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Abstract

Existing online class imbalance learning methods fail to achieve optimal performance because
their assumptions about enhancing minority classes are hard-coded in model parameters.
To learn the model for the performance measure directly instead of using heuristics, we
introduce a novel framework based on a dynamic EA called Online Evolutionary Cost
Vector (OECV). By bringing the threshold moving method from the cost-sensitive learning
paradigm and viewing the cost vector as a hyperparameter, our method transforms the
online class imbalance issue into a bi-level optimization problem. The lower layer utilizes a
base online classifier for rough prediction, and the upper layer refines the prediction using a
threshold moving cost vector learned via a dynamic evolutionary algorithm (EA). OECV
benefits from both the efficiency of online learning methods and the high performance of
EA, as demonstrated in empirical studies against state-of-the-art methods on thirty datasets.
Additionally, we show the effectiveness of the EA component in the ablation study by
comparing OECV to its two variants, OECV-n and OECV-ea, respectively. This work
reveals the superiority of incorporating EA into online imbalance classification tasks, while
its potential extends beyond the scope of the class imbalance setting and warrants future
research attention. We release our code1 for future research.

1 Introduction

Online learning from streaming data is common in real-world applications, facing more challenges than
offline learning due to limited time and memory resources. Online class imbalance learning involves scenarios

1https://github.com/t2ance/OECV
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where minority classes have notably fewer samples than the majority classes, which can detrimentally affect
predictive performance, particularly for minority classes. Current efforts fall into three categories: data-level,
algorithm-level, and ensemble approaches. Data-level methods use oversampling and undersampling to
rebalance the datasets. Ensemble methods commonly work together with data-level algorithms by randomly
resampling incoming data points for each base learner. Algorithm-level approaches react differently to samples
from different classes, addressing the tendency to neglect the minority classes.

While designed differently, the three types of methodology all focus on how to efficiently utilize class imbalance
information (e.g., imbalance ratio and data distribution) to handle the imbalance issue. However, to our
knowledge, they all rely on assumptions about the expected enhancement level for minority classes, which are
ad hoc and hard-coded in model parameters. For instance, cost-sensitive algorithms, one kind of algorithm-
level approach, assign different costs for misclassifying classes based on the class size or performance. But
determining optimal costs remains challenging (Liu & Zhou, 2010). In this article, we aim to explore how to
achieve optimality concerning any given performance metric directly without making ad hoc assumptions.
This problem can extend beyond the scope of class imbalance, but we focus on an imbalanced learning setting
for simplicity. Gradient-based optimization methods become impractical if we set the non-differentiable
evaluation metric as objective. Unfortunately, in fact, a wide range of metrics are non-differentiable since they
require a form of step loss function (e.g., counting the number of true positives), which is intractable. This
includes accuracy, precision, recall, F1 score, and other comprehensive metrics such as G-mean and balanced
accuracy. In an online setting, corresponding prequential evaluation Gama et al. (2014) of the above metrics
is used, while the non-differentiability remains. Therefore, we focus on gradient-free optimization methods in
this work, particularly the family of EAs (EAs). EAs have been widely studied for classification tasks such as
genetic programming (Espejo et al., 2009), learning classifier systems (Sigaud & Wilson, 2007), and evolution
of neural networks (Rocha et al., 2007). Besides, recent studies have attempted to leverage EA to assist
conventional algorithms in offline class imbalance learning problems (Pei et al., 2023). However, applying
EAs to online class imbalance learning remains unexplored and challenging due to time and space constraints
in streaming learning. More specifically, evolving classifiers on a large scale and accessing the entire dataset
are impossible. Besides, the dynamic environment of concept drift may exist compared to offline learning. To
this end, we have to examine a fundamental question: How can we create an online learner that combines
two essential traits? That is, it should update fast under a dynamic environment like existing online models
while also learning efficiently with non-differentiable objectives similar to EAs.

We propose a novel framework named Online Evolutionary Cost Vector (OECV) to answer this question.
OECV is conceptualized as a bi-level optimization problem, with a probabilistic online classifier in the
lower layer and a lightweight cost vector in the upper layer. The classifier extracts useful information
from data to provide a rough prediction while the cost vector refines the decision boundary. In the case of
concept drift, especially the prior drift where class size changes, a dynamic EA is applied to track optimal
cost vectors using recent samples contained in a fixed-size buffer. The most crucial difference between our
dynamic EA and traditional EA is that it can track the optimal cost vector in a non-stationary environment
by maintaining population diversity instead of converging to a certain solution. The computation cost of
evolution is drastically reduced since the cost vector to be optimized is lightweight (proportional to the
number of classes). In this way, our approach can learn with non-differentiable objectives under dynamic
environments and update in a few computation efforts.

The motivation for formulating OECV as a bi-level architecture is highly inspired by the threshold moving
method (Kukar et al., 1998; Zhou & Liu, 2005; Sheng & Ling, 2006; Voigt et al., 2014; Hancock et al., 2022)
from the paradigm of cost-sensitive learning. The gist of the threshold moving is weighting the probabilistic
prediction by the cost vector, which contains the relative cost of misclassifying each class. While the cost
vector used in our method acts the same way as that in threshold moving methods, it is usually predefined in
the context of cost-sensitive learning. The key point in understanding our motivation is viewing the cost
vector as a set of hyperparameters in a class imbalance setting. This would interpret OECV as an online
hyperparameter optimization (HPO) method built upon the threshold moving method. The straightforward
way of setting the hyperparameter in class imbalance learning is to set it inversely proportional to the class
size, which, however, is not guaranteed to be an optimal solution. OECV, on the other hand, manages to
optimize the hyperparameters using a dynamic EA on the fly. In viewing OECV as an instance of HPO,
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its two levels correspond to searching parameters and hyperparameters separately, where parameters (base
classifier) give a rough prediction and hyperparameters (cost vector) refine the prediction. This effectively
unifies online class imbalance learning and EAs within a cohesive framework.

The main contributions of this paper are listed as follows:

1. This study is the first to explore the problem of online class imbalance learning using an EA
approach. The novel approach OECV unifies EA and online class imbalance learning within a
bi-level optimization framework by applying a threshold moving cost vector, effectively addressing
the performance-resource trade-off.

2. We present a novel dynamic EA to learn the cost vector under potential concept drift adaptively and
incorporate specific prior knowledge about class imbalance to guide evolutionary learning.

3. We study the superiority and efficiency of OECV across thirty real-world datasets. Empirical
results show its ability to significantly outperform state-of-the-art (SOTA) methods and confirm the
effectiveness of the EA component.

The remainder of this article is organized as follows. Section 2 presents related work. Section 3 details our
proposed method. Experimental setup and results are discussed in Section 4. The paper is concluded in
Section 5.

2 Related Work

Our article is related to online class imbalance learning, threshold moving methods and EA approaches for
addressing class imbalance problems.

2.1 Online Class Imbalance Learning

Approaches to address online class imbalance problems can typically be classified into three categories, as
mentioned in the introduction: data-level, algorithm-level, and ensemble-based methods.

2.1.1 Data-level Methods

Sampling methods work by oversampling and/or undersampling to rebalance data. SMOTE (Chawla et al.,
2002) is a synthetic minority over-sampling technique used to balance the class distribution by generating new
instances of the minority class. In online learning, it has been adopted in Online SMOTE (Wang & Pineau,
2016), which oversamples using training samples within a sliding window. C-SMOTE (Bernardo et al., 2020)
addresses binary class imbalance by actively detecting concept drift via ADWIN (Bifet & Gavalda, 2007), a
change detector with a sliding detection window, and applying SMOTE to the minority class in the sliding
window. The ignorance of class distribution information results in their sub-optimal performance. OS-CCD
based on classification contribution degree is proposed in Jiang et al. (2021), generating synthetic samples via
classification contribution degree. SRE (Ren et al., 2019) introduces a selection-based resampling mechanism
to handle complex data distributions by considering recent sample properties. However, the resampling
procedures of OS-CCD and SRE are both based on clustering, being sensitive to hyperparameters. While
showing promising performance, these methods mostly targeted the binary class imbalance problem and
needed to maintain a sliding window to reserve relevant training samples, increasing the memory burden.

2.1.2 Algorithm-level Methods

Algorithm-level approaches work by modifying the training process. Qin et al. (2021) employs active learning
to select the most important samples to train the classifier. Online one-class Support Vector Machines
(Klikowski & Woźniak, 2020) is a kind of one-class classifier that creates a model for each class and achieves a
one-class decomposition of multi-class problems. Other algorithm-level methods apply cost-sensitive learning
methods, which assign varying costs for misclassifying classes belonging to different classes to reduce the
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dominating influence of majority classes, with the common assumption that minority classes incur higher
costs. Ksieniewicz (2021) introduces Prior Imbalance Compensation (PIC) for batch learning of imbalanced
data streams, which adjusts the decision made by the classifier using class prior probability to compensate
for the minority classes. Yan et al. (2017) trains multiple classifiers with various cost matrices and makes
predictions by adaptive ensembling. However, it is confined to binary class cases and challenging to extend to
multi-class scenarios due to the exponential growth in the number of candidate cost matrices. Other related
works (Wang et al., 2021; Ding et al., 2018; Qin et al., 2021) in cost-sensitive methods are based on the
weighted extreme learning machine (WELM, Zong et al. (2013)), which is a super efficient single hidden layer
neural network with a weighting strategy for class imbalance. WOS-ELM (Wang et al., 2021) integrates a
weighting strategy akin to WELM with an online sequential extreme learning machine (OSELM, Huang et al.
(2005)). WOS-ELMK (Ding et al., 2018) incorporates kernel mapping, addressing the non-optimal hidden
node issue present in WOS-ELM. AI-WSELM (Qin et al., 2021) integrates active learning to significantly
reduce labeling costs, demonstrating satisfactory performance compared to existing WELM variants. Despite
their promising performance, the weight strategies within this family are explicitly tailored for ELM, limiting
their generalizability to other online learning models. In the literature, class sizes are frequently utilized to
determine weight strategy. However, this approach does not ensure an optimal weighting schedule.

2.1.3 Ensemble Methods

Ensemble methods, such as MOOB, MUOB (Wang et al., 2016), KUE (Cano & Krawczyk, 2020), ROSE (Cano
& Krawczyk, 2022), and BEDCOE (Li et al., 2023), effectively tackle the problem by combining resampling
techniques. MOOB and MUOB leverage time-decay class size to determine training times. Specifically, the
training time for each base classifier is determined by sampling from a Poisson distribution, whose parameter
is set according to the class size. The diversity is maintained by random training times on a sample for each
base classifier. Kappa Updated Ensemble (KUE) combines online and block-based ensemble approaches
and uses Kappa statistics to determine dynamic weighting and select base classifiers. After that, Cano &
Krawczyk (2022) proposes an advanced method called ROSE to improve the robustness of KUE by employing
adaptive self-tuning, adjusting its parameters, and ensembling the line-up dynamically. To directly deal
with class imbalance, ROSE computes the imbalance ratio of each class based on recent samples to derive
the training times of each sample. BEDCOE considers potential complex data distribution compared to
other works and introduces a borderline enhanced strategy and a disjunct cluster-based oversampling for
synthetic sample generation. Despite the improved performance achieved by using multiple base classifiers,
the ensemble methods entail a trade-off between the diversity of the ensemble and training time.

2.1.4 Common Issues of Existing Methods

We note that the heuristic designs exist in all three categories, and several examples are listed below.

First, some methods suggest the imbalance ratio solely determines the imbalance status and do resampling
(Wang & Pineau, 2016; Wang et al., 2016; Bernardo et al., 2020) or design cost schemes (Zong et al., 2013;
Wang et al., 2021) based on the estimated online imbalance ratio. However, this is not a unique indicator of
class imbalance. Other information, such as data distribution, is also helpful.

Another common assumption is generating synthetic samples around minority instances helps with learning,
including Ren et al. (2019), Jiang et al. (2021) and Li et al. (2023). However, this only holds when the
minority data is well-clustered and sufficiently discriminative. If the training data is extremely imbalanced or
with many corrupted labels, the minority class would be poorly represented and lack a clear structure. In
this case, working under this assumption severely jeopardizes the performance.

Additionally, to use the estimated imbalance status such as imbalance ratio or data distribution from clustering,
existing works predefine a certain functional form of the relation between imbalance status and training
scheme. For instance, WELM (Zong et al., 2013) assumes the cost of misclassifying a class is inversely
proportional to its class size. Similarly, MOOB and MUOB (Wang et al., 2016) suppose the training time of
one class should be sampled from a Poisson distribution with the imbalance ratio as a parameter. However,
the concrete functional form of using imbalance status cannot be exhausted. Besides, none of them have
theoretically justified that the proposed functional form could lead to optimality with respect to a certain
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Figure 1: Illustration of the working mechanism of cost vector. The cost vector pushes the decision boundary
towards the majority, and the dynamic EA ensures the adaptability of the cost vector for potential concept
drift.

performance metric, especially considering that data distribution becomes highly skewed and varies over time.
Therefore, we propose to optimize the performance metric directly without fully relying on the estimated
imbalance status.

2.2 Threshold Moving Method

The threshold moving method (Kukar et al., 1998; Zhou & Liu, 2005; Sheng & Ling, 2006; Voigt et al., 2014;
Hancock et al., 2022) is a common technique in cost-sensitive learning. It trains a classifier on the original
dataset and prioritizes classes with higher misclassification costs during prediction, using a predefined cost
matrix. Formally, denote the cost matrix as Mij , where 1 ≤ i, j ≤ C, to represent the cost of misclassifying
class i to class j. Here C is the number of classes. Let Oi, where 1 ≤ i ≤ C, represent the probabilistic
output with

∑C
i=1 Oi = 1 and 0 ≤ Oi ≤ 1. The prediction is arg maxi O′

i in the threshold moving method
comparing to arg maxi Oi in standard classifiers, where O′

i is calculated according to

O′
i = η

C∑
j=1

OiMij = η(
C∑

j=1
Mij)Oi = ηviOi (1)

Here η is a normalization term such that
∑C

i=1 O′
i = 1 and 0 ≤ O′

i ≤ 1. A cost vector vi =
∑C

j=1 Mij

(1 ≤ i ≤ C) of lower complexity O(C) can be used in place of the matrix. The cost vector represents the
misclassification cost of class i and adjusts the decision boundary toward less costly classes, making it harder
to misclassify samples with higher costs. In this paper, the threshold moving is adapted to online class
imbalance learning by enabling the cost matrix/vector to be learnable in two novel ways, namely OECV-n
and OECV, so that it can respond to the current stream behavior (Fig. 1) rather than being predefined. The
baseline OECV-n is designed with time-decay class size, while the main algorithm OECV finds the optimal
cost vector based on OECV-n and EA.

2.3 EA for Class Imbalance Learning

Recent studies (Pei et al., 2023) have shown the potential of EA in addressing class imbalance, while most
of the existing literature remains confined to offline scenarios. In Perry et al. (2015), a genetic algorithm
(GA) is used to optimize a class-dependent cost matrix for the weighted updating of a classifier. Sun et al.
(2006) introduces a cost-sensitive boosting algorithm that employs GA to optimize a class-dependent cost
vector. ECSB (Lemnaru & Potolea, 2017) uses GA to optimize a class-dependent cost matrix and classifier
parameters simultaneously. GA is also applied to identify an optimal subset of instances in the majority
class (Drown et al., 2009; Khoshgoftaar et al., 2010). In a cost-sensitive SVM method proposed in Cao
et al. (2013), the misclassification cost ratio is optimized using particle swarm optimization. Furthermore,
differential evolution (DE) has also been tried to optimize class-dependent cost matrices for cost-sensitive
deep belief networks (Zhang et al., 2018; 2016). EA is also utilized to support data-level methods. For
instance, Jiang et al. (2016) introduces GASMOTE, a GA-based SMOTE approach that optimizes sampling
rates for minority class instances.
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Algorithm 1: Training Procedures of Proposed OECV
Input: Classifier HC

t−1, class size Ωt−1, training sample (Xt, yt), evolutionary frequency f , optimal cost
vector v∗, cost vector population V, buffer B

Output: Prediction ŷt

1 Generate rough probabilistic prediction pt using HC
t−1.

2 Produce refined prediction p∗
t as final prediction ŷt using pt and v∗ by Eqn. 1.

3 Update HC
t−1 to HC

t by its own rule.
4 Update class size Ωt−1 → Ωt according to Eqn. 3.
5 Add the sample (Xt, yt) to B.
6 if t mod f == 0 then
7 Evolve V by Alg. 2 with Ωt, B and HC

t , and update V and v∗ based on evolution result.
8 return ŷt

There are significant challenges to adapting these methods to online settings. Unlike offline learning, which
receives all training data upfront, online learning lacks this comprehensive data overview. Besides, the model
must continuously and rapidly adapt to potential concept drift rather than converging. To our knowledge,
only Wang & Wang (2023) has adopted a similar idea of EA in online class imbalance learning. It picks base
classifiers of different parameter configurations with the highest performance so far. However, characteristics
of class imbalance in Wang & Wang (2023) are only used by the original resampling method, and the class
imbalance issue is not handled by EA directly. Besides, it is currently tailored for binary classification tasks,
making it unsuitable for multi-class scenarios.

3 Online Evolutionary Cost Vector (OECV)

In this section, we introduce Online Evolutionary Cost Vector (OECV) to illustrate the EA-based cost vector
learning approach. Section 3.1 outlines the overall training process. Section 3.2 reformulates the problem into
a bi-level optimization. Section 3.3 gives the baseline algorithm OECV-n, and Section 3.4 gives the EA-based
algorithm OECV.

3.1 Overall Test-then-train Process of OECV

In a data stream {(Xt, yt)}+∞
t=1 , Xt ∈ Rd represents data and yt ∈ {1, . . . , C} represents the class label. C

is the total number of classes. Uneven class prior distribution leads to class imbalance, and concept drift
necessitates the algorithm to adapt to ever-changing data distribution. Xt arrives strictly one by one, being
predicted firstly by the latest classifier HC

t−1, and then refined using the cost vector v∗ to give the final
prediction p∗

t . p∗
t is used together with true label yt that comes before t + 1 to update classifier HC

t−1 to HC
t .

This process is known as the test-then-train process.

We present OECV in Alg. 1. At the beginning of the data stream, the cost vector population V is initialized
randomly. At time step t, the model {HC

t−1, v∗}, where HC
t represents the latest online classifier, and v∗

denotes the optimal cost vector discovered by EA up to time t − 1, undergoes initial testing as depicted in
Lines 1-2. Here, the online classifier offers an initial prediction, which is then refined by the cost vector. The
classifier HC updates by its own rule in Line 3. The class size Ωt−1 and fixed-size buffer B are updated in
Lines 4-5, respectively. Cost vector population V evolves within the if statement (Lines 6-7) to yield a new
population along with an optimal cost vector V∗. We detail OECV in subsequent subsections individually.

3.2 Bi-level Optimization

Due to the impracticality of a full evolution, our framework only evolves partially and breaks down both the
model and the problem into two layers (See Fig. 2). The lower layer, being an online classifier, offers a rough
probabilistic prediction and updates by its own rule on the fly. The upper layer, being a cost vector, refines
the rough prediction and undergoes a dynamic optimization process via dynamic EA. The training data for
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Original Sample 𝑋𝑋𝑡𝑡

Probabilistic prediction 
ℋ1,𝑡𝑡−1(𝑋𝑋t)

Refined probabilistic prediction 
ℋ2,𝑡𝑡−1(ℋ1,𝑡𝑡−1(𝑋𝑋t))

ℋ1,𝑡𝑡−1→ ℋ1,𝑡𝑡

ℋ2,𝑡𝑡−1→ ℋ2,𝑡𝑡

𝑦𝑦𝑡𝑡
Update per sample

:
:

Add new sample 𝑋𝑋𝑡𝑡,𝑦𝑦𝑡𝑡

Pop out outdated sample

Buffer ℬ

ℬℬ′
oversampling

{𝑦𝑦𝑖𝑖 ,ℋ2,𝑡𝑡 ℋ1,𝑡𝑡 𝑋𝑋𝑖𝑖 }
predict

G-mean

Update per 𝑓𝑓 samples

ℋ1,𝑡𝑡: probabilistic classifier after updating at time step 𝑡𝑡
ℋ2,𝑡𝑡: cost vector after updating at time step 𝑡𝑡

by a rate of 𝑟𝑟

Figure 2: Illustration of OECV as a bi-level optimization problem (Section 3.2). The lower layer consists of a
probabilistic classifier, while the upper layer is a cost vector (Section 2.2). A fixed-size buffer is maintained
as the training data for the upper level. The cost vector is learned by a dynamic EA at frequency f on the
oversampled buffer, using G-mean for objective evaluation (Section 3.4).

updating the cost vector come from a fixed-size buffer B, which is augmented by a simple oversampling trick
resulting in a larger buffer B′ to enhance data diversity. As shown in the left part of Fig. 2, we denote the first
and upper layers as H1,t and H2,t, respectively. The complete model is denoted by Ht = {H1,t, H2,t}. The
lower-level problem is to minimize a loss function ℓ1(H1; Xt, yt), which assesses the probabilistic prediction
loss computed for each sample in the stream. The upper-level problem involves minimizing a non-differentiable
performance metric ℓ2(H2,t; p(·; H∗

1,t), yt), which measures the refined prediction error based on the solution
H∗

1,t of the lower layer. The learning process of the upper layer occurs at a fixed frequency f instead of
updating every time for computational efficiency. Importantly, the lower layer updates solely based on its
own rule, and optimizing the upper layer does not affect the lower layer. The overall optimization problem is
stated as

min
H2,t

ℓ2(H2,t; p(·; H∗
1,t), yt) (2)

s.t. H∗
1,t = arg min

H1,t

ℓ1(H1; Xt, yt)

Note that the optimization of the lower level does not depend on the upper level in the sense that H∗
1,t does

not depend on H2,t.

In this study, H1 is parameterized as an online classifier HC along with its training loss ℓ1 adapted from
existing work. HC may not consider the specific characteristics of the performance metric (e.g., class
imbalance) to be optimized. H2 is parameterized as a cost vector v, and the choice of ℓ2 varies depending on
specific needs, such as G-mean or balanced accuracy. In this way, only the upper layer is metric-specific. In
the following subsections, we only focus on the learning strategies for the cost vector.

Remark 1 We notice that the upper level and the lower level are essentially optimized on the overlapping
source of data, where the classifier (lower level) uses all data until time t, and the cost vector (upper level)
uses past sample stores in B. Intuitively, this may result in overfitting in a bi-level optimization problem. In
offline bi-level optimization, a better choice is to use distinct training and validation datasets to train the two
levels. However, it is more tricky in our online setting since the samples come in the form of a stream. We
did not add additional design for simplicity. In fact, the oversampling technique on B, which, although not
specifically proposed to handle this problem but proposed to enhance the optimization of the cost vector,
may also help. Specifically, this can alleviate the overfitting of overlapping data sources at two levels by
introducing diversified data via interpolation, making the data used for the upper level more diversified
compared to the lower level.

Remark 2 Several trade-offs exist in the design of OECV. The first is introducing the updating frequency
of cost vector and population size to handle the trade-off between time consumption and performance.
Intuitively, a small updating frequency f will allow better performance, and in the extreme case where f = 1,
the updating frequencies of both levels align, which would achieve the best performance. However, this comes
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with high computation costs since updating the cost vector is generally slower than the classifier. Conversely,
intermittent updating of the cost vector allows faster training while may incur sub-optimality due to the
mismatching of optimization speed of two levels. Similarly, large population size can increase the probability
of finding the optimal solution but would induce high updating costs and is not favored in online learning.
Another trade-off is between memory consumption and performance, handled by the oversampling rate and
buffer size. In practice, large memory allows a large buffer, and an oversampling trick may not be necessary
in this case, which is equivalent to setting oversampling rate r = 1. In contrast, the oversampling trick
can reduce the storage requirement and enhance the data diversity but induces a higher time consumption.
Additionally, it may come with issues if label noise exists in B; the labels of augmented buffer B′ are likely to
be corrupted as well and result in performance degradation.

Fortunately, the choice of hyperparameters is straightforward and relatively robust within a certain range.
In experiments, we set the hyperparameters to make the algorithm as fast as possible while still making
improvements compared to baselines. The same set of hyperparameters is used without heavy fine-tuning,
which already enables OECV to outperform or be on par with baseline methods over a wide range of datasets.
See also Appendix E for an empirical analysis on the sensitivity of hyperparameters above.

3.3 Learning Cost Vector with Time Decay Class Sizes

The first approach OECV-n(naive) employs time-decay class sizes (Wang et al., 2018) Ωt = {ωi,t}C
i=1 at time

t to continuously track the imbalance status over time using a predefined time decay factor λ:

ωk,t = λωk,t−1 + (1 − λ) · I(yt = k) 0 ≤ λ ≤ 1 (3)

where ωk,t represents the size of the k-th class at time step t, and I is the indicator function. Cost matrix
Mij and cost vector vi are then determined heuristically as follows:

Mij = ωj,t

ωi,t
vi =

C∑
j=1

Mij (4)

In other words, the prediction probability of a class will be scaled up if it is a relative minority class (in the
sense of adaptively estimated class size ω) and scaled-down otherwise. The loss function remains untouched
in threshold moving, but the prediction probabilities are scaled by v. It can adapt to current stream
behavior by passively changing the imbalance status. However, optimal performance is not guaranteed as
the dependency on the heuristic form of the cost matrix as well as the choice of λ. The detailed training
procedure of OECV-n is similar to that of OECV, by just removing all the use of evolution and replacing v∗

in Alg. 1 by the cost vector determined by Eqn. 4 .

3.4 Learning Cost Vector with Dynamic EA

Compared to designing solely with time-decay class size, EAs can find cost vectors that optimize performance
measures directly. The evolution process along two related tricks of the resulting OECV are illustrated as
follows. The complete algorithm is summarized in Alg. 2.

3.4.1 Evolution

• Chromosome Encoding: A cost vector v(k) is encoded into a chromosome straightforwardly, with
the C-dimensional vector being the chromosome.

• Fitness Calculation: The chance of passing genetic information to subsequent generations relies on
the fitness of a cost vector. Recent samples are retained in a fixed-size buffer B for fitness calculation.
B is enlarged into B′ by oversampling before being used for fitness evaluation. Specifically, we first do
classification using the latest classifier HC on B′, resulting in the set of rough probabilistic predictions
{pi}|B′|

i=1. For each v(k), it refines the rough predictions to give a set of final predictions {p(k)
i }|B′|

i=1.
{p(k)

i }|B′|
i=1 along with the set of true labels {yi}|B′|

i=1 are then used to calculate a performance metric
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Algorithm 2: Cost Vector Evolution
Input: Buffer B, cost vector population V, online classifier HC , number of neighbors k, sampling rate r,

size of prior population m
Output: Optimal cost vector v∗, cost vector population V

1 // Maintain population diversity and integrate prior knowledge
2 Generate human-designed cost vector vh using Ωt by Eqn. 4.
3 Create prior population {v(i)}m

i=1 based on vh using Eqn. 5, and add to V.
4 // Oversampling for data diversity
5 Initialize augmented buffer B′ with samples from B.
6 for Xt in B do
7 for r − 1 times do
8 Find k nearest neighbors of Xt and randomly select X ′

t from them.
9 Generate a new sample using Eqn. 6 with α ∼ U(0, 1), and add it to B′.

10 // Evolution
11 Produce rough probabilistic prediction {pi}|B′|

i=1 for each sample in B′ using HC .
12 For each v(k), produce refined predictions {p(k)

i }|B′|
i=1 using {pi}|B′|

i=1 (Eqn. 1).
13 Calculate fitness f (k) for v(k) based on {p(k)

i }|B′|
i=1 and true labels {yi}|B′|

i=1.
14 Evolve V for one generation by crossover and mutation using {f (k)}|V|

k=1.
15 Determine the optimal solution v∗ by comparing fitness.
16 return v∗, V

as the fitness f (k) of v(k). With the set of fitness {f (k)}|V|
k=1, the optimal individual (cost vector)

can be determined straightforwardly. Note the performance metric used here is the corresponding
offline metric (e.g., G-mean) instead of the online metric (e.g., online G-mean) so that the fitness
calculation is not affected by the order of samples in B′.

• Genetic Operator: EA employs genetic operators to produce new cost vectors by crossover and
mutation based on the fitness value of individuals. Any single objective genetic operator may be
applied in the current framework.

If the generation of new cost vectors at Line 14 in Alg. 2 is removed, while the selection of the optimal
individual in Line 15 is retained, we get a comparison algorithm OECV-ea as demonstrated in the ablation
study. In this case, OECV-ea can be used to show whether OECV works by finding better individuals with
evolution instead of simply relying on the buffered data to select a good solution from a large number of
candidates.

3.4.2 Maintain Population Diversity and Integrate Prior Knowledge

The cost vector designed by time-decay class size as in OECV-n can be used to guide EA. This benefits
OECV by integrating the prior knowledge of imbalance status and preventing it from converging to a fixed
optimal solution. Specifically, we add m different cost vectors {v(i)}m

i=1 randomly generated from vh (Eqn.
4):

v(i) = vh + w wj ∼ Uj

(
0,

i

m

)
(5)

Recall in the definition of cost vector (Eqn. 1), we require each dimension of v(i) = 1 be in [0, 1] and sum up
to 1. Therefore, each dimension of v(i) is clipped to [0, 1] and re-normalized. {v(i)}m

i=1 are then merged with
the previous population to form the initial population for later evolution. After a fixed frequency f , the prior
population is mixed in, and the population evolves over one generation.

Analogous to the approach with time decay class size in spirits, the dynamic EA also acts passively to counter
the effect of concept drift, i.e., not detect the concept drift directly. Although this may not be the best choice
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in more complicated scenarios, it would be sufficient for class-prior drift. How to adapt to more complicated
drift scenarios is beyond the scope of this work.

3.4.3 Oversampling for Data Diversity

To ensure accurate fitness calculation, an oversampling trick for enhancing data diversity is applied to B to
create an augmented buffer B′. Specifically, we expand B to r times of its original size by generating r − 1
samples {(X(i)

t , y
(i)
t )}r−1

i=1 (r ∈ N+) for each (Xt, yt) ∈ B:

X
(i)
t = Xt + α · (X ′

t − Xt), y
(i)
t = yt (6)

where α ∼ U(0, 1) and X ′
t is randomly selected from k nearest neighbors of Xt.

3.4.4 Computational Complexity Analysis

We are aware of the potential high computational complexity induced by EAs, including time complexity and
space complexity. A formal analysis is provided in this subsection. See also Appendix A for an empirical
runtime comparison.

Memory Complexity Analysis Denote the population size as |V| and buffer size as |B|. OECV requires
the storage of a buffer of data of size O(|B| × (d + 1)) where d denotes the number of features, i.e., we count
the number of stored samples times the number of features plus one (for the class label). Since temporary
synthesized samples in augmented buffer B′ can be processed one by one without storing everything in the
memory, whose memory consumption is then negligible, the oversampled data is not taken into account for
the extra storage.

Time Complexity Analysis The overall time complexity of OECV is linear to the length of the stream,
being the same as existing works such as Wang et al. (2016), Qin et al. (2021), and Li et al. (2023). In each
time step, the time complexity includes the training cost of both the classifier and the cost vector. The
updating of the classifier is a constant and depends on its own rules. For updating of the cost vector, the
oversampling on B takes O(|B| × (r − 1)) time. Then, |V| individuals perform prediction and evaluation on
B′ that takes O(|V| × |B| × r) time in total. The crossover, mutation, and selection operations are based on
fitness, being method-dependent. It generally takes O(|V|) and is much faster than the fitness calculated in
the last step. Summarize and simplify the above steps, and recall the updating of the cost vector occurs at
a frequency of f , we find the overall time complexity can be represented as O( rT |V||B|

f ) for the whole data
stream, where T is the length of the stream.

While EAs are well-known for their high computational cost (mainly from fitness evaluation), our scheme of
applying the cost vector in a post hoc way allows for a much more efficient fitness evaluation. To see this, a
forward calculation for prediction is enough to give the fitness, which is attributed to the decoupling of two
layers where the training of the classifier is totally independent of the cost vector. Therefore, we only need to
evaluate how well the cost vectors correct the current well-trained classifier without any retraining of the
classifier. This drastically decreases the time for fitness calculation and makes OECV practical.

3.4.5 Storage Requirement

We are aware that the extra storage requirement in the form of a fixed-size buffer is a weakness in our current
method. However, certain storage requirements are generally acceptable in the literature, especially widely
used in data-level methods (Sec. 2.1.1). The resampling and clustering processes necessitate extra storage
similar to ours. For example, Qin et al. (2021), Ren et al. (2019), Cano & Krawczyk (2022), and Wang &
Pineau (2016) all require certain storage in the form of a sliding window or chunk. Despite the extra storage
burden, it is usually constant and would not increase with the length of the stream. This is practical in
many real-world scenarios, such as online edge machine learning, where the stream can be infinitely large,
but certain storage (while limited) is accessible. However, if additional storage is unavailable, an adaptive
generative model can be used to generate samples to replace the buffer. In this work, we focus on the current
extra storage scheme for simplicity.

10



Published in Transactions on Machine Learning Research (09/2024)

For a fair comparison in empirical studies, we take AI-WSELM (Qin et al., 2021) (Sec. 4.2) and SmoteOB
(Wang & Pineau, 2016) (Appendix F) that require extra storage as compared methods. The extra storage
of two methods is set to be larger or comparable than OECV. Additional explorations on whether the
performance enhancement is induced by extra data and the influence of the buffer size are also presented in
Sec. 4.3 and Appendix E.3.

4 Experimental Studies

This section evaluates OECV from several aspects: comparison with SOTA methods, the effectiveness of EA,
and the inner working mechanism.

4.1 Experimental Setup

We use 30 datasets in total as summarized in Table 1, including 10 streaming datasets (Elec, Abrupt,
Gradual, Incremental1, Luxembourg, NOAA, Ozone, Airlines, Covtype, Incremental2, available in the
USP-DS repository, Souza et al. (2020)) and 20 real-world offline datasets (remaining 20 datasets in Table 1,
available in the Keel repository, Derrac et al. (2015)). The 20 offline datasets are processed in a streaming
way to simulate online scenarios. The overall static imbalance ratio for each dataset illustrates the severity of
class imbalance, while fluctuation of class imbalance ratio throughout the online learning scenario exists.

Although our method does not require an offline warm start, we use the initial 30% samples of each stream for
model initialization in an offline fashion, following the setting in Li et al. (2023). The initialization samples
are further split into two datasets in equivalent sizes for training the classifier and the cost vector separately.
In this stage, the cost vector population evolves 10 generations to give an initial population for later online
training. The buffer size |B| for OECV is fixed at 200 samples, and the oversampling rate is set to 5 for all
datasets. Offline G-mean is used for fitness evaluation on the augmented buffer. The cost vector evolves every
5 sample (i.e., f = 5), with the number of individuals set to 25. We employ DE/best/1/L (Opara & Arabas,
2019) as the genetic operator. The implementation of EAs is easy by directly adopting the existing Python
packages (such as geatpy 2 used in our experiments). All the hyperparameters related to genetic operators
are set to the default values of the existing implementation without tuning. Specifically, the scaling factor of
DE is set to 0.5, and exponential crossover is applied with the probability of crossover set to 0.7.

We compare with four SOTA online multi-class imbalance learning methods: MOOB, MUOB (Wang et al.,
2016), AI-WSELM (Qin et al., 2021), and BEDCOE (Li et al., 2023). The total number of base learners is
set to 10, following (Wang et al., 2016; Li et al., 2023). All methods adhere to the test-then-train process
of online learning. Multilayer perceptron serves as the base classifier for all methods, except AI-WSELM,
which does not need a base classifier, following the setup in Wang et al. (2016). We set the chunk size (akin
to our buffer) of AI-WSELM to be 300, higher than our extra storage of 200. Prequential G-mean with a
fading factor of 0.99 is selected as performance metrics, following Wang et al. (2018) and Li et al. (2023).
Mean performance across 10 runs is evaluated on the remaining samples after the initialization number.
Friedman tests (Demšar, 2006) are used to compare competing methods across datasets statistically. The
null hypothesis (H0) posits that all models are equivalent in terms of the predictive performance metric. The
alternative hypothesis (H1) suggests that at least one pair of methods differs significantly. If H0 is rejected,
the Conover test (Conover & Iman, 1979) is conducted as the post-hoc test.

4.2 Performance Comparison

We can see from Table 2(a) that in terms of G-mean, OECV performs the best in 14 out of 30 datasets
and the 2nd best in 8 datasets. Friedman tests at significance level 0.05 reject H0 with p-value 1.11 × 10−3,
showing a significant difference between methods. Average ranks (avgRank) across datasets are reported to
show how well each method performs compared to others across datasets. The average rank of OECV is
1.967, being the best. Post-hoc tests are then conducted to detect whether OECV has a significant difference

2https://geatpy.github.io/
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Table 1: Overview of the dataset. "#Data" denotes the total number of samples within this dataset, "#Fea"
denotes the number of features, "#Class" denotes the number of classes, and IR denotes the overall static
imbalance ratio being computed as the ratio between the largest and smallest class sizes.

Dataset #Data #Fea #Class IR Dataset #Data #Fea #Class IR Dataset #Data #Fea #Class IR
Elec 5000 8 2 1.6 Abalone1 2338 8 2 39.3 Win1 691 11 2 68.1

Abrupt 5000 33 6 4.0 Abalone2 1622 8 2 49.7 Win2 1599 11 2 29.2
Gradual 5000 33 6 171.2 Car1 1728 6 2 24.0 Win3 656 11 2 35.4

Incremental1 5000 33 6 1.0 Car2 1728 6 2 25.6 Win4 1482 11 2 58.3
Luxembourg 1901 31 2 1.06 Kddcup 2225 41 2 100.1 Win5 900 11 2 44.0

NOAA 5000 8 2 2.4 Kr 2901 6 2 26.6 Yeast1 947 8 2 30.6
Ozone 2534 72 2 14.8 Segment 2308 19 2 6.0 Yeast2 1484 8 10 92.6

Airlines 5000 7 2 2.1 Shuttle1 3316 9 2 66.7 Yeast3 1484 8 2 8.1
Covtype 5000 54 7 7.0 Shuttle2 1829 9 2 13.9 Yeast4 1484 8 2 32.7

Incremental2 5000 33 6 25.4 Thyroid 720 21 3 39.2 Yeast5 1484 8 2 41.4

from the competitors, for which OECV is chosen as the control method. Post-hoc comparisons show that
OECV can significantly outperform all of the competitors.

We can draw two observations on when the OECV can gain an advantage or not from Table 1 and Table
2. Firstly, we notice that when the number of classes is large, e.g., on Gradual, Incremental1, and Yeast2
datasets, our method generally does not perform the best compared to other baselines. Further analysis of
the Spearman correlation (Fieller et al., 1957) shows correlation coefficients of 0.49 (moderate) between the
number of classes and the value of rank on the 30 datasets (the higher the rank, the worse the performance),
being positively correlated. This verifies that our method generally performs better when a small number
of classes are presented. This is reasonable since the complexity of the cost vector equals the number of
classes, and a larger cost vector is intuitively more difficult to find its optimal solution within limited time
and memory. A remedy for this issue deserves a more complicated algorithm design and is left to the future.
Secondly, we find our method performs better when the stream is highly skewed, i.e., with a large imbalance
ratio. For example, on datasets Win3, Win4, and Win5, our method performs the best among baselines with
a larger margin. Similarly, an analysis of the Spearman correlation shows correlation coefficients of −0.29
(weak) between the imbalance ratio and the value of rank on the 30 datasets, being negatively correlated,
which confirms our conjecture that a highly imbalanced stream favors OECV. We speculate, in this case, the
ad hoc imbalance estimation, such as the time-decay imbalance ratio (which is used in MOOB, MUOB, and
BEDCOE), can not capture the complicated overall imbalance status well. This downgrades the performance
of baselines by using a misleading imbalance indicator. In contrast, our method seeks an optimal cost vector
directly with respect to the performance metric without consulting heuristically estimated imbalance status.
This explains why OECV outperforms other methods under high imbalance.

4.3 Ablation Study

Two comparison models OECV-n and OECV-ea have been built in Section 3.3 and Section 3.4, which differ
from OECV by just the way on learning cost vector. They are employed here to study the effectiveness of
EA. We would expect the performance of OECV, with the full assistance of evolutionary optimization, to be
the best. The performance of OECV-ea should be in the middle since while evolution is not used, several
candidates of cost vectors are still under consideration for selecting the best one using buffered data. The
performance of OECV-n should be the worst because only an imbalance ratio is used. If this occurs, we can
conclude that the EA used for optimizing the cost vector is crucial for dealing with class imbalance, and
extra data in the buffer is not the determinative reason for performance improvement.

Table 2(b) shows the result in terms of G-mean. The three methods are compared to each other, with
Wilcoxon signed rank tests (Wilcoxon, 1992) used to determine if there are significant differences between
them. We can see that the average rank of OECV (1.333) is better than that of OECV-n (2.467) and
OECV-ea (2.2). Wilcoxon signed rank test rejects H0 with p-value 0.0036 and 9.62 × 10−5, respectively,
meaning OECV is significantly superior to OECV-n and OECV-ea. In comparison between OECV-ea and
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Table 2: Performance comparison in terms of G-mean (%). Each entry is the mean±std performance across
10 runs. The best performance on each dataset is highlighted in bold, and the 2nd best performance is
highlighted in italics. The last row lists the average ranks (avgRank) of each model across datasets in each
subtable. Part (a) compares SOTA methods and the proposed OECV. A significant difference against OECV
is highlighted in yellow. Part (b) reports the ablation results between variants of OECV.

(a) Performance comparison

Dataset AI-WSELM MOOB MUOB BEDCOE OECV
Elec 78.2±1.6 90.9±0.2 88.7±0.4 95.5±0.1 83.7±0.9
Abrupt 66.2±1.4 60.2±1.7 60.4±2.2 60.0±0.4 62.8±0.6
Gradual 0.0±0.0 22.4±9.1 0.1±0.3 34.8±20.4 8.5±4.2
Incremental1 46.0±0.7 53.8±0.6 48.5±2.0 52.9±0.4 46.4±1.5
Luxembourg 85.5±2.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 71.3±0.8 65.3±0.7 64.6±0.6 68.2±0.7 73.1±0.5
Ozone 65.0±2.9 72.3±1.8 78.0±0.6 70.6±1.3 77.1±1.7
Airlines 50.8±1.0 34.6±2.8 47.6±1.6 50.6±0.4 51.8±0.9
Covtype 0.0±0.0 65.4±0.8 0.0±0.0 64.6±1.2 28.6±1.5
Incremental2 0.8±0.2 30.8±5.0 0.9±1.2 40.9±1.6 15.6±1.6
Abalone1 43.6±5.2 55.0±0.9 64.5±3.8 59.1±0.8 67.8±4.3
Abalone2 48.0±9.3 4.6±0.0 26.8±8.2 33.2±0.0 38.7±7.6
Car1 80.4±2.9 33.3±4.3 56.3±4.9 44.5±5.0 78.2±2.2
Car2 96.5±2.9 74.9±0.7 79.8±3.7 74.4±1.5 96.1±1.0
Kddcup 78.1±11.8 100.0±0.0 95.9±3.5 100.0±0.0 100.0±0.0
Kr 94.3±1.7 94.4±0.7 90.5±1.8 90.2±0.7 94.7±1.3
Segment 98.7±0.4 98.9±0.1 93.0±0.6 99.0±0.0 99.1±0.1
Shuttle1 100.0±0.0 99.4±0.6 97.9±1.7 99.0±0.9 99.9±0.0
Shuttle2 99.4±0.1 99.6±0.0 99.8±0.1 99.7±0.1 99.7±0.0
Thyroid 29.0±14.0 38.9±2.7 0.6±0.0 56.7±2.2 71.6±1.5
Win1 29.1±34.1 6.8±0.0 6.8±0.0 36.5±36.4 80.6±1.2
Win2 39.0±4.8 15.4±5.1 62.0±5.0 27.3±1.4 59.2±3.6
Win3 26.2±11.3 22.1±2.4 19.6±10.0 26.5±2.8 79.9±1.2
Win4 9.7±10.7 43.2±11.6 16.7±9.5 27.7±1.6 50.6±5.7
Win5 22.8±19.3 32.8±4.7 11.0±4.2 14.7±0.0 53.3±7.1
Yeast1 47.8±8.0 32.0±0.5 36.1±13.8 33.2±4.1 48.0±18.9
Yeast2 28.0±6.0 0.1±0.1 0.0±0.0 8.8±4.2 0.2±0.4
Yeast3 81.5±2.3 89.2±0.3 89.8±1.2 87.5±0.3 87.8±1.0
Yeast4 72.9±6.6 86.5±0.8 82.4±9.5 71.7±2.8 81.7±5.7
Yeast5 70.3±3.8 64.1±1.9 51.7±7.1 53.1±3.0 86.5±1.7
avgRank 3.35 3.133 3.517 3.033 1.967

(b) Ablation studies

OECV-n OECV OECV-ea
83.1±0.4 83.7±0.9 83.6±0.9
62.0±0.7 62.8±0.6 62.6±0.9
15.8±2.5 8.5±4.2 4.3±2.8
45.9±1.2 46.4±1.5 46.2±1.2
100.0±0.0 100.0±0.0 100.0±0.0
73.0±0.5 73.1±0.5 72.9±0.5
71.8±1.9 77.1±1.7 76.1±1.6
50.7±0.5 51.8±0.9 51.7±0.8
38.7±1.1 28.6±1.5 26.6±1.3
21.2±1.8 15.6±1.6 13.0±1.0
55.7±3.0 67.8±4.3 59.0±5.7
25.6±0.1 38.7±7.6 33.1±5.9
77.0±3.1 78.2±2.2 77.5±2.0
94.7±1.2 96.1±1.0 95.2±0.9
100.0±0.0 100.0±0.0 100.0±0.0
91.5±0.8 94.7±1.3 92.2±1.3
99.1±0.1 99.1±0.1 99.4±0.1
99.9±0.0 99.9±0.0 99.9±0.0
99.7±0.0 99.7±0.0 99.6±0.0
68.5±3.8 71.6±1.5 73.6±2.2
79.9±0.1 80.6±1.2 80.6±0.9
48.1±0.9 59.2±3.6 49.6±1.9
39.0±4.2 79.9±1.2 60.6±12.9
18.9±7.7 50.6±5.7 29.1±4.1
53.3±5.6 53.3±7.1 41.0±7.4
16.5±0.9 48.0±18.9 15.5±0.2
0.0±0.0 0.2±0.4 0.0±0.0
85.0±1.1 87.8±1.0 86.8±0.8
68.3±4.0 81.7±5.7 75.0±3.7
84.8±0.1 86.5±1.7 81.8±2.8
2.467 1.333 2.2

OECV-n, the average rank of OECV-ea (2.2) is better than OECV-n (2.467), but the Wilcoxon signed rank
test fails to reject H0 with p-value 0.178, meaning there is no significant difference between OECV-ea and
OECV-n. From the comparison between OECV and OECV-n, we see that eliminating the whole EA strategy
would significantly decline performance. Additionally, we can see from the comparison between OECV-ea and
OECV, as well as OECV-ea and OECV-n, that the extra data does not play a determinative role. This is
because OECV-ea also uses extra data in finding optimal cost vector with the performance set to the objective
of performance metric, but it does not perform significantly better than OECV-n and performs significantly
worse than OECV. This implies that it is the EA instead of extra data making OECV outperform compared
methods.

4.4 Further Discussions

We explore two related questions to assess the working mechanism of OECV.
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Figure 3: Prequential G-mean, imbalance ratio, and standard deviation of fitness of the population in
dataset Ozone. The higher the standard deviation, the greater the diversity. Imbalance ratio is calculated by
time-decay class sizes (Eqn. 3).

Figure 4: Prequential G-mean, imbalance ratio, and weight ratio in dataset Airlines. Imbalance ratio is
calculated by time-decay class sizes (Eqn. 3).

4.4.1 Analysis on Population Diversity

We explore whether OECV can maintain population diversity over time instead of converging. The population
diversity enables OECV to track the optimal cost vector instead of converging to a certain solution. We
present the standard derivation of individual fitness in Fig. 3 with a further analysis of the Spearman
correlation (Fieller et al., 1957). The result shows correlation coefficients of 0.594 (moderate) and 0.629
(strong) between the absolute difference of imbalance ratios (i.e., the absolute value of the difference between
two neighboring class imbalance ratios) and standard deviation (std) of fitness of OECV and OECV-ea,
respectively, being positively correlated. It also shows a high correlation coefficient of 0.869 between the std
of fitness of OECV and OECV-ea. We can draw two conclusions: 1) The diversity adapts to data stream
behavior. This means OECV and OECV-ea can expand the exploration of new cost vectors (high std) during
a concept drift where the imbalance ratio changes drastically while adopting temporary elitists by leveraging
learned knowledge about class imbalance (low std) during the steady stream where the imbalance ratio is
stable. 2) Despite similar diversity and changing behavior, OECV outperforms OECV-ea. This indicates the
superiority of EA in that it can maintain a population of cost vectors with higher quality under the same
diversity.

4.4.2 Analysis on EA-based Cost Vector

We explore how the cost vector found by the EA outperforms the one determined solely by the imbalance
ratio. We define the weight ratio (WR) as v1

v0
to visualize the cost vector in a binary classification scenario in

Fig. 4. Here, vi represents the i-th dimension of the cost vector. Analogous to the imbalance ratio, the WR
serves as a belief of the imbalance level indicated by the cost vector. We analyze the Spearman correlation
between the WR of three variants and the imbalance ratio, yielding correlation coefficients of 0.971, 0.897,
and 0.887 for OECV-n, OECV-ea, and OECV respectively, indicating strong correlations. This means the
cost vectors found by EA can also reflect the beliefs about class imbalance, while some of these beliefs are
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sacrificed to seek more appropriate values of the cost vector in finding the optimal solution. Besides, Fig. 4
illustrates the challenge of finding the optimal solution by ad hoc assumptions: While OECV outperforms
that of OECV-n, the WR of OECV fluctuates compared to OECV-n. This suggests that relying solely on the
imbalance ratio is insufficient for identifying the best cost vector. The dynamic EA addresses this limitation
by directly setting the performance measure as the objective and avoiding heuristic reliance.

5 Conclusion

This article introduces a novel approach Online Evolutionary Cost Vector (OECV) to tackle the online class
imbalance issue by eliminating heuristic assumptions on class imbalances widely used in existing methods.
OECV instead manages to optimize performance on any specified performance metrics directly, achieved by
adopting a dynamic EA. The model is explicitly deconstructed into two layers: an online classifier for rough
probabilistic prediction and a cost vector for refining the decision boundary. The cost vector is the only part
subject to the dynamic EA for directly optimizing specific performance metrics. This bi-level architecture is
motivated by viewing the cost vector as a hyperparameter in the threshold moving method and the EA as
an approach to fine-tune the hyperparameter. A dynamic EA is employed to track the optimal cost vector
over time. Cost vectors designed by class size are integrated into the prior population to sustain population
diversity and integrate prior knowledge. To enhance data diversity, an oversampling trick is used to augment
the buffer and attain more beneficial evolutionary results. Empirical studies demonstrate the validity and
efficiency of our approach. Analysis of the working mechanism reveals how OECV can generate a superior
cost vector compared to the human-designed counterpart.

The potential of the OECV framework extends beyond the class imbalance setting and has further exploration
values in various other classification tasks. High performance across a broad range of metrics unrelated to
class imbalance could be achieved with only slight adjustments to the cost vector. For instance, OECV can
simultaneously serve multi-objective purposes by optimizing for multiple metrics, including accuracy, recall,
and F1-score. Another future work is to handle the potential label noise. Specifically, when there exist
corrupted labels, the samples in the augmented buffer will also contain corrupted labels, which may degrade
the optimization of cost vectors and deserve a further specific design.
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A Running Time Comparison

Since EA is known for high time complexity, we conduct a runtime comparison to show the practicality
of OECV along with the theoretical analysis in Sec. 3.4.4. All experiments are benchmarked on a server
configured with Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz. The geometric mean of runtime across datasets
is reported in the case of varying runtime scales across datasets. Specifically, suppose N datasets are used,
we report N

√∏N
i=1 ti, where ti represents the runtime on the i-th dataset. Two key observations can be made

from the results in Table 3. Firstly, while some methods exhibit significantly shorter runtimes, such as MUOB
and OECV-n, this comes at the expense of their inferior performance, as evidenced in Table 2(a). Secondly,
our approach demonstrates remarkable efficiency, as OECV achieves the best rank with tolerable runtime
compared to other SOTA methods. This validates the time efficiency and practicality of OECV despite
integrating EA.

B Performance Comparison in Terms of Balanced Accuracy

In Table 4 (a), we include a performance comparison in terms of balanced accuracy, complementary to
the results in Section 4.2. We can see from Table 4 that in terms of balanced accuracy, OECV performs
the best in 12 out of 30 datasets and the 2nd best in 8 data sets. Friedman tests (Demšar, 2006) at the
significance level 0.05 reject H0 with the p-value 4.21 × 10−3, showing that there is a significant difference
between methods. The average rank of OECV is 2.167, being the best. Post-hoc tests are then conducted to
investigate whether OECV has a significant difference from the competitors, for which OECV is chosen as the
control method. Post-hoc comparisons show that OECV can significantly outperform all of the competitors
except BEDCOE, where the p-value is 0.052, being only marginally higher than 0.05. We conjecture this
is because the optimization objective is set to G-mean instead of balanced accuracy in OECV, making the
algorithm not aware of this performance metric.

C Ablation Studies in Terms of Balanced Accuracy

Table 4 (b) shows the predictive performance of the three models in terms of balanced accuracy, complementary
to the results in Section 4.3. Then, the three methods are compared to each other, with Wilcoxon signed
rank tests (Wilcoxon, 1992) used to determine if there are significant differences between them.

We can see that in terms of balanced accuracy, the average rank of OECV (1.55) is better than that
of OECV-n (2.233) and OECV-ea (2.217). Wilcoxon signed rank test rejects H0 with p-value 0.042 and
4.98 × 10−4, respectively, meaning OECV is significantly superior to OECV-n and OECV-ea. This indicates
that eliminating the EA strategy would significantly decline predictive performance in terms of balanced
accuracy, showing its effectiveness.

We follow a similar procedure to compare OECV-ea and OECV-n. In terms of balanced accuracy, the average
rank of OECV-ea (2.217) is better than OECV-n (2.233). Wilcoxon signed-rank test fails to reject H0 with
p-value 0.838, meaning there is no significant difference between OECV-ea and OECV-n. This indicates that
using extra samples in the buffer is solely insufficient to find a significantly better cost vector. In other words,
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Table 3: Comparison between methods in terms of runtime in seconds. The geometric mean of runtime is
shown in the last row.

Dataset AI-WSELM MOOB MUOB BEDCOE OECV-n OECV OECV-ea
Elec 6.9±1.2 49.8±1.4 22.5±0.6 134.2±3.4 6.5±0.1 47.5±0.3 53.6±3.9

Abrupt 13.3±2.6 51.2±1.5 11.2±0.2 292.8±20.3 6.5±0.3 81.4±3.4 75.5±1.2
Gradual 15.0±3.2 52.9±0.4 5.1±0.1 212.8±5.1 6.7±0.2 110.3±20.5 74.9±1.4

Incremental1 15.1±3.2 49.7±0.2 16.2±0.4 383.4±5.8 6.5±0.2 101.5±2.9 76.1±1.2
Luxembourg 5.3±0.1 16.4±0.1 12.6±0.1 28.2±0.5 2.5±0.3 38.0±2.1 27.6±0.7

NOAA 10.0±0.2 48.4±0.2 23.8±0.2 307.8±13.2 7.0±0.7 53.9±0.6 49.6±0.7
Ozone 8.0±0.1 38.5±1.7 6.3±0.3 139.4±56.7 4.5±0.1 55.9±1.8 42.7±0.7

Airlines 12.9±0.4 49.0±0.9 25.8±0.3 364.2±6.4 7.3±0.5 52.8±0.6 47.1±0.4
Covtype 27.8±0.3 58.7±1.0 5.3±0.0 252.7±4.7 7.3±0.2 115.4±1.7 80.6±1.0

Incremental2 17.5±0.5 62.4±0.7 5.6±0.0 379.0±7.1 7.2±0.2 107.5±3.2 75.1±0.9
Abalone1 2.4±0.0 24.2±0.4 4.0±0.2 73.4±3.1 3.3±0.1 25.1±0.4 22.7±0.3
Abalone2 1.6±0.0 16.0±0.4 2.5±0.1 52.2±1.6 2.4±0.2 17.4±0.6 15.6±0.2

Car1 1.6±0.0 22.5±0.8 4.6±0.8 76.5±5.0 2.5±0.1 18.3±0.3 16.4±0.2
Car2 1.6±0.0 21.3±0.4 3.7±0.6 46.2±0.7 2.5±0.1 18.6±0.5 16.3±0.1

Kddcup 7.3±0.3 21.1±0.2 3.1±0.1 36.4±0.8 3.3±0.1 43.9±2.4 31.9±0.6
Kr 3.8±0.1 36.4±0.8 5.7±0.4 65.9±0.8 4.3±0.2 30.8±0.6 27.4±0.3

Segment 6.3±0.2 31.1±0.6 8.9±0.3 52.6±1.8 3.5±0.4 41.4±1.8 29.4±0.8
Shuttle1 6.4±0.4 39.0±1.2 6.0±0.5 55.4±0.9 4.9±0.2 38.1±0.5 32.5±0.4
Shuttle2 3.8±0.2 22.9±0.6 4.5±0.1 31.9±0.8 2.8±0.6 21.2±0.5 17.7±0.2
Thyroid 2.0±0.1 10.1±0.1 1.0±0.1 37.1±0.6 1.2±0.3 12.2±0.8 8.5±0.3

Win1 1.5±0.1 7.7±0.2 0.9±0.1 19.4±0.3 1.0±0.2 8.4±0.3 6.8±0.1
Win2 3.6±0.2 17.0±0.9 3.0±0.2 64.6±1.2 2.3±0.2 18.6±0.5 15.5±0.2
Win3 1.4±0.1 8.1±0.4 1.2±0.4 23.2±1.1 1.0±0.1 7.5±0.3 6.4±0.1
Win4 3.3±0.1 16.7±0.4 2.2±0.4 37.2±1.0 2.1±0.1 17.0±0.3 14.3±0.1
Win5 2.0±0.1 11.1±0.6 1.3±0.1 27.7±0.9 1.3±0.1 10.4±0.3 8.7±0.1
Yeast1 1.9±0.1 13.1±0.8 1.7±0.3 36.5±0.8 1.4±0.1 10.2±0.3 9.2±0.1
Yeast2 3.2±0.1 22.5±0.5 1.8±0.3 150.2±5.2 2.1±0.3 20.7±0.4 15.8±0.1
Yeast3 3.1±0.1 17.6±0.3 4.7±0.2 57.5±1.0 2.1±0.1 15.7±0.2 14.5±0.1
Yeast4 3.1±0.2 17.7±0.5 2.4±0.2 40.4±0.6 2.3±0.6 15.6±0.2 14.3±0.2
Yeast5 3.0±0.1 17.4±0.4 2.3±0.3 42.5±0.7 2.1±0.2 15.9±0.5 14.2±0.1

G-mean time 4.501 24.471 4.378 75.8 3.074 28.517 23.66

although our method uses extra data, this is not the determinative reason why OECV can outperform SOTA
methods.

D Continuous Performance Throughout Time

Figure 5 presents performance comparisons over various time steps on two representative datasets in terms of
G-mean and balanced accuracy. Similar patterns were observed in other datasets. We can see that OECV
consistently outperforms most other methods across most time steps in terms of both G-mean and balanced
accuracy. This demonstrates the continuous effectiveness of our approach in improving performance over
time.

For ablation studies, we demonstrate continuous performance over time in Figure 6 in terms of G-mean and
balanced accuracy. We notice removing the evolutionary cost vector strategy leads to a continual decline in
performance across most test steps. As a result, we assert that using EA is crucial in our approach.
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Table 4: Performance comparison in terms of balanced accuracy (%). Each entry is the mean±std performance
across 10 runs. The best performance on each dataset is highlighted in bold, and the 2nd best performance
is highlighted in italics. The last row lists the average ranks (avgRank) of each model across datasets in each
subtable. Part (a) reports the comparison between SOTA methods and the proposed OECV. A significant
difference against OECV is highlighted in yellow. Part (b) reports the ablation results between variants of
OECV.

(a) Performance comparison

Dataset AI-WSELM MOOB MUOB BEDCOE OECV
Elec 79.5±1.7 91.0±0.2 88.9±0.4 95.5±0.1 84.2±0.9
Abrupt 68.2±1.1+ 65.9±0.6 67.3±0.6 63.7±0.3 64.6±0.6
Gradual 34.1±0.4 63.1±0.4 20.2±0.8 64.1±1.3 52.3±1.0
Incremental1 48.5±0.6 58.6±0.4 58.1±0.6 54.7±0.4 48.2±1.3
Luxembourg 85.6±2.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 72.0±0.7 66.0±0.6 64.9±0.6 69.0±0.6 73.2±0.5
Ozone 67.7±2.2 74.9±1.3 78.3±0.6 74.1±1.0 77.4±1.6
Airlines 51.6±0.6 51.6±0.5 51.1±0.7 51.7±0.4 52.2±0.8
Covtype 21.1±2.9 70.6±0.4 16.4±3.0 70.3±0.9 38.6±1.1
Incremental2 30.1±0.5 49.3±0.4 25.2±1.9 49.4±1.0 40.0±0.6
Abalone1 60.6±2.3 65.6±0.6 66.5±2.9 68.0±0.5 71.9±2.5
Abalone2 61.0±3.3 51.6±0.2 45.2±3.4 56.2±0.2 54.2±3.1
Car1 82.1±2.5 53.7±1.1 62.4±6.0 57.4±2.2 79.0±2.1
Car2 96.7±2.6 77.3±0.5 81.2±3.7 77.7±1.1 96.2±1.0
Kddcup 83.5±7.3 100.0±0.0 96.1±3.3 100.0±0.0 100.0±0.0
Kr 94.5±1.6 94.4±0.7 91.0±1.6 90.6±0.7 94.7±1.2
Segment 98.7±0.4 98.9±0.1 93.3±0.6 99.0±0.0 99.1±0.1
Shuttle1 100.0±0.0 99.4±0.6 98.0±1.7 99.1±0.9 99.9±0.0
Shuttle2 99.4±0.1 99.6±0.0 99.8±0.1 99.7±0.1 99.7±0.0
Thyroid 54.6±4.6 53.9±2.8 34.7±0.0 63.9±1.9 75.0±1.5
Win1 62.6±14.6 53.0±0.1 53.4±0.0 65.5±15.7 83.3±0.5
Win2 54.9±1.7 51.0±0.9 65.0±2.5 52.6±0.6 64.6±2.0
Win3 52.4±2.8 51.8±0.8 51.5±3.5 52.1±1.0 80.2±1.2
Win4 52.7±1.8 59.8±4.6 50.1±2.3 54.4±0.5 59.5±4.4
Win5 55.5±5.0 53.3±2.0 49.4±1.3 49.6±0.3 58.5±3.8
Yeast1 60.1±3.7 56.7±0.4 53.1±5.8 57.1±1.0 59.0±7.7
Yeast2 45.7±2.7 39.4±2.6 10.8±1.7 41.2±0.8 39.9±1.1
Yeast3 82.3±2.0 89.3±0.3 90.1±1.0 87.8±0.3 87.9±1.0
Yeast4 76.7±4.8 88.9±0.8 84.6±7.4 76.7±2.0 83.4±4.3
Yeast5 75.3±2.4 73.5±1.1 65.8±4.3 66.1±1.9 86.8±1.6
avgRank 3.1 3.1 3.717 2.917 2.167

(b) Ablation studies

OECV-n OECV OECV-ea
83.7±0.4 84.2±0.9 84.1±0.8
64.4±0.7 64.6±0.6 64.7±0.8
59.2±0.9 52.3±1.0 50.6±1.1
47.9±1.1 48.2±1.3 48.0±1.1
100.0±0.0 100.0±0.0 100.0±0.0
73.1±0.5 73.2±0.5 73.0±0.5
73.6±1.4 77.4±1.6 76.7±1.5
51.6±0.6 52.2±0.8 52.2±0.9
50.1±1.1 38.6±1.1 33.9±1.2
43.2±0.6 40.0±0.6 36.4±0.7
65.8±1.4 71.9±2.5 67.2±2.7
54.0±0.3 54.2±3.1 54.4±1.8
79.1±2.4 79.0±2.1 78.8±1.7
94.9±1.1 96.2±1.0 95.3±0.9
100.0±0.0 100.0±0.0 100.0±0.0
91.8±0.7 94.7±1.2 92.5±1.2
99.1±0.1 99.1±0.1 99.4±0.1
99.9±0.0 99.9±0.0 99.9±0.0
99.7±0.0 99.7±0.0 99.6±0.0
73.1±2.7 75.0±1.5 77.1±2.1
83.5±0.1 83.3±0.5 83.8±0.6
60.3±0.4 64.6±2.0 59.7±1.2
56.4±2.2 80.2±1.2 66.0±7.7
51.2±1.5 59.5±4.4 51.1±2.2
63.8±2.7 58.5±3.8 54.8±4.3
53.2±0.3 59.0±7.7 51.6±0.7
40.0±1.7 39.9±1.1 36.4±1.7
85.5±1.0 87.9±1.0 87.0±0.7
73.8±3.0 83.4±4.3 78.5±2.7
85.7±0.1 86.8±1.6 83.2±2.2
2.233 1.55 2.217

E Hyperparameter Analysis

To balance the performance and computational cost, we introduced a few hyperparameters in OECV. The
role of each hyperparameter is straightforward and does not need heavy fine-tuning. In this section, we
provide a detailed discussion on the sensitivity of population size, oversampling rate, buffer size, and the
updating frequency of the cost vector. We also investigate the influence of the pre-training ratio. Note the
pre-training stage is not necessary in our method and is added to make a fair comparison since Li et al. (2023)
requires a pre-training setup. The ratio of 30% in the main experiments is chosen randomly and set to be the
same for all compared methods without any tuning.

E.1 Population Size

We include a further experiment on the sensitivity of population size setting in OECV. Fixing the other
original hyperparameter settings of OECV, we manually alter only the population size (i.e., number of
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(a) NOAA in G-mean (b) Yeast5 in G-mean

(c) NOAA in class-wise acc. (d) Yeast5 in class-wise acc.

Figure 5: Continuous performance comparison throughout time on representative datasets in terms of G-mean
and balanced accuracy.

(a) Ozone in G-mean (b) Yeast5 in G-mean

(c) Ozone in class-wise acc. (d) Yeast5 in class-wise acc.

Figure 6: Continuous performance comparison of ablation studies throughout time on representative datasets
in terms of G-mean and balanced accuracy.
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Table 5: Performance comparison between OECV with different population size in terms of G-mean (%) on
the left and balanced accuracy (%) on the right. Each entry is the mean±std performance across 10 runs.
The best performance on each dataset is highlighted in bold, and the 2nd best performance is highlighted
in italics. The last two rows list the average ranks (avgRank) of each model across datasets, as well as the
relative average time costs.

(a) G-mean

Dataset Pop-25 Pop-50 Pop-100 Pop-200
Elec 83.7±7.8 83.9±7.8 83.8±7.9 84.1±7.9
Abrupt 62.8±3.5 63.2±3.5 63.1±3.6 63.1±3.6
Gradual 8.5±15.6 13.2±19.3 24.8±23.6 5.5±12.5
Incremental1 46.4±5.4 46.1±5.7 46.2±5.6 46.3±5.4
Luxembourg 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 73.1±4.0 73.0±3.9 72.9±3.9 73.0±4.0
Ozone 77.1±5.6 77.8±5.9 77.3±6.0 77.0±5.9
Airlines 51.8±4.7 51.7±4.7 51.8±4.8 51.8±4.7
Covtype 28.6±15.4 36.0±18.4 39.0±18.4 40.3±18.1
Incremental2 15.6±19.5 17.2±19.4 18.5±17.1 20.5±19.3
Abalone1 67.8±16.6 66.8±16.8 67.4±16.7 71.9±15.3
Abalone2 38.7±24.4 51.8±20.2 38.2±22.2 38.1±20.2
Car1 78.2±9.9 78.1±9.8 78.5±9.9 77.6±10.0
Car2 96.1±2.0 96.2±2.0 95.8±1.9 95.9±1.7
Kddcup 100.0±0.0 94.9±10.9 100.0±0.1 98.1±4.5
Kr 94.7±2.8 93.8±3.7 93.6±3.7 95.1±2.1
Segment 99.1±0.6 99.1±0.6 99.2±0.6 99.0±0.6
Shuttle1 99.9±0.2 98.1±6.1 99.9±0.2 99.8±0.4
Shuttle2 99.7±0.6 99.6±0.6 99.6±0.6 99.7±0.6
Thyroid 71.6±19.2 74.4±19.7 74.5±19.8 76.8±20.3
Win1 80.6±18.5 84.5±13.8 80.3±18.4 81.9±15.7
Win2 59.2±15.2 58.8±12.2 61.9±11.3 60.1±12.8
Win3 79.9±8.2 81.5±6.2 80.8±6.6 80.3±6.6
Win4 50.6±20.0 64.4±11.9 46.6±25.6 49.4±25.5
Win5 53.3±14.0 59.0±9.9 57.5±13.3 62.8±10.4
Yeast1 48.0±29.4 51.1±22.6 49.2±26.1 53.6±22.7
Yeast2 0.2±3.0 0.1±2.2 0.0±0.0 0.0±0.9
Yeast3 87.8±3.2 86.5±3.7 86.6±4.0 87.2±3.4
Yeast4 81.7±13.8 86.9±5.6 86.5±9.7 89.7±4.2
Yeast5 86.5±5.8 86.6±4.8 86.2±5.0 85.5±5.0
AvgRank 2.583 2.467 2.6 2.35
Time cost ×1 ×1.11 ×1.30 ×1.73

(b) Balanced accuracy

Pop-25 Pop-50 Pop-100 Pop-200
83.7±7.8 83.9±7.8 83.8±7.9 84.1±7.9
62.8±3.5 63.2±3.5 63.1±3.6 63.1±3.6
8.5±15.6 13.2±19.3 24.8±23.6 5.5±12.5
46.4±5.4 46.1±5.7 46.2±5.6 46.3±5.4
100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
73.1±4.0 73.0±3.9 72.9±3.9 73.0±4.0
77.1±5.6 77.8±5.9 77.3±6.0 77.0±5.9
51.8±4.7 51.7±4.7 51.8±4.8 51.8±4.7
28.6±15.4 36.0±18.4 39.0±18.4 40.3±18.1
15.6±19.5 17.2±19.4 18.5±17.1 20.5±19.3
67.8±16.6 66.8±16.8 67.4±16.7 71.9±15.3
38.7±24.4 51.8±20.2 38.2±22.2 38.1±20.2
78.2±9.9 78.1±9.8 78.5±9.9 77.6±10.0
96.1±2.0 96.2±2.0 95.8±1.9 95.9±1.7
100.0±0.0 94.9±10.9 100.0±0.1 98.1±4.5
94.7±2.8 93.8±3.7 93.6±3.7 95.1±2.1
99.1±0.6 99.1±0.6 99.2±0.6 99.0±0.6
99.9±0.2 98.1±6.1 99.9±0.2 99.8±0.4
99.7±0.6 99.6±0.6 99.6±0.6 99.7±0.6
71.6±19.2 74.4±19.7 74.5±19.8 76.8±20.3
80.6±18.5 84.5±13.8 80.3±18.4 81.9±15.7
59.2±15.2 58.8±12.2 61.9±11.3 60.1±12.8
79.9±8.2 81.5±6.2 80.8±6.6 80.3±6.6
50.6±20.0 64.4±11.9 46.6±25.6 49.4±25.5
53.3±14.0 59.0±9.9 57.5±13.3 62.8±10.4
48.0±29.4 51.1±22.6 49.2±26.1 53.6±22.7
0.2±3.0 0.1±2.2 0.0±0.0 0.0±0.9
87.8±3.2 86.5±3.7 86.6±4.0 87.2±3.4
81.7±13.8 86.9±5.6 86.5±9.7 89.7±4.2
86.5±5.8 86.6±4.8 86.2±5.0 85.5±5.0
2.583 2.467 2.6 2.35
×1 ×1.11 ×1.30 ×1.73

individuals) to get four comparison methods: Pop-25 (original setting), Pop-50, Pop-100, Pop-200, standing
for OECV with a population size of 25, 50, 100, and 200, respectively. The detailed comparison setting
remains the same as in the main paper experiments. We report the performance in terms of G-mean in Table
5 (a) and the performance in terms of balanced accuracy in Table 5 (b).

The result shows that increasing the population size would not boost performance significantly, however, the
time complexity increases correspondingly. This can be because the problem scale is commonly small in an
online learning setting, meaning a small number of individuals can already find a good enough cost vector.
We conclude that OECV is not sensitive to this hyperparameter in a certain range. This is also why we
only applied a relatively small population size in our main experiment: this setting can significantly improve
performance compared to baseline methods while not incurring a long updating delay. In offline learning,
where the problem scale is much larger, especially when the number of classes is larger, a large population
size should be applied. We leave the exploration of our method in an offline setting to future work.
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Table 6: Performance comparison between OECV with different oversampling rate in terms of G-mean (%)
on the left and balanced accuracy (%) on the right. Each entry is the mean±std performance across 10 runs.
The best performance on each dataset is highlighted in bold, and the 2nd best performance is highlighted
in italics. The last two rows list the average ranks (avgRank) of each model across datasets, as well as the
relative average time costs.

(a) G-mean

Dataset r = 1 r = 3 r = 5
Elec 83.8±7.4 83.9±7.7 83.7±7.8
Abrupt 62.3±3.4 62.6±3.6 62.8±3.5
Gradual 8.5±15.5 8.5±15.6 8.5±15.6
Incremental1 46.2±5.6 46.2±5.6 46.4±5.4
Luxembourg 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 72.8±4.0 72.9±3.9 73.1±4.0
Ozone 75.2±5.8 76.6±5.8 77.1±5.6
Airlines 51.6±5.0 51.7±4.7 51.8±4.7
Covtype 28.2±15.2 28.3±15.2 28.6±15.4
Incremental2 15.7±19.3 15.9±19.5 15.6±19.5
Abalone1 63.0±19.2 66.8±16.7 67.8±16.6
Abalone2 29.8±24.9 37.1±24.4 38.7±24.4
Car1 77.6±9.8 78.1±9.9 78.2±9.9
Car2 89.2±10.9 96.7±2.7 96.1±2.0
Kddcup 100.0±0.0 100.0±0.0 100.0±0.0
Kr 91.1±3.5 93.9±2.7 94.7±2.8
Segment 99.4±0.5 99.2±0.6 99.1±0.6
Shuttle1 99.9±0.1 99.9±0.2 99.9±0.2
Shuttle2 99.7±0.6 99.7±0.6 99.7±0.6
Thyroid 72.8±19.4 72.0±19.1 71.6±19.2
Win1 81.0±18.7 80.6±18.5 80.6±18.5
Win2 56.7±15.4 56.7±15.3 59.2±15.2
Win3 80.5±8.4 80.8±7.6 79.9±8.2
Win4 48.8±20.9 50.2±20.1 50.6±20.0
Win5 49.9±14.4 53.1±13.9 53.3±14.0
Yeast1 42.1±31.0 47.6±29.1 48.0±29.4
Yeast2 0.2±3.0 0.2±3.0 0.2±3.0
Yeast3 86.5±3.3 87.8±3.6 87.8±3.2
Yeast4 80.1±13.7 79.5±14.7 81.7±13.8
Yeast5 84.4±8.5 83.9±7.8 86.5±5.8
avgRank 2.4 1.967 1.633
Time cost ×1 ×3.43 ×4.20

(b) Balanced accuracy

r = 1 r = 3 r = 5
84.3±6.5 84.4±6.7 84.2±6.8
64.4±2.2 64.5±2.2 64.6±2.2
52.3±4.7 52.3±4.6 52.3±4.6
47.9±4.3 48.0±4.2 48.2±4.1
100.0±0.0 100.0±0.0 100.0±0.0
73.0±3.8 73.0±3.6 73.2±3.8
75.9±5.7 76.9±5.8 77.4±5.6
52.1±3.9 52.1±3.7 52.2±3.6
38.7±13.9 38.5±13.9 38.6±13.9
40.1±6.0 40.0±5.9 40.0±5.9
69.5±8.8 71.3±8.0 71.9±7.9
51.9±9.8 53.6±9.6 54.2±9.8
78.8±7.0 79.0±7.1 79.0±7.0
90.3±5.9 96.8±2.6 96.2±2.0
100.0±0.0 100.0±0.0 100.0±0.0
91.5±3.1 94.0±2.6 94.7±2.7
99.4±0.5 99.2±0.6 99.1±0.6
99.9±0.1 99.9±0.2 99.9±0.2
99.7±0.6 99.7±0.6 99.7±0.6
76.6±9.0 75.5±8.7 75.0±9.1
83.9±15.3 83.4±15.2 83.3±15.2
63.4±7.6 63.0±7.5 64.6±7.8
81.0±8.4 81.2±7.8 80.2±8.3
59.6±10.5 59.5±10.2 59.5±10.2
57.3±10.6 58.6±10.2 58.5±10.3
57.7±17.5 59.1±18.0 59.0±18.4
39.9±4.7 39.9±4.7 39.9±4.7
86.7±2.9 87.9±3.1 87.9±2.8
82.1±7.9 81.6±8.3 83.4±7.9
85.3±7.4 84.6±6.9 86.8±5.6
2.2 2 1.8
×1 ×3.43 ×4.20

E.2 Oversampling Rate

We can show the influence of the oversampling rate r in OECV by manually altering only r to get three
comparison methods: r = 1 (i.e., no oversampling), r = 3, and r = 5 (original setting). The detailed
comparison setting remains the same as in the main paper experiments. We report the performance in terms
of G-mean in Table 6 (a) and the performance in terms of balanced accuracy in Table 6 (b).

The result shows that increasing the oversampling rate would boost performance constantly, however, the time
complexity also increases. Intuitively, a larger r enhances the sample diversity and allows a more accurate
fitness evaluation but makes the fitness evaluation slower. One can use larger r to get further performance
improvement, but r = 5 is good enough to make the fitness evaluation both accurate and efficient.
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Table 7: Performance comparison between OECV with different buffer size in terms of G-mean (%) on the
left and balanced accuracy (%) on the right. Each entry is the mean±std performance across 10 runs. The
best performance on each dataset is highlighted in bold, and the 2nd best performance is highlighted in
italics. The last two rows list the average ranks (avgRank) of each model across datasets, as well as the
relative average time costs.

(a) G-mean

Dataset |B| = 50 |B| = 100 |B| = 200
Elec 87.6±7.2 85.8±7.4 83.7±7.8
Abrupt 62.7±3.2 62.3±3.4 62.8±3.5
Gradual 8.2±14.9 8.3±15.2 8.5±15.6
Incremental1 46.0±5.2 46.0±5.5 46.4±5.4
Luxembourg 100.0±0.1 100.0±0.0 100.0±0.0
NOAA 71.3±3.9 72.4±3.8 73.1±4.0
Ozone 74.6±6.1 75.6±5.9 77.1±5.6
Airlines 51.8±4.8 52.1±4.8 51.8±4.7
Covtype 26.3±14.2 27.5±14.8 28.6±15.4
Incremental2 15.5±19.0 15.5±19.3 15.6±19.5
Abalone1 58.9±18.8 59.7±19.6 67.8±16.6
Abalone2 23.0±22.4 29.5±21.4 38.7±24.4
Car1 75.6±9.1 76.9±9.6 78.2±9.9
Car2 97.5±1.7 94.3±3.0 96.1±2.0
Kddcup 100.0±0.0 100.0±0.0 100.0±0.0
Kr 93.8±2.8 91.0±3.5 94.7±2.8
Segment 98.9±0.7 99.1±0.6 99.1±0.6
Shuttle1 99.9±0.2 99.9±0.2 99.9±0.2
Shuttle2 99.7±0.6 99.6±0.6 99.7±0.6
Thyroid 56.3±17.7 65.8±19.3 71.6±19.2
Win1 79.9±19.9 80.4±18.9 80.6±18.5
Win2 57.1±16.2 55.2±15.6 59.2±15.2
Win3 69.8±12.0 79.1±8.9 79.9±8.2
Win4 39.9±24.2 50.0±20.8 50.6±20.0
Win5 52.1±14.9 52.2±13.9 53.3±14.0
Yeast1 41.7±28.1 42.3±26.8 48.0±29.4
Yeast2 0.2±3.0 0.2±3.0 0.2±3.0
Yeast3 84.2±4.3 86.0±4.2 87.8±3.2
Yeast4 76.1±17.6 77.5±16.1 81.7±13.8
Yeast5 82.0±7.9 85.0±6.6 86.5±5.8
avgRank 2.533 2.15 1.317
Time cost ×1 ×1.28 ×1.77

(b) Balanced accuracy

|B| = 50 |B| = 100 |B| = 200
87.8±6.3 86.2±6.5 84.2±6.8
64.6±2.3 64.2±2.1 64.6±2.2
52.1±4.7 52.1±4.7 52.3±4.6
47.7±4.0 47.7±4.1 48.2±4.1
100.0±0.1 100.0±0.0 100.0±0.0
71.4±3.6 72.5±3.5 73.2±3.8
75.5±5.8 76.2±5.9 77.4±5.6
52.2±3.7 52.5±3.7 52.2±3.6
37.5±13.4 37.9±13.5 38.6±13.9
39.0±5.6 39.5±5.8 40.0±5.9
66.7±7.8 67.2±8.6 71.9±7.9
50.4±7.5 50.5±7.0 54.2±9.8
77.1±5.9 77.9±6.6 79.0±7.0
97.5±1.7 94.4±3.0 96.2±2.0
100.0±0.0 100.0±0.0 100.0±0.0
93.9±2.6 91.2±3.2 94.7±2.7
98.9±0.7 99.1±0.6 99.1±0.6
99.9±0.2 99.9±0.2 99.9±0.2
99.7±0.6 99.6±0.6 99.7±0.6
63.7±9.1 70.2±11.2 75.0±9.1
83.2±15.9 83.3±15.4 83.3±15.2
64.2±8.0 61.9±8.0 64.6±7.8
71.4±11.3 79.5±9.0 80.2±8.3
56.6±10.4 60.4±10.0 59.5±10.2
59.4±10.3 58.1±9.9 58.5±10.3
58.3±15.8 56.6±15.2 59.0±18.4
39.9±4.7 39.9±4.7 39.9±4.7
84.5±3.8 86.2±3.8 87.9±2.8
79.5±8.9 80.3±8.4 83.4±7.9
82.9±7.4 85.4±6.4 86.8±5.6
2.417 2.167 1.417
×1 ×1.28 ×1.77

E.3 Buffer Size

We can show the influence of the buffer size |B| in OECV by manually altering only the buffer size to get
three comparison methods: |B| = 50, |B| = 100, and |B| = 200 (original setting). The detailed comparison
setting remains the same as in the main paper experiments. We report the performance in terms of G-mean
in Table 7 (a) and the performance in terms of balanced accuracy in Table 7 (b).

The result shows that increasing the buffer size would boost performance constantly, however, both the time
complexity and storage complexity increase. Intuitively, a larger buffer makes more samples available to the
cost vector and allows a more accurate fitness evaluation but makes the fitness evaluation slower. One can
use a larger buffer to get further performance improvement, but |B| = 200 is good enough to make the fitness
evaluation both accurate and efficient.
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Table 8: Performance comparison between OECV with different updating frequency of cost vector in terms of
G-mean (%) on the left and balanced accuracy (%) on the right. Each entry is the mean±std performance
across 10 runs. The best performance on each dataset is highlighted in bold, and the 2nd best performance
is highlighted in italics. The last two rows list the average ranks (avgRank) of each model across datasets, as
well as the relative average time costs.

(a) G-mean

Dataset f = 5 f = 10 f = 20
Elec 83.7±7.8 83.6±7.7 83.6±7.6
Abrupt 62.8±3.5 62.8±4.1 62.6±4.6
Gradual 8.5±15.6 4.5±8.1 11.0±13.6
Incremental1 46.4±5.4 46.1±5.5 46.1±5.7
Luxembourg 100.0±0.0 100.0±0.0 100.0±0.0
NOAA 73.1±4.0 72.9±4.1 72.7±4.0
Ozone 77.1±5.6 77.1±5.8 76.8±5.8
Airlines 51.8±4.7 51.8±4.7 51.7±4.8
Covtype 28.6±15.4 28.4±15.7 37.8±18.4
Incremental2 15.6±19.5 12.4±15.3 13.5±16.6
Abalone1 67.8±16.6 69.7±14.9 65.4±18.4
Abalone2 38.7±24.4 39.9±22.4 50.7±20.7
Car1 78.2±9.9 77.4±9.9 76.6±10.1
Car2 96.1±2.0 96.3±1.7 97.1±1.0
Kddcup 100.0±0.0 100.0±0.0 95.6±9.7
Kr 94.7±2.8 96.1±2.3 95.5±1.9
Segment 99.1±0.6 99.1±0.6 99.1±0.5
Shuttle1 99.9±0.2 99.9±0.2 98.4±5.1
Shuttle2 99.7±0.6 99.7±0.6 99.6±0.6
Thyroid 71.6±19.2 72.8±19.5 72.9±19.6
Win1 80.6±18.5 79.9±18.6 74.4±24.8
Win2 59.2±15.2 59.2±15.2 57.7±15.0
Win3 79.9±8.2 80.6±7.1 81.3±6.9
Win4 50.6±20.0 46.7±20.3 63.7±15.9
Win5 53.3±14.0 49.8±14.6 50.3±14.5
Yeast1 48.0±29.4 46.6±25.3 46.0±24.2
Yeast2 0.2±3.0 0.0±1.6 0.0±1.4
Yeast3 87.8±3.2 87.2±3.5 87.1±3.3
Yeast4 81.7±13.8 87.2±9.5 86.6±5.5
Yeast5 86.5±5.8 86.1±5.2 83.4±6.6
avgRank 1.717 2.0 2.283
Time cost ×2.57 ×1.36 ×1

(b) Balanced accuracy

f = 5 f = 10 f = 20
84.2±6.8 84.1±6.7 84.1±6.6
64.6±2.2 64.6±2.0 64.5±2.1
52.3±4.6 50.7±4.3 43.1±6.6
48.2±4.1 48.0±4.0 47.9±4.1
100.0±0.0 100.0±0.0 100.0±0.0
73.2±3.8 73.0±3.8 72.8±3.7
77.4±5.6 77.3±5.8 77.1±5.8
52.2±3.6 52.2±3.6 52.1±3.7
38.6±13.9 37.5±13.5 46.4±8.4
40.0±5.9 28.6±8.6 27.4±10.2
71.9±7.9 72.9±7.8 69.8±9.1
54.2±9.8 53.6±8.8 55.6±14.5
79.0±7.0 78.3±7.1 77.5±7.5
96.2±2.0 96.4±1.7 97.2±1.0
100.0±0.0 100.0±0.0 96.1±8.1
94.7±2.7 96.1±2.2 95.5±1.9
99.1±0.6 99.1±0.6 99.1±0.5
99.9±0.2 99.9±0.2 98.5±4.4
99.7±0.6 99.7±0.6 99.6±0.6
75.0±9.1 76.2±9.5 76.2±9.7
83.3±15.2 82.7±15.2 75.6±23.4
64.6±7.8 64.2±7.8 63.3±7.7
80.2±8.3 81.0±7.3 81.7±7.1
59.5±10.2 56.3±9.3 67.2±10.9
58.5±10.3 56.2±9.5 56.8±9.5
59.0±18.4 57.0±16.6 55.1±17.3
39.9±4.7 30.0±5.0 28.6±5.9
87.9±2.8 87.3±3.1 87.2±2.8
83.4±7.9 87.8±5.9 86.9±5.2
86.8±5.6 86.3±5.1 84.0±6.2
1.617 1.95 2.433
×2.57 ×1.36 ×1

E.4 Updating Frequency

We can show the influence of the updating frequency f of the cost vector in OECV by manually altering
only the f to get three comparison methods: f = 5 (original setting), f = 10, and f = 20. The detailed
comparison setting remains the same as in the main paper experiments. We report the performance in terms
of G-mean in Table 8 (a) and the performance in terms of balanced accuracy in Table 8 (b).

The result shows that decreasing the update would boost performance constantly, however, the time complexity
increases. Intuitively, a smaller f makes the updating frequency more aligned with the classifier in the lower
layer. This reduces the probability of updating delay and a sub-optimal solution. One can use a smaller f to
get further performance improvement, but f = 5 is good enough, and we pick this value to save the runtime
of OECV.
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Table 9: Performance comparison between OECV with different pretrain ratio in terms of G-mean (%) on
the left and balanced accuracy (%) on the right. Each entry is the mean±std performance across 10 runs.
The best performance on each dataset is highlighted in bold, and the 2nd best performance is highlighted
in italics. The last two rows list the average ranks (avgRank) of each model across datasets, as well as the
relative average time costs.

(a) G-mean

Dataset Ratio = 0 Ratio = 0.1 Ratio = 0.3
Elec 84.7±6.9 83.3±7.1 83.7±7.8
Abrupt 65.4±9.6 61.8±8.2 62.8±3.5
Gradual 14.7±25.2 7.9±15.4 8.5±15.6
Incremental1 51.1±9.7 48.2±5.4 46.4±5.4
Luxembourg 95.2±11.0 97.9±4.0 100.0±0.0
NOAA 63.1±5.7 69.5±4.1 73.1±4.0
Ozone 77.2±9.1 75.3±9.9 77.1±5.6
Airlines 50.9±4.3 49.9±3.7 51.8±4.7
Covtype 27.2±23.8 25.7±20.5 28.6±15.4
Incremental2 19.7±23.2 14.2±20.5 15.6±19.5
Abalone1 72.9±10.6 67.1±9.8 67.8±16.6
Abalone2 46.7±15.4 51.8±12.2 38.7±24.4
Car1 56.7±7.5 71.5±7.1 78.2±9.9
Car2 77.7±14.7 92.8±2.5 96.1±2.0
Kddcup 98.9±2.5 97.4±10.1 100.0±0.0
Kr 91.5±10.7 93.9±3.9 94.7±2.8
Segment 93.4±10.3 98.8±0.6 99.1±0.6
Shuttle1 98.3±5.7 99.2±0.9 99.9±0.2
Shuttle2 99.7±0.6 99.6±0.5 99.7±0.6
Thyroid 51.7±16.0 54.3±21.3 71.6±19.2
Win1 71.1±18.9 88.2±11.9 80.6±18.5
Win2 62.2±11.3 49.8±17.5 59.2±15.2
Win3 62.8±20.7 27.6±28.8 79.9±8.2
Win4 46.5±23.5 37.8±29.9 50.6±20.0
Win5 60.4±13.4 29.9±29.0 53.3±14.0
Yeast1 64.1±9.6 42.6±16.8 48.0±29.4
Yeast2 5.1±9.1 0.7±7.0 0.2±3.0
Yeast3 86.0±8.1 85.2±6.5 87.8±3.2
Yeast4 92.2±8.8 93.4±2.9 81.7±13.8
Yeast5 77.5±18.5 50.7±32.3 86.5±5.8
avgRank 1.917 2.467 1.617
Time cost ×1.27 ×1.17 ×1

(b) Balanced accuracy

Ratio = 0 Ratio = 0.1 Ratio = 0.3
85.0±6.5 83.8±6.7 84.2±6.8
67.0±7.6 64.4±3.1 64.6±2.2
52.6±10.8 51.3±4.7 52.3±4.6
53.0±8.8 49.6±4.6 48.2±4.1
95.4±10.2 97.9±3.8 100.0±0.0
63.7±4.6 69.7±3.7 73.2±3.8
77.6±8.0 76.2±7.2 77.4±5.6
51.2±3.7 50.3±3.4 52.2±3.6
35.8±26.8 35.7±22.8 38.6±13.9
40.9±10.6 41.3±7.2 40.0±5.9
73.4±9.8 69.0±5.6 71.9±7.9
51.9±9.1 54.9±7.6 54.2±9.8
57.2±7.1 72.1±6.6 79.0±7.0
78.8±10.9 92.9±2.5 96.2±2.0
98.9±2.4 97.9±5.9 100.0±0.0
91.7±10.1 94.0±3.5 94.7±2.7
93.7±9.3 98.8±0.6 99.1±0.6
98.4±5.3 99.2±0.9 99.9±0.2
99.7±0.6 99.6±0.5 99.7±0.6
55.7±9.7 64.7±7.3 75.0±9.1
74.4±12.2 88.8±11.0 83.3±15.2
63.3±10.5 55.4±7.1 64.6±7.8
64.4±19.0 53.9±12.4 80.2±8.3
55.6±15.8 57.6±13.2 59.5±10.2
62.4±12.7 51.7±16.1 58.5±10.3
65.4±8.6 50.8±5.9 59.0±18.4
25.4±10.5 39.0±5.3 39.9±4.7
86.3±7.4 85.4±6.0 87.9±2.8
92.5±8.1 93.5±2.9 83.4±7.9
78.2±16.9 65.2±13.7 86.8±5.6
2.117 2.367 1.517
×1.27 ×1.17 ×1

E.5 Pre-training Ratio

We can show the influence of the ratio of the dataset for pretraining in OECV by manually altering only
the pretraining ratio to get three comparison methods: Ratio = 0 (begin from scratch), Ratio = 0.1, and
Ratio = 0.3 (original setting). The detailed comparison setting remains the same as in the main paper
experiments. Note the model is evaluated only on the remaining stream after the pretraining stage. We
report the performance in terms of G-mean in Table 9 (a) and the performance in terms of balanced accuracy
in Table 9 (b).

The result does not show an obvious relation between the pretraining ratio and performance in our method.
Indeed, this hyperparameter is not an essential part of our method, and OECV can start from scratch
(Ratio = 0). The hyperparameter is retained to align with the compared method Li et al. (2023), and
choosing a proper ratio and setting it equally to all compared methods is enough to make the comparison
fair, as we did in the main experiment.
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F More Experimental Comparison with Comparable Storage Budget

Except for the baseline AI-WSELM (Qin et al., 2021), which also requires extra storage as the same as ours,
the other three baselines MOOB, MUOB (Wang et al., 2016) and BEDCOE (Li et al., 2023), do not have
this requirement. In this section, We compare with an additional baseline named Online SMOTE Bagging
(SmoteOB) (Wang & Pineau, 2016) that also uses extra storage to demonstrate the superiority of OECV when
the compared method enjoys comparable or even higher storage requirements. The SmoteOB oversamples
using training samples within a sliding window, and we set the size of the sliding window to 100 for each
class (i.e., at least 200 samples to be stored for all classes), being equal to or larger than ours.

We report the performance in terms of G-mean in Table 10 (a) and the performance in terms of balanced
accuracy in Table 10 (b). We can draw the observation that OECV outperforms SmoteOB with a similar
time cost. An analysis analogous to the main paper can explain that our method performs better in cases
where few classes are presented, and the stream is highly imbalanced. This illustrates that our method can
not only outperform baselines with no extra storage requirement but also outperform baselines with extra
storage used, verifying the effectiveness of OECV.
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Table 10: Performance comparison between OECV and SmoteOB in terms of G-mean (%) on the left and
balanced accuracy (%) on the right. Each entry is the mean±std performance across 10 runs. The best
performance on each dataset is highlighted in bold, and the 2nd best performance is highlighted in italics.
The last two rows list the average ranks (avgRank) of each model across datasets, as well as the relative
average time costs.

(a) G-mean

Dataset OECV SmoteOB
Elec 83.7±0.9 87.5 ± 0.4
Abrupt 62.8±0.6 51.4 ± 13.0
Gradual 8.5±4.2 8.7 ± 4.6
Incremental1 46.4±1.5 51.4 ± 0.7
Luxembourg 100.0±0.0 99.6 ± 0.2
NOAA 73.1±0.5 64.6 ± 0.3
Ozone 77.1±1.7 77.7 ± 1.7
Airlines 51.8±0.9 35.6 ± 1.9
Covtype 28.6±1.5 51.0 ± 3.5
Incremental2 15.6±1.6 4.8 ± 1.2
Abalone1 67.8±4.3 57.1 ± 1.7
Abalone2 38.7±7.6 41.0 ± 1.9
Car1 78.2±2.2 89.8 ± 1.9
Car2 96.1±1.0 78.8 ± 2.7
Kddcup 100.0±0.0 71.9 ± 0.7
Kr 94.7±1.3 88.2 ± 1.6
Segment 99.1±0.1 95.3 ± 0.5
Shuttle1 99.9±0.0 99.9 ± 0.1
Shuttle2 99.7±0.0 99.5 ± 0.1
Thyroid 71.6±1.5 52.1 ± 0.5
Win1 80.6±1.2 70.4 ± 24.3
Win2 59.2±3.6 51.7 ± 0.6
Win3 79.9±1.2 62.5 ± 1.0
Win4 50.6±5.7 68.3 ± 2.9
Win5 53.3±7.1 78.7 ± 0.4
Yeast1 48.0±18.9 55.5 ± 1.3
Yeast2 0.2±0.4 9.8 ± 7.4
Yeast3 87.8±1.0 84.7 ± 0.5
Yeast4 81.7±5.7 93.1 ± 0.2
Yeast5 86.5±1.7 83.0 ± 1.0
avgRank 1.42 1.58
Time cost ×1.32 ×1

(b) Balanced accuracy

OECV SmoteOB
84.2±0.9 87.9 ± 0.5
64.6±0.6 62.5 ± 0.9
52.3±1.0 47.4 ± 1.1
48.2±1.3 55.4 ± 0.7
100.0±0.0 99.6 ± 0.2
73.2±0.5 66.1 ± 0.3
77.4±1.6 78.4 ± 1.4
52.2±0.8 49.2 ± 0.5
38.6±1.1 63.3 ± 1.6
40.0±0.6 43.3 ± 0.8
71.9±2.5 62.8 ± 1.4
54.2±3.1 57.0 ± 0.9
79.0±2.1 90.2 ± 1.8
96.2±1.0 81.7 ± 2.1
100.0±0.0 78.8 ± 0.6
94.7±1.2 89.4 ± 1.4
99.1±0.1 95.4 ± 0.5
99.9±0.0 99.9 ± 0.1
99.7±0.0 99.5 ± 0.1
75.0±1.5 59.8 ± 0.4
83.3±0.5 79.5 ± 10.3
64.6±2.0 60.8 ± 0.4
80.2±1.2 66.3 ± 0.7
59.5±4.4 72.2 ± 2.1
58.5±3.8 80.0 ± 0.3
59.0±7.7 58.3 ± 1.0
39.9±1.1 44.1 ± 1.2
87.9±1.0 86.6 ± 0.5
83.4±4.3 93.2 ± 0.2
86.8±1.6 83.6 ± 0.9
1.38 1.62
×1.32 ×1
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