Smoothing 87.07 88.39 89.87 75.07 79.99 82.31

Table 1: F1 scores on CoNLL 2003 and GermEval under different training data size settings (5%, 10%, 30%)
compared with LADA and replacement-based augmentation methods. SegMix consistently outperforms other
methods under various initial data sizes, especially under data-scarce setting (around 3% improvement on the
baseline with 5% of training data and 2% improvement with 10% of training data). †denotes our methods.

5% 10% 30%

BERT 56.68 73.42 82.33
BERT + Replacement 55.98 67.57 79.72
BERT + RelationMix † 60.32 73.75 82.44

Table 2: F1 scores of RelationMix on SemEval-2010
under different training data size settings compared
with replacement-based augmentation.

4.1 Implementation Details340

Throughout our experiments, we adopt the pre-341

trained bert−base−uncased5 (Vaswani et al.,342

2017) model for CoNLL-2003 and SemEval-2010,343

bert−base−multilingual−uncased for GermEval344

as the encoder, a linear layer to make prediction,345

and a soft cross-entropy loss. We train all the mod-346

els for 100 epochs in maximum and take the check-347

point with the maximum validation score as the348

final model. The initial learning rate is set to 5e−5,349

0.1 for weight decay, and 8 for the α in the beta350

distribution from which we generate the mix rate6.351

4.2 Results352

We conduct experiments under various numbers of353

training data (5%, 10%, 30% of original training354

data) and compare them with existing DA meth-355

ods. The results for NER are shown in Table 1. On356

5https://github.com/huggingface/transformers
6We perform ablation study on α in Appendix A.1 and

find that α has no significant impact on the performance.

both CoNLL-2003 and GermEval, MentionMix has 357

the best performance, exceeding the performance 358

of sequence-level mix and replacement. SegMix 359

is particularly useful under data-scarce situations 360

- improving the baseline architecture by 3% on 361

CoNLL and 6% on GermEval in terms of absolute 362

F1 scores, under the 5% data settings. However, 363

we notice that performance of TokenMix is not as 364

stable as MentionMix and SynonymMix on NER - 365

yielding around the same results as interpolation- 366

based and rule-based methods. We hypothesize that 367

mixing on a token level might break the original 368

mention structure (e.g. a token with label I-ORG 369

might be mixed with another with label B-PER). 370

On SemEval, we compare RelationMix (mix- 371

ing pairs of nominals and corresponding relation 372

labels) with baseline and Relation Replacement 373

(replacing nominal pairs). We find that simple re- 374

placement worsens the baseline performance, while 375

RelationMix improves the baseline, especially un- 376

der data-scarce situation - A 4% absolute F1 im- 377

provement under the 5% setting. 378

Overall, SegMix methods consistently outper- 379

form their replacement-based counterparts and 380

sequence-level mix (e.g. LADA, SeqMix). This 381

result is consistent with our hypothesis that “soft” 382

mix of data points on structure-aware segments 383

yields better results than “hard” replacement or 384

mixing on a whole-sequence level. 385
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Augmentation Rate 1% 3% 5% 10% 30% Average

0 (Baseline) 79.46 84.15 83.28 86.85 89.28 +0
0.1 82.10 85.57 85.93 88.04 89.92 +1.41
0.2 82.57 85.40 86.61 88.67 89.52 +1.68
0.3 81.45 85.73 86.47 88.60 90.14 +1.54
0.4 81.33 85.91 86.03 88.45 89.85 +1.34
0.5 81.00 85.57 86.32 88.12 89.85 +1.27
0.6 81.14 85.58 86.21 88.03 89.79 +1.24
0.7 81.61 85.80 86.55 88.78 89.25 +1.45
0.8 81.86 85.11 86.35 88.05 89.71 +1.40
0.9 81.02 85.53 86.24 88.30 89.25 +1.17
0.1 81.59 85.37 86.06 87.98 89.90 +1.31

Average 81.57 85.43 86.27 88.30 89.72 +1.38

Table 3: F1 scores of MentionMix on CoNLL 2003 with variant augmentation rates (#of augmented data
#of training data ) under differ-

ent initial data sizes. SegMix consistently improves over the baseline, demonstrating its stability and robustness
over varying augmentation rates. The last row is the averaged improvement score for each augmentation rate
over different initial data sizes. The last column is the averaged score for each initial data size over different
augmentation rates.

Robustness with respect to augmentation rate.386

A restriction we find in previous attempts on387

SeqMix is that the model performance tends to388

drop below the baseline as the augmentation rate389

rises above a certain value (Zhang et al., 2020). As390

demonstrated in Fig.3, the F1 scores for SeqMix391

sometimes get below the baseline score. Such392

an unstable performance could add a significant393

burden in hyperparameter tuning. Furthermore,394

the optimal augmentation rate varies for different395

initial data settings. A good augmentation rate396

for 200 data size might not be good for 500 data397

size. Through experiments on varying augmenta-398

tion rates under 5 different data-scarcity settings,399

we show that MentionMix consistently improves400

the baseline performance under different augmen-401

tation rates and data usage settings, making it more402

applicable in practical contexts. The specific scores403

are presented in Table 3.404

4.3 Analysis405

We argue that SegMix, which linearly interpolates406

data points on segments meaningful to the task,407

keeps the syntactic and output structure intact. To408

help understand the mixed instances, we choose409

some sample sequence in CoNLL 2003, and visual-410

ize it in Fig. 4 by mapping the mixed embeddings411

to the nearest word in the vocabulary.412

The mixed example generated by MentionMix413

preserves the syntactic and entity structures while414

Original: Swedish [MISC] options and derivatives
exchange OM Gruppen AB [ORG] said on Thurs-
day it would open an electronic bourse for forest
industry products in London [LOC] in the first half
of 1997.
MentionMix: Swedish [MISC] options and deriva-
tives exchange Javier Gomez de [PER/ORG] said
on Thursday it would open an electronic bourse
for forest industry products in London [LOC] in
the first half of 1997.
SeqMixS: Sweden [MISC/ORG] option [O/ORG] but
[unused33] transfer . . [unused10] [O/ORG] saying
to Friday them might closed his electronics . with
woods companies Products of Paris [O/LOC] of a
second three in 1995.

Figure 4: Mixed sentence samples recovered by map-
ping embeddings to the nearest token (L2 distance).
[A/B] represents the linear interpolation of the one-hot
encodings of the two labels A and B.

achieving linear interpolation between each men- 415

tion. On the other hand, the example generated by 416

SeqMixS is not semantically meaningful. Specif- 417

ically, due to the high proportion of non-entity 418

phrases in the dataset, SeqMix tends to mix entity 419

mentions with non-entity segments (label [O]). The 420

resulting sentences often contain non-meaningful 421

entities (e.g. option and . . [unused10] in Table ), 422

but are being perceived as entities (with non-[O] la- 423

bel). The non-entity phrases in the sentence would 424
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Ex. 1
Baseline English [MISC] county sides and another against British Universities [MISC]

MentionMix English [MISC] county sides and another against British Universities [ORG]

Ex. 2
Baseline May 22 First one-day international at Headingley [ORG]

MentionMix May 22 First one-day international at Headingley [LOC]

Ex. 3
Baseline July 9 v Minor Counties [MISC] XI
MentionMix July 9 v Minor Counties [ORG] XI

Table 4: Examples of cases predicted by the baseline model and MentionMix from validation dataset. The bold
segments represent an entity mention, blue segments represent an misclassified mention.

Figure 5: Confusion Matrix on CoNLL 2003 with and
without SegMix with 5% of training data.

also be mixed, producing semantically incorrect425

context phrases like second three in 1995.426

We also examine the model’s confidence calibra-427

tion – how well the model is predicting probability428

estimates representative of the true correctness like-429

lihood (Guo et al., 2017). We use Expected Calibra-430

tion Error (Naeini et al., 2015) (ECE) - a weighted431

average of accuracy/confidence difference as a met-432

ric to examine calibration and find that Mention-433

Mix is better calibrated. We observe that the ECE434

score drops from 3.2% to 1.2% after applying Men-435

tionMix. We also find that MentionMix continues436

to improve the model with Label Smoothing (Ta-437

ble 1). We argue that linear interpolation of both438

inputs and labels explores a larger data space than439

a simple soft perturbation in the label, thus leading440

to further improvement. We leave the theoretical441

analysis to future work.442

Error Analysis We compare the confusion ma-443

trix of the baseline model and MentionMix for each444

classes for 5% of CoNLL 2003 data in Fig. 5.445

There is an overall improvement in the accuracy446

for each class, especially for PER and ORG. Be-447

fore SegMix, the model tends to mistakenly pre-448

dict [LOC] for [ORG] (27% → 19%), and [O]449

for [PER] (19% → 8%). MentionMix introduces450

more variations of meaningful entities into training, 451

preventing the model from predicting a fixed label. 452

We also list some improved cases in Table 4, 453

Ex. 1 and 2 is a case of correction between for 454

ORG, while Ex. 3 is a case where the entity label 455

is correct, but the mention range remains incom- 456

plete (both predicts Minor Counties as a mention 457

instead of Minor Counties XI).7 458

Observing cases like Ex. 3, we hypothesize that 459

SegMix mainly helps the model to distinguish be- 460

tween ambiguous types instead of span detection. 461

To validate this claim, we convert all mentions to 462

[B] and [I] during inference phase and find out 463

that there is little difference between the models 464

(both around 98%) in terms of span accuracy — 465

confirming our hypothesis. 466

5 Conclusion 467

This paper proposes SegMix, a simple data augmen- 468

tation technique that is effective in data-scarce situ- 469

ations for structured prediction tasks. By choosing 470

task-dependent segments, the augmented examples 471

still preserve reasonable syntactic and output struc- 472

tures while also exploiting the benefits of linearity 473

of data space. Furthermore, it extends the applica- 474

tion range of mixup in NLP tasks. We demonstrate 475

its robustness by evaluating model performance 476

under various settings on two NER datasets and 477

one RE dataset. Our experiments indicate that 478

SegMix consistently improves the model perfor- 479

mance and outperforms other methods. SegMix 480

is a framework that unifies several rule-based and 481

interpolation-based methods, which puts little con- 482

straint on data structure and is straightforward to 483

use. SegMix opens up several possibilities for fur- 484

ther exploration. The flexibility of SegMix makes 485

it possible to extend it to other NLP tasks. Besides 486

supervised learning, we also plan to study SegMix 487

under unsupervised and semi-supervised settings. 488

7We also list some cases for RE in Appendix.A.2
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Figure 6: Visualization of label distribution by t-SNE
of baseline model v.s. SegMix.

α F1 score

1 86.79
2 86.75
4 86.79
8 86.81
16 86.45

Table 5: Ablation study on α in beta distribution, which
is used to generate random mix rate.

A Appendix609

A.1 Ablation Study on α610

The mix rate λ (rate by which two segments are611

mixed) in our experiments is randomly drawn from612

a beta distribution (beta(α, α). To determine if613

α matters, we vary a set of αs on ConLL-2003614

dataset with 5% of initial data. As shown in Ta-615

ble 5, varying α has negligible influence on the616

performance.617

A.2 Case Study for Relation Extraction618

We also list some error cases for Relation Extrac-619

tion in Table 6.620

A.3 t-SNE Visualization621

We also plot out the t-SNE of the baseline model622

and after MentionMix. as shown in Fig. 6, Men-623

tionMix is able to achieve a better separation across624

different distributions.625

Ex. 1 the complete [statue]e1 topped
by an imposing [head]e2was
originally nearly five metres high

True Rela-
tion

Other

Baseline Pre-
diction

Component-Whole(e2,e1)

MentionMix
Prediction

other

Ex. 2 the [slide]e1which was triggered
by an avalanche - control [crew]
e2 damaged one home and
blocked the road for most of the
day

True Rela-
tion

Cause-Effect(e2,e1)

Baseline Pre-
diction

Product-Producer(e1,e2)

MentionMix
Prediction

Cause-Effect(e1,e2)

Table 6: Examples of correctly classified cases after
MentionMix in validation dataset. The bold segments
represents an entity mention, blue segments represent
an misclassified mention.
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