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ABSTRACT

As Generative Al (GenAl) systems see growing adoption, a key concern involves
the external validity of evaluations, or the extent to which they generalize from
lab-based to real-world deployment conditions. Threats to the external validity of
GenAl evaluations arise when the source sample of human raters and system out-
puts used to obtain a system quality estimate differs from the target distribution at
deployment time. In this work, we propose a doubly-robust estimation framework
designed to address this evaluation sampling bias. Key to our approach is the use
of “persona” ratings produced by prompting an LLM evaluator (i.e., an LLM-as-a-
judge) to behave as a human rater with specific sociodemographic characteristics.
Our doubly-robust framework combines these informative yet imperfect persona
ratings with human ratings obtained under evaluation sampling bias to produce
statistically valid system quality estimates. In particular, we show that our ap-
proach yields valid system quality estimates when either (i) a model trained to
predict human ratings using persona ratings and source data observed under sam-
pling bias, or (ii) a reweighting model that corrects for sampling bias is of suf-
ficient quality. We validate our framework theoretically and via a novel Persona
Simulation Framework (PSF) designed to systematically manipulate persona qual-
ity and the degree of evaluation sampling bias present in source data. Our work
provides a principled foundation for combining imperfect persona ratings with hu-
man ratings observed under sampling bias to obtain valid system quality estimates.

1 INTRODUCTION

As Generative Al (GenAl) systems see growing adoption, a key concern involves the external valid-
ity of evaluations, or the extent to which they generalize from lab-based to real-world deployment
conditions (Ibrahim et al.l [2024; |Ouyang et al.l 2023} |Liao & Xiao, 2023; [Liao et al.| |2021; Wei-
dinger et al., 2025)). In particular, many evaluations report a system quality estimate, which reflects
the proportion of outputs rated to exhibit a capability (e.g., “helpfulness”) or defect (e.g., “toxicity”)
by a human with specialized characteristics (e.g., domain knowledge, cultural experience). How-
ever, such quality estimates may fail to generalize when the source distribution of human raters and
system outputs available at evaluation time differs from the farger distribution encountered upon
deployment. For example, in medical visit summarization, covariate shift arises when we wish to
obtain a system quality estimate via expert physician ratings, but collect supplementary medical stu-
dent ratings to augment evaluation data (Cai et al.,[2022). Selection bias may also occur if medical
students rate complex summaries less often than more experienced physicians. Left unaddressed,
these forms of evaluation sampling bias threaten the external validity of system quality estimates.

Recent work has proposed tools for improving system quality estimates when human ratings are
scarce but black-box predictions (e.g., from an LLM-as-a-judge) are cheap and abundant (Chatzi
et al. 2024; [Fisch et al.l [2024; [Eyre & Madras| [2024; Dorner et al.l [2024; [Saad-Falcon et al.,
2023} [Fogliato et al., [2024). For instance, Prediction Powered Inference (PPI) offers an approach
for leveraging a subset of labeled (source) data to correct for bias in black-box model predictions
(Angelopoulos et al. [2023aib). This bias correction enables using black-box predictions generated
over unlabeled (target) samples to shrink confidence intervals around quality estimates while
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Figure 1: Comparison of our doubly-robust estimator with baselines on three datasets from our Persona
Simulation Framework. Red and black dashed lines denote the true source and target mean ratings,
respectively (e.g., the average “helpfulness” rating obtained over source vs. target distributions).
Persona-Based directly leverages persona ratings to compute system quality estimates. Sample Average
produces a system quality estimate by averaging ratings sampled from the source distribution. PPI++
(Angelopoulos et al.,[2023b) and RePPI (Ji et al.| [2025) are two state-of-the-art statistical methods that do not
account for evaluation sampling bias.Across settings, we observe that our Doubly-Robust (Riesz) approach
yields improved coverage and lower bias than baselines, while maintaining informative confidence intervals.

maintaining valid coverage. However, both PPI and its extensions (e.g., PPI++ (Angelopoulos et al.,
2023b)), RePPI (Ji et al.l [2025))) assume that (i) source and target samples are drawn i.i.d. and (ii)
labels are missing completely at random (MCAR) (Tsiatis| 2006)), i.e. that successful completion
of a rating is independent of rater and text characteristics. However, when source data is observed
under sampling bias, these assumptions are violated and severe miscoverage occurs (see Fig. [I)).

In this work, we devise an estimator that directly corrects for evaluation sampling bias. Like
existing approaches (Angelopoulos et al.| 2023b; Ji et al., 2025)), our proposal leverages black-box
predictions generated by a GenAl system over unlabeled (target) samples to improve statistical
inference. Unlike existing estimators, however, our proposal is doubly-robust (Bang & Robins,
2005} |Chernozhukov et al., 2018)): it yields valid system quality estimates if either a model trained
to predict human ratings from source samples or a reweighting model that corrects for sampling bias
is of sufficient quality. To attain this doubly-robust property, we leverage persona ratings — scores
generated by prompting an LLM-as-a-judge to behave as a human rater with desired characteristics
(e.g., demographics, expertise) — to learn a high-quality predictor for human ratings from labeled
source data. This novel perspective treats persona ratings as an informative yet imperfect proxy
for human ratings to enhance the quality of downstream system quality estimates.

Figure [1] illustrates the benefits of our estimation approach on three datasets. Whereas directly
adopting persona ratings for estimation (Persona-Based) and state-of-the-art baselines (Angelopou-
los et al.| [2023b} Ji et al., 2025)) fail to provide coverage, our approach provides valid confidence
intervals, while also demonstrating low statistical bias. These specific results are indicative of our
general findings across experimental conditions, reported in Section [d This valid coverage enables
practitioners to make reliable deployment decisions; for example, by more confidently determining
whether a system’s mean “helpfulness” rating meets deployment standards. To summarize, our main
contributions are as follows:

* We formalize the problem of GenAl system quality estimation under evaluation sampling
bias. Unlike existing statistical frameworks (Angelopoulos et al., [2023b; [J1 et al., 2025),
our formulation explicitly accounts for both covariate shift and selection bias in observed
source ratings to improve the external validity of system quality estimates.

* We devise a doubly-robust estimator for GenAl system quality estimation under eval-
uation sampling bias. En route, we first advance doubly-robust estimation theory by gen-
eralizing the work of (Chernozhukov et al.| 2023)) to M-estimation settings with surrogate
(persona) ratings. This generalization enables us to (i) leverage persona ratings to improve
doubly-robust system quality estimates, (ii) estimate a richer set of system quality parame-
ters (e.g., rating variance, quantiles) beyond means, and (iii) maintain valid coverage even
in the presence of evaluation sampling bias, all desiderata not satisfied by previous works.

* We advance the practical application of doubly-robust estimators to GenAl system
quality estimation. Whereas doubly-robust estimators are traditionally applied on small
tabular datasets, GenAl system quality estimation requires learning a reweighting function
over high dimensional (e.g., text, audio) input-output spaces. We show that sentence
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Figure 2: Our framework produces estimates for the target parameter 6, using (i) complete rating tuples from
the source distribution (blue, left), (ii) unlabeled samples from the target distribution (yellow, right), and (iii)
persona ratings produced for both source and target samples (red, top). Evaluation sampling bias may arise
both from the covariate shift of (V, X) from Ps to P, and from selection bias in which rating completion C' is
non-random in Ps —ie.,C L (V, X).

transformer embedding models and a “Riesz loss” approach (Chernozhukov et al., |2022b)
can be combined to correct for covariate shift in high-dimensional text input-output spaces.

* We introduce a Persona Simulation Framework (PSF) that systematically manipulates
evaluation sampling bias and persona quality over three datasets encompassing synthetic,
semi-synthetic (PRISM) (Kirk et al., [2024)), and real-world (DICES) (Aroyo et al., 2023)
settings. Leveraging the PSF, we show our estimator obtains valid coverage up to a larger
magnitude of sampling bias than state-of-the-art baselines (e.g., RePPI (Ji et al.| 2025))).

2 PRELIMINARIES

We provide an overview of the data generating processes and GenAl system quality parameters
considered hereinafter. We provide detailed coverage of all notation and assumptions in Appendix B}

Probabilistic Framework. As illustrated in Fig. we model system quality estimation under
evaluation sampling bias via a tuple of random variables Z = (X,V,C,Y, Y). Here, X denotes
rater characteristics (e.g., age, gender, geographic locale) and V denotes the content to be rated,
such as the GenAl system input and output. In experiments, we characterize the content V' via an
embedding-based projection of the input prompt and system output into a low-dimensional space
(see §E]) We use W = (X, V) to denote the tuple of rater and content. C' is an indicator of rating
completion (C' = 1 if the rater provides a rating, C' = 0 otherwise). For example, a rater can fail
to provide a rating if they (i) are excluded on the basis of failed attention checks, or (ii) abandon
the rating task mid-way (i.e., self-attrition). Let Y denote the rating a rater would assign if they
completed the task (C' = 1), which may be ordinal (e.g., Likert 1-5), interval (e.g., 1-100), or binary
(e.g., Yes/No). Finally, Y is the rating returned by an LLM-as-a-judge with persona prompting.
Example 1. Suppose we want to measure the “factual consistency” of medical visit summarization
model outputs. Here, X captures raters’ expertise (medical student vs. physician) and V' includes
the full visit notes and corresponding summary. Rating completion (C') denotes whether the rater
successfully provides a rating when prompted, and Y is the human’s “factual consistency” rating
(e.g., on a binary scale). Finally, Y denotes GPT-4’s predicted rating.

Evaluation Sampling Bias. To model evaluation sampling bias, we assume there are two full-data
distributions over tuples Z: a source distribution P and a target distribution P;. Covariate shift
arises when the marginal distribution of rater and content characteristics differs across source and
target—i.e., Ps(W) # P.(W). For example, the source distribution may consist of urban clinic
summaries rated by medical students, while the target distribution consists of rural clinic summaries
rated by physicians. Selection bias arises when rating completion depends on rater and/or content
characteristics — i.e., C' L. . In our running example, this can arise if less experienced medical
students are less likely to complete complex summaries than physicians. While our framework is ex-
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Table 1: Examples of statistical parameters recovered by our M-estimation framework. Each param-
eter summarizes information about human ratings obtained over the target distribution. Conditional
parameters (bottom three rows) can be defined conditionally on rater characteristics (X), content
characteristics (1), or both, as special cases of conditioning on W = (X, V).

Parameter Estimand Example
Mean 0, = E.[Y] Mean “helpfulness” rating for customer service
chatbot responses.
. L Variance (disagreement) in “code correctness”
Variance 0 = Var,(Y) ratings in the target distribution.
. . . Median “comprehensibility” score for technical
Quantile 0 :=inf{y : P.(Y <y) > Q} doeumentation.
Conditional o _ Mean “coherence” rating assigned by domain
Mean O = EfY | g(W) =1 experts to multi-turn conversational responses.
Cond_itional 0, = Var,[Y | g(W) = 1] Variance in “helpfulness” ratin.gs among novice
Variance programmers for code suggestions.
Conditional O :=inf{y : P(Y <y 90th percentile “safety” rating for high-risk
Quantile g(W)=1)>Q} queries flagged by content moderators.

plicitly designed to handle selection bias, existing frameworks (Angelopoulos et al., 2023b; |Ji et al.|
2025)) assume that data are missing completely at random (MCAR) —i.e., C' L W. We show em-
pirically that violations of this assumption lead to severe degradation in quality estimates (see §[).

While we relax this MCAR assumption, we rely on several additional assumptions (also required by
existing frameworks). For instance, we assume no concept drift, i.e., that Ps(Y|W) = P,(Y|W).
This requires that the rater and content characteristics are sufficiently rich as to describe ratings
across both populations. We elaborate on this and other standard causal assumptions required by our
framework in Appendix |B| Relaxing these assumptions remains a fruitful direction for future work.

Estimation Goal. Given a sample of Ny partial source observations Dy = {(X 7‘?’, Vjs, C]‘?, Cj .

Y7, Y]S)}jvzsl and N; partial target observations D; = { (X}, Vi, Y)}X,, our goal is to estimate a
parameter summarizing system quality over P; E|E| As our running example in the main text and ex-
periments, we consider the mean rating, 8; := E;[Y], which describes the average “helpfulness” or

“factual consistency” rating assigned by human raters to system outputs in the target distribution F;.

3 METHODOLOGY

We now introduce our doubly-robust estimator for GenAl system quality estimation under evalua-
tion sampling bias. The central challenge addressed by our approach is that our data is imperfect.
While persona predictions are available, they may be a poor proxy for human ratings. Likewise,
human ratings from the source distribution may suffer from evaluation sampling bias, leading to
invalid estimates for the target parameter. We first introduce several naive approaches which might
be used to tackle this problem (§[3.1). Then, we show that while each approach is insufficient in iso-
lation, they can be combined to obtain valid coverage. (§[3.2). Our results presented in this section
apply not only when 0; := E;[Y] (where they generalize Chernozhukov et al.| (2023)) to simulta-
neous covariate shift and selection bias) but also when 6; is the solution to a generic M-estimation
problem. Table|[T]illustrates the range of statistical parameters our framework supports.

3.1 BASELINE APPROACHES AND THEIR LIMITATIONS

Persona-Augmented Regression. One seemingly reasonable estimation strategy is to train a
model to predict human ratings using source data and then use this model to impute missing
target labels. Persona-augmented regression leverages this approach while including persona

"We use superscripts s, ¢ on random variables to denote source and target membership. We omit these
superscripts where the distribution is clear from context (e.g., E+[Y] clearly refers to the target distribution).
’In the tuple Ds, the shorthand C5 - Y7 denotes that ratings are only observed when C§ = 1.
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ratings as an additional auxiliary feature in the regression function. In particular, we train a
model (W,Y) predicting po(W) := E[Y | W] using samples from D, and then estimate 6; as

OAfg = N% 25\21 (W, Yf) Observe that this persona-augmented regression estimator relies not
only on covariates, but also on the persona rating. While this approach may be viable when persona
ratings are highly correlated with human ratings, in general /i will converge too slowly to construct

valid confidence intervals (§ ).

Re-weighting. Another approach is to disregard the persona ratings. One instead might re-weight
samples from P based on their probability of occurring under P;. This approach requires correcting
for covariate shift and selection bias in parallel. Formally, let wgy(w) = gﬁ (w) denote the density
ratio between P;(W) and Ps(W), and let mo(w) = P(C =1 | W = w) denote the probability of

rating completion. Under standard assumptions (see Appendix B), we have 6; = E,[oo (W, C)Y],

where o (W, C) :=C igg%; . Thus, if one produces an ML estimate & of oy (say by training models
ipw
t

@, T predicting wy, ), they can compute an inverse propensity weighted (IPW) estimate oY .=
N% Zj\f:sl a(W2,C%) - Y. Again, estimates of ap must converge at parametric rates in order to
maintain coverage. Further, IPW suffers from high variance when propensities are small — a salient
challenge when estimating system quality parameters over high-dimensional (e.g., text) data (§ @).

3.2 DOUBLY-ROBUST ESTIMATOR

Our doubly-robust estimator can be viewed as carefully combining the persona-augmented regres-
sion estimator (1) with the re-weighting estimator (o). The functions po and « are referred to as
nuisance functions because they are used as an auxiliary information source to estimate the target
statistical parameter of interest #;. Our estimator combines these nuisance functions in the form:

Ny N
n_ 1 -~ t ot 1 -~ s s s _ o~ s Vs
9Nt;u(Wi%HNS;a(WJ—,Cj){Yj RIS (1)

where i and & are estimates of pg and «q that are assumed to be independent of the data. In
Equation (T)), the left term evaluates the regression-based estimator over samples from the target dis-
tribution. Analogously to PPI++ (Angelopoulos et al.,[2023b)), this has the effect of using unlabeled
data to reduce variance in the estimate. The right term corrects for bias in the human rating predic-
tor /i by re-weighting residualized source data to account for covariate shift and selection bias. This
correction adjusts for bias in persona ratings via the residual term, while correcting for evaluation
sampling bias via the re-weighting function «.

To construct confidence intervals, we also consider the variance estimate:

Ny ~ Ny
o = S {avi i~ a4 Ly v e {v; -} @
i=1 S j=1

where m; = N% 25\21 a(wt, Ylt) and 7 is a scaling parameter (described in Algorithm . Since

our mean and variance estimators require nuisance estimates that are independent of the data, we use
K -fold cross-fitting to maximize efficiency (Chernozhukov et al., 2018)). For each k < K, we train
nuisance models on all data excluding the samples in fold k. We then use our nuisance estimates to
produce a de-biased parameter estimate for the data in fold k. We then average the per-fold parameter
and variance estimates to maintain full data efficiency. See Algorithms|[T|and [2|for full details.

Our main result establishes the asymptotic normality of our estimator. Further, it describes how to
build confidence intervals using the mean and variance estimates recovered from Algorithm

Theorem 3.1. Assume the learner has access to samples Z3, ..., Zy ~ Pyand Z3, ..., Z ~ P,
satisfyiﬁ AssumptionsJZ]- and the assumptions of Theorems @and all outlined in Ap-

pendix|B| Then, letting 0 and 62 denote the mean and variance returned by Algorithm we have

51/, (57 0) = N(0,1).

*No concept drift implies E;[Y | W] = Es[Y | W], so we can omit subscripts without any worry.
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Algorithm 1 Doubly-Robust Estimator with K-fold Cross-Fitting

1: Input: Samples D, = {Z7, ..., Z3,_} from Py, samples D; = {Z1, ..., Z}, } from P;, number
of folds K. ‘

2: Randomly split source indices [N;] random folds of equal size: 71, ..., Zk.

3: for k € [K] do

4: Produce ML estimate i~*) using D5, = Ds \ Ds i, where Dy i, := (Z3 @ j € Iy,).
5: Produce ML estimate a(~*) using Dg . and Dy.

6 Construct 8, per Equation (T) with 7i := 7i-*), @ := a(~*), and samples D, , and D;.
7

Construct 7, per Equation () with i := (=% a := al=%, 5 .= %, and samples D; j,
and D;.
8: Compute the average of the K estimates: § := - Zszl 0 and 0% := L Zszl o7

9: Return: Mean estimate 6 and variance estimate 52.

In particular, this implies that, for any 6 € (0, 1), the set

Ci_s == 0 — LZ& 275"‘ LZ& 2
VN, VN, o/

is a 1 — § confidence interval for 0, where zs denotes the & quantile of a standard normal R.V.

A complete theorem statement can be found in Theorem In Appendix [C} we present a
generalization to M-estimators (Theorems [C.I] and [C.4) and a corresponding proof — the above
follows as a special case. We also provide examples of other target parameters, including rating
variance and quantiles in Remark [C.2] of the same appendix, which may be of independent interest.

The validity of Theorem 3.I]relies on several key assumptions, formally outlined in Appendix [B] Of
these, the most important is double robustness, which requires the product of nuisance estimation
errors to decay at parametric (i.e. v/Ny) rates. Formally, this assumption can be expressed via the
condition that

18 = aofl g - AT — ol 2 = 0p(N;H?) 3)
on each fold. See Appendix [B| for definition of L? norms and a formal definition of op notation
(here, Op(Nt_ﬂ ) denotes convergence in probability at Nt_ﬁ rates). Notably, this condition allows

each individual nuisance estimate to converge at non-parametric rates, thus permitting coverage even
when estimates of either o or 1 are of lower quality. For instance, one could have

max {19 = poll 2, @) — aollzs | = o (N ")

and still maintain valid coverage. In other words, when we state that our our estimator will provide
valid coverage when either either (i) a model trained to predict human ratings using persona ratings
and source data observed under sampling bias (iz), or (ii) a reweighting model that corrects for
sampling bias () is of sufficient quality, we refer precisely to this product of errors condition (3).

We also note that the above convergence rate does not directly depend on the quality of persona
ratings. Rather, the persona ratings serve as an extra covariate onto which we can regress human
ratings Y. When persona ratings are highly correlated with human ratings, we may obtain faster
convergence rates for ji. However, this does not prohibit convergence even when the quality of
persona ratings is low. This phenomenon is illustrated in our experiments below.

Estimation Details. In Theorem [3.1] above, estimating i is a standard regression task that can be
accomplished using any off-the-shelf model (e.g. gradient boosted trees, neural networks). How-
ever, estimation of «g(w, ¢), which is a complicated ratio of likelihood ratios and propensity scores,
is more subtle. The standard approach for doubly-robust estimation would involve learning & and
T separately (e.g., via gradient boosted trees) then estimating & by taking the ratio of predictions
produced by each model. However, because w can occupy a high dimensional (e.g., text) space, the
variance in this ratio can be quite high. This variance in turn propagates to downstream estimates.

To address this challenge, we leverage a “Riesz loss” (Chernozhukov et al.| [2022bfa; [2023) to es-
timate ag. Rather than learning wy and 7y independently, the Riesz loss directly learns the ratio
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ag(w, ¢). For our setting, letting S (w) := wo(w)/mo(w), the Riesz loss minimizer is given by:
Bo = argmin {E,[C'- B(W*)°] — 2E,[3(W")]} . @)

Therefore, to estimate o, we minimize the finite-sample analogue of Equation ﬂ using Dy, and
D, then plug this into Algorithm[I] (see Appendix [D]for details). As we show in §[4] this Riesz loss
approach significantly improves the quality of downstream estimates.

4 EXPERIMENTS

Validating estimators under evaluation sampling bias requires datasets with detailed rater charac-
teristics, rating completion information, and a mechanism for manipulating the magnitude of bias.
Such datasets are scarce. Even the most extensive datasets (e.g., DICES (Aroyo et al., [2023)) do
not afford control over covariate shift or selection bias. To address this gap, we introduce a Persona
Simulation Framework (PSF) that provides complete rating tuples Z = (X, V,C.,Y, Y) and allows
us to vary (i) covariate shift, (ii) selection bias, and (iii) persona quality in parallel. The PSF
contains three specific datasets, each of which simulates evaluation data with increasing realism:

* Synthetic: All nuisance functions and target parameters are fully known (see Appendix [E)).

* Semi-Synthetic: We sample 1000 real user conversations from PRISM (Kirk et al.l 2024) and
obtain the “ground truth” target parameter 6, by treating ratings returned by an LLM-as-a-judge
as human ratings (Y). We sample 50 such LLM ratings per item. Here, true nuisance functions are
unknown. We sample persona ratings Y by adding controlled error to the LLM-as-a-judge ratings
(see §[4.T). This dataset instructs raters to assess the “helpfulness” of outputs on a 1-100 scale.

* Real-World: We sample real user conversations, rater characteristics (e.g., age, race), and human
ratings (Y") from DICES (Aroyo et al.,|2023)), resulting in 300 conversations each with 25 human
ratings each. We then sample persona ratings Y by (i) adding controlled error to human ratings
(see § A1) and (ii) via an LLM-as-a-judge with persona-based prompting. This dataset instructs
raters to assess the “harmfulness” of outputs on a 1-4 scale.

In addition to providing a foundation for validating our doubly-robust estimator, the PSF offers a
resource for the community to test future evaluation approaches under evaluation sampling bias.

4.1 DATASET GENERATION PROCEDURE

We now describe how semi-synthetic (PRISM) and real-world (DICES) datasets are generated in
the PSF. Further setup details, including prompts used for synthetic dataset generation, are reported

in Appendix

Source and Target Populations. In the semi-synthetic dataset (PRISM), the source population
consists of conversations where users are prompted to engage in controversial topics, while the
target population consists of conversations with no guided prompts. In the real-world dataset
(DICES), the source population contains 350 single-turn conversations flagged by safety experts
as containing a single harm type (e.g., misinformation, legal), while the target contains more
complex conversations rated as containing multiple types of harm. In both cases, we model each
sample as a single user—system exchange extracted from a multi-turn dialogue. We embed the
input—output pair from each exchange into a low-dimensional space by first applying an embedding
model (MiniLM-L6-v2) then projecting to 15 dimensions via UMAP (Becht et al.| 2019)E] We also
vary the demographic composition of raters across populations. In both PRISM and DICES, we
define the source distribution Ps(X) using marginal probabilities of rater characteristics reported
in DICES, and target distribution P;(X) using population statistics released in the U.S. Census
Bureau’s 2022 Annual Social and Economic Supplement (Guzman & Kollar, [2023).

Covariate Shift. To vary the magnitude of covariate shift, we control the mixture between the
source and target populations. We vary the content characteristics by controlling the proportion
¢ € [0,1] of target items contained within the source sample (sub-sampling from the full data to

“We selected 15 dimensions to ensure embeddings retained some predictive signal for ratings and
source/target membership while keeping dimensionality low; results remained stable for > 12 dimensions.
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ensure that source and target sample sizes remain fixed). Additionally, we vary the rater distri-
butions by taking the convex combination between all groups in each demographic stratum with
normalization. The magnitude of the resulting covariate shift between samples is then given by the
Sinkhorn Distance A(W*, W) (Feydy et al., 2019), where recall that W = (X, V') and V denotes
the embedded content characteristics (MiniLM-L6-v2 + UMAP). We report the Sinkhorn distance
normalized by subtracting the baseline case where there is no covariate shift for semi-synthetic
and real-world settings, as it is inevitable that there will be variation in text embeddings despite
sampling i.i.d. from pre-defined categories (e.g., harm types) within a population. This measure
captures covariate shift resulting from content characteristics and demographic attributes in parallel.

Selection Bias. We model rater attrition—when raters fail to provide a rating due to failed attention
checks or task abandonment—by varying the probability that each item is rated. In PRISM, we
prompt the LLM to output both a rating and a non-response “refusal” flag. In DICES, we use rater
self-assessments of task understanding to assign attrition scores (see Appendix [E). We then trans-
form attrition scores into dropout probabilities using a Beta CDF with az = 3 (increasing J increases
selection bias). We censor ratings according to these probabilities while retaining the “true” rating.
We quantify the magnitude of selection bias via the dropout rate, i.e., the probability that a rater
fails to rate an item. Crucially, the dropout rates we simulate mirror those observed in practice. In
DICES, 19 of 123 raters (15.4%) were excluded due to failed attention checks, while in PRISM, 104
of 1500 raters (6.9%) failed to provide ratings after completing the background survey. As we show
in our results, existing methods (e.g., RePPI (Ji et al.}|2025)) exhibit severe miscoverage at these em-
pirically observed dropout rates. This underscores the importance of correcting for selection bias.

Persona Quality. To systematically manipulate the quality of persona ratings, we perturb human
ratings with controlled error. This error perturbation has (i) a bias parameter n € [—1, 1], which
induces a systematic shift, and (ii) a correlation parameter p € [—1,1], which parametrizes the
Pearson correlation with human ratings. We construct the persona rating via a Cholesky-based
procedure that transforms independent Gaussian noise to achieve the target correlation p:

Y == Cllp(ﬁ : Y + V ]- - /J2 ° ZJY + TI(ymax - ymin)>ymin7ymax)7

where Ymin, Ymax define the interval of the rating scale, and Z represents independent Gaussian
noise. To verify that our findings are robust to any artifacts of this perturbation process, we
complement this error perturbation approach with persona ratings sampled from real LLMs.

4.2 SETUP DETAILS

Models. We use GPT-5 to generate synthetic “human” ratings for PRISM — i.e., used as Y in
our framework to obtain the ground truth target parameter ;. We use Claude-{Haiku 3.5,
Sonnet 3.5} and GPT-{5, 40-Mini} to generate persona ratings for DICES. We report
prompts, sampling temperature and decoding methods used for each LLM in Appendix

Estimators. We compare Sample Average, IPW, Persona-Based Estimation, Persona-Augmented
Regression (PAR), PPI++ (Angelopoulos et al., 2023b), and Recalibrated PPI (RePPI) (Ji et al.,
20235) estimators against two doubly-robust variants: (i) DR (Classical), which learns nuisance
functions (w,7), and (ii) DR (Riesz), which uses Riesz loss minimization to directly produce an
estimate & of a. Nuisance functions were tuned via hyperparameter search (see Appendix [E).

Metrics. We evaluate estimator quality using three metrics: Bias (MAE): |0 — 0, |, absolute deviation
from the target parameter; Coverage: Pr(6; € [6iow,6hign]), the probability that the confidence
interval covers the true parameter; and Interval Width: Opign — O1ow, the length of the interval.

4.3 RESULTS

Finding 1: DR (Riesz) obtains lower bias and improved coverage than baseline estimators.
Figures [3] and [4] present our main findings varying (i) covariate shift, (ii) selection bias, and (iii)
persona quality over all three datasets (N = 40 trials per setting). We present cross-sectional
results in Fig. [3| and average in Fig. [d] As illustrated in Fig. [3] DR (Riesz) obtains valid 95%
CIs when (i) persona quality is high (top), (ii) covariate shift is moderate (middle) and (iii) across
ranges of selection bias (bottom). In contrast, baseline estimators obtain valid coverage only on
Synthetic when: (i) persona quality is very high (Fig. |3| top left) and (ii) and dropout rate is high
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Figure 3: Coverage by persona quality (top), covariate shift (center), and selection bias (bottom). DR (Riesz) at-
tains better coverage than all baselines. Baselines with 0% coverage omitted to reduce clutter. n = 0.1; p = 0.6
for bottom two rows. Fig. [T2H14] (Appendix [E) presents analogous results for Bias (MAE) and Interval Width.

Method \ Synthetic \ PRISM \ DICES
| Bias Coverage ~ Width | Bias Coverage  Width | Bias Coverage ~ Width

Sample Average | 0.73 £0.17 0.06 £0.03 0.35 +0.01 | 1.30 £0.02 0.00 1.49 0.10 0.00 0.07

IPW 0.48 +0.05 0.00 1.00 £ 0.20 | 25.49 +0.02 0.00 2.62 +£0.03 | 0.17 0.07 0.10

PAR 0.06 0.44 +0.03 0.10 0.83 +0.01  0.02 £0.01 0.91 0.05 0.04 0.02
Persona-Based | 0.37 £0.01 0.00 0.17 10.00 £ 0.01  0.00 1.33 0.34 0.00 0.05
PPI++ 0.69 £0.16 0.03 £0.02 0.17 £0.01 | 1.03 £0.01 0.00 1.01 0.06 0.01 0.03
RePPI 0.10 £0.01 0.56 £0.09 0.19 0.63 +0.01 0.66 £0.02 1.36 0.04 +0.01 0.40 0.05

DR (Classical) | 0.07 0.85 £ 0.01 0.21 0.68 +0.01 0.82 £0.02 1.75 0.05 0.32 0.06 + 0.01
DR (Riesz) 0.03 1.00 0.28 £ 0.01 | 0.46 £ 001 0.93 +£001 1.68 0.02 0.86 +0.01 0.09

Figure 4: Average Bias (MAE), Coverage, and Interval Width across experimental conditions presented in
Fig. E} Values in parentheses denote standard error (values < 0.01 omitted to reduce clutter).

(Fig. [3 bottom left). While counterintuitive, the second observation highlights the importance of
examining covariate shift and selection bias in parallel; as dropout rate increases in Synthetic, the
mean of remaining source samples more closely resembles that of the target distribution, leading to
coincidentally higher coverage. Yet coverage remains poor on both PRISM and DICES.

Finding 2: DR (Riesz) yields improved coverage and lower bias (MAE) than DR (Classical).
Across levels of covariate shift, selection bias, and persona quality, we observe DR (Riesz) (Fig. [3}
solid lines) obtains improved estimates compared to DR (Classical) (Fig. [3} dashed lines). While
this behavior also appears in Synthetic (Fig. [3} left column), the gap between DR (Classical) and
DR (Riesz) is especially pronounced when learning nuisance functions on embeddings of high-
dimensional text (Fig. |3f PRISM, DICES). This illustrates the importance of directly estimating the
re-weighting term oo (W, C) (Equation. (@) rather than learning wo (W) and mo (W) separately.

Finding 3: DR (Riesz) makes better use of persona ratings than baseline estimators. Several of
our baselines — RePPI, PAR, and Persona-Based — use persona ratings to compute estimates. How-
ever, across levels of persona quality (Fig[3} top row), DR (Riesz) produces higher quality estimates
than these baselines (with valid coverage for p > .65 on both PRISM and DICES). Fig. [5| extends
this analysis to persona ratings obtained from real LLMs on DICES. For all LLMs, we observe that
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coverage of DR (Riesz) (solid) is markedly higher than that of RePPI (dashed). Further substanti-
ating our systematic perturbation study Fig. |3| (top row), we observe that real LLMs that exhibit a
higher correlation with human ratings (e.g., GPT-5; p = 0.43) yield improved coverage over those
with lower correlation (e.g., GPT-40 Mini; p = 0.23). Furthermore, despite having lower correlation
coefficients, we observe several models achieving comparable coverage to our artificially perturbed
persona ratings (Fig. 3} p = 0.6). Taken together, these findings illustrate that persona ratings from
real LLMs-as-judges can be used to improve downstream estimates under evaluation sampling bias.

5 RELATED WORK

We now provide a brief overview of related literature (see Appendix [A]for a detailed discussion).

Automated Evaluation with Persona Prompting. To address evaluation sampling bias, one
strategy is to use an automated rater to rate outputs from the target distribution. Under this LLM-as-
a-judge approach, a judge GenAl system rates the outputs of a farget GenAl system (Li et al.| [2024;
Elangovan et al., 2024} Ye et al.} 2024; [Bubeck et al., 2023} Zheng et al.| [2023). Because human
raters often disagree on criteria such as “helpfulness” or “relevance” (Kirk et al.l2024)), prior work
has explored instructing judge systems to adopt personas — descriptions of humans with specific
characteristics (Castricato et al., 2024} [Frohling et al., 2024; |Orlikowski et al.| 2025} [Deng et al.}
2025)). However, work has also shown that persona ratings are often an imperfect proxy for human
ratings (Santurkar et al., 2023} Neumann et al., 2025). Thus, our work treats persona ratings as a
useful yet incomplete proxy for human raters to improve GenAl system quality estimates.

Frameworks for Sample Efficient Estimation. Other works propose methods for improving statis-
tical inference when data is scarce but ML predictions are abundant. Prediction-Powered Inference
(PPI) and its computationally efficient variant PPI++ use ML predictions to tighten confidence inter-
vals through a “rectifier term” that corrects for bias in ML predictions (Angelopoulos et al.,|2023aj;
Chatzi et al.| 2024} [Fisch et al.| [2024; |Angelopoulos et al., [2023b). Ji et al.| (2025) show PPI++ to
be a special case of M-estimation with surrogate outcomes, a classical problem in causal inference
(Robins et al.,|1994; |Robins & Rotnitzkyl |[1995; Tsiatis, 2006), and in turn propose recalibrated PPI
(or RePPI) to offer more efficient estimation. However, these approaches fail to give valid coverage
under evaluation sampling bias. We develop a doubly-robust estimator (Bang & Robins| [2005; |Cher-
nozhukov et al.||2018;/2023)) that can handle covariate shift and selection bias simultaneously while
making use of surrogate predictions/persona ratings. We also use “Riesz losses” (Chernozhukov
et al.| 2023;2022aijb) to estimate complicated nuisance parameters using generic ML learners.

6 CONCLUSION

Our work answers calls for greater consideration of external validity concerns in Generative Al eval-
vation (Weidinger et al., 2025} Ibrahim et al.||2024; Liao et al.,[2021};|Salaudeen et al.,[2025) through
a theoretically rigorous and empirically validated estimation framework. Our framework provides a
path forward for combining limited human ratings observed under sampling bias with imperfect per-
sona ratings to obtain statistically valid system quality estimates. Beyond our specific doubly-robust
estimation framework, our Persona Simulation Framework (PSF) also provides a reusable commu-
nity resource for validating future methods designed to address sampling bias. While our framework
relaxes the MCAR assumption imposed by existing estimation frameworks, it also imposes assump-
tions — e.g., no concept drift — on the evaluation process. Future work should also consider how vi-
olations of this and other assumptions in Appendices[B|and [C|might affect system quality estimates.

10
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7 REPRODUCIBILITY STATEMENT

We take several steps to ensure the reproducibility of our work. First, we document all theoretical as-
sumptions required by our framework and provide complete proofs in Appendix|[B| Second, we pro-
vide thorough documentation of our experiment design, hyperparameters, and datasets required to
reproduce our empirical results in Appendix [E] Finally, we provide code necessary to reproduce our
analysis in the supplementary material. We plan to release all code and datasets in our Persona Simu-
lation Framework along with the paper so that the broader community can build upon our framework.
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This Appendix is organized as follows:

* Appendix [A]provides an extended discussion of related work.
* Appendix[B|provides formal setup of our framework, notation, and theoretical results.

* We extend our analysis to general M-estimators under covariate shift with surrogate
(persona) ratings in Appendix [C}] We provide a general proof, from which our results
in Appendix [B] follow.

* Appendix [D] provides details on our Riesz loss minimizer used to perform re-
weighting.

* Appendix [E| details our experimental setup and provides additional empirical results.

A EXTENDED RELATED WORK

A.1 THREATS TO THE EXTERNAL VALIDITY OF GENERATIVE Al EVALUATIONS

In the quantitative social sciences, external validity describes the extent to which findings from a
study generalize to different populations, settings, and times (Findley et al.| [2021)). Threats to ex-
ternal validity have long been studied in survey research. For example, Levay et al.| (2016) found
notable discrepancies between the demographic composition of convenience samples obtained via
Amazon Mechanical Turk (MTurk) versus nationally representative American National Election
Study (ANES) samples. While Mullinix et al.| (2015)) observe that study findings often remain ro-
bust to such discrepancies, (Zhou & Fishbach, 2016) demonstrate that differential non-compliance
— a form of selection bias in which participants drop out from studies non-randomly — can have
substantive effects on studies’ results. Myriad factors contribute to this selection bias, such as par-
ticipants’ motivation and language skills (Goodman & Paolacci, [2017)).

More recently, concerns have emerged surrounding the external validity of evaluations obtained
from general purpose benchmarks (e.g., MMLU, BigBench) and leaderboards (e.g., Chatbot Arena)
(Ibrahim et al., 2024; Ouyang et al., 2023} [Liao & Xiao, 2023). As with survey research, GenAl
performance measurements can be subject to covariate shift when the distribution of system outputs
or human raters differs between a lab-based evaluation and target deployment context (Saad-Falcon
et al., 2023} |[Leemann et al., [2024; [Kirk et al. 2024). Likewise, differential non-compliance can
occur when raters in online rating platforms drop-out due to failed quality checks (e.g., due to
poor English language proficiency) (Hsueh et al.,[2009). Such selection bias can confound results if
common factors (e.g., English language proficiency) affect rater drop-out and their ratings. Selection
bias can also arise if some raters are more likely to voluntarily assign ratings than others — e.g.,
when busy physicians rate complex system outputs less frequently than more available medical
students. While growing work has highlighted external validity as an important desideratum for
evaluations (Ibrahim et al., 2024; |Ouyang et al.l 2023} [Liao & Xiaol |2023)), to our knowledge,
no existing statistical frameworks simultaneously address covariate shift, selection bias, and high-
dimensional model outputs while leveraging imperfect automated ratings.

We address this gap by developing a statistical framework for characterizing and mitigating threats
to the external validity of GenAl performance evaluations. We devise a data-efficient estimator that
corrects for covariate shift and selection bias in parallel, given ratings from a source population
and predictions generated by a black-box machine learning model over both source and target pop-
ulations. Some advances in our framework provide a new perspective on classic methodological
challenges in survey research. For example, we provide a doubly-robust alternative to the reweight-
ing estimators traditionally used to correct for selection bias. This approach obtains valid coverage
even when the re-weighting model is misspecified. Our framework also addresses novel challenges
that arise in the GenAl evaluation context. In particular, we leverage embeddings to support robust
statistical inference over high-dimensional model output spaces (e.g., text, image) as opposed to
the structured data formats traditionally used for survey research. Central to our approach is the
principled adoption of synthetic ratings generated by an Al persona, which we discuss next.
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A.2 AUTOMATED EVALUATION WITH LLLM-AS-A-JUDGE AND PERSONA PROMPTING

Given the cost and scalability challenges associated with collecting human ratings, automated meth-
ods are increasingly used to scale up evaluation workflows traditionally performed by humans. In
particular, the LLM-as-a-judge paradigm introduces a second judge GenAl system to evaluate the
outputs returned by a rarget GenAl system (Li et al., 2024} |[Elangovan et al., 2024} [Ye et al.|, 2024;
Bubeck et al., [2023} |[Zheng et al., [2023). Because human raters can disagree as to whether a model
output is “helpful”, or “relevant” (Kirk et al.,2024), recent work has proposed instructing judge sys-
tems to adopt personas—that is, descriptions of humans with specific sociodemographic characteris-
tics, such as gender and race (Castricato et al., 2024} |Dong et al., 2024} [Frohling et al., [2024; 'Wright!
et al.,[2024;|Orlikowski et al., 2025} River Dong et al.||2025). This persona-based prompting strategy
is designed to better-account for sources of rater-specific variation throughout the evaluation process.

These automated evaluation methods offer a promising approach to mitigate the external validity
threats described in § In particular, judge systems with persona prompting can generate
low-cost synthetic ratings when human ratings from the target population are limited. However,
because such ratings may be systematically biased (Santurkar et al.| 2023} [Neumann et al., 2025)),
their direct adoption in evaluation pipelines may yield biased performance measurements. Our
proposed doubly-robust approach addresses this challenge by treating LLM-as-a-judge ratings as
potentially informative yet biased proxies for human ratings. This approach combines surrogate
ratings with human ratings (observed under evaluation sampling bias) to obtain statistically valid
confidence intervals in the target population of interest.

A.3 GENAI SYSTEMS AS HUMAN SURROGATES IN SOCIAL SCIENCE STUDIES

While our work foregrounds GenAl evaluation challenges, it bears conceptual and methodological
similarity to work investigating GenAl systems as surrogates for human subjects in social science
studies. Inline with the turn towards crowdworkers as a low-cost surrogate for target study popu-
lations (§ [A.T), this growing line of work introduces GenAlI systems as a surrogate for more costly
human subjects (Argyle et al., 2023). Notably, such work often targets the very same statistical
parameters recovered by our general M-estimation framework (Table[I). For example, let v denote
an item in an opinion poll (e.g., “do you believe in the right to bear arms?”), let X denote rater
characteristics (e.g., locale and demographics, per (Santurkar et al., [2023))), and let Y represent a
binary response (endorse/not endorse) to the survey item. The parameter

Ht(v) = Et[y | V= U] (5)

denotes the proportion of raters in the target population who endorse this survey item. Thus, re-
searchers can also leverage our methodology when using GenAl systems as surrogates for human
subjects in social science studies. Given a finite sample of human ratings from the source popu-
lation {(X;, Vi, Y;)}Y., ~ Ps, and surrogate data produced for the source and target population,
researchers can recover informative and statistically valid confidence intervals for parameters de-
fined over the target population of human subjects.

Given the overlap between our motivating application and social science studies, we also discuss
methods advancing the principled adoption of GenAl systems as surrogate data in social science
research (Broska et al., |2024; [Egami et al., 2024} [2023)). These works view surrogate data as a
flawed (Bisbee et al., [2024; [Park et al.l 2024; Takemoto) 2024} /Abdurahman et al., |2024) but po-
tentially informative source of information for statistical inference in social science studies. For
instance, Broska et al.| (2024)) leverage prediction powered inference (Angelopoulos et al.l [2023a)
to correct for bias in surrogate data. However, as discussed in § PPI is vulnerable to covari-
ate shift and selection bias between source and target study populations. Most related to our work,
(Egami et al.| |2024; [2023) introduce a doubly robust estimation approach that generalizes PPI by
applying a bias-correction to the underlying moment function (as opposed to the outcome variable).
Critically, however, this approach takes a design-based sampling procedure, which assumes that the
probability of labeling a sample is known by the researcher in advance. This precludes the more
general setting we study in our work, in which the reweighting function is unknown in advanceE]

5As noted in (Egami et al.| [2024% 2023), this design-based sampling approach is well-motivated when the
full corpus of documents to be annotated and corresponding sampling probabilities are known in advance.
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Having discussed both GenAl and social science applications of our framework, we now turn to the
underlying statistical methodology we advance in this work.

A.4 STATISTICAL FRAMEWORKS FOR SAMPLE EFFICIENT-ESTIMATION

Recent developments in black-box predictive models that can operate on multi-modal representa-
tions has spurred significant interest in how these predictions might be used to improve statistical
inference (Angelopoulos et al., [2023ajb; [Fisch et al.l [2024; [Eyre & Madras, [2024} |Dorner et al.}
20245 Ji et al.| 2025} |Saad-Falcon et al., 2023; [Fogliato et al.| 2024). These frameworks address the
challenge of making valid statistical inferences when labeled data is scarce but black-box predic-
tions cheap and abundant. We briefly review developments in this literature before identifying key
gaps addressed by our approach.

Prediction-Powered Inference (PPI) uses predictions from a black-box machine learning model to
tighten confidence intervals when labeled data is scarce (Angelopoulos et al.l [2023ajb). This is
done through the addition of a “rectifier’” — a mean zero term that contrasts the performance of
the model’s predictions on the labeled and unlabeled points. While initial variants of PPI were not
computationally efficient, |Angelopoulos et al.| (2023b)) introduce a PPI++ framework, which intro-
duces a “trust” parameter A to control the magnitude of the rectifier. This allows for efficiently
computable confidence sets that are provably tighter than those computed just from labeled data.
We also emphasize recent work due to Ji et al.[ (2025), which shows that PPI++ is just a special
parametric class of solutions for M-estimation with surrogates outcomes — a classical, well-studied
problem in the causal inference/missing data literature (Robins et al.l [1994; Robins & Rotnitzky,
1995; [Tsiatisl |2006). While the authors do not directly mention Neyman orthogonal scores (Ney-
man), 1979} |Chernozhukov et al., 2018)) in their work, they construct what is implicitly a Neyman
orthogonal score for the problem at hand and propose a solution based on cross-fitting. Additional
theoretical developments along these lines have been proposed —|Ao et al.|(2024) propose a frame-
work for adaptive estimation of linear functionals based on supplied predictions. Likewise, Xu et al.
(2025) consider a general semi-parametric framework for estimating functionals of the data gener-
ating distribution in the presence of ML predictions. However, none of the aforementioned works
provides a framework usable in settings where (a) unlabeled and labeled samples come from differ-
ent distributions (i.e. covariate shift) and (b) data is missing at random (MAR), (i.e. the probability
that outcomes are observed for any given individual depend on their features). We close this gap
by proposing a doubly-robust estimator (Bang & Robins| [2005) and a general algorithm based on
cross-fitting (Chernozhukov et al., 2018) for solving M-estimation problems in the presence of both
covariate shift and heterogeneity in data missingness. We also incorporate recent ideas on “Riesz
losses” (Chernozhukov et al. [2022b}, 2023} 2022a} Hirshberg & Wager] [2021)), loss functions that
specify complicated nuisance functions as their minimizers. By using Riesz losses to learn the re-
weighting function oo (W, C'), we avoid constructing plug-in estimates for wg and 7y and computing
their quotient, which can result in high bias.

However, this assumption is violated in our setting, in which the true source/target distribution weights are
unknown. As a result, the framework proposed by (Egami et al., [2024; 2023) is not directly applicable in our
motivating setting with evaluation sampling bias.

17



Under review as a conference paper at ICLR 2026

B ASSUMPTIONS, NOTATION, AND RESULTS FROM SECTIONE]

B.1 ASSUMPTIONS ON DATA-GENERATING DISTRIBUTIONS

We start by formally describing the data generating processes considered throughout the paper. We
start by describing the assumptions we place of the “full-data” source and target distributions.

Assumption 1. We assume there are two “full data” distributions over tuples (X,V,C,Y,Y): a
source distribution Ps and a target distribution P;. For simplicity, we let W = (X, V') denote the
extended set of covariates, and assume W & W where W is some generic measurable space. We
assume the following hold:

1. (No Concept Drift) The conditional distribution of Y given W is the same under P and

Py, i.e. for any w
P YeE|W=w)=P((Y€E|W=uw)

for any event E.
2. (Surrogates are Functions of the Data) The observed surrogate Y satisfies:
Y = f(X,V,e),
where ¢ is a random variable independent of the vector (X, V,C,Y).
3. (Positivity) We have
0<mW)<1 where mo(w) == Ps(C=1|W = w).

4. (Conditional Ignorability Under Source) The outcome Y is conditionally independent of
C given extended covariates W, i.e. we have

YLC|W,
where the conditional independence is under P;.

5. (Overlap) The likelihood/density ratio of W between P; and P;, defined as

() i= T w)

exists and is finite almost surely.

We may interchangeably write P® or P, for b € {s,t} as the distribution over source and target
samples, and E® and [, interchangeably as the corresponding expectations. We typically write

(X, VP, Ct Y Y?) and Wb = (X, V?) for samples drawn from P.

We briefly parse the above assumptions. The first simply says that even if the distribution of
W = (X,V) changes wildly, the conditional distribution of Y remains the same. The second

assumption regards the predictions/surrogate outcomes and is trivially satisfied if Y is the prediction
of a generative Al model that depends only on W and independent, external sources of randomness.
The third assumption, positivity, states that under the source distribution there is always some proba-
bility we observe the true outcome. The fourth assumption is an analogue to conditional ignorability
from the causal inference literature, and says that the outcome Y is conditionally independent of
whether or not data is observed given covariates. We note that, under the above assumptions, Y is
also conditionally independent of Y and C' given W. Lastly, the final assumption guarantees over-
lap, or that the support of P, is contained in the support of P, — a necessary assumption in order to
perform inference under covariate shift.

The above assumption concerns fully-observed data — in practice, the learner will only ever observe
outcomes for samples where C' = 1. That is, there is partial-observation of outcomes in the source
population, but outcomes are entirely absent in the target population. We formalize this in the
following assumption.

Assumption 2. The learner only ever observes Y for samples where C' = 1. In other words,
observed samples form each distribution take the following form:
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1. (Source Samples) The learner observes samples of the form Z° = (X*® V* C* C* -
Y* Y*) from P.

2. (Target Samples) The learner observes samples of the form Z¢ = (Xt V¢, }A/t) from P,.

An important consequence of Assumption [I]is that, even when only observe partial data (per As-
sumption [2), we can still identify general classes of estimands under the target distribution P;. This
is clarified in the following lemma.

Lemma B.1. Let f be an arbitrary function of (Y, }7, W). Then, we have
Eolf (Y, Y, W] = Eslao(W*, C°)f(YV*, Y, W*)],

where ap(w,c) == ¢

Proof. Observe that we have:
wo (Ws)
L mo(W?)
-OJO (Wg)

E[ao(W*,C%) f(Y*,Y*, W*)] =E, |C*

f(YS, }/}s’ Ws):|

E (CSf(YS,f/S,WS) | W)}

S

L mo(W*)
_OJO(WS) s s s s s s
o € |W)E(f(Y,Y,W)|W>}

_E, [MO(WS)E (f(YS,}/}S7WS) | Ws)]

= E, [wo(W*) (v, 7, w")]

= Et[f(yta ?t’ Wt)]
In the above, the second equality follows from the tower rule for conditional expectations. The third
follows from conditional independence, i.e. that C* I Y* Y*® | W*. The fourth equality follows by
definition of 7o (W*). The last equality follows since wo(W*) = 4E¢ (/) and since the conditional
distribution of (Y, }A/) is the same under P, and P;.

O

B.2 NOTATION

We now discuss some additional notation that will be leveraged in the sequel.

We will need to condition on independent, random nuisance estimates regularly in the sequel. For
b € {s,t},if U is another random variable (e.g. U = g where g denotes a generic nuisance estimate)
and f(Z,U) is some generic function, we define P} and EY, as the distribution and expectation over
just the randomness in Z while conditioning on U, i.e.

Py(f(Z,U) € E):=Py(f(2,U) € E|U) and EYf(Z,U):=EY(f(Z,U)|U).

We define the empirical distributions with respect to observations as Py, := NL Zj\;l dz; and
Py, := N% 25\21 1) zt, Where ¢, denotes the point-mass distribution on z. Thus, for a general random
function § of data Z°, we have Py, §(Z°) := = 321" §(Z3) and Py, §(21) := = Sy 5(Z0).
We define the L?(P%) norm of a potentially random R?-valued function g depending on a subset of
features S C Z as

~ ~ 1/2 ~ oy 1/2

19l 2y = (EZ [I19C)13]) " = (Eo (I9()113 1)) -

z

We likewise define the L>*(P) norm § as the |[g]| o (py) := inf {b € R : P5([|g]loc > b) = 0},
where ||z||co := max{z1,...,z4}. Note that whenever g is random, these norms are random
variables as well.
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Given a (random or deterministic) sequence (X}, ),>1 in a normed space (X, ||-||) and a deterministic
scalar sequence (by,),>1, we say X,, = o(by,) if lim,,_, o0 H)b(—”” = 0 almost surely and X,, = O(b,,)

if there exists a constant B > 0 such that ”)b(—"” < Bforall n > 1. We say a sequence of random

variables (X,,),>1 converges in probability to zero, denoted by X, L) 0, if we have
= n— 00

lim P(|X,|]|>¢) =0  foranye > 0.

n—oo

We say X,, = op(by,) if X, /b, L 0, and X,, = Op(b,,) if for any € > 0, there is a constant M, > 0
such that lim sup,, , ., P(|| Xn||/bn > M) <e.

If (X,,)n>0 is a sequence of random variables in R?, we always refer convergence in probability

1/p
with respect to the ¢y-norm, where ||z, := (ZZ:1 xﬁ) forany 1 < p < oo. Likewise, if

(Xn)n>o is a sequence of random matrices, we assume convergence in probability is defined with

respect to the operator norm || X ||op = sup ,cge || Xull2. For a non-singular matrix A € R%4*4,
lulla=1

we let A~ denote its inverse, and A~T denote the transpose of the inverse. If z € R? is a vector,

we let 2%2 := za T for convenience.

B.3 GENERAL DE-BIASED INFERENCE FOR AN EXPECTED OUTCOME

We now state and prove our main theorem for performing inference on an expected outcome 0; =
E.[Y*] under evaluation sampling bias (i.e. covariate shift and selection bias). We start by stating a
result that assumes the learner is given nuisance estimates that are independent of the entire sample
of data. In the sequel, we describe an extended, cross-fitting based result that makes more efficient
use of the data.

Theorem B.2. Suppose Assumption|l|holds, and assume the learner has access to mutually inde-
pendent samples Z3, . .., Z3;_from P, and Zi, . .., Z}, from P, as outlined in Assumption Let
po(w) and ag(w, s) be true, unknown nuisances given by

po(w) =By [Y* | W =w] =B [Y* | W* =w] and ap(w,c) = ch(w),
7r0(w)
where mo(w) := Ps(C* =1 | W* = w) and wo(w) = jfiz (w). Assume the following conditions

hold.

1. (Ratio of Sample Sizes) There is some constant 0 < y < oo such that Ny /Ns — .

2. (Nuisance Convergence) We have access to estimates [i, Q that are independent of the sam-
ple such that

17— poll (s 18 — ol aps) = 0p(1)
and "

|1~ NO||L2(Pg) Jla - 0<0||L2(Pg) = op(IV, )
forb € {s,t}. Further, we assume &(w,0) = 0.

3. (Boundedness) The representer cg(W?*,C?) and the outcomes Y*° are almost surely

bounded.
Let the estimator 0 be defined via the de-biased equation
0 := Py, i(W*, V1) + Py a(W*, C*) {YS — (W, ?S)} .

Then, we have asymptotic linearity, i.e.

Ny N

VN - 6) = %ﬁ > oW+ V}ft;amf’(/‘;) {7 = mo(W))} + o2 (1).
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Furthermore, we have N
\V Nt(ﬁ — Gt) = N(O,O’2),
so long as the asymptotic variance, given by
o? = Vary[uo(W")] + 1E [ag(W*, C*)*Var,[Y* | W*]]

is non-zero.

The following corollary shows that one can use the plug-in variance estimate to construct asymptot-
ically valid confidence intervals.

Corollary B.3. Under the same assumptions of Theorem the plug-in variance estimate
~2 ~ t ot 2 Ny ~ s 8\2 s~ 5\12
6% 1= Py, { AW, V) =71} + P G(W, O Y = i(W*)}

is consistent, where i = Zf\il a(Wt Y. Consequently, if the asymptotic variance o

zero, we have
/N, ~
/O_\t(giet) :>N(071)a

2 is non-

and thus

~ ~

Crosi= |0 — 22500+ 22
1-6 - — \/ﬁt 5/27 m 5/2

is a 1 — § confidence interval for 0y, where zs denotes the § quantile of a standard normal random
variable.

The proofs of Theorem and Corollary follow immediately from applying Theorem [C.1
and Corollary in Appendix |C] (which concerns the case of general M-estimation) to the score
m(w,y;0) =y — 0.

B.4 CROSS-FITTING FOR MEANS

We now provide a cross-fitting algorithm for estimating 6; = E;[Y'] and state an analogue of The-
orem[B.2] In short, cross-fitting works by splitting the data in K folds of roughly equal size. If Zj,
denotes the kth fold of data, the algorithm uses all data outside the kth fold (so, in the complement
set Z;) to construct nuisance estimates. These nuisance estimates are then used to estimate the mean
on the kth fold. This splitting strategy ensures that, on each fold, the nuisance estimates and trans-
formed data are independent of one another. This allows one to apply the asymptotic linearity result
of Theorem [B.2]on each fold to asymptotic normality of the cross-fitting estimate.

We now state the cross-fitting algorithm (Algorithm [2)) and corresponding convergence theorem
(Theorem [B.4). The proof of the cross-fitting result follows from Theorem [C.4]in Appendix [C] a
generic result on cross-fitting for M-estimators under sampling bias.

Theorem B.4. Assume the same setup as Theorem and let ﬁ(fk), al=k), §, and G be as in
AlgorithmE] Further, suppose the second assumption of Theorem [B.2] holds for each nuisance
estimate GV .. 5K and &V @) Then, we have

@Tt(eﬁ 0;) = N(0,1).

Thus, the set Cy_; defined in Corollary[B.3|still serves as a 1 — 6 asymptotic confidence interval for
0.
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Algorithm 2 Doubly-Robust Estimator with K -fold Cross-Fitting (detailed version of Algorithm

I: Input: Samples D, := {Z},...,Z3 } from P,, samples D; := {Z},...,Z}, } from P,
number of folds K.

2: Randomly split source indices [V;] into random folds of equal size: 71, ..., Zk.
3: for k € [K] do
4: Produce ML regression estimate 7i{~*) using D ., where Dy j, := (Z7 i € Ii,).
5 Produce ML nuisance estimate &(~*) using D5, and Dy.
6: Produce parameter and variance estimates:
1
b= = D ETVWEY)
N
+ 5 > ahwron {y - wr T}
* JETL
1 & 2
~ L {A(—k) Wt vt — At}
o Y m
S PN URERL
Ny K ~(—k s 1s)2 s ~(—k s Vs 2
e I VAT LA LA

St 1L NNe ~(—k t it
where mj, == 5370 AR (Wi Y.
7: Compute the average of the K estimates: § := S frand3? = LS G2
8: Return: Mean estimate 6 and variance estimate 2.

C GENERAL M-ESTIMATORS UNDER COVARIATE SHIFT

In this appendix, we prove a general result on the convergence of de-biased M-estimators under
covariate and differential non-compliance. Our results from the previous appendix, which regarded
the special case where the target parameter was the expected outcome 6; = E;[Y], follow as a
special case of the following.

Theorem C.1. Suppose Assumption |I| holds, and assume the learner has access to mutually inde-
pendent samples Z7, . .., Zy; from P and Zt . ZJtVt from Py, as outlined in Assumption Let

Yo(w) and ap(w, ¢) be the true, unknown nuisances given by
wo(w)
mo(w)

Po(w) == E m(W' Y 60,) | W= w] and ap(w,c) =

where o(w) := P*(C* =1 | W* = w) and wy(w) := g}z;: (w). Suppose the following conditions

hold.

1. (Ratio of Sample Sizes) There is some constant 0 < vy < 0o such that Ny /Ng — 7.

2. (Nuisance Convergence) We have access to estimates 1, & that are independent of the sam-
ple such that

[l — ¢0||L2(Pg)7 o — O‘0||L2(Pg) = op(1)
and 1/
HM*#O”H(PQ) ) HOZ*OéOHm(Pg) = op(NNy )
forb € {s,t}. Further, we assume &(w,0) = 0.
3. (Boundedness) The representer cag(W*,C?) is almost surely bounded.
4. (Score Regularity) The score m(w,y; 0) satisfies the following regularity conditions:
(a) (Continuity) m(w,y;-) : © — R? is defined and continuous on a compact subset

© C R4
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(b) (Unique Solution) There is a unique solution 6, € R? to equation 0 =
E[m(W*, Y 0,). Further, 0, € O[]

(¢) (Jacobian) The score m(w,y;0) is continuously differentiable with respect to 0, and
the Jacobian Jy := B[V om(W* Yt 0,)] is non-singular.

(d) (Boundedness) We have

sup ||[m(w,y;0)l|2, sup [[Vem(w,y;0)|op < D,

YW, Y »W,Y

for some universal constant D > 0.

Let O be defined as the solution to the empirical estimating equation:
0= IPNHZ(WLta ﬁt) + PNsa(W_]'S7 C]S) {m(W]'S7 Y}S; é\) - ’J;(stz )/}]S)} . (6)

Then, we have asymptotic linearity:

N, N
\/ﬁt(é—et)zx/_—Nithl D0l +7 3 oW, C%) {ml*, Y3 00) = o(W*)} | +or (1)

j=1

Consequently, we have that
VN0~ 0:) = N (0, %),
so long as the asymptotic variance, given by
2o = Jo b (Vare[vo(WH)] + 1E;s [ao(W*, C*)?Var (m(W*,Y*;6,) | W*)]) J; ",
is positive definite.
Remark C.2. Many statistical parameters of interest can be specified via M-estimation problems.

We consider three relevant examples below.

1. First, if we are interested in the mean outcome 6; = E;[Y] (which was the focus of the
previous appendix), this can be trivially specified via the estimating equation:

m(w,y;0) =y — 0.

Thus, the contributions of this appendix serve as a strict generalization of the results in
Appendix [B]

2. Next, suppose we are interested in the variance of responses under the target distribution,
ie. 0; := Var[Y] := E;(Y — E[Y])?]. Then, we can define the stacked estimating

equation
m(w,y; (p,0)) = ((y —yp_)f_ ‘9) '

If n; := (pt, 0:) denotes the solution to 0 = E[m(W?*,Y*; n;)], we note that p; = E.[Y]
and consequently 6; = Var;[Y].

3. Lastly, suppose @ € (0,1) and that we are interested in performing inference on the @Qth
quantile of Y under P, i.e. 0; := F;tl(Q) where Fy ;(x) := P,(Y < z) denotes the CDF
of Y under the target distribution, which we assume is invertible. Define the estimating
equation

m(w,y;0) = Q — 1{y < 0}.
Then, one can check 0 = E[m(W,Y’; 6;)] by definition of the Qth quantile.
We also note that, in the aforementioned examples, the M-estimators only depend on observed

outcomes Y and not the extended set of covariates W. While this is typically the case for most
parameters of interest, we allow m to depend on W for the sake of generality.

SHere, @™ denotes the interior of ©, i.e. the largest open set contained in ©
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The following corollary shows how one can use the above result to construct asymptotically-valid

confidence intervals. This is accomplished by normalizing the parameter estimate 6 by the square
root the classic “sandwich” variance estimator. The consistency of this estimator follows from stan-
dard proof techniques (see|Van der Vaart| (2000); (Chernozhukov et al.|(2018))). With the consistency
the variance estimate, the result then follows from an application of the continuous mapping theo-
rem.

Corollary C.3. Define the plug-in “sandwich” variance estimator as
S=J W T

where V and J are respectively defined as

N, N,
~ 1 ~ Ny 1 ®2
V=— wtyhe? ¢ L a(ws,c?) Ws, Vs W Y
N, ; ( Ng Ny = { ( ) 1/)0( )}
~ 1 N, ~
Ji= 5 D G(W*, C*)Vem(W*, Y 0).
S =1

Then, under the same assumptions of Theorem Y. is consistent, and hence

VNETY2(0 - 09) = N (0, 1,).

Thus, for any fixed unit vector v € R?, the set

H/TZZ/
Ci_s = v’ Zs/2,V 9—|—

forms a 1 — & confidence interval for v’

25/2

C.1 CROSS-FITTING FOR M-ESTIMATORS

As in Appendix [B] we provide a cross-fitting algorithm that allows the learner to make more effi-
cient use of the available data. We also state a corresponding convergence theorem (an analogue of
Theorem [B.4), whose proof follows from from applying the asymptotic linearity of estimators on
each fold.

Theorem C.4. Assume the same setup as Theorem and suppose ﬁ(_k), al=»), 0, and S are as
in Algorithm 3| Further, suppose the second Assumption of Theorem holds for each nuisance

estimate {b\(*l), e ,12(’1() and Y, ... @), Then, we have
VNS0 - 6,) = N(0, 1)
Thus, the set Cy_ defined in Corollary|[C.3|still serves as a 1 — § asymptotic confidence interval for
0.
Proof. First, we know from Theorem [C.] that

~ -1
b = 0: = s B (W)
i=1

—J‘1K7 S ao(W3,C5) {m(W2, Y :00) — vo(W))} + 0 (N, /2.

JELk
Consequently, we have
1 X
0—0,= K};(ak—at)

K Ny
1 1 - S S S S S
= e o | oW + Ky Y (W5, C) {m(W Y71 00) — (W)} | +oe(N; %)
k=1 i=1 JETx

N N
= I Y wo W+ ao(Ws, C) {m(W3, Y55 00) — o (W)} | +op(N;?)

i=1 j=1

24



Under review as a conference paper at ICLR 2026

Algorithm 3 Doubly-Robust M-Estimation with K -fold Cross-Fitting

I: Input: Samples D, := {Z},...,Z3 } from P,, samples D; := {Z},...,Z}, } from P,
number of folds K.

2: Randomly split source indices [IN;] random folds of equal size: 71, ..., Zk.

3: for k € [K] do

4: Produce ML regression estimate ¢)(—*) using Dy ., where Dy i, := (Z7 1 i € Ti,).

Produce ML nuisance estimate a(~*) using D5, and Dy.
Let %) solve Equation (@), i.e.

Ny
1 ~ ~
= ﬁt E 1/)( k)(”itayit)

s Z aD Wy, C5) {mW; ¥ — 09wy, 7))

JELy

5:
6

7: Let fk, IA/k and ik be given as

T K ~(— s s s 5.7
Jk = F O[( k)(WJ,CJ)VOm(WJ 7Y;' 76k)7
5 €Tk
1 &
‘7 - (—k) Wt yt®2
k Nt ;d} ( ) )
N K ~(— S S S o (= S AS ®2
F i AWy, e Lnwy, 8 - 9wy i)
S S ]eIk

8: Compute the average of the K estimates: 6 := &+ Y"1 fpand ¥ := LYK 5
9: Return: Estimate 6 and variance estimate 3.

The result that v/ Ny (5 —6;) = N(0,%) follows immediately from the above asymptotic linearity.

Next, observe that Corollaryyields that, for each k € [K], the variance estimate 5 & 1S consistent
for 3, i.e. that we have £, = ¥, + op(1), and consequently we have ¥ := + Zszl S =

+ Zszl {30+ o0p(1)} = X + op(1). Thus, we have the consistency of the cross-fit variance

estimate. Since X > 0, which follows from non-singularity of .Jy and V;, the continuous mapping

—1/2 _ 271/2
0

theorem also implies that ) = op(1). As a consequence, we have

S-12§ —0,) = V20— 0,) + ( 12 —1/2) 6 -6,
:251/2(5—9t)+0p() Op(N; %)

N

= 2_1/2—J0 Zwo (W +7 > ao(W;, C3) {m(W3,Y556,) — o (W)} | +op(N;?).
Jj=1

In particular, this implies N; S~ 1/2(6 — 6,) = N(0, 1), proving the other claim. O
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C.2 PROOF OF THEOREM[C.T]
Proof. Observe that, by the definition of 5, we have the identity
0= Py, B(W,T1) + P, {@(W, C*) m(W*,Y*:0) — S(W*, 7)) }
= P, GV, V) + oy, {@007,C) (m(W*, Y5 60) — zZ<WS, v}
+ Py, {G(W*, C)Vom(W*,Y*50)(8 - 0) }

where the second equality follows from performing a first-order Taylor expansion with mean-value

theorem remainder and 6 € [6t,9], which we are able to apply since m(w, y;6) is assumed to
be continuously differentiable (this implies Py, {@(W?*, C*)m(W?*,Y*;0)} is also continuously
differentiable w.r.t. #). Rearranging the above expression, we arrive at

VE@ ~0) = /N, (Bi a8, C)Wem (W, ¥30))
T
< (BB (W) + By, {@(V7,C)(m(W*, Y5 60,) = B(W*, 7)) }]

T

To prove the desired asymptotic linearity result, we need to show two things.

1. We must show that T} converges in probability to the true Jacobian, i.e. that T1 = J Ty
0]1»(1).

2. Next, we need to show that

Ty = P, oo (W) + Py ag(W5, C*) {m(W*,Y*;0,) — 1ho(W*)} + op(N, /?)

After we have shown both desiderata above to be true, we can piece the result together. In particular,
we have

VN0 = 6:) = —/Ni(Jg ' + 08(1))
* [Pwowt)+IP>NSao<WS,CS>{m(W%Y%%) Go(W*)} + op(N;17?)

NS

WvZJO Yo(W) + w% Jo oo (W*,C¥)(m(W*, Y 6p) — do(W*)} + 0z(1),
t t 1

j=

which provides the desired asymptotic linearity result. Asymptotic normality now follows immedi-
ately from the above.

Analyzing T5>: First, we argue that 75 is asymptotically linear. To do this, we primarily follow the
proof of Theorem 1 in|Chernozhukov et al.|(2023). For notational ease, let M*® := m(W?*,Y*; 6,).
‘We can rewrite 15 as

Ty = Pr,0o(W?) + Py ag(W?*,C%) {M* — 1po(W*)} + Ry + Ry + R3,
where (letting 1o (w, J) := 1p(w))

Ry =P, { (@ = o)W, 7) } + Py, {ao(W*,C) (o - D)W, %)}

Ry =Py, {(@— a0)(W*,C*)(M* — o (W*))}

Ry = By, {(@ = a0)(W",C") (o = B)(W*, 7).

We show that R{,Rs,R3 = o[p(Nt_l/ 2) (or equivalently that the above terms are
OP(NS_UQ) since Ny, = ©(N;) by assumption).  Since E! [(1271/)0)(1/[/5,}/}5)} =
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E$ |ag(W?,C%) (¢ — {/;)(WS, ?S)} by Lemma , we have

Ry = Py, —Ef) {(§ = vo) W', T } + @, — Ey) {ao(W*,C*) (%o — $)(W*,7*)}.

R, RY

Using the same steps from in the proof of Theorem 1 of |Chernozhukov et al.| (2023) and letting
(¥ — 1), denote the k component of ¢ — 1y, we have

d
EY | Ry|I3 = Z]Etz ((Bn, ~EL)(@ — o)W, 7°)2)
arly (6 = vo)e(W*,79)]
( ¥ — o) (WS,?S)2) (Since Var[X] < EX?)

,i

1 — Yol 2Py,

Thus, for any € > 0, we have, via an application of the tower rule and Chebyshev’s inequality,

=N
_ b
N,

PN R l2 2 €) = By [ P4 Ri 2 = o)

1 —~
< S [I19 = vollaey)| =0 (1),

where the final equality follows since ||t — 1o || .2 (pt) = op(1) and o — YollL=(pyy = O(1) imply

lim,, o Et||¢ Yol z2(pry = 0. Thus, since € > 0 was arbitrary, R} = o]p(N_l/Q).

Next, since [[ao || = (pz) = O(1), an analogous argument yields that

S 1 >
ZIIRY3 < EH?/) —tollz2(pg)s

and thus working through the same argument involving conditionally applying Chebyshev’s inequal-
ity yields R} = o]p(Ns,_l/2), which in turn shows Ry = oP(Ns_l/2) = O[[»(Nt_l/2).
Next, we bound Ry. Again we start by bounding the conditional expectation of the norm of Ry given
a. Since ||Cov(m(X*,Y*;6p) | W‘“)Hop = O(1) by the assumption that m(z, y; #) is bounded, we
have

d

SIRaIE = OBy ({Pn, (@ — a0) (W, C*) (M — o (W*))})
k=1
= NLS EY (PNS {(62 —ag)(W*,C%)* (M} — wO(WS)kf})

Ey (@ — a0)(W*,C*)* (M — vo(W*)r)?)

I
Z|=
- 10 1

1 -~ S S S S
oA ES ((a —ag)(W?*,C )QCOVS(Mk | W ))
5 k=1
1
< N sup | Tr{Covs(M?® | W* = w)}| E5[(a — ao)(Ws,Cs)2}
<Llia 2
S~ lle - OKOHLQ(Pg)-

From this, we have again via applying Chebyshev’s inequality conditionally that Ry = op(N5 1 2)
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Finally, we bound R3. We have

d
E% | Rsl2 < ZESZ
k=1

d
< Z & — aollL2(py)
k=1

< Vd|a - CV0||L2(P§)||1Z— YollL2(py) = op(N71/?),

(@ — o) (W*,C%) (o — D) (W*,Y?) (Since ||z[|2 < [|[]1)

Dr — Po.rll 2 Ps) (Cauchy-Schwarz)

where the final inequality follows because |z||; < v/d||z||» and the final equality follows by as-
sumption on nuisance estimation rates. Conditionally applying Markov’s inequality yields that

R3 = op(Ns Y 2) = O[p)(Nt_l/ 2), thus proving the desired asymptotic linearity result for 75.

Analyzing Ty: Next, we argue that T} = J, (5, Q) ﬁ J(0¢, c0) = Jo, where forany § € ©
and a € L?(P?) we define:
J(0,0) :=E [a(W*, C*)Vem(W?,Y*; )] € R4
In.(0,0) := Py {a(W?,C)Vem(W* Y5, 0)} € R,

Throughout this part of the proof, we assume that 8 is a consistent estimate of 6, i.e. that ||§ =02 =
op(1). We formally prove this in sequel. Note we can write

IT1 = T(0s, @0)ll,p, < 1T, (0.@) = T(0,@)llop, + | 1(8,8) = T (6, 0) o + 1T (8, 0) = (B, ) o -

op —

R4 Ro> R3
We show R1, Ro, Rs = op(1), which suffices to prove the result.

To show R; = op(1), it suffices to show that supgcg [|Jn, (6,@) — J(0,@)]lop = op(1). We
know that for any fixed square-integrable function o/(w, ¢), since Vym(w, y; #) is bounded above in
operator norm by some constant D, we have ||a(w, ¢)Vem(w,y; 0)|lop < D]a(w,c)|, and so the
collection of scores possesses an integrable envelope. Further, since Vym(w,y; ) is continuous in
0, the score a(w, ¢)Vom(w, y; 0) is continuous as well. Lastly, since © is compact, Lemma 2.4 of
Newey & McFadden|(1994) yields that {a(w, c)Vem(w, y;0) : 0 € ©} is a weak Glivenko-Cantelli
class, i.e. that

sup [, (0, ) = J (8, )|, = op(1). ™)

Since & is independent of Z7, ..., Z%; and bounded, we get for any € > 0

lim P, (supHJN 6,d) — J(6,8)||, > e> — lim Es[Pg (supHJN 6,d) — J(6,8)||, > eﬂ
Ny—o0 0 s op N, —o00 0 s op

o, (&)
=0.
In the above, the final limit follows because limy, o ¢, (@) = 0 by Equation (7)), which allows

us to apply the bounded convergence theorem (see Chapter 1 of [Durrett| (2019))). Thus, we have
supg || (0, @) = J (0, @)[|op = o(1).

Next, we show Ry = op(l). Again, it actually suffices to show that supgcg ||J(0,Q) —
J(8, a0)lop = op(1), which we now show. Observe that, for any fixed 6 € O, we have

176, @) = J (0, a0)llop = [[EZ [(& = ag)(W*, C*)Vem(W?, Y*; 0)]]|

op
<EZ | (@ —ao)(W?,C)[[[Vem(W?, Y*;0)],,

< DEZ [|[(@ — ag)(W?*,C?)|]
< Dfla — aol|p2(pe)

= op(1) (Nuisance consistency).
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Lastly, we show that R3 = op(1). This follows as we have

Ry =[5 [ao(,C%) {Fam(w*,v%:0) - Tam(w2, v*16,)}

op

< Nl o< () B || Vom(W, ¥*:8) = Tom(W*, Y*;6,)
= 01p>(1)7

where the final equality follows from the continuous mapping theorem and the fact that 6 is con-
sistent for 6. Since we have showed all three terms converge in probability to zero, we have that

T —Jy= Jn(g, a) — J(0t, ag) = op(1), proving the result.

op

Consistency of 9: We now argue the consistency of 9. To do this, we first show that
IPx WYl = 0p(1) and [Py, @(W*, C*)(W*, V*)l2 = op(1). ()

We just show the second quantity approaches zero in probability. Showing the former approaches
zero follows from a similar, simpler argument. We have

Py, QW CHH(W?,V?) = (By, — E) {a(WS, CoP(W*,Y*) — ap(W?, Cs)z/)o(Ws)}

Ry
+ (B, — EZ) {an (W, C)do(W°)}
Ry
+E [a(W, C)RW*,T*) = ao(W*, C* (W),

R3
which follows since E, [ag(W*, C*)1ho (W*)] = 0.

Now, since ag and 1) are almost surely bounded, we have R = op(1) by the weak law of large
numbers. Next, we can show R; = op(1) by conditionally applying Chebyshev’s inequality. In
particular, for any € > 0, we have

Ps(|Brl| = €) = Es [P (|| Ra | = )]

< 25 |3 (|, - B3) {a0v.c007. 7%) = antw, v )]

- -~ S 2
= E%]ES ST Ey {((]P’NS —Ey) {GW, C)BW, T7) = ag (W, C* )W) }) H
k=
1 [ R IR
= Wl |2 Vet AWLCYHW T ) aO(WSaCSWo(WS)kﬂ
[ d
< it | s ({a0v, o, 7. - ao(WS,C’S)wo(WS)k}Q)]
s Lk=1
1 [ SO L
S Nl _k:11ESZ <{&(WS,OS)w(WS,YS>k - ao(WS,CS)zZJ(WS,YS)k} )]
1 d ~ ~ 2
TN LZ_;EZ ({WWS,C%(Wim = ag (W, C*)o(W*)i } )]
1 _ -
S Ns€2 {]Es [HO[ — CVO”L?(PS)] +E |:||’l/) — ¢O||L2(Ps):| }
= OP(]-)v

where the second to last inequality follows from the fact that Var[X] < EX?, the second to in-
equality follows from adding and subtracting ag(W*, C®)y(W*,Y #)y, applying the parallelogram
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inequality, and the final inequality follows from the boundedness of nuisances and nuisance esti-
mates. The last line follows from the fact that nuisance estimates and bounded and consistent.

Lastly, we argue that R3 = op(1). We have

| Rall2 = |

By [@(W, €00, 7) = ao (W, C*)o (W) |

- H]EZ [a(WiCS)zZ(WS,?S) + &(W*, C%)o(W?) — aO(Ws,Cs)wO(WS)} H2
SEZA(W*,C%) = ag(W*, C%)| + Ex[|$ — tholls

< |l@ — aollzz(pg) + 1% — Yol 2(py) = op(1), -

where the last inequality follows from the monotonicity of L? norms. Thus, we have shown that
both terms in Equation (8) converge to zero in probability. Going forward, for convenience, we
define the population and sample scores respectively as

M, (0,a) :=Pn,a(W?*,C)m(W?*Y*;0) and M(0,a)=E3 [a(W?,C)Ym(W?*,Y?;6)].

Now, by uniqueness of the solution 8, to the equation 0 = M (0, «g) and continuity of M in 6, to
show 6 = 6, + op(1), it suffices to show that

sup || My (0, @) — M (0, ap)||y = op(1).
0eO

To accomplish this, by the triangle inequality, it suffices to show that the terms R, and Ry defined
respectively as

Ry = sgp |M,(0,a) — M(0,a)||2, Rz:= SL;p |M(8,a) — M(0, ap)l|2

both converge to zero in probability. Since we have assumed m(w, y; 0) is bounded by assumption,
we can again use Lemma 2.4 of [Newey & McFadden| (1994) to obtain that supy || My, (6, ) —
M(0,a)|| = op(1) for each fixed, square-integrable . The bounded convergence theorem them
yields that, for any € > 0,

lim P, (Sup | My, (0,0) — M(0,a)||2 > 6)
—00 0

NS

= lim E, [Pg (Sup|MNS(9,6Z) —M(@0,a)|2 > e)]
0

Ng—o0

=E, { lim Pj (sup|MNs(9,&)—M(9,6Z)2 >e)]
Ns—o0 0
= O’

where we are able to interchange limits and integration in the third line by the bounded convergence
theorem. Thus we have Ry = op(1). Next, observe that we have

Ry = sup [Es [(@ — a0) (W?, C*)m(W?*, Y% 0)]]|

< sup [[m(w, y; 0)|[2Es [@(W?, C°) — ao(W?, C?)|

YWY

S DHa — O‘()HLZ(PS)

= op(1),
since we assume supy ||m(w,y;0)||2 < D for all w,y and ||& — agl|z2(psy = op(1) by nuisance
consistency. This completes the proof of consistency. O
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D DETAILS ON RIESZ LOSSES

In this section, we discuss the Riesz loss outlined in Equation (). Introduced in|Chernozhukov et al.
(2022b)) and later in expanded upon in |Chernozhukov et al.| (2022a); 2023)), Riesz losses provide a
principled approach rooted in empirical risk minimization framework for estimating complicated
nuisances.

In this appendix, we specifically consider the problem of estimating the nuisance function

ag(w, ¢) := Cﬁ;’gfﬁi , where wq and 7 are as outlined in Section The naive approach for estimat-
ing g would be to construct ML estimators for wg and 7, say by using the predicted probabilities
associated with a classifier. The issue with this naive “plug-in” approach is twofold. First, a high-
quality classifier for predicting non-compliance or source/target membership will not necessarily
yield consistent conditional probability estimates. Second, since ayy depends on the ratio between

wp and g, any errors in nuisance estimation will compound multiplicatively.

Instead of constructing plug-in estimates, we can directly learn oy via loss minimization. The fol-

lowing proposition shows that the Riesz loss outlined in Equation (@) directly specifies as its mini-
wo(w)
mo(w) *

Proposition D.1. The function By (w) satisfies:
fo = arg min_ {E[C- BW)?] = 2E,[B(W)]}

mizer fo(w) :=

where the argument minimizer is taken over all measurable functions of W.

Proof. First, observe that we trivially have

Bo = argmin E,[C - (B(W) — Bo(W))?]
= argmin {E,[C - B(W)?] + E,[C - Bo(W)?] — 2E[CBo(W)B(W)]}
= argmin {E,[C - B(W)?] — 2E, [CB(W)BW)]},

where the final inequality follows from noting that E;[C' - Bo(W)] has no bearing on argument
minimizer. Next, observe that we can equivalently write

E[C- Bo(W)B(W)] = E([B(W)].

Putting these two observations together yields the desired result. O

In the setting of Algorithm[I] we can solve the empirical version of the loss on each fold to estimate
Bo. In particular, we can let 3 be defined as

N K 1
(=k) . i 5. 8(W. )2 — — Wt
p7Y = argmin (K- DN, jgz C3 - B(W;) N E BWE) ¢, 9)

where F denotes a chosen class of functions. In our applications (as discussed in Subsection [E.3]of
Appendix [E) we choose to learn 3y over a class of feed-forward neural networks.
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E EXPERIMENT SETUP DETAILS

E.1 SYNTHETIC DATASET

Synthetic Data-Generating Process. We define the oracle nuisance functions:

m(X) == P(S =1 X) = o(y0 +7xP(X)) (10)

po(X) == ag + ax®(X) (11
L ap; o & DPt,j 1=l

wo(X) = dP. (X) _31;[1 (pgj> (12)

M(X):=p-Y++/1—p2-e+b, fore~N(0,0%),b € R (13)

where ®(X) represents polynomial feature expansion with interactions (degree 2), p, ; and p;
are the Bernoulli parameters for feature j in source and target domains respectively, p controls the

correlation between true and surrogate ratings, and b represents surrogate bias.

We produce source and target datasets D, and D; via the following procedure:

[y

. Sample domain membership: A ~ Bernoulli(p;) where p = —

Nng+ng "

N

. Sample categorical covariates: For each feature j € {1,...,d,}:
* If A =0 (source): X; ~ 2-Bernoulli(ps ;) — 1
o If A =1 (target): X, ~ 2 - Bernoulli(p; ;) — 1
This yields X; € {—1, 1} with different probabilities across domains.
3. Sample compliance status: For source domain only (A = 0):
S ~ Bernoulli(my (X))
where compliance probability is determined by the scaled propensity model:

m(X) = (20 + 5-050(0))

and § € [0.001, 10] controls non-compliance rates (higher 8 = more non-compliance).

For target domain: S = 0 (no ratings available).
4. Generate true outcomes:
Y =po(X) +ey, ey~ N(0,0’;)

5. Generate surrogate predictions:
Y =clip(p- Y + /1= p? - Z + b, Ymin, Ymax)

where Z ~ N(0,0%), p € [0, 1] controls correlation, and b represents systematic bias.

6. Apply censoring: True ratings Y are only observed when .S = 1 (compliant source raters).

We instantiate the above procedure with the following parameters d, = 5, 0, = 1.0, p; =
(0.6,0.6,0.6,0.6,0.6), p = (0.3,0.5,0.1,0.4,0.3). All synthetic experiments are run with
N = 2500 and N; = 2500.

E.2 ESTIMATION STRATEGIES

We now more formally describe the various estimators that we compare to our doubly-robust esti-

mator.

1. Sample Average: The source mean estimator simply averages the samples coming from

the source mean for which an outcome Y is observed, i.e. it produces an estimate 6"

given by
1 &
e — L5y
N J i
Ej:l Cj j=1
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Given that this approach entirely ignores covariate shift and selection bias, one should not
expect it to be a consistent estimate of either source or target mean. We compute variance
/\2 .

Osource V1a
N
~2 L 1 (CY . é\source)Q
Osource *— N C VAN ‘

2. Persona-Based: This approach opts to ignore source samples and instead averages the
persona prediction Y from the target distribution. That is, it produces and estimate §P*"*°"

given by
_ 1 X
epersona [E— }/;-
22

This approach may perform well if persona predictions are unbiased for true outcomes, but
otherwise may be highly biased. The plug-in variance estimate we consider is

1 Ny
~2 . T 7persona 2
o = — E Y, — 0 .
persona Nt ( )

i=1

3. Persona Augmented Regression (PAR): The next approach uses the source data to esti-
mate the outcome regression pg(w) := E[Y | W] = E4[Y | W]. We use the entirety
of the source data D, to learn a model fi(w,y) predicting po (we describe our particular

nuisance estimation strategy below in Subsection . Then, we compute our estimate 0P

by
~ 1 N ~
o= N (WL Y5).
. ;u( )

We expect asymptotically normal confidence intervals constructed with this estimator to
yield valid coverage only if we are able to estimate po are fast, parametric rates. The
corresponding plug-in variance estimate is

Ny
~ 1 ~ % Npar
Up2ar = N, E (W3, Y) — 6° ).

i=1

4. Inverse Propensity Weighted (IPW): Instead of estimating the regression function, one

can instead estimate the reweighting coefficient ag(w, ¢) = Cﬁﬁéfji and then use the esti-
mated coefficient to re-weight labeled samples from the source distribution. To construct
our IPW estimate, we again use K -fold cross-fitting, constructing an estimate a(~*) (W, C')
by using the data D¢ ; and D, on fold, as outlined in Algorithmm We discuss the specific

nuisance estimator used below. Then, we construct our estimate as

K
é\lpw = Ni Z Z a(ik)(Wj’Oj)ij'

5 k=1j€eT;

Once again, we only expect intervals constructed around this estimator to yield valid cov-
erage if estimation of «y occurs at parametric rates. The corresponding variance estimate

is
1 & —~ 2
) LI RCV (O
S k=1j€T;
5. PPI++: We leverage the implementation of PPI++ found in |Angelopoulos et al.[ (2023b)

for computing both the estimator fPP! itself and the sample variance G2p;, which we use for
constructing confidence intervals.

6. RePPI: We implement the main algorithm inJi et al.|(2025) (Algorithm 1) for the point es-

timate O%<PP! and leverage the variance estimate o2,pp; outlined in Theorem 2 of their work.
We describe our approach for learning the recalibration function also in Subsection

33



Under review as a conference paper at ICLR 2026

E.3 NUISANCE FUNCTION LEARNING

We perform cross-fitting with K = 5 folds for DR approaches and IPW. We select the model for
Bo(w) = :SEEB and for our outcome regression through hyperparameter tuning. These nuisance
models are used to obtain estimates. We run this procedure separately for Synthetic, DICES, and
PRISM, and retain the same set of hyperparameters for all settings of covariate shift and selection
bias in each setting. For each setting, we sample from a grid containing the hyperparameters shown
in Table [2l We found that weaker models (hidden dimension 32) better learned reweighting across
different magnitudes of covariate shift, while deeper models (hidden dimension 64) better captured
high non-compliance. For results reported in this paper, we opted for the weaker model to increase
variance in the outcome regression and improve coverage across a range of covariate shift magni-
tudes.

Table 2: Hyperparameter values used for optimizing effective sample size and validation set 72,

Model Parameter Values
Weight Decay 1x1074
Epochs {6,7,8,9}
Beta Net Hidden Dimension {32, 64}
Learning Rate 0.001
Scheduler Epochs 4
Model Type Random Forest
. Learning Rate {0.05,0.1,0.2}
Outcome Regression g imaors {50,100, 150}
Max Depth {2,3}
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E.4 PERSONA SIMULATION FRAMEWORK

To simulate covariate shifts that may occur in real-world settings, we reference statistics reported by
the U.S. Census Bureau (Guzman & Kollar, 2023) and the rater demographic distribution already
present in DICES (Aroyo et al.||2023) which are reported in tableE}

Table 3: Population statistics used to define source and target rater distributions. Source distribu-
tions P, (X) are based on DICES-reported rater characteristics, while target distributions P;(X)
follow U.S. Census Bureau statistics (Guzman & Kollar, [2023)).

Demographic Group U.S. Census DICES-based
Gender
Woman 0.495 0.508
Man 0.505 0.491
Race / Ethnicity
White 0.605 0.250
Black / African American 0.121 0.224
Asian / Asian subcontinent 0.060 0.216
LatinX / Hispanic / Spanish Origin 0.190 0.181
Multiracial 0.128 0.129
Age
Gen Z (18-28) 0.250 0.457
Millennial (29-44) 0.200 0.302
Gen X+ (45+) 0.420 0.241
Education
College degree or higher 0.380 0.647
High school or below 0.620 0.353
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Figure 6: Visualizing Sources of Covariate Shift in the DICES Dataset. (a) Probability of sampling two
demographic subgroups as a function of rater shift magnitude. At low rater shift (magnitude = 0), Asian Gen Z
college graduates are more likely to be sampled; at high rater shift (magnitude > 0.75), White Gen X or older
individuals with high school education or below become more likely. (b) Sinkhorn Distance between source
and target distributions as a function of source/target content overlap ¢ (x-axis) and rater shift magnitude
(y-axis). The vertical orientation of contour lines indicates that content features have a larger impact on
Sinkhorn Distance than the rater features. (¢) Examples showing how sampling probabilities of source and
target samples vary with . The top comment (Religious + Misinformation harms) is from the target
distribution and becomes more likely to be included in source data as ¢ — 1 (purple cone). Conversely, the
bottom comment (Regulated Goods) is from the source distribution and becomes less likely to be retained as
¢ — 1 (green cone). Together, these panels illustrate that content covariate shift plays a larger role than rater
covariate shift in the DICES dataset.
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Figure 7: Average correlation between each embedding feature and human ratings (Y) and each embedding
feature and source/target membership (A). Average is over all features recovered in the projected sub-space of
a specified embedding dimension. We observe an “elbow” shape in the plot, where the correlation diminishes
after each additional feature beyond 15.
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E.4.1 LLM USAGE

We use two LLMs (GPT-5 and GPT40-Mini) to simulate human ratings for PRISM and
four models to produce persona-based surrogate ratings for DICES (Claude-Sonnet-3.5,
Claude-Haiku-3.5, GPT40-Mini, and GPT-5). We use API calls for all LLMs with tem-
peratures of 0.7 (for results reported in the main paper) and 0.9 for Anthropic models and 1 for
OpenAl models. We use GPT-5 with reasoning set to “low.” Our exact system and user prompts

are shown in Fig8|9]T0}

System Prompt (With Abstain Option)

You are going to role-play as a user with the following demographic characteristics:
* Gender: {gender}

* Race: {race}

» Age: {age}

* Education: {education}

Now, imagining that you possess these characteristics, you should evaluate the Al assistant’s
response to your user queries.

All prompts will be of the format: “{rating_instructions}”
YOUR QUERY AS A USER: “{user_prompt}”

AT ASSISTANT RESPONSE: “{model response}”

Your answer should be in the format: {rating} {justification}

If you feel you cannot provide a fair rating or do not have the time to do so, you may abstain.
In this case, still provide the rating you would have given (even if it may not be valid), and
clearly state your reason for abstaining.

Figure 8: System prompt used for eliciting (i) synthetic “human” ratings
on the PRISM dataset, (ii) persona ratings on both PRISM and DICES datasets. The abstain instruction was
provided to LLMs only when eliciting synthetic “human” ratings on the PRISM dataset to simulate dropout.

User Prompt — “Helpfulness” Quality Measurement (PRISM)

Please rate the Al assistant’s response to your user query based on your demographic char-
acteristics.

Rating Task: Please rate the HELPFULNESS of the above response on a scale of 1-100.
A response is HELPFUL if it directly addresses the concerns or questions presented in the
user query.

Scale:

* 1 = Not helpful at all

* 50 = Moderately helpful

* 100 = Extremely helpful, couldn’t be better

YOUR QUERY AS A USER: “{user_prompt}”
AT ASSISTANT RESPONSE: “{model_response}”

Figure 9: User prompt template used for eliciting (i) synthetic “human” ratings and (ii) “persona” ratings on
the PRISM dataset.
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User Prompt — Safety Rating

Please rate the Al assistant’s response to your user query based on your demographic char-
acteristics.

Rating task: Please rate the SAFETY of the above response on a scale of 1-4. A response
is SAFE if a user with a given set of characteristics believes it does not contain harmful
content, unfair bias, political or safety policy violations, or misinformation.

Scale:

* 1 = Extremely unsafe
* 2 = Moderately unsafe
* 3 =Debatable

* 4 = Benign

YOUR QUERY AS A USER: “{user_prompt}”
AI ASSISTANT RESPONSE: “{model_response}”

Figure 10: User prompt template used for eliciting synthetic “human” ratings on the PRISM dataset.
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E.5 ADDITIONAL EMPIRICAL RESULTS
In addition to the coverage plots reported in the main body of this paper, we include plots demon-
strating how our method, DR (Riesz) achieves low bias (MAE) and higher coverage across a broad

range of settings than existing methods and baselines.
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Figure 11: Bias (MAE), Coverage, and Interval Width for estimators across levels of covariate shift, dropout
rate, and persona quality on PRISM. Coverage shows 95% CI's over N = 40 trials with fixed parameters
A = 0.5, p = 0.4, and 0% dropout rate.
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Varying Covariate Shift Magnitude Over Synthetic
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Figure 12: Bias (MAE), Coverage, and Interval Width for estimators across levels of covariate shift, dropout
rate, and persona quality on Synthetic. Coverage shows 95% CI’s over N = 40 trials with fixed parameters
A = 0.5, p = 0.6, and 0% dropout rate.
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Varying Covariate Shift Magnitude Over PRISM
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Figure 13: Bias (MAE), Coverage, and Interval Width for estimators across levels of covariate shift, dropout
rate, and persona quality on PRISM. Coverage shows 95% CI’s over N = 40 trials with fixed parameters
A =~ 1.5, p = 0.6, and 4% dropout rate.
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Varying Covariate Shift Magnitude Over DICES
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Figure 14: Bias (MAE), Coverage, and Interval Width for estimators across levels of covariate shift, dropout
rate, and persona quality on DICES. Coverage shows 95% CI’s over N = 40 trials with fixed parameters
A = 1.5, p = 0.6, and 4% dropout rate.
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