
Attention-Guided Black-box Adversarial Attacks with Large-Scale
Multiobjective Evolutionary Optimization

Jie Wang 1 Zhaoxia Yin 1 Jing Jiang 2 Yang Du 1

Abstract
Recent black-box adversarial attacks may struggle
to balance their attack ability and visual quality
of the generated adversarial examples (AEs) in
tackling high-resolution images. In this paper, We
propose an attention-guided black-box adversar-
ial attack based on the large-scale multiobjective
evolutionary optimization, termed as LMOA. By
considering the spatial semantic information of
images, we firstly take advantage of the attention
map to determine the perturbed pixels. Then, a
large-scale multiobjective evolutionary algorithm
is employed to traverse the reduced pixels in the
salient region. Extensive experimental results
have verified the effectiveness of the proposed
LMOA on the ImageNet dataset.

1. Introduction
In the past decade, a series of studies have shown that DNNs
are vulnerable to adversarial examples (AEs) by imposing
some designed perturbations to original images (Szegedy
et al., 2013; Goodfellow et al., 2014b; Carlini & Wagner,
2017). These perturbations are imperceptible to human
beings but can easily fool DNNs, which raises invisible
threats to the vision-based automatic decision (Kurakin et al.,
2016; Yin et al., 2020). Consequently, the robustness of
DNNs encounters great challenges, and the issue of AEs
has received considerable attention (Zhang & Li, 2019).

Szegedy et al. (2013)first pointed out the vulnerability of
DNNs and proposed the definition of adversarial attacks.
They also demonstrated that the AEs for one network could
fool another, even DNNs were trained on different datasets.
Then, a considerable amount of researches on adversarial
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Figure 1. The original image and its corresponding AEs generated
by the baseline (Suzuki et al., 2019) and LMOA, respectively.

attacks has been studied. These attacks are designed to fool
the target DNN by adding a small perturbation X to the
original image I : C(I + X) 6= C(I), where C(·) is a m-
class classifier that receives n-dimensional input and gives
m-dimensional output. AEs can be easily generated by us-
ing internal information of the target DNN, e.g., the gradient
of the loss function of the original image (Goodfellow et al.,
2014a; Kurakin et al., 2016; Madry et al., 2018; Dong et al.,
2018). These attacks, called white-box attacks, are essen-
tially an exploration of the robustness of DNNs. Other than
the white-box attacks, researchers have shown an increased
interest in black-box attacks. To be specific, the attacker can
only obtain the output of the target DNN without access-
ing its structures and parameters. Since the structural prior
knowledge of DNNs is usually unavailable, the works on
black-box attacks are more practical than that of white-box
ones in real cases. Therefore, numerous attempts have been
made to realize black-box attacks(Bhambri et al., 2019),
such as the gradient estimation-based (Tu et al., 2019), lo-
cal search-based (Chen et al., 2019), or transferability of
AEs-based (Dong et al., 2019) attacks.

To date, several works suggest that there is more than one
objective should be taken into consideration in attacking,
e.g., minimizing the confidence probability of the true la-
bel and the perturbation intensity of the changed image
simultaneously (Liu et al., 2020; Suzuki et al., 2019). They
expected that the candidate AEs would mislead the target
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Figure 2. The general framework of the proposed LMOA.

DNN as possible while exhibiting similar visual features
with the original image. Unfortunately, these two objec-
tives are somewhat conflicting with each other. On the
one hand, the great perturbations significantly influence the
classification result of DNNs, but the generated AEs could
be easily detected by the human vision, as they lose the
majority of features of the original image. On the other
hand, a slight change that is hardly observed by both hu-
man beings and computers is not enough to mislead DNNs.
Most of the previous methods cannot balance these two
objectives and thereby probably miss the optimal trade-off
perturbation. The issue stimulates the efforts on evolution-
ary algorithm-based, especially multiobjective evolutionary
algorithm-based black-box adversarial attacks. Moreover,
since the traditional evolutionary algorithm are not com-
petive on handling the optimization problems with large-
scale decision variables (Yang et al., 2008), the existing
works following this line may not achieve satisfactory per-
formance on the high-resolution images(Su et al., 2019).

To overcome the above drawbacks, we propose an attention-
guided black-box adversarial attack, where a large-scale
multiobjective evolutionary algorithm is employed to tra-
verse the salient region of an image. Since the proposed
method involves Large-scale Multiobjective Optimization
and Attentional mechanism, it is named by LMOA. The
main contributions can be summarized as follows:

• Using the attention mechanism to screen the at-
tacked pixels. We firstly use the class activation map-
ping (CAM) and a proxy model to obtain the attention
map of the target image. The map strictly limits the at-
tacked pixels so that the perturbations are only allowed
to emerge within the salient region. On the one hand,
attacking the salient pixels might be more efficient than
the entire image(Dong et al., 2020), as these pixels can

better reflect the spatial semantic information. On the
other hand, screening the pixels is able to reduce the
dimensionality of decision variables in the case of high-
resolution images, which is beneficial to the black-box
optimization.

• Performing the black-box adversarial attack with a
large-scale multiobjective evolutionary algorithm.
We secondly formulate the black-box attack into a
large-scale multiobjective optimization problem, in
which both attack ability and visual quality of the gen-
erated AEs are viewed as two objectives. Then, an
optimizer tailored for large-scale optimization is em-
ployed. By doing so, a set of Pareto optimal solutions
that achieves the balance between two objectives will
be obtained, and the final generated perturbations can
easily fool the target DNNs while being imperceptible
by the human vision.

• Attacking high-resolution images with high success
rate and acceptable visual quality. Extensive experi-
mental results have been investigated on the ImageNet
dataset. The results show that the proposed LMOA
can achieve almost 100% success rate of attacks. Com-
pared with the baseline method, LMOA is more com-
petitive to contribute high-resolution AEs with better
visual imperceptibility (see Fig. 1).

2. Proposed method
The general framework of the proposed LMOA is exhibited
in Fig. 2. LMOA mainly consists of two steps: 1) Screening
the perturbed pixels with the attention mechanism; 2) Gen-
erating the optimal perturbations with a large-scale MOEA.



ICML 2021 Workshop on Adversarial Machine Learning

2.1. Screening perturbed pixels with the attention
mechanism

By considering the spatial semantic information, LMOA
firstly employs the class activation mapping (CAM) (Zhou
et al., 2016) to obtain the attention map of the target image.
CAM can visualize predicted class scores on any given im-
age, highlighting the region of the object detected by the
target DNN. In other words, the obtained attention map re-
flects the pixels of the interest of DNNs in the classification.
Obviously, attacking these pixels that contain the spatial
semantic information can fool the target DNN with a rela-
tively higher probability. However, it is tricky to know the
gradient information of black-box DNNs, which brings a
barrier for using CAM. Therefore, we suggest using a proxy
model to obtain an approximated attention map of the input
image.

To make the generated adversarial perturbations more effec-
tive, only the salient pixels derived from the attention map
will be screened as the attacked pixels. To be specific, the
attention map of the proxy model is binarized to represent
the candidate pixels for attacking. By doing this, the dimen-
sion of the decision variables to be optimized is reduced,
as the pixels for perturbation is changed. The reduction
of the search space also facilitates the convergence of the
subsequent MOEA.

2.2. Generating perturbations with large-scale MOEA

The black-box attack is firstly formulated as a multiobjective
optimization problem below.

min f1 = P (C(I +X) = C(I))
min f2 = ‖X‖0
min f3 = ‖X‖2
s.t. 0 ≤ ui + xi ≤ 255

(1)

where P (·) denotes the confidence probability of the classi-
fication result; I and X represent the original sample and
adversarial perturbation, respectively; ui is the value of
pixel at the (l, w, c) position of I , while xi is the value of
perturbation.

As shown in Eq. (1), the proposed multiobjective opti-
mization based black-box attack involves three objective
functions. The first one f1 represents the probability that
the target classifier C(·) classifies the generated adversarial
example I +X into the correct class C(I). The remaining
two functions are both distance metrics, each of which is
employed to evaluate the similarity between I +X and I .
Furthermore, minimizing l0 distance (l0 norm) is to restrict
the number of pixels to be attacked, while minimizing l2
distance aims to reduce the change of each pixel. Other
than three objective functions, the constraint imposed to X
defines the range of perturbation on each pixel based on
the intrinsic property of images. Using such a constraint

can effectively reduce the search space and facilitate the
convergence of MOEA. Finally, we note that most of the
decision variables in X are fixed as zero, and the dimension
of perturbations to be optimized is relatively lower than that
of I . The reason is that the candidate attacked pixels are
significantly reduced according to the technique introduced
in the last subsection.

Note that, the objective f2 is compatible with f3 in some
cases, e.g., a solution with a small objective value on f2 may
also has an acceptable performance on f3. Moreover, the
value of f2 reflects the sparsity of a solution, that is, mini-
mizing f2 is to find the most sparse adversarial attack. We
thereby reformulate the black-box attack below and resort to
one of MOEAs tailored for large-scale sparse multiobjective
optimization problems (LSMOPs)..

min f1 = P (C(I +X) = C(I))
min f2 = ‖X‖2
s.t. 0 ≤ ui + xi ≤ 255

(2)

LSMOPs are characterized as the problems, where the value
of most decision variables of their Pareto optimal solutions
is zero, and the remaining large-scale variables are one or
the other real numbers. Since recent methods can tackle this
type of problems (Tian et al., 2020b), we employ the MOEA
based on Pareto-optimal subspace learning (MOEA/PSL),
which is recently proposed in (Tian et al., 2020a), to solve
the problem depicted in Eq. (2).

3. Experiments and analysis
In this section, we frst introduce the experimental setup, in
cluding the benchmark dataset and parameter setting. Then
we compare the proposed algorithm with the work proposed
in (Suzuki et al., 2019) in terms of attack ability and visual
quality on benchmark dataset.

3.1. Experimental setup

The benchmark dataset contains 1000 high-resolution im-
ages that are randomly selected from ImageNet-1000 (Deng
et al., 2009), which consists of 1000 categories in total. Two
DNNs, including the pretrained ResNet-101 (He et al., 2016)
and Inception-v3 (Szegedy et al., 2016), are selected as the
target models for each compared algorithm. Before the opti-
mization, the resolution of each image is resized according
to the input layer of each model, i.e., 224 × 224 × 3 for
ResNet-101 and 299 × 299 × 3 for Inception-v3, respec-
tively. All the experiments are carried out on a PC with Intel
Core i7-6700K 4.0GHz CPU, 48GB RAM, Windows 10,
and Matlab R2018b with PlatEMO (Tian et al., 2017).
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Table 1. Classification results and corresponding confidences of the original and AEs.

Image No.
Recognition results and confidence

ResNet-101 Inception-v3
C(I) C(I +X) C(I) C(I +X)

I1 Vulture: 62.05% Kite: 52.37% Kite: 15.30% Kite: 70.98%
I2 Hotdog: 95.69% Cucumber: 47.46% Banana: 10.03% Banana: 59.93%
I3 Street sign: 50.28% Shopping cart: 57.47% Street sign: 15.19% Shopping cart: 88.76%
I4 Wolf spider: 92.69% Tarantula: 51.47% Wolf spider: 93.70% Barn spider: 43.05%
I5 Knot: 97.67% Swab: 53.19% Knot: 92.69% Swab: 42.84%
I6 Fig: 81.77% Jackfruit: 22.90% Fig: 99.06% Mushroom: 44.82%
I7 Hip: 77.13% pomegranate: 42.94% Hip: 33.66% Lenmon: 33.41%

Table 2. Comparison on the classification accuracy,and average
l2 norm of AEs between LMOA and the baseline (Suzuki et al.,
2019).

Target Attack Classification Avg.
model method accuracy (%) l2 norm

ResNet-101
N/A 77.10 N/A

The baseline 9.30 73949.58
LMOA 0.00 967.51

Inception-v3
N/A 78.40 N/A

The baseline 15.60 152008.99
LMOA 0.30 1186.34

3.2. Results and analysis

Table 1 shows the classification results and confidence prob-
abilities of seven randomly selected original images and
their corresponding AEs obtained with two DNNs. From
the table, two remarks can be concluded as follows. Firstly,
for the images that are correctly classified by the two DNNs,
the proposed LMOA finally generates AEs that fool the
models with high confidence probabilities (at least 22.9%,
most of the results over 40%). Secondly, for the images that
are misclassified by DNNs (I1 and I2 against Inception-v3),
the proposed algorithm improves the confidence probabil-
ities of the incorrect label (from 15.3% to 70.98% on I1,
10.03% to 59.93% on I2).

Table 2 compares LMOA and another MOEA-based black-
box attack method (Suzuki et al., 2019), which adopts block-
division method and formulates a MOP solved by MOEA/D
(Zhang & Li, 2007). From the table, we can observe that
77.1% of the benchmark images can be correctly classified
by ResNet-101, while 21.6% of them are misclassified by
Inception-v3. After performing the attack with the baseline
[35], only 9.3% and 15.6% of the images are correctly classi-
fied by the two DNNs, respectively. By contrast, LMOA has
successfully attacked most of the images and fooled both
of the two models. More concretely, LMOA has achieved
a 100% success rate on ResNet-101. We also notice that
LMOA performs better in terms of average l2 norm between
the original image and the generated AE. Fig. 3 also visual-

(a) AEs generated by the baseline method

(b) AEs generated by the proposed LMOA

Figure 3. The visual comparison of the AEs generated by the base-
line method and the proposed LMOA.

ized attack results obtained by the two methods. From the
figure, we show that the baseline method adds some visible
noises to each entire image, which can be easily captured by
the human vision. For LMOA, the perturbations are much
more difficult to be perceived compared with the baseline
method. The advantage is attributed to the usage of the
attention mechanism and large-scale MOEA.

4. Conclusions
In this paper, we propose a novel attention-guided black-box
adversarial attack, where the adversarial perturbations are
only added to several pixels in the salient region. Besides,
MOEA/PSL is used to search for the optimal perturbation,
and the algorithm is used to solve MOPs, where the Pareto
optimal solutions are sparse. Experimental results show
that the proposed LMOA can perform effective black-box
attacks against high-resolution images (with nearly 100%
success rate and high visual quality). Moreover, comparing
with the baseline method, the proposed LMOA is more
suitable to high-resolution images from ImageNet dataset.
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