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Abstract

While Multi-modal Large Language Models
(MLLMs) demonstrate impressive abilities over
high-level perception and reasoning, their robust-
ness in the wild remains limited, often falling
short on tasks that are intuitive and effortless
for humans. We examine the hypothesis that
these deficiencies stem from the absence of
core knowledge—rudimentary cognitive abilities
innate to humans from early childhood. To
explore the core knowledge representation in
MLLMs, we introduce CoreCognition, a large-
scale benchmark encompassing 12 core knowl-
edge concepts grounded in developmental cog-
nitive science. We evaluate 230 models with
11 different prompts, leading to a total of 2,530
data points for analysis. Our experiments un-
cover four key findings, collectively demonstrat-
ing core knowledge deficits in MLLMs: they
consistently underperform and show reduced, or
even absent, scalability on low-level abilities rel-
ative to high-level ones. Finally, we propose
Concept Hacking, a novel controlled evaluation
method, that reveals MLLMs fail to progress to-
ward genuine core knowledge understanding, but
instead rely on shortcut learning as they scale.
Project page at https://williamium3000.
github.io/core-knowledge/.

1. Introduction

Are human minds born with knowledge (Plato et al., 1763)?
This has been the central question of Western thoughts since
the ancient Greeks (Russell, 1946). Socrates and Plato both
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believe that humans must be born with a set of innate knowl-
edge. In Meno, 80d-86b, Socrates introduces the theory
of anamnesis (recollection), where he suggests our “soul
is immortal”, and ““it can recollect the things it knew be-
fore” (Fowler et al., 1914). Plato further sets the distinction
between innate knowledge and those we gain through ex-
perience: in Republic VII, the Allegory of the Cave, he
suggests that our experiences are skiés, like shadows on the
cave wall, which are contingent instantiations of the eidos,
the knowledge born with our minds. One example of eidos
is our understanding of a circle: while a perfect circle never
exists in reality, we still understand what it means to be
a perfect circle (Jowett et al., 1888). Kant’s view is more
intricate: he suggests we never have an innate knowledge
of noumena, “things-in-themselves”, but we have knowl-
edge of phenomenon, “things-about-themselves”, meaning
we only are born with knowledge about the structures of
our experiences, such as causality, permanence, and con-
tinuity, but never gifted with knowledge of experiences in
itself (Kant, 1781). In other words, we have innate, core
knowledge about basic domains of the world.

We are closer than ever to achieving human-level artificial
intelligence. By training on vast web-scale corpora and scal-
ing to hundreds of billions of parameters, Large Language
Models (LLMs) now surpass expert humans in knowledge-
and reasoning-intensive tasks (Brown et al., 2020; Achiam
et al., 2023; Bai et al., 2023a; Touvron et al., 2023; Jaech
et al., 2024). These capabilities extend beyond language:
with modality alignment (Liu et al., 2024b; Li et al., 2023b;
Zhu et al., 2023), MLLMs exhibit unprecedented high-level
perception and reasoning (Gemini, 2023; Wu & Xie, 2024;
Xu et al., 2024; Yang et al., 2025a; Shao et al., 2024; Yang
et al., 2024; Li et al., 2024a; Fu et al., 2023), mastering tasks
such as chart understanding (Masry et al., 2022), geometry
and math (Lu et al., 2023), and action recognition and pre-
diction (Ying et al., 2024; Liu et al., 2024c), often reaching
or exceeding human performance (Huang & Zhang, 2024).

Despite advances in high-level perception and reasoning
abilities, state-of-the-art MLLMs still underperform humans
on simple and rudimentary tasks such as counting (Paiss
et al., 2023; Qharabagh et al., 2024), perspective taking
(Tang et al., 2025b), spatial reasoning (Zhang et al., 2025;
Tang et al., 2025a), temporal reasoning(Saxena et al., 2025),
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Figure 1. Examples from our CoreCognition benchmark.

Intuitive Physics

Which of the two systems in
the picture is more likely to
tip over? [Al
A. Left one

B.Right one |

Perspective Taking

From the doll's point of view,
which object appears the
rightmost? [B]
A.Theredcan |
B.Thessilver can m
C.The black can

Concept Definition Concept Definition | Concept Definition
Boundary The transition from one object to Continuity Objects persist as unified, cohesive Permanence Objects do not cease to exist when
another. entities across space and time. they are no longer perceived.
Spatiality The a priori understanding of the Perceptual Changes in appearances don’t mean Intuitive Physics Intuitions about the laws of how
Euclidean properties of the world. Constancy changes in physical properties. things interact in the physical world.
Perspective To see what others see. Hierarchy Understanding of inclusion and Conservation Invariances of properties despite
exclusion of objects and categories. transformations.
Tool Use The capacity to manipulate specific Intentionality To see what others want. Mechanical Inferring actions from system states
objects to achieve goals. Reasoning and vice versa.
Table 1. Abbreviated definitions of the 12 core abilities assessed. See Appendix A.2 for details.
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Figure 2. Left. Statistics of the CoreCognition benchmark. Right.
Construction of taxonomy. Dependencies between abilities are

indicated with arrows.

and compositional reasoning (Yuksekgonul et al., 2022;
Sahin et al., 2024; Mitra et al., 2024)—tasks that are intu-
itive and effortless for humans, even as MLLMs excel at

related high-level reasoning (Paiss et al

., 2023; Rahman-

zadehgervi et al., 2024), exemplifying the long-standing
Moravec’s Paradox (Moravec, 1988). This high-level ex-
cellence often fails to generalize to out-of-distribution or
real-world scenarios, where small changes in task condi-
tions can cause significant performance drops (Shiffrin &
Mitchell, 2023; Zhang et al., 2024b; Bai et al., 2024; Oh
et al., 2025; Dong et al., 2025). Moreover, MLLMs are
vulnerable to imperceptible perturbations (Schlarmann &
Hein, 2023), susceptible to prompt variations (Wu et al.,
2023), and can be easily jailbroken to generate unsafe or
unregulated content (Wang et al., 2024b; Gu et al., 2024; Li

et al., 2024c¢).

In this work, we hypothesize that the deficiencies ob-
served in MLLMs stem from the absence of core knowl-

soning. To examine this hypothesis, we explore the exis-
tence, representation, and use of core knowledge in MLLMs
by introducing the first large-scale benchmark tailored for
core knowledge—CoreCognition. It comprises 1,503 sam-
ples with over 95 samples for each concept, as exempli-
fied in Fig. 1. Drawing on insights from developmental
cognitive science, we propose a taxonomy of 12 abilities
encompassing the full spectrum of core knowledge, from
basic cognitive skills to advanced reasoning.

To provide a comprehensive evaluation of core knowledge
over the existing MLLMs, we assess a total of 230 models
with 11 different prompting techniques, yielding a total of
2,530 data points. Leveraging these results, we analyze
model performance across varying levels of core ability,
examining the inter-dependencies among core knowledge
and their predictive power for higher-level reasoning and
perception, as well as the scaling effect (performance across
different model sizes) To further ascertain core knowledge
deficits in MLLMSs, we design controlled experiments that
manipulate causal features within images to perturb the
ground-truth labels, allowing us to determine whether mod-
els genuinely possess the targeted core knowledge or merely
approximate it through shortcuts and spurious correlations.
Our key findings are:

» Core Knowledge Deficits: MLLMs consistently perform
worse on low-level abilities compared to high-level abili-
ties (Sec. 4.1).
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* Misaligned Dependency: MLLM performance on high-
level abilities is not correlated with the underlying low-
level abilities that support them (Sec. 4.2).

* Not Scaling: MLLMs exhibit less, or even no, scalability
(with respect to increasing model parameters) on low-level
abilities compared to high-level abilities. (Sec. 4.4).

* Models increasing in size exhibit core deficits and
shortcut-taking behaviors rather than progressing toward
conceptual understanding. (Sec. 5.2).

2. Related Works

Multi-modal Large Language Models. With the advent
of large language models (LLMs), state-of-the-art (SOTA)
MLLMs (Liu et al., 2024b; Li et al., 2023c) have adopted
open-source LLMs (Touvron et al., 2023; Peng et al., 2023;
Jiang et al., 2023) and aligned visual features to the LLM
embedding space (Li et al., 2023b). To enable open-ended
conversational abilities, LLaVA (Liu et al., 2024b) distills
ChatGPT’s conversational skills into MLLMs, resulting in
substantial performance gains—a process that has become
standard practice in the field (Wang et al., 2023; Bai et al.,
2023a; Gemini, 2023; Team, 2024a; Sun et al., 2023; Li
et al., 2022a).

Benchmarks for Multi-modal Large Language Model.
A wide range of benchmarks have been proposed to eval-
uate the growing capabilities of MLLMs, ranging from vi-
sion question answering (VQA) (Antol et al., 2015; Marino
et al., 2019), image captioning (Plummer et al., 2015; Lin
etal., 2014), OCR and text understanding (Liu et al., 2023b).
More recently, MLLM benchmarks have focused on higher-
level reasoning, such as MathVerse (Zhang et al., 2024a)
and ScienceQA (Lu et al., 2022), emphasizing multimodal
reasoning in scientific domains. Of particular relevance
are M3GIA (Song et al., 2024) and Marvel (Jiang et al.,
2024), which address cognitive complexity, abstraction, and
multi-step reasoning, but primarily focus on task coverage
or high-level general intelligence. In contrast, CoreCog-
nition targets early-emerging core abilities that support
higher-level perception and reasoning. DevBench (Tan
et al., 2024) adopts a developmentally inspired framework
to probe language learning trajectories, but focuses solely on
language, unlike our benchmark, which targets multi-modal
core knowledge.

Shortcut Learning. Shortcut learning is closely related,
especially to Concept Hacking. Deep learning models are
prone to exploiting spurious correlations—features that en-
able strong in-distribution performance but lead to brittle-
ness out of distribution (Alvi et al., 2018). Early work
addressed this by removing biased features from learned
embeddings (Wang et al., 2019). Subsequent approaches
trained auxiliary bias predictors to identify shortcut cues
and encouraged the main model to predict against them
(Bahng et al., 2020; Cadene et al., 2020; Nam et al., 2020;

Clark et al., 2019; Dagaev et al., 2021). Other methods
reduce shortcut reliance by minimizing mutual information
between features and bias attributes (Kim et al., 2019), or
by generating bias-conflicting samples through latent factor
swapping (Lee et al., 2021).

Core Knowledge in Humans. The debate over core knowl-
edge has historically framed nativist and empiricist episte-
mologies (Plato et al., 1763; Kant, 1781; Russell, 1946), and
since the cognitive revolution, has shifted toward empirical
investigation (Piaget, 1950; Fodor, 1975). Piaget’s stage-
based theory and subsequent research established the foun-
dations of developmental psychology (Piaget & Inhelder,
1969; Barrouillet, 2015; Spelke et al., 1992; Rochat, 2024;
Carey et al., 2015). Recent advances show that even infants
exhibit rudimentary knowledge of objects (Baillargeon &
Carey, 2012; Kar et al., 2019; Ullman & Tenenbaum, 2020),
actions (Yang et al., 2015; Jara-Ettinger et al., 2020), num-
bers (Feigenson et al., 2004; Hannagan et al., 2015; Spelke,
2017), space (Newcombe & Sluzenski, 2004; Bellmund
et al., 2018), and social relations (Siegal & Varley, 2002;
Scott & Baillargeon, 2017; Spelke, 2022). This “develop-
mental start-up software” enables early learning (Spelke &
Kinzler, 2007; Lake et al., 2017) and serves as the founda-
tion for complex reasoning in variable environments later in
life (Barsalou, 2020; Mitchell, 2021).

3. Benchmarking Core Knowledge in
Multi-modal Large Language Models

We introduce CoreCognition, encompassing 12 core abil-
ities and 1,503 questions with diverse input types and for-
mats. An overview of the benchmark and its distribution
is shown in Fig. 2, with 12 representative examples in Fig.
1. Sec. 3.1 outlines the cognitive taxonomy and theoretical
framework guiding our benchmark. Sec. 3.2 details the
curation process, while Sec. 3.3 describe model inference
and evaluation.

3.1. Cognitive Framework

We take inspiration from Jean Piaget’s theory (Piaget, 1950;
Piaget & Inhelder, 1969; 1974), which identifies four stages
in human developmental trajectory: Sensorimotor, Preoper-
ational, Concrete Operational, and Formal Operational. In
the Sensorimotor stage, infants develop core concepts such
as object permanence (Spelke et al., 1992; Bremner et al.,
2015) and perceptual constancy (Green, 2023) through sen-
sory and physical interactions. The Preoperational stage
serves as a transitional phase, characterized not by distinct
new abilities but by the gradual solidification of symbolic
representations (Fodor, 1975). These cognitive advance-
ments culminate in the Concrete Operational stage, where
children acquire abilities for systematic reasoning about
numbers, motion, and agents, including perspective-taking,
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conservation, intuitive physics, and hierarchical relations
(Piaget & Inhelder, 1974; Moll & Meltzoff, 2011; Piloto
et al., 2022; Murphy & Lassaline, 2013). The Formal Op-
erational stage extends these abilities to abstract reasoning
and complex tasks, such as understanding intentionality and
mechanical reasoning (Kilner, 2011; Allen et al., 2020).
See Appendix A.1 for empirical support of framework and
Appendix A.2 for a detailed description of core abilities.

3.2. Dataset Curation
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(zewald & Jacobs, 2020)

Quality Check
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External review
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* Minimal Confounding
* Minimal Text Shortcut

“Where is the yellow ball at
the end of the video?”

Figure 3. Overview of the benchmark curation process

Building upon the above cognitive framework, we opera-
tionalize theoretical constructs into explicit examples de-
signed to probe specific core abilities in MLLMs. To ensure
conceptual integrity and interdisciplinary rigor, we estab-
lish criteria that define successful instances: 1. Discrimi-
nativeness: Instances should be structured such that mod-
els lacking the targeted core knowledge necessarily select
the incorrect answers, thereby ensuring the discriminative
power. 2. Minimal Confounding: Questions should mini-
mize reliance on confounding capabilities, such as object
recognition, and must avoid conceptual overlap with other
core knowledge included in the benchmark. 3. Minimal
Text Shortcut: Instances should be crafted so that answers
cannot be derived through textual shortcuts alone but require
genuine multimodal comprehension.

A total of 12 annotators, each with a college-level educa-
tion in cognitive science, computer science, or statistics,
collaborate on the curation of CoreCognition.

Prototyping. We operationalize 12 theoretical concepts
into a series of prototype scenarios that abstractly exemplify
situations suited to evaluating specific core abilities within
MLLMs. For example, to evaluate object permanence, we
drew inspiration from classic infant experiments in develop-
mental psychology (Zewald & Jacobs, 2020). The prototype
scenario involves a ball being hidden under one of several
cups, followed by occlusion and spatial manipulation. For
each cognitive ability, we developed 5-10 prototype sce-

narios. These prototypes serve as templates from which
concrete data instances can be generated.

Instantiation of Prototypes. To instantiate a prototype, we
generate vision modalities (images/videos) that abstractly
align with the underlying concept. These media assets are
collected from a variety of sources, including internet, pub-
lic datasets, synthetic content by generative models, sim-
ulated environments, and original recordings captured by
cameras. Each asset is then paired with a carefully designed
question that probes the specific core ability, along with a
pre-defined options and the ground-truth answer, forming
the multiple-choice questions (MCQs). Please refer to Ap-
pendix B for a detailed discussion on types and formats of
curated questions and Appendix C for justification over the
difficulty of the questions in CoreCognition.

Quality Control. Following the established criteria, each
question-answer (QA) pair undergoes two rounds of inde-
pendent cross-validation by annotators from separate groups.
Any data point that fails to meet the standard is discarded.
To further assess the reliability and clarity of the QA items,
we conducted an additional round of validation by collecting
responses from 20 human annotators via Amazon Mechan-
ical Turk. We further recheck QAs that lead to consistent
mistakes by humans.

3.3. Inference and Evaluation Strategy

Evaluating MLLMs on a large scale with QA formats poses
several challenges: 1. MLLMs, ranging from 1B to 110B
parameters, demand substantial computation resources and
inference time with different environment dependencies for
each of the 230 models, complicating efficient and robust
evaluation under limited computational resources. 2. The
free-form outputs from MLLMs can be highly variable,
potentially leading to conceptual errors in performance as-
sessment if an inappropriate evaluation method is used.

Inference. To address these challenges, we built a scal-
able evaluation infrastructure supporting parallel execution
and compartmentalized environments, enabling reliable in-
ference across over 200 MLLMs. We strictly follow the
setup and source code from the official codebases provided
by model developers to ensure fidelity. Further details are
provided in Appendix D.1.

Evaluation. For each k-choice question, we cyclically ro-
tate the answer options k times, generating & versions with
different option orders. Rather than requiring consistent se-
lection of the correct answer across all rotations to assign a
correct score, we instead calculate the proportion of correct
responses over the augmented set. This averaging approach
avoids the exponentially diminishing chance-level accuracy
that arises when enforcing consistency on questions with
many options. We refer to Appendix D.2.3 for more details.
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Model .- ) .. Perceptual | Inwitive Perspective o y Tool »

Boundary  Continuity - Permanence  Spatiality oo ney | Physics  Taking  COMC™UOM URelation | Understanding  Reasoning  Using | M
Human 85.71 78.89 88.10 75.57 90.70 91.52 91.99 88.89 71.88 81.98 8772 91.87 | 86.98

Proprietary Models
GPT-ol(Jaech et al., 2024) 78.84 63.95 57.03 61.22 87.79 75.45 5521 78.38 75.49 87.54 8513 98.16 | 74.91
GPT-do(Hurst et al., 2024) 87.17 63.37 52.86 67.95 81.20 58.79 43.06 69.97 57.52 85.20 7751 9691 | 6925
Qwen-VL-Max(Bai et al., 2023b) 82.40 65.12 41.99 61.56 8433 57.88 27.89 78.98 69.66 81.00 8620  97.96 | 67.91
Gemini-1.5-Pro(Team et al., 2024) 82,58 69.19 59.56 67.95 73.26 56.21 30.96 64.26 73.62 81.00 8056 98.09 | 67.80
Gemini-1.5-Flash(Team et al., 2024) 79.12 7122 4155 68.11 77.62 57.42 30.63 51.95 73.95 78.74 7213 9577 | 6550
GPT-4-Turbo(Achiam et al., 2023) 77.62 61.34 48.94 5425 82.17 6348 4311 50.15 51.62 80.92 7581 98.75 | 65.23
Grok-2-Vision(xAl, 2024) 80.52 69.19 36.27 67.63 73.26 53.64 3734 50.15 7112 79.67 5815 99.21 | 63.69
Claude-3.5-Sonnet(Anthropic, 2024) 78.28 56.40 3243 64.74 76.74 58.18 34.17 46.55 64.56 72.98 69.00  97.96 | 61.92
GPT-4o-mini(Hurst et al., 2024) 7425 70.06 38.89 53.93 64.73 59.39 41.01 42.04 58.66 76.01 6935 9612 | 60.89
Open Source Models

Qwen2.5-VL-72B(Bai et al.. 2025a) 79.59 64.53 43.38 62.82 85.27 59.09 2891 8168 68.20 8045 8566  97.96 | 68.29
InternVL3-78B-Instruct(Zhu et al., 2025) 80.62 58.86 64.37 58.90 7973 52.12 70.79 73.64 40.20 3403 5499 9118 | 64.60
Ovis1.6-Gemma2-9B(Lu et al., 2024b) 85.39 60.17 4155 51.68 69.19 55.76 26.91 5435 7160 77.49 6577 8770 | 60.92
mPLUG-OWI3(Ye et al., 2024) 76.50 59.01 39.95 48.96 6221 44,09 33.80 7147 70.63 77.10 6022 9289 | 59.92
Gemma-3-27B(Team et al., 2025a) 78.18 50.00 35.05 49.86 60.47 5152 3501 5375 69.74 71.55 7053 9752 | 59.38
VILAL5-40B(Lin et al., 2024) 7537 58.14 40.60 59.70 69.38 5455 26.96 30.63 60.60 7827 6434 9592 | 5831
DeepSeek-VL2(Wa et al., 2024b) 76.69 65.41 35.87 5521 69.09 57.42 31.98 3243 64.72 80.14 4884 9252 | 58.17
Pixtral-12B(Agrawal et al., 2024) 7228 55.52 44.28 49.84 66.86 51.97 25.19 58.26 59.06 70.87 5842 9691 | 57.78
LLaVA-NeXT-72B(Liu et al., 2024a) 79.21 65.12 6103 47.84 68.60 52.27 30.12 3844 60.11 77.65 7007 4621 | 5625
MMAlaya2(Ltd., 2024) 77.81 66.86 4828 4247 72.67 5939 28.12 28.83 65.94 81.07 6425 46.86 | 55.19
LLaVA-Onevision-Qwen2-72B-ov-hf(Li et al., 2024b) ~ 81.84 57.85 40.36 39.18 64.63 51.82 29.05 48.35 63.27 78.04 66.31 5469 | 54.46
Phi-4-multimodal-instruct(Abdin et al., 2024) 78.57 52.59 31.60 36.02 63.57 53.64 2575 51.95 60.42 67.29 6577 7546 | 5355
Idefics3-8B-Llama3(Laurencon et al., 2024) 74.06 58.43 27.70 3550 68.60 65.30 29.42 45.05 47.65 65.26 5905 5206 | SLI8
Emu2-Chat(Sun et al., 2024) 64.61 54.94 43.79 39.58 5727 45.76 33.24 2492 52.99 51.64 44.71 43.66 | 45.67

Table 2. Performance of selected MLLMs (classified into proprietary, open-source and reasoning models) on the CoreCognition dataset.

Best results are shown in bold; second-best are underlined.

To assess free-form responses, we employ a two-stage scor-
ing process. Multiple-choice questions (MCQs) inherently
contain predefined answers and choices. Thus, each MLLM
response is first mapped to one of the options or marked as
FAIL if unaligned. Mapping is achieved via a hybrid method
combining template matching with LLM-as-a-Judge. A pre-
defined set of templates is utilized to directly match the
model’s output with one of the options. When template
matching fails, an LLM will be used to determine the most
suitable corresponding option. Models with a high FAIL
rate are re-evaluated for validity and excluded from further
analysis to avoid bias if they consistently produce nonsen-
sical responses. In the second stage, the mapped choice
is compared against the ground-truth answer, with FAILS
counted as incorrect. See Appendix D.2.1 for details, where
we show consistent results with 4 alternatives.

4. Experiments

To comprehensively assess core knowledge in MLLMs, we
meticulously selected and evaluated a diverse array of mod-
els across various architectures and scales. The evaluated
set prominently includes commercial models such as the
OpenAl and Claude series, high-performing open-source
models like InternVL (Zhu et al., 2025) and the Qwen series
(Bai et al., 2025b), as well as recently introduced models
from the DeepSeek (Lu et al., 2024a; Wu et al., 2024a)
series, which have garnered considerable attention. The
evaluated open source models range in size from 1 billion
to 110 billion, with different design choices such as dense
(Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020)
and Mixture-of-Experts (Shazeer et al., 2017; Fedus et al.,
2022), different vision encoders (e.g. Clip (Radford et al.,
2021), SigLip (Zhai et al., 2023)). As discussed in Sec. 3.3
and Appendix D.2.1, we additionally filtered out models
that consistently produce invalid outputs. Ultimately, we

have 230 models for subsequent analysis, among which 25
are proprietary, and 205 are open-source.

4.1. Core knowledge Deficits
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Figure 4. Accuracy by concept normalized by chance level. Evi-
dence of core knowledge of deficits, with statistical significance.

As shown in Fig. 4, models exhibit a pronounced “core
knowledge deficit”: they perform significantly better on
higher-level abilities (right side of the figure), comparable or
even surpassing humans, but struggle with lower-level abili-
ties (left side), associated with early developmental stages.
This disparity is statistically significant and contrasts sharply
with human performance, which remains consistently high
across all stages. It’s noteworthy that lower-level abilities
are operational approximations of basic cognitive systems
and are thus more directly aligned with the notion of ’core
knowledge”, while higher-level abilities are more abstract or
compositional cognitive tasks. The observed upward trend
in performance does not imply that only lower-level abilities
reflect core knowledge. Rather, it suggests that while mod-
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els may perform better on higher-level tasks—potentially
by pattern matching or spurious correlation—they often
struggle with the more fundamental reasoning required for
lower-level tasks. This gap implies the failure to demon-
strate a robust understanding of the foundational abilities
that higher-level tasks presuppose. Details on Fig. 4, ac-
curacy normalization, and pairwise t-tests are provided in
Appendix E. We further validate whether the observation
holds under a variety of different conditions in Appendix H.

Tab. 2 compares the performance of 30 state-of-the-art
MLLMs with human performance. All MLLMs substan-
tially underperform relative to humans on lower-level stages
(i.e. Sensorimotor and Concrete Operation excluding Hier-
archy): the best models, GPT-o1, GPT-40 and Qwen2.5-VL,
achieve average scores of 74.91%, 69.25%, and 68.29% trail-
ing human performance by 15.91%, 21.57%, and 22.53%,
respectively. Notably, proprietary models do not consis-
tently outperform open-source counterparts; for instance,
GPT-40 outperforms Qwen2.5-VL-72B by only 1% on aver-
age and Gemini and Claude series underperform Qwen2.5-
VL-72B, QVQ-72B-Preview and InternVL3-78B by 2-3%
on average. This indicates that both proprietary and open-
source MLLMs share the core knowledge deficit, underscor-
ing a fundamental limitation across all models. Particularly,
models perform markedly worse than humans on Perspec-
tive Taking, likely reflecting their limited capacity for mental
simulation, critical for understanding alternative viewpoints
(Barnes-Holmes et al., 2004; Moll & Meltzoff, 2011; Bar-
lassina & Gordon, 2017). This highlights broader concerns
regarding the absence of robust model-based reasoning in
contemporary language models (Lake et al., 2017; Mitchell
& Krakauer, 2023).

Key Finding 1 (Core Knowledge Deficits): MLLMs ex-
cel at higher-level abilities associated with later develop-
mental stages but consistently struggle with lower-level
abilities that typically emerge earlier in human cognition.

4.2. Dependencies Between Core Abilities
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Figure 5. Pearson Correlations Between Core Abilities.

Examining the interdependencies among core abilities pro-
vides a principled understanding of whether models de-
velop coherent, hierarchically structured competencies akin
to those seen in humans. To quantify the degree of co-
variation consistent with developmental hierarchies, we
compute Pearson correlations between performances across
all 12 abilities. The results reveal a distinct divergence:
many correlations are modest (p < 0.4), while some clus-
ters exhibit strong alignment (p > 0.65). As illustrated
in Fig. 5, we observe (U robust correlations among several
high-level abilities, reflecting the anticipated interdepen-
dence among tasks within the same developmental stage—a
pattern notably absent in earlier stages of model perfor-
mance. Notably, the Hierarchy ability clusters more closely
with Formal Operational abilities, consistent with its strong
overall performance and suggesting that models may treat
it as an advanced reasoning task. In contrast, @ three Sen-
sorimotor abilities (Permanence, Spatiality, and Continuity)
exhibit weak correlations with most higher-stage abilities,
implying that these foundational competencies do not pro-
vide the developmental scaffolding to more advanced stages,
which are typically observed in humans. @ Further evidence
can be observed from three Concrete Operational abilities
(Perspective, Conservation, and Intuitive Physics), which
also show weak cross-stage correlations. Collectively, these
results indicate that current models lack structured represen-
tational dependencies, raising concerns about the grounding
and internal coherence of their acquired abilities(Spelke
et al., 1992). We further validate whether the observation in
Fig. 5 holds under a variety of conditions in Appendix L.

Key Finding 2 (Misaligned Dependency): Core abili-
ties exhibit weak cross-stage correlations, indicating an
absence of developmental scaffolding.

4.3. Core Abilities are Predictive of Higher-level
Abilities

To support the argument that core knowledge is essential
for higher-level reasoning and perceptual abilities, we show
in Fig. 6 that strong performance on core abilities reliably
predicts higher performance on most high-level abilities and
benchmarks, such as SEEDBench?2 (Li et al., 2024a). Con-
cretely, we analyze the correlation between the performance
of 12 core cognitive concepts across three stages and the
performance of the same models on 26 public benchmarks
and 9 higher-level abilities, as defined by SEED-Bench 1
(Li et al., 2023a) and 2(Li et al., 2024a). Our findings re-
veal that, except for perspective and Intuitive Physics, core
abilities strongly predict performance on public benchmarks
(except ChartQA) and performance of higher-level abili-
ties in SEED-Bench. We hypothesize that the exceptions
of ChartQA arise because textual understanding is largely
orthogonal to the core abilities examined here. Perspec-
tive and Intuitive Physics tasks demand structured internal
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Figure 6. Correlation between core abilities and “’high-level” abilities (left) and existing MLLM benchmarks (right).

representations and counterfactual reasoning—abilities that
underpin advanced reasoning in humans. The observed lack
of correlation indicates that core knowledge deficits, as ev-
idenced by dependencies between different abilities, are
also reflected in benchmark evaluations. We further validate
whether the observation in Fig. 6 holds under a different
conditions in Appendix J.

Key Finding 3 (Predictability): Performance on core
knowledge is predictive of higher-level abilities.

4.4. Scaling Effect on Core Knowledge?

Not for low-level abilities! The advancement of LLMs
has been driven by the empirical scaling law—predictable
power—predictable power-law improvements in perfor-
mance with increased compute, parameters, and training
data (Kaplan et al., 2020; Zhai et al., 2022; Henighan et al.,
2020; Hoffmann et al., 2022)—and emergence, the abrupt
appearance of qualitatively new abilities as model scale in-
creases (Wei et al., 2022a; Aghajanyan et al., 2023; Bubeck
et al., 2023; Berti et al., 2025). This raises a fundamental
question: Does performance on core knowledge also emerge
and scale as models increase in size? We evaluate the extent
to which scaling applies to low-level core abilities rooted in
core knowledge. By fitting a linear regression to the perfor-
mance of 230 models of varying sizes on these abilities, we
estimate the scaling effect as the slope of the regression line.
As shown in Fig. 7, our results reveal a clear dissociation be-
tween low- and high-level abilities regarding scaling effects.
For seven out of nine low-level abilities—excluding hierar-
chical relation and perceptual constancy—in the Sensorimo-
tor and Concrete Operational Stages, model performance
shows significantly less improvement with increasing size,
compared to the higher-level Formal Operational Stage. No-
tably, perspective-taking ability even declines with scale,
likely due to a persistent egocentric bias that intensifies as
models grow larger. These findings indicate that scaling
primarily benefits high-level reasoning, while its impact on
low-level cognitive abilities is limited or even negative. This
suggests that simply increasing model size is insufficient

for developing core knowledge in MLLMs. We further dis-
cuss the generalization of this conclusion under different
conditions in Appendix J.

Key Finding 4 (Not Scaling): MLLMs exhibit limited
or no scalability on low-level abilities compared to high-
level abilities
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Figure 7. Scaling Effect on core knowledge with respect to model
size. Scaling laws do not apply uniformly across all concepts.
Top Left. Fitted curves for each concept across 219 models and
11 prompt cases. Bottom Left. Comparison of core abilities’
scalability (slopes of fitted curves). Right. Scaling curve for
Mechanical Reasoning/Perspective-taking. Dots of the same color
represent models from the same series.

4.5. Does Reasoning Help?

Reasoning and test-time scaling are widely adopted in
MLLMs and have demonstrated strong performance on
complex benchmarks such as MathVista (Lu et al., 2023),
CLEVR (Johnson et al., 2017), and Geometry3K (Lu et al.,
2021). One might hypothesize that these approaches enable
more effective knowledge structuring, thereby improving
performance on core knowledge tasks such as those in our
benchmark. For example, in the “near-large-far-small” per-
ceptual constancy scenario shown in Fig. 9, models relying
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on system-1 thinking may naively predict that the bridge
narrows from direct perception, whereas models employing
system-2 reasoning could override this intuitive illusion by
more thinking and correctly infer that the apparent narrow-
ing is merely a result of perspective.

To examine whether reasoning and test-time scaling en-
hance performance on core cognitive abilities, we evaluate
both reasoning-augmented models and their correspond-
ing instruction-tuned counterparts on CoreCognition ques-
tions including Kimi-VL-A3B-Thinking, Kimi-VL-A3B-
Instruct (Team et al., 2025b), QVQ-72B-Preview (Team,
2024b), R1-Onevision-7B (Yang et al., 2025b), Llama-3.2V-
11B-cot (Xu et al., 2024), Llama-3.2-11B-Vision(Meta,
2025), as well as full series of InternVL3 (Zhu et al., 2025)
and VLAA-Thinker-Qwen2/2.5VL (Chen et al., 2025) to
Qwen2/2.5-VL (Wang et al., 2024a; Bai et al., 2025b).
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Figure 8. Left. By concept comparison between reasoning models
and their non-reasoning counterparts. Right. Comparison of the
overall performance

As per Fig. 8, reasoning abilities and test-time scaling do
not confer a clear advantage over instruction-tuned models.
Overall, reasoning models show a modest, non-significant
average improvement. The only two exceptions fail to ex-
hibit a consistent trend (perceptual constancy, where reason-
ing models perform better (P = 0.0669), and perspective
taking, where they perform worse (P = 0.0037)). The ab-
sence of improvement in lower-level abilities underscores
that current architectures struggle with grounded reason-
ing. Similarly, the negligible gains observed on higher-level
tasks such as Intentionality Understanding and Tool Use
suggest limited advantages from reasoning at near-ceiling
performance. In contrast, reasoning models do not improve
the relatively low scores in Mechanical Reasoning, likely be-
cause this domain requires model-based reasoning that can-
not be addressed by chain-of-thought prompting or test-time
scaling (Hegarty, 2004; Mitchell, 2021). Notably, reasoning-
augmented models exhibit a narrower performance distribu-
tion, indicating that explicit reasoning may stabilize outputs
without resolving deeper representational deficits.

5. Concept Hacking: A Controlled Experiment

Do MLLMs genuinely possess core knowledge? A funda-
mental challenge in evaluating the abilities of MLLMs is

their propensity to exploit spurious features, where apparent
task proficiency may stem from shortcut learning rather than
genuine understanding (Alvi et al., 2018; Bahng et al., 2020;
Cadene et al., 2020; Clark et al., 2019; Dagaev et al., 2021).

5.1. Methodology

We introduce concept hacking, which systematically manip-
ulates task-relevant features while preserving task-irrelevant
conditions to completely invert ground truth labels. As
exemplified in Fig. 9, 45 samples from CoreCognition
are paired with a manipulated version containing identical
questions but opposite correct answers. Given a pair of
tasks, it yields four possible MLLM response types (Tab.
3): The case where models answer controlled tasks incor-
Table 3. Four types of outcomes from MLLM.

Control

Manipulation  Interpretation

v core knowledge
shortcut

PN

X
v .
% core deficits

rectly but manipulation tasks correctly reflects coincidental
accuracy—models lacking core knowledge produce wrong
answers on controlled tasks, but inverted ground truth in
manipulation tasks makes incorrect reasoning appear cor-
rect, i.e. “being right for the wrong reason”. See a detailed
explanation of concept hacking curation in Appendix K.
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Figure 9. Examples of Concept Hacking.

5.2. Results: Core Deficits v.s. Shortcut Taking

The results reveal a clear separation between models ex-
hibiting shortcut and those with core deficits (Fig. 10), with
A substantial proportion of models clustered in the top left
quadrant (high manipulation accuracy, below-chance control
accuracy, consistent with findings in Sec. 4.1), and a signifi-
cant portion of models appeared in the bottom right quadrant
(high control accuracy, below-chance manipulation accu-
racy), reflecting a pronounced reliance on shortcuts with a
high susceptibility to manipulation. Most models demon-
strated above-chance performance on both tasks but still fell
short of human-level core knowledge. Unlike humans, al-
most none of these models achieved roughly equal accuracy
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Figure 10. Control vs. Manipulation accuracy. Circle: model per-
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averaged accuracy on CoreCognition; Green triangle: human
performance; Red dot: chance level point on both Control and
Manipulation, termed as “’blind”. As size increases, core deficits
and shortcut reliance intensify, rather than progressing toward the
human-like core knowledge region.

on both tasks—a hallmark of robust core knowledge and
immunity to concept hacking. This pattern suggests that,
while some models are not entirely dominated by shortcut-
taking or lack of core knowledge, these factors still substan-
tially affect their predictions. Interestingly, susceptibility to
concept hacking does not correlate straightforwardly with
model size or performance on CoreCognition. While many
shortcut-reliant models were smaller and weaker, the bot-
tom right quadrant also include some of the largest and
best-performing models, such as GPT-40. Similarly, models
with core deficits in the top left quadrant varied in size and
performance. In line with previous findings on the non-
scaling of low-level abilities, increasing model size does
not inherently improve core knowledge, but rather enhances
shortcut-taking or the persistence of core deficits.

Key Finding 5 (Deficits v.s. Shortcut Taking): Mod-
els increasing in size exhibit deficits and shortcut-taking
behaviors rather than progressing toward conceptual un-
derstanding of core knowledge.

6. Discussion

Our findings (1-3) support the hypothesis that MLLMs
lack core knowledge that grounds the high level perception
and reasoning abilities, and that such core abilities cannot
be acquired through scaling alone (4-5). This offers an
explanation for the longstanding Moravec’s paradox that
tasks intuitive and effortless for humans often prove to be
the most challenging for machines (Moravec, 1988). It
also offers a plausible account for the lack of robustness in
current MLLMs (Shiffrin & Mitchell, 2023; Zhang et al.,

2024b), and resonates with ongoing critiques that foundation
models fail to develop genuine conceptual understanding,
instead reinforcing shortcut-based strategies as they scale
(Bender et al., 2021; Mitchell & Krakauer, 2023).

Our findings that current training paradigms fail to instill
core cognitive abilities underscore the need for pretraining
strategies that explicitly target these foundational capacities.
More specifically, if core knowledge cannot be directly ac-
quired through scaling, it may be beneficial to first teach
or distill core knowledge into MLLMs prior to large-scale
pretraining, thereby enabling more data-efficient generaliza-
tion akin to human learning. From both an evaluation and
design perspective, our benchmark reveals distinct failure
modes—including deficits in permanence, spatiality, bound-
ary, and continuity. These limitations further hinder abilities
such as visual perspective-taking and contribute to an over-
reliance on shortcuts, which is a fundamental cause of poor
out-of-distribution generalization.

One possible objection is that human-like core knowledge
is not essential for artificial general intelligence (AGI),
even when AGI is defined in relation to human-level in-
telligence. Intelligence, after all, may be multiply realiz-
able—achievable through architectures and developmental
paths distinct from those of humans (Bechtel & Mundale,
1999). However, core knowledge may embody fundamen-
tal learning principles that recur across intelligent agents,
including non-human animals (Santos, 2004; Lake et al.,
2017). If such a theory holds, non-human pathways to AGI,
e.g. scaling, will also lead to the emergence of these core
abilities. In this light, a benchmark on core knowledge, such
as ours, could offer a useful lens for evaluating the progress
toward AGI, regardless of the path taken. In light of ongoing
uncertainty about the path towards AGI, the human devel-
opmental trajectory offers a valuable, empirically grounded
reference point. Despite great advancements, MLLMs con-
sistently struggle with hallucinations, poor generalization,
and a lack of robustness, suggesting that key cognitive in-
gredients may still be lacking. By aligning evaluation with
structures known to support robust reasoning and perception
in humans, our framework helps expose and address these
critical gaps in emerging Al systems.

7. Conclusion

We introduce CoreCognition benchmark paired with a
novel Concept Hacking method to rigorously and control-
lably evaluate the conceptual understanding of core knowl-
edge in MLLMs. We uncover four key findings that collec-
tively indicate a consistent lack of core knowledge in current
MLLMs—fundamental understanding of basic world con-
cepts such as objects, actions, numbers, space, and social
relations—that humans acquire from infancy. We also dis-
cuss potential limitations in Appendix M.
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Impact Statement

We aim to advance the development of MLLMs through a
cognitively grounded evaluation framework, CoreCogni-
tion. Our findings reveal that MLLMs lack conceptual un-
derstanding of core knowledge, cautioning against overinter-
preting their success on complex tasks. The curation method
employed in CoreCognition offers a scalable methodology
that may inform future benchmarking of foundation models
in large scale. Our findings also shed light on the design
of more robust and interpretable models with grounded rea-
soning and perception capabilities. The adversary idea in
Concept Hacking may pose misuse risks if adapted for mili-
tary purposes.
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A. Cognitive Framework
A.1. Core Knowledge in Human

Past research has shown that humans exhibit a series of rudimentary yet robust abilities in domains such as object, number,
space, action, and social cognition at a very young age. Such abilities, often known as “core” cognition, ground the set of
diverse and complex abilities of human intelligence that develop later (Spelke et al., 1992; 1994; 1995; Spelke & Kinzler,
2007; Baillargeon & Carey, 2012; Mitchell, 2020; 2021). From infancy to early adulthood, human cognition develops
along a structured trajectory, with interdependent relations between early, simple abilities and late, complex abilities. For
instance, the ability to imagine the perspectives of others typically develops between the ages of 3 and 6 (Piaget & Inhelder,
1969), while the capacity to fully comprehend others’ intentions matures around age 12 (Wimmer & Perner, 1983; Wellman
et al., 2001; Liu et al., 2008). At the same time, the ability to understand other people’s intentions largely depends on
the ability to understand other people’s perspectives (Iacoboni, 2009; De Waal & Preston, 2017; Liu et al., 2017; Caviola
et al., 2021; Ninomiya et al., 2020). An influential account of human learning has suggested that cognitive development
is fundamentally driven by the increase of computational/representational power of the system, which allows for more
complex mental operations to be performed on external data (Fodor, 1975; Pylyshyn, 1980; Halford et al., 1998; Fodor,
2008). However, while high-level abilities might emerge directly due to enhanced operational resources, these operations
are critically guided by the “core” cognition system that has enabled the system to possess a rudimentary understanding of
each cognitive domain. This early-stage grounding not only empowers humans to achieve a reliable performance at basic
yet widely-applicable tasks starting from very young ages but is also precisely what supports high-level abilities to robustly
direct task-relevant behaviors despite the nuanced signals that exist in the environment (Mitchell, 2021).

The sensorimotor stage is the first stage of cognitive development proposed by Jean Piaget (Piaget, 1952; Piaget & Inhelder,
1974). Spanning from birth to approximately 2 years of age, this stage is characterized by infants’ understanding of the
world through their sensory experiences and motor actions. Several prominent features of human intelligence developed
during this period. First, infants develop object permanence, that they realize objects and people continue to exist even
when not in direct sight, or being heard or touched (Baillargeon et al., 1985). They start to understand that there is a sense
of continuity for the ways that objects exist, and the inductive bias of continuity is essential, e.g., for recognizing objects
when occluded or for continuously tracking objects (Spelke et al., 1995; Le Poidevin, 2000). Infants also develop the sense
of boundary during this stage, namely, the ability to recognize where one object ends and another begins (Kestenbaum
et al., 1987; Jackendoff, 1991). Lastly, infants develop spatial and perceptual constancy by the end of the sensorimotor
stage. Spatiality refers to the ability to perceive the position and distance of objects relative to oneself and each other, and
recognize the spatial invariance between them when presented by various sensory experiences (Hermer & Spelke, 1996;
Bell & Adams, 1999).

The preoperational and concrete operational stages are the second and third stages of Piaget’s cognitive development.
Typically spanning over 2 to 7 years of age, the preoperational stage is the transitional stage to the concrete operational
stage, which children enter around 7 years of age. During this period, children begin to develop internalized mental actions
supported by organized structures that can be manipulated and reversed in systematic ways, known as mental operations
(Janet, 1905; Kirkpatrick, 1908; Piaget, 1950; Piaget & Inhelder, 2014; Miller, 2016). Through mental operations, children
are then able to rigidly perform tasks that are previously unreachable, such as thinking from other people’s perspectives,
understanding hierarchical relations of objects, and reasoning about physical events in the world. These tasks require not only
rudimentary understandings of physical concepts, which gradually became in place during the preoperational stage, but also
relational and transformational reasoning that can only be done through mental operations (Piaget & Inhelder, 1974; Church
& Goldin-Meadow, 1986; Houdé, 1997). Since the preoperational stage is mostly meaningful as the transitional period
preceding the concrete operational stage, we do not have evaluation dimensions specifically targeting the stage. However,
tasks targeting the concrete operational stage could assess the existence of knowledge associated with the preoperational
stage, such as the law of conservation (Piaget, 1952; Halford, 2011; Houdé, 1997).

The formal operational stage is the fourth and final stage in Piaget’s theory of cognitive development, typically emerging
around 11 or 12 years of age and continuing into adulthood (Inhelder & Piaget, 1958). Starting in this stage, one is able to
systematically and flexibly apply mental operations to not only concrete, physical domains but also abstract, formal domains
(Kuhn & Angelev, 1976; Shayer, 1979; Huitt & Hummel, 2003). In particular, this stage is characterized by the development
of complex thinking and reasoning abilities, such as abstraction, pattern recognition, the use of logic, and hypothetical
and counterfactual reasoning (Piaget, 1950; Inhelder & Piaget, 1958). These cognitive advances pave the way for more
sophisticated abilities to interact with the physical world, marked by mechanical reasoning and tool use (O’Brien & Shapiro,
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1968). Together, there is an advance in social cognition, characterized by a deeper understanding of intentions, actions, and
the reasoning behind them (Meltzoff, 1999).

A.2. Definition of the 12 Core abilities in CoreCognition

Boundary Boundary refers to the cognitive understanding of where one object ends and another begins, an essential aspect
of perceiving and understanding the physical world (Kestenbaum et al., 1987). Without understanding boundaries, it seems
very hard to construct a concept of the object (Berkeley, 1709; Jackendoff, 1991).

Spatiality Spatiality refers to the cognitive understanding of the topological properties of our physical world (Bell &
Adams, 1999). In a classic A-not-B task, an object is hidden at location A (such as under a cup) and the child successfully
finds it several times. Then, the object is visibly moved to a different location B (under a different cup), in full view of the
child. Younger infants often make the error of searching for the object at the original location A, indicating a developmental
stage where their understanding of object spatiality is not yet formed.

Perceptual Constancy Perceptual constancy is the cognitive ability to perceive objects as being constant in their properties,
such as size, shape, and color, despite changes in perspective, distance, or lighting (Rutherford & Brainard, 2002; Khang &
Zaidi, 2004; Green, 2023). For instance, consider a red ball being thrown in a park. To an observer, the ball appears smaller
as it moves farther away, yet the observer understands it remains the same size throughout its trajectory.

Object Permanence Object permanence refers to the cognitive understanding that objects continue to exist even when they
are no longer perceptually accessible (Baillargeon, 1986; Spelke et al., 1992). This capacity emerges early in infancy and
marks a shift from sensorimotor interactions to rudimentary conceptual reasoning. A classic example is peek-a-boo: initially,
infants may react with surprise or distress when a caregiver’s face is covered, as if it has ceased to exist. As permanence
develops, they begin to infer the face’s continued presence—reflecting the emergence of internal object representations that
persist beyond immediate perception.

Continuity Continuity is the cognitive prior that objects persist as unified, cohesive entities across space and time (Spelke
et al., 1995; Le Poidevin, 2000; Spelke et al., 1994; Yantis, 1995; Yi et al., 2008; Bertenthal et al., 2013). For example,
when we see the front and rear of a train simultaneously extending from opposite ends of a tunnel, we infer that the train
continues through the occluded space as a single, continuous object. This inference reflects our sensitivity to spatiotemporal
continuity—not merely that the object exists, but that its parts remain connected along a coherent trajectory through space.

Conservation Conservation refers to the ability to understand that certain properties of physical entities are conserved
after an object undergoes physical transformation (Piaget & Inhelder, 1974). This is instantiated in their ability to tell that
quantities of physical entities across different domains, such as number, length, solid quantity and liquid volume, will remain
the same despite adjustments of their arrangement, positioning, shapes, and containers (Halford, 2011; Craig et al., 1973;
Piaget & Inhelder, 1974; Houdé et al., 2011; Poirel et al., 2012; Marwaha et al., 2017; Viarouge et al., 2019). For example,
when a child watches water being poured from a tall, narrow glass into a short, wide one, a grasp of liquid conservation
would lead them to understand that the amount of water remains the same even though its appearance has changed.

Perspective-taking Perspective-taking is the ability to view things from another’s perspective. This ability has seminal
importance both to the understanding of the physical world as well as to the competence in social interactions (Wimmer &
Perner, 1983; Wellman, 1992; Liu et al., 2008; Barnes-Holmes et al., 2004). The Three Mountain Task first invented by Jean
Piaget is widely used in developmental psychology laboratories as the gold standard for testing perspective-taking abilities
in children (Piaget & Inhelder, 1969)

Hierarchical Relation Hierarchical relation refers to the ability to organize objects or concepts into structured categories
and subcategories, which are supported by the development of mental operations marked by class inclusion and transitivity
(Shipley, 1979; Winer, 1980; Chapman & McBride, 1992). Class inclusion refers to the ability to recognize that some
classes or groups of objects are subsets of a larger class. For example, a child in the concrete operational stage is able to
understand that all roses are flowers, but not all flowers are roses (Borst et al., 2013; Politzer, 2016). This concept is essential
for one’s systematic and logical organization of conceptual knowledge. Transitivity refers to the ability to understand logical
sequences and relationships between objects (Andrews & Halford, 1998; Wright & Smailes, 2015). For instance, if a child
knows that Stick A is longer than Stick B, and Stick B is longer than Stick C, they can deduce that Stick A is longer than
Stick C.

Intuitive Physics Intuitive physics refers to the ability of humans to predict, interact with, and make assumptions about the
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physical behavior of objects in their world (Michotte, 1963). As children grow, they transition from simplistic understandings,
such as expecting unsupported objects to fall, to more complex theories, such as grasping the principles of inertia (Spelke
et al., 1994; Kim & Spelke, 1999) and gravity (Vasta & Liben, 1996; Kim & Spelke, 1999; Li et al., 1999).

Intentionality Understanding Intention understanding involves recognizing and interpreting the actions of others (Searle,
1979; Rosenthal, 1991). This process is not just about observing a behavior but also about understanding the goal behind it
(Baker et al., 2009; Gandhi et al., 2021). For example, seeing someone reaching for a cup is not just about recognizing the
physical action but understanding the intention behind it (e.g., they want to drink).

Mechanical Reasoning Mechanical reasoning refers to the ability to understand and apply mechanical concepts and logical
principles to solve problems (Allen et al., 2020). This cognitive concept first involves the ability to interpret and predict the
behaviors of complex physical systems and understand how different mechanisms of the systems work. Second, mechanical
reasoning requires the ability to apply logic rules, such as induction, abduction, syllogism (O’Brien & Shapiro, 1968;
Cesana-Arlotti et al., 2018), and reasoning forms, such as hypotheticals and counterfactual (Byrne, 2016), to figure out how
to manipulate these systems to achieve a desired outcome (Hegarty, 2004).

Tool Using Tool-using refers to the ability to utilize objects (as tools) in their environment as aids in achieving a specific
goal, such as obtaining food or modifying the surroundings. A lot of cognitive components are involved in tool-using ability,
such as affordances, referring to computing the action possibilities offered to the agent by the tool with reference to the
agent’s sensorimotor capabilities (Gibson, 1979). For example, a door handle affords pulling or pushing, as how the door
should be operated by a human agent.

B. Input Types and Formats

CoreCognition encompasses diverse input types and formats. We first introduce two types of questions i.e, true/false
questions and multiple-choice questions (MCQs). The distribution statistics is in Fig. 11.

Evaluating core knowledge presents unique challenges, as different core abilities necessitate distinct forms of visual media.
For instance, tool use tasks require only images, while conservation tasks require videos. To address this diversity, our
benchmarks incorporate a variety of visual formats within a single QA setting, including single images, videos, and sets of
multiple images.

However, not all Multi-modal Large Language Models (MLLMs) can process every input format due to implementation
constraints. Considering the more than 200 models evaluated in this study, we classify the input formats into three main
categories: single image, single video, and multiple images (i.e., multiple frames). The distribution of these formats across
our benchmark is shown in Fig. 11.
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Figure 11. Distribution of question type and modality type in CoreCognition dataset.

22



Core Knowledge Deficits in Multi-Modal Language Models

C. Justification for the Difficulty in CoreCognition

Our benchmark is deliberately designed to be more challenging than tasks typically used in classic developmental cognitive
science experiments with young children, driven by two main considerations:

¢ Breadth and systematic task coverage. Each task in our benchmark is derived from a well-established developmental
cognitive science prototype (e.g., Piaget’s Three-Mountain perspective-taking paradigm). Rather than relying on
the limited examples available in literature, we substantially expand each prototype into a comprehensive suite of
systematically varied questions. This approach produces a rich and robust evaluation corpus, essential for reliable and
nuanced measurement.

* Appropriate evaluation for MLLMs. Appropriate evaluation for large language models. The subjects of our
evaluation are not infants or young children, but MLLMs adapted from SOTA LLM, with knowledge and reasoning
abilities comparable to, or exceeding, those of well-educated adults, including PhD-level expertise in many domains
(OpenAl, 2024). Consequently, our tasks are intentionally challenging to thoroughly probe the capabilities of these
models, rather than simply replicating child-level diagnostic tasks.

D. Inference and Evaluation
D.1. Model Inference

We evaluate a total of 231 models, including commercial models and open-source models. Our tested models exhibit
diversity in architecture and size, ranging from 1B to 110B parameter size. Inference is performed on clusters equipped
with 8xNVIDIA A100 80 GB GPUs. In most cases, models between 1B and 13B in size can be inferred on a single GPU.
Models ranging from 13B to 32B require two GPUs, those from 32B to 70B require four GPUs, and models larger than
70B require all eight GPUs to inference. Based on the input types they support, the 231 models are categorized into three
groups: single-image, multi-image, and video models. Specifically, 85 models support only single-image input, 105 models
support multi-image input, and 41 models support video input. We built a scalable evaluation infrastructure supporting
parallel execution and compartmentalized environments, enabling reliable inference across over 200 MLLMs. We strictly
follow the setup and source code from the official codebases provided by model developers to ensure fidelity. We further
conduct sanity checks using widely adopted benchmarks to verify that the models can reproduce established results. To
support smooth inference of over 200 models, we configure 43 compartmentalized environments, each compatible with one
or multiple models. Efficient inference is performed by parallelizing models across multiple GPUs and devices. A dynamic
scheduler is employed to minimize computational waste.

D.2. Evaluation
D.2.1. MATCHING ANSWERS TO CHOICES
We explore four matching strategies and propose a hybrid approach that combines the strengths of both template- and
LLM-matching. After removing pre-defined special tokens,
¢ exact matching matches the MLLM output to a choice only if they are identical, disregarding case differences.

* “in” matching matches the MLLM output to a choice if the output, when split by spaces or punctuation, contains
exactly one choice.

* template matching: matches the entire MLLM output against predefined templates, such as “Answers: [choice]” or
“[choice]. [sentences of explanation without references to another choice]”.

e LLM matching: We employ a LLM-as-a-judge framework where the LLM is provided with the original question, the
options, and the MLLM output and prompts it to determine which choice the output mostly supports.

Exact and “in” matching approaches exhibited relatively high fail rates, with abundant false positives and false negatives.
These methods often struggle when model outputs are complex, such as reasoning models, or with explanation or chain-
of-thought (CoT) responses. Template matching was able to accommodate a broader range of scenarios but necessitated
iterative adaptation of templates to cover exceptional cases. Even after considerable refinement and despite achieving high
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accuracy on matched data points, template matching still resulted in a non-negligible overall fail rate. In contrast, LLM
matching demonstrates strong performance in identifying the intended choice within text-rich outputs, even in cases where
the explanation underwent concession processes. However, LLM matching was occasionally susceptible to hallucination,
particularly when short or simple answers were embedded within extensive contextual information.

To address these limitations and capitalize on the complementary strengths of different matching strategies, we propose a
Hybrid Matching mechanism. Specifically, we prioritize a rule-based template matching approach to extract answers from
MLLM responses. If template matching method failed, we turn to a model-based ensemble strategy using four advanced
LLMs: Qwen2.5-72B-Instruct, Mixtral-8x7B-Instruct-v0.1, DeepSeek-R1-Distill-Llama-70B, and 1lama3.1-70B. The LLM-
based result is accepted only when at least three of the four models produce consistent extractions; otherwise, the matching
is deemed unsuccessful. By integrating the precision of regular-format matching with the flexibility of semantic-based
matching, the hybrid method achieves more robust and reliable performance overall. We provide a comparison between
Hybrid Matching and the other four alternatives in Tab. 4.

Table 4. Fail rates across different matching strategies.

Method  Exact Matching “In” Matching Template Matching LLaMA3.1-70B Matching Hybrid Matching
Fail Rate 53.0448% 31.3501% 8.2056% 10.9640% 6.4845%

D.2.2. FILTERING

cutout threshold

Relative Frequency (%)

T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

Fail Rate

Figure 12. Distribution of fail rate in responses matching. We cut off at 20% filtering any models with fail rate over 0.2.

After applying Hybrid Matching, a number of models still exhibited high failure rates, as shown in Fig. 12. The distribution
of failure rates across models revealed a long-tail pattern, with a small subset of models performing substantially worse than
the majority. To distinguish between detrimental or systematic failures (e.g., outputs consisting entirely of illegal characters)
and intrinsic model limitations (e.g., adequate input processing but inadequate responses), we manually examined all models
with a matching fail rate of > 17%. This thorough review allowed us to establish a clear threshold between these categories.
Based on our analysis, we set a final exclusion criterion of > 20% fail rate, resulting in the removal of 12 models exhibiting
detrimental failure modes. The remaining 219 models, which demonstrated reasonable performance, were retained for
further analysis.

D.2.3. SCORING

After applying Hybrid Matching and filtering out models with high failure rates, we evaluated each model by comparing its
matched response to the ground-truth options. Responses marked as matching failures were classified as incorrect.

To reduce the risk of models favoring certain answer positions—a phenomenon known as option-position bias—we use the
circular evaluation strategy (Liu et al., 2023a). In this approach, each multiple-choice question with %k possible answers is
presented k times, with the order of the answer options rotated each time.
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Instead of requiring the model to pick the correct answer every time, regardless of the order, we calculate the proportion of
times it selects the correct answer across all rotations. This method provides a fairer estimate of the model’s true ability and
avoids unfairly lowering scores—especially when there are many answer options, where demanding perfect consistency
would make it almost impossible to achieve a correct score by chance. By preventing an excessively low chance level, this
method also ensures that subsequent normalization reflects realistic trends.

E. Normalization in Concept-wise Comparison

Since different core knowledge abilities are grounded in diverse cognitive science prototypes, they entail distinct distributions
of question formats (e.g., true/false or multiple choice with 2—4 options), resulting in varying levels of chance accuracy
and inherent difficulty. Therefore, normalization is essential to ensure fair comparisons across these abilities and to more
robustly demonstrate ’core knowledge deficits.” To achieve this, we normalize the accuracy for each ability by dividing
by its corresponding chance-level accuracy: accl,,, = aZ‘g‘l, where acc’ denotes the model’s accuracy on the i-th core
knowledge ability, and ¢’ represents the chance-level probability for ability 7. As shown in Fig. 13, we report both the raw
and normalized accuracies (see Sec.4.1). Both measures exhibit a similar upward trend, further supporting our first finding

of core knowledge deficits.
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Figure 13. Accuracy by concept without normalization

F. Performance with Different Prompts

Table 5. Ilustration of 10 different prompts, in five categories.

Category Prompt

no prompt [Empty String]

Let’s think step by step.
Take a deep breath and answer this question carefully.

Please answer the question and provide an explanation.
explanation Please answer the question and explain to me in simple terms.
Please answer the question and explain it to me like I am 11 years old.

Please answer the question carefully. I'm going to tip you 200 dollars for a better solution.
Please answer the question carefully. You will be penalized if your answer is incorrect.

Please answer the question and ensure that your answer is unbiased and doesn’t rely on

stereotypes.
_roleplaying ______ Youare an expert on cognitive science and are familiar with [Concept name].
P . Please read the concept explanation and then answer the related question. Concept: [concept
cognitive instruction description]

We investigate the influence of different prompting techniques on MLLM performance using our benchmark. As shown
in Tab. 5, we evaluate five prompt categories comprising ten distinct variants. We find that most prompts fail to improve
performance. Notably, the cognitive instruction prompt (p10)—a concise description of the conceptual targets assessed
by the task—outperforms all others, increasing accuracy by over 6%. This improvement likely stems from the fact that
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explicitly stating the relevant core knowledge enables the model to more efficiently extract information that is otherwise
distributed across its internal representations (Chalmers, 1992).

N

0.7

e
-]

Accuracy
=
i

0.4
o
0.3
-3
a
p0 p1 p2 p3 p4 p5 p6 p7 p8 P9 p10
Nyt e |G Nyt
empty  think i reward & role cognitive
. explanation . . :
string deep penalty playing instruction

Figure 14. Performance of different prompts. Accuracy is averaged across all models.

This interpretation aligns with early insights from the connectionist literature, which suggest that distributed representations
pose challenges for structured knowledge retrieval (Hinton et al., 1986; Chalmers, 1990). As networks scale, accessing
specific conceptual structures becomes increasingly difficult—particularly for foundational concepts like core knowledge.
Unlike high-level knowledge (e.g., historical events), which may be encoded in localized or clustered patterns, core
knowledge tends to be diffusely represented across parameters due to its recurrence in diverse training contexts. This
diffuse encoding makes such knowledge harder to isolate and systematically deploy in reasoning tasks. We hypothesize that
cognitive instruction may servesas a retrieval cue, guiding the model’s internal attention toward latent knowledge. However,
we do not view this as a permanent or scalable solution. In real-world scenarios, models are unlikely to receive such explicit
conceptual scaffolding, limiting the practical utility of this approach. Nevertheless, the finding points to a promising research
direction for improving model reasoning through targeted scaffolding or memory-augmented mechanisms.

G. Details on Statistical Testing

To statistically validate core knowledge deficits, defined as performance differences across the three developmental stages,
we conducted paired ¢-tests. The test statistic is given by

_ 4
sa/Vn’

t =

where d denotes the mean difference between paired observations, s is the standard deviation of these differences, and n is
the number of pairs.

Table 6 reports the results of the statistical test.
The extremely small p-values (p < 0.001) indicate that the observed performance differences between the Formal

Operational stage and the other two stages are statistically significant.
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Table 6. Paired t-test result.

Contrast t-statistic

p-value

22.68
28.15

Formal Operational vs. Concrete Operational
Formal Operational vs. Sensorimotor

4.79 x 10748

3.81 x 10753

H. Core Knowledge Deficits Under Different Conditions

We further validate ’core knowledge deficit” depicted in Fig. 5 under different conditions. Specifically, we validate whether
our finding 1 generalizes across different model subgroups (by competence and input constraints) and prompt variations.
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Figure 15. Condition Group I: Model Input Constraints

As shown in Fig.15, all three input formats and corresponding question subsets exhibit a pattern consistent with our
conclusions in Sec.4.1.
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Figure 16. Condition Group II: Prompt type

Across Fig. 16, all six types of prompts yield patterns that align with our conclusions in Sec. 4.1.

As shown in Fig. 17, the overall performance pattern remains consistent across different model selections. This replicates
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Figure 17. Condition Group III: Model Competence. Top-n refers to n models with the highest average accuracy out of 120 total
models that have multiple-frame capacity and thus evaluated on all data of CoreCognition

the core knowledge deficit, with lower-level tasks consistently showing lower accuracy. Expanding the selection from the
top 25 to all 120 multi-image models increases variability and slightly reduces median accuracy, particularly for higher-level
tasks. This growing heterogeneity in model quality underscores that gains on abstract tasks are not uniformly reliable, and

the the gap in core abilities persists.

I. Dependencies Between Core Abilities Under Different Conditions

We further examine the stability of finding 2 depicted in Fig. 6 by validating it under different conditions.
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Condition Group I: Model Input Constraints

As shown in Fig. 18, the inter-concept dependencies in single-image and video model subgroups closely mirror those of the
full-capacity multi-frame models discussed in Sec. 4.2. Two exceptions are Continuity and Permanence, which consistently
exhibit low correlations with other concepts in the single-image setting. In particular, Permanence cannot be effectively
assessed with single-image models, as this subset is unrepresentative and includes fewer than 10 questions.

28



Core Knowledge Deficits in Multi-Modal Language Models

“Empty String” Prompt “Think Deep” Prompt “Explaination” Prompt

souneory [ souneary [ p—
conn (IR connu (R p— |
R—T | PR—T | R——T
e [ - |
os 06

os
PorcptutContacy [S—— -

]

10

Intuitive Physics

04

[ Parspcivn 004 012 009 02 015 021 [ [R—
Conseton o2 Consaeaton 814 035 902 000 o1 00 05 ] p—
VNN . ] o7 0.8 [oes EROUPRY | RN 7 o7 [ 0o | R | o2 r— o2
[rp—— ] 9] oo Mechanical Reasoning 5 o -+ o Wecharical Reasoning [
menionaty [ s Intentionli s 14 (028 ) 020 7 oo T EEEIRE oo Intotionaiy oo
Toorvsno I -0z Toliing m-mw oo ) I AR Yot vin ] RN % o
SO @ @ £ SO0 © © o PN P P S0 S
°°§°°i. g"l o Q" ..e o @»' & e‘,&:ai‘@# a,,‘\gw f‘ < g\@,. % @Q fbcﬁ@«"& f\oﬂ«i ‘”w"‘{« & \x\»«&;sg‘i &
P & \‘\\‘, & ‘, .;a‘\" \‘\\& ’Qgp « .Q.," & o .e‘(’ N
«° « <« « <« «
“Reward & Penalty” Prompt “Role Playing” Prompt “Cognitive Instruction” Prompt
Soundary || " seuncary [ . soundary n "
Continiy P— - | . Contity o
Permanence w.n o permanence 018 (I Permanencs
spatiaiiey )| . 05 ‘Spatiality 06
ercepun onstacy Parcott constancy [
[r— | P ) v [o72 5] 0 o JER— o
Perspactva 006 0 o0 00 [ o Perspocive 024 023 028 [084] 002 50 [0 Parspacive 0308
Gonsorvatin. 8] 008 002 o1 [B8 901 920 consavation. 5] 004 008 o [ 02 0.2 o Consoruation [
Hearhy .mm mm. mn o2 B B - - b weracry (R Loo
Wecharicat Reasoning Ly Mecnenicotmeseorsns R0 ) R 2 -~ 6 R 00 MechanialReasoring [ERJREAE]
sty M m - T
Teotusing. (RN Y| --02 Tool Using m
—
O 0PSB RO N s SO S
“"Zs’*” S o i S e o ..a*;. S f e & *"; A
& &S & \ &
& E &
o & o & 4“° «

Figure 19. Condition Group II: Prompt type

As shown in Fig.19, all six prompts produce inter-concept dependency patterns consistent with our conclusions in Sec.4.2.
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Figure 20. Condition Group III: Model Competence. Top n refers to n models with the highest average accuracy out of 120 total
models that have multiple-frame capacity and thus evaluated on all data of CoreCognition

Across different subgroups in Figure 20, the overall pattern of inter-dependencies remains consistent with our original
observation: while correlations between high-level abilities are significant, cross-stage correlations are generally modest,
with continuity, Permanence, and Spatiality consistently show low correlations with higher-level abilities, while Perspective
and Conservation remain largely uncorrelated with other tasks—reinforcing their isolation. Although a large number of
models (e.g., Top 100, All 120) lead to slightly higher correlations, this likely reflects performance floor effects rather than
genuine cognitive integration, as lower-performing models tend to fail relatively uniformly across tasks.
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J. Scaling Effect on Core Knowledge Under Different Conditions
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Figure 21. Condition Group I: Model Input Constraints

We also tested the scaling effect under different subgroups of models with different input constraints. As per Fig. 21, all
three subgroups of models lead to a similar scaling effect aligned with our observations in Sec. 4.4. Further condition
partitions (model competence and prompt type) are not analyzed for scaling effect because (1) it is the nature of the scaling
analysis to study across model groups and (2) reducing the data size to a single prompt violates the data size requirement of
a stable regression fit.

K. Explanation of Concept Hacking with an Example

For example, as shown in the third case of Fig. 9, a standard probe of perceptual constancy assesses whether a model
understands that a bridge of uniform width extending into the ocean does not actually become narrower in the distance.
In the manipulated condition, all task-irrelevant details—such as the viewing angle and environmental textures—are kept
identical to the standard task, but the bridge itself is altered to genuinely taper as it extends outward. Models possessing
the understanding of perceptual constancy would have no difficulty answering both the manipulation task and standard
control correctly. On the contrary, a model relying on spurious correlations between the task and previous examples of
similar scenarios in the data would succeed in the original task but fail the manipulated one. Finally, a model with a strong
inclination toward the belief that objects extending into the horizon are actually getting thinner physically would fail the
control task while correctly answering the manipulated version due to its misaligned knowledge about the world.
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L. Qualitative examination of Concept Hacking

Control Manipulation

"""" HE : -HI-

| Could the black line be continuous?

o ——— Continuity

GT:Yes GPT: Ves, GT:No GPT: Yes

GPT Reasoning: the black line in the image appears visually continuous despite being partially obscured
by the blue bars. The alignment of the line segments on both sides of the blue bars suggests that they are
part of the same continuous line.

------- Physics C———

( . \ ! :
If both balls are dropped at the same time, : .

. willthe bigger (red) ball land first? | |

| A.Yes B.No,thesmaller ball first

. C.They will land at the same time )
GPT:C.

‘GPT Reasoning: Since the only force acting on them is gravity, they will experience identical accelerations
and thus hit the ground simultaneously if dropped from the same height. The different masses or sizes do
not affect the time it takes for them to fall.

Constancy

ro— —

* Does the actual width of the bridge remain the:
| samefrom near tofar?

GT: Yes GPT: Ves GT:No. GPT: Yes

GPT Reasoning: In the image, the converging lines of the bridge create an illusion of decreasing width, but
in physical terms, the bridge's width is uniform throughout its length.

<9 | b

GT: Rabbit

..—..—. Perspective

_(me a perspective rotated 90° clockwise, dnes\.
 itlook like a duck or rabbit? i
| A. Duck . Rabbit

GPT: Rabbit GT: Duck GPT: Rabbit

GPT Reasoning:

« The rounded head of the duck can resemble the rabbit’s face.

« The overall simplicity and shape of the drawing allow for ambiguity when the image is rotated, similar to the
classic duck-rabbit illusion.

« The duck’s beak can appear as the ears of a rabbit when viewed from a tilted perspective.

While the original orientation clearly depicts aduck, the tilted view introduces enough visual ambiguity

for someone to interpret itas a rabbit. This is a classic example of how perspective and perception play

tricks on our brains!

Control

— — Spatiality .. __ .. .. \
| Is there only one level of surface? N

GT:No

GPT: No GT: Yes GPT: No
GPT Reasoning: In the image, there appear to be two distinct surface levels separated by a visual pattern.The

central strip suggests a raised or separate level, dividing the red-and-white checkered areas

GT:Yes

GPT: Ves, GT:No GPT: Yes

GPTReasoning: Yes, | can identify the man in the ghillie suit. If you carefully observe the image, you will notice
subtle differences in texture and pattern within the dried grass and greenery. The ghillie suit camouflages the
person effectively, but you can spot: A slightly darker patch with rounded shapes, resembling a head and
shoulders near the lower left-center area of the image

Differences in the lines and shadows where the st blends with the surrounding vegetation

Permanence - +— -+ — - |

\ g —~ o & -3
i The image represents a duck passing : PG | I

though a block. Please answer: is the |
* situation represented by the image .

| plausible? GT: Yes GPT: Ves GT: No. GPT: Yes

GPTReasoning: The image illustrates a duck passing through a block with a gap, emerging as two ducks on the

other side. While this doesn't align with physical reality as we know it itis plausible within the context of a

conceptual or playful representation, such as in a cartoon or symbolic depiction. The process may symbolize

duplication, transformation, or division, making sense in abstract or imaginative contexts.

....... Conservation me—ey 00000 |
0060600 .

The top and bottom section of the image:

! represents the before and after of a process, co000 |

| respectively. Please answer: are there same. 0O 0O0O0O0 - o

! number of circles on the two rows in the;

‘\bnuom section? GT: Yes GPT: Yes. GT:No GPT: Yes

GPT Reasoning: To answer your question, we can analyze the two rows in the bottom section of the image.
From visual inspection:

- The first row of the bottom section contains 4 circles.

- The second row of the bottom section contains 4 circles.

Figure 22. Example Questions from the Concept Hacking. Each example is presented with GPT-40’s answer (w/explanation) to the
manipulated image.

We further conduct a qualitative examination of the reasons underlying the models’ low performance on manipulation
samples in Fig.22. Through prompting techniques such as Chain-of-Thought (Wei et al., 2022b) and “’provide an explanation’
(Li et al., 2022b), we are able to examine the reasoning chain behind the model’s response. Using GPT-4o0 as a case study,
we find that its low performance on manipulation samples primarily stems from an overreliance on shortcuts, possibly
learned during training. When presented with manipulation samples, GPT-4 often reproduces reasoning similar to that used
for corresponding control samples. For instance, in 22, GPT-40 correctly explains the illusion of decreasing bridge width
(e.g., “the converging lines of the bridge create an illusion of decreasing width”’) even when the bridge’s width was actually
manipulated to decrease. This indicates that the model’s reasoning was not grounded in the visual information explicitly
presented in the image, but resorted to the shortcut understanding of the “near-large, far-small” phenomenon learned during
the pretraining.

i

M. Limitations

We acknowledge several limitations in our study. To begin with, VQA used in CoreCognition introduces auxiliary demands
such as linguistic capabilities, counting, and object recognition. While we mitigated some through meticulous filtering
of questions and rigorous validation across 11 distinct prompts, completely eliminating these auxiliary factors remains
challenging. The VQA format also inherently restricts CoreCognition’s applicability to models capable of linguistic
processing, narrowing the range of testable models. A complementary evaluation format is planned in future work to include
non-linguistic or purely visual models. In addition, despite careful dataset design, MLLMs still exploit shortcuts and spurious
features in CoreCognition, potentially inflating their performance, as evidenced in Sec. 5. Although Concept Hacking
partially addresses this, its meticulous nature limits scalability, restricting its applicability to large-scale benchmarking.
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