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ABSTRACT

Long-term planning, as in reinforcement learning (RL), is often hard to interpret as
it involves strategies: collections of actions that work toward a goal with potentially
complex dependencies. In particular, some actions are taken at the expense of
short-term benefit to enable future actions with even greater returns. In this paper,
we quantify such dependencies between planned actions with strategic link scores:
the drop in the likelihood of an earlier action under the constraint that a follow-up
action is no longer available. We use strategic link scores to (i) explain black-box
RL agents by identifying strategically-linked pairs among decisions they make, and
(ii) improve the worst-case performance of decision support systems by distinguish-
ing whether recommended actions can be adopted as standalone improvements,
or whether they are strategically linked hence require a commitment to a broader
strategy to be effective. We demonstrate these use cases with maze-solving and
chess-playing examples as well as simulated healthcare and traffic environments.

1 INTRODUCTION

(a) Optimal Strategy (b) Shortcut Blocked

Figure 1: Strategy in a navigation task. Picking
up the key takes extra time early on but unlocks
a major shortcut later. If the shortcut were to be
blocked, going for the key would no longer be
optimal. This shows that picking up the key and
taking the shortcut are strategically linked—the
key is picked up to take the shortcut.

Being able to understand an RL policy is essential in
many high-stakes environments. For example, in health-
care, the responsibility for making good treatment de-
cisions rests with the clinician. Thus, the clinician will
want to understand the policy prior to adopting any of
its recommendations.

What, however, does it mean to understand a policy?
In supervised learning, each individual model output
is informed just by its corresponding input. However,
policies are coordinated actions optimized to achieve
long-term goals. Even if the policy function was inher-
ently interpretable, it would still be non-obvious what
actions are meant to work together to achieve a goal.

In this work, we address this unique challenge by de-
veloping a method to expose the strategic links between
the actions of a decision-making policy. Specifically,
we observe that early actions are often taken at the expense of short-term benefit under the assumption
that they will enable future actions with greater overall returns. As a concrete example, consider a
simple navigation task (Figure 1), where the straightforward path to the objective is long and winding.
Slightly off that path, however, there is a key that unlocks a significant shortcut. In this scenario, the
plan to retrieve the key—incurring a small delay—and then take the shortcut—saving more time than
lost in the delay—is a strategic one. How do we know these actions are linked? If the shortcut were
to be blocked, then an optimal agent would no longer choose to retrieve the key.

Let us refer to “retrieving the key” as the set-up decision and “taking the shortcut” as the pay-off
decision. This brings us to our first contribution, the formalizing of strategically linked actions:

The strategic link score between a set-up decision a and a pay-off decision a′ is
the the drop in the likelihood of the set-up decision under the constraint that the
pay-off decision is no longer available.

1
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This drop would be large when the set-up decision is not advantageous on its own but rather made
primarily to facilitate the pay-off decision. In contrast, if the optimality of the two decisions is not
contingent on each other— that is, the “set-up” decision is advantageous regardless of whether it is
followed up by the “pay-off” decision—then the drop would be zero.

Having a quantitative definition of strategic links empowers several additional contributions, including
planning-level explanations of decision-making policies as well as provide strategy-aware decision
support in high-stakes environments:

• Planning-Level Explanations. Existing methods for explainable RL typically provide either
state-level explanations—such as important features of a state that most influence the corresponding
action (e.g. (Greydanus et al., 2018))—or policy-level explanations—such as key trajectories
that summarize a policy’s behavior (e.g. (Amir and Amir, 2018)). In contrast, our strategic link
scores provide planning-level explanations that allow the user to understand if and when some
recommended action now is conditional on some other action being available in future.

• Strategy-Aware Decision Support. In high-stakes environments, it is rarely feasible to deploy
a fully autonomous RL agent. More common are decision support systems, where the RL policy
recommends actions to a human decision-maker, who then judges what final decision to make (e.g.
Jones et al., 2023). However, suppose that the recommended action now was to set up for another
action later, but the user unknowingly only implements the first action and not the second—and
ends up worse off as a result. Our strategic link scores can be used to inform users when sets of
actions must be implemented together to achieve a beneficial outcome and when implementation
decisions can be made independently. Through experiments, including in a healthcare environment
based on the MIMIC-IV dataset (Johnson et al., 2023), we show that providing strategy-aware
recommendations leads to greater improvements in the original decision-maker’s performance,
both on average and in worst-case scenarios.

Finally, while the two use cases we highlight are geared towards practical use cases of experts trying
to productively work with RL agents, our definition of strategic link scores can be used to understand
the outputs of any type of planner, regardless of whether it is optimal or even reward-based. For
example, in Section 6, we use our strategic link scores to expose the planning horizon associated with
the emergent traffic routing policy that arises from the many individual routing decisions made by
cars in a realistic traffic simulator. This example gives a taste of the many analyses that our strategic
link scores may enable beyond planning-level explanations and strategy-aware decision support.

2 RELATED WORK

Our work is related to explainable RL (at state, policy, planning levels) and safe policy improvement.

State-Level XRL. State-level XRL explain individual decisions: why a particular state is mapped
to its corresponding action. A common approach is to adapt techniques from supervised settings,
such as extracting saliency maps (e.g. Greydanus et al., 2018; Iyer et al., 2018), collecting human
annotations (e.g. Ehsan et al., 2018), fitting white-box meta-models (e.g. Liu et al., 2018), or
generating counterfactual examples (e.g. Olson et al., 2021; Chen et al., 2022; Huber et al., 2023).
While this last group of works consider counterfactual states, strategic links involve counterfactual
policies that could have been optimal had the environment conditions been different.

Policy-Level XRL. These explanations consider all the decisions of a given policy collectively.
Some methods summarize those decisions via key trajectories (Amir and Amir, 2018) or policy
graphs (Topin and Veloso, 2019); others contrast the policy with a baseline (van der Waa et al.,
2018; Yao et al., 2022); and many aim to learn white-box policies directly (e.g. Khan et al., 2009;
Shu et al., 2018; Verma et al., 2018; Hein et al., 2018; Silva et al., 2020; Sun et al., 2023). All of
these methods are limited in scope to a single policy and ignore the planning process behind it. In
contrast, planning-level explanations such as strategic links consider policies in context of others
related through a shared planning process.

Planning-Level XRL. Closer to the spirit of our work, several methods explain RL policies by
describing how a particular action choice impacts the future rewards an agent will attain, whether
broken down by reward dimension (Juozapaitis et al., 2019; Erwig et al., 2018) or simply on the
probability of success (Madumal et al., 2020; Yau et al., 2020; Cruz et al., 2023). In contrast,
our strategic links expose how a particular action choice sets up for future actions—enabling a

2
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fundamentally different kind of policy understanding. Moreover, our strategic link scores can be
computed for any type of planner, as long as their planning process can be intervened on, even if it
does not contain an explicit reward.

Safe Policy Improvement. Improving upon policies already in deployment is a common use case of
RL. A key challenge in this setting is safety: ensuring the new policy does not perform worse than
the original when deployed. This is usually a risk caused by the poor coverage of the available data
collected by the original policy. So, prior work tends to focus on solutions at the training stage—for
instance, limiting deviations from the original policy to keep new policies within coverage region
(Laroche et al., 2019; Wu et al., 2022; Sharma et al., 2024). Strategy-aware recommendations, on the
other hand, address the post-training risk of improper or partial adoption of new policies by flagging
changes that are strategically linked and should be implemented together.

3 PRELIMINARIES

Environments. We consider a decision-making environment E = (S,A, σ, τ), where S is the state
space, A is the action space, A(s) ⊆ A denotes the set of actions available in state s ∈ S , σ ∈ ∆(S)
is the initial state distribution, and τ : S ×A → ∆(S) is the transition function. A decision-maker
interacts with this environment over time. Initially, the environment is in state s1 ∼ σ. At each
time step t ∈ {1, 2, . . .}, the decision-maker observes the current state st, takes one of the available
actions at ∈ A(st), and the environment transitions into a new state st+1 ∼ τ(st, at).

Policies & Planners. During this interaction, the decision-maker chooses actions according to a
policy π, which is produced by a planning process (planner) P . Policies π : S → ∆(A) map each
state to a distribution over actions such that at ∼ π(st), and we denote with π(a|s) the probability
of action a being taken in state s. Meanwhile, planners P are processes that output policies given
an environment E , and we denote with π = P(E) the policy planned by P for environment E . For
example, reinforcement learning is concerned with optimal planning—the optimal planner P∗

r aims
to find policies that maximize the expected value v under some reward function r : S ×A → R:

π∗
r = P∗

r (E) = argmaxπ Eπ,E [ v
.
=

∑
t r(st, at) ] (1)

Although the optimal planner serves as a useful example, it is important to also keep in mind that not
all planners are optimal and some may not even seek to maximize a reward function.

Constrained Actions. Our characterization of strategies involve hypothetical policies that would
have been planned if certain actions had been unavailable to the planner. To capture this, we define
E¬ãps̃ as a constrained version of E with action ã removed from the available actions A(s̃) in state s̃:

E¬ãps̃ = (S,A[s̃ 7→ A(s̃)\{ã}], σ, τ) (2)

where A[s̃ 7→ A(s̃)\{ã}](s) is equal to A(s̃)\{ã} for s = s̃ but equal to A(s) for all s ∈ S\{s̃}.
Then, π¬ãps̃ = P(E¬ãps̃) becomes the policy that would have been planned by P if action ã were
to be unavailable in state s̃ in the original environment E . Following our previous example, for the
optimal planner P∗

r , this would be the policy optimized with the constraint that π(ã|s̃) = 0:

π∗
¬ãps̃ = P∗

r (E¬ãps̃) = argmaxπ Eπ,E¬ãps̃ [v] = argmaxπ:π(ã|s̃)=0 Eπ,E [v] (3)

4 STRATEGIC LINK SCORES

We define a decision (s, a) as the action a taken in state s. For a given planner P and environment E ,
we define the strategic link score between set-up decision (s, a) and pay-off decision (s̃, ã) as

Ss,a→s̃,ã = π(a|s)− π¬ãps̃(a|s) where π = P(E), π¬ãps̃ = P(E¬ãps̃) (4)

This measures the drop in the likelihood of the set-up decision, π(a|s), caused by constraining the
pay-off decision in E¬ãps̃. A large drop implies that the set-up is pursued primarily when it can be
followed up by the pay-off, indicating a strong strategic link between the two decisions.

Crucially, the strategic link score S is a property of the planner P and not solely of the environment E .
This means two planners performing different tasks in the same environment—or even the same
task, at different levels of optimality—can have different strategic links between their decisions.
Moreover, being a property of the planner, policy π alone does not provide enough information to
determine strategic links. We also need to know how that policy would change if certain decisions
were constrained (as in π¬ãps̃).

3
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1st 2nd

Ω
(r = 1)
(ρ = 1)

Ω
(r = 1)
(ρ = 1)

Λ
(r = 0.5)
(ρ = 1.5)

Λ
(r = 2.5)
(ρ = 1.5)

Figure 2: Dynamics of the illustrative ex-
ample. Starting in s1 = 1st, the action
sequence (Ω,Ω) is optimal under both
reward functions r and ρ. For r, the two
actions are strategically linked as Λ|1st
is not optimal unless Λ|2nd. For ρ, there
is no strategic link as Λ|1st is optimal re-
gardless of the action taken in s = 2nd.

Illustrative Example. Interestingly, two planners might be fol-
lowing the exact same policy and still have different strategic
links depending on how they respond to the same constraint.
Consider an environment with two states {1st, 2nd} and two ac-
tions {Ω,Λ}. The initial state is always 1st, and the transitions
are deterministic (see Figure 2). We are given two different
reward functions, r and ρ, as in Figure 2. Suppose two optimal
planners,P∗

r andP∗
ρ , maximize r and ρ respectively over a two-

step horizon. Under either reward function, the optimal policy
is exactly the same: take action Λ in s = 1st and then action Λ
again in s = 2nd. Letting πr = P∗

r (E) and πρ = P∗
ρ (E),

πr(1st) = πρ(1st) = Λ; πr(2nd) = πρ(2nd) = Λ (5)

Despite having the same policies, for plannerP∗
r , these two decisions are strategically linked. Under r,

the immediate reward of Ω is larger than Λ in s = 1st: r(1st,Ω) = 1 > r(1st,Λ) = 0.5. However,
P∗
r still takes action Λ to be able to transition into s = 2nd, where an even larger pay-off is available:

r(2st,Λ) = 2.5. If taking action Λ in s = 2nd had not been an option, taking action Ω in s = 1st

would no longer have been optimal, as reflected in the strategic link score between the two decisions:

Sr
(1st,Λ)→(2nd,Λ) = πr(Λ|1st)︸ ︷︷ ︸

=1

− πr
¬(Λ|2nd)(Λ|1

st)︸ ︷︷ ︸
=0

= 1 (6)

But for planner P∗
ρ , there is no strategic link. Under ρ, transitioning into s = 2nd is not important as

the rewards stay the same in either state: ρ(1st,Ω) = ρ(2nd,Ω) = 1 and ρ(1st,Λ) = ρ(2nd,Λ) = 1.5.
Taking action Λ in s = 1st is optimal regardless of what action is taken in the next state s = 2nd and

Sρ
(1st,Λ)→(2nd,Λ)

= πρ(Λ|1st)︸ ︷︷ ︸
=1

− πρ
¬(Λ|2nd)(Λ|1

st)︸ ︷︷ ︸
=1

= 0 (7)

5 PRACTICAL APPLICATIONS

Having defined the strategic link score S, we now illustrate two of its applications: planning-level
explanations (Section 5.1) and strategy-aware decision support (Section 5.2). We present the main
results here and provide detailed setup information in the appendix. For the time being, we assume
the planner P to be known (an RL algorithm with known reward functions). In the subsequent section,
we will discuss how to compute strategic link scores for unknown planners as well.

5.1 PLANNING-LEVEL EXPLANATIONS

We first use strategic link scores to find pairs of set-up and pay-off decisions. These pairs expose
how the actions of a planner are interlinked with each other, rather than treating actions in isolation
(state-level explanations) or merely showing actions that occur together (policy-level explanations).

Algorithm 1
Planning-Level Explanations

1: Input: Planner P , environment E
2: s1 ∼ σ1

3: for t ∈ {1, . . . , T} do
4: at ← argmaxa∈A π(a|st)
5: st+1 ∼ τ(st, at)
6: for t ∈ {1, . . . , T} do
7: for t′ ∈ {t, . . . , T} do
8: S̄tt′ ← S(st,at)→(st′ ,at′ )

9: Output: Scores S̄

Abstract Environment: GridWorld. In GridWorld, the
agent incurs a constant negative reward per timestep until it
reaches the target. The agent can move up, down, left, or right,
and by first walking over keys, they can later pass through pre-
viously locked doors. Our goal is to explain policies learned
by soft value iteration (Haarnoja et al., 2017) for various maze
layouts. We make sure none of the layouts become unsolvable
if a particular decision is constrained.

Realistic Environment: Chess. In Chess, two players,
white and black, take turns making moves. They both evaluate
all board states after each potential move and soft-max the
board values to obtain a distribution over next moves. This procedure constitutes the planner.

Method. Given a planner P , we explain its policy π = P(E) by first selecting a trajectory repre-
sentative of its behavior, and then computing the strategic link score between each pair of decisions
along that trajectory. We consider trajectories, rather than random decisions, as they are more likely
to exhibit strategic links. While any trajectory of interest can be analyzed in the same way, for this

4
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(a) Optimal Trajectory (b) Constraint with
High Strategic Links

(c) Constraint with
Low Strategic Links
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(d) Strategic Link Scores
along the Optimal Trajectory

Figure 3: Strategic link scores for a simple maze layout. Creating a shortcut by picking up the key to unlocking
the door is strategic (a), since blocking the door results in the key not being picked up (b), while constraining an
unrelated action does not lead to the same outcome (c). By looking at the strategic link scores between all the
decisions along the optimal trajectory (d), the link between the key (“K”) and the door (“D”) can be seen clearly.
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(b) Link Scores for
Independent Keys

Optimal Trajectory

Constraint on Picking up the Second Key

(c) Layout with
Correlated Keys
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(d) Link Scores for
Correlated Keys

Figure 4: Strategic link scores for layouts with independent vs. correlated keys. When the keys unlock separate
shortcuts (a), they is no strategically link between them (b). If one key is skipped, collecting the other still
remains optimal. When the keys jointly unlock a single shortcut (c), the decisions to pick up each key are
strategically linked (d). If one key is skipped, collecting the other becomes pointless.

demonstration, we use the most likely trajectory, obtained by taking the highest-probability action at
each step. When computing scores, we treat the earlier decision in each pair as the set-up and the
latter as the pay-off. The complete procedure is given in Algorithm 1.

In GridWorld, strategic link scores reflect the set-up and pay-off link between keys and doors.
Figure 3 shows our approach in action for the maze layout from our introduction. In Figure 3a, we
plot the most likely trajectory under the soft optimal policy: The target can be reached via a long and
winding path, but a quicker strategy is to pick up a key that is slightly out of the way to unlock a door,
creating a significant shortcut. We know the key and the door are strategically linked because if we
block the door, picking up the key is no longer optimal, see Figure 3b. Preventing another decision
that is not related to the key does not lead to the same outcome, see Figure 3c. In Figure 3d, we
plot the strategic link scores between all potential set-up and pay-off decisions along the optimal
trajectory, which makes it clear that moving towards the key (1st and 2nd decisions, labeled “K”) are
indeed a set-up for going through the door (9th decision, labeled “D”).

In GridWorld, strategic link scores can disambiguate whether two actions are linked or not.
In Figure 4, we consider two other layouts, each with an additional key and its corresponding door.
In the first layout (Figure 4a), the two keys unlock separate shortcuts, so whether one of them is
retrieved or not has no effect on the optimality of retrieving the other. In Figure 4b, we see that
each key (“K1” and “K2”) is strategically linked to its corresponding door (“D1” and “D2”), but
not to the other key-door pair. In the second layout (Figure 4a), there is just a single shortcut and
unlocking it requires both keys to be collected. Now, the keys are strategically linked: If one of them
is not retrieved, there is no point in retrieving the other (seen in Figure 4d). These two layouts also
highlight the importance of strategy-aware recommendations. If an agent is not taking advantage of
any shortcuts by collecting keys, we might recommend them to pick up both keys. In the independent
case, it is safe for the agent to only follow through on just collecting one of the recommended keys.
In the strategically linked case, however, if the agent were to collect only one key without the other,
they would unnecessarily waste time as the shortcut would remain inaccessible. We will see the
benefit of this distinction when providing decision support in Section 5.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1st 2nd 3rd 4th 5th 6th

1st

2nd

3rd

4th

5th

6th

Set-up Decision

P
ay

-o
ff

D
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

1st Move 2nd Move 3rd Move 4th Move 5th Move 6th Move

Figure 5: Strategic Links between White Moves during a Chess Opening. Arrows represent set-up and pay-off
relationship, the boldness being determined by the strength of the strategic link. White employs one notable
strategy: bringing their rook closer to the center by castling (4th move), threatening the black knight with that
rook (5th move), and supporting with the same rook the white knight’s capture of the black pawn (6th move).

In Chess, identifying strategies expose what actions are planned together. Allowing each side to
make six moves resulted in the opening sequence in Figure 5, which also shows the strategic link
scores between these moves from both white’s and black’s perspectives. White employs one notable
strategy: In their 4th to 6th moves, they first castle to bring their rook closer to the center files, then
threaten the black knight with their better positioned rook. The black knight flees, allowing the white
knight to capture a pawn with the support the white rook (which prevents the black knight from
capturing back). We can make this interpretation because

5.2 APPLICATION: STRATEGY-AWARE DECISION SUPPORT

In this section, we consider decision support systems and use strategic link scores to highlight when
recommended actions are strategically linked to each other. This help avoid cases where actions
recommended as set-ups are implemented without their pay-offs.

1 2 3 4 5move
(−1)

move
(−1)

move
(−1)

move
(−1) (+5)

prep1
prep2
prep3
prep4

(−C)

jump if prep3
−(n=3) + (k=1)·2C

jump if prep4
−(n=2) + (k=1)·2C

jump if prep1 ∧ prep2
−(n=2) + (k=2)·2C

Figure 6: An example environment that has 5 nodes,
3 shortcuts, and 4 preparation actions. After taking
the required preparation actions, the agent can jump
via shortcuts, reaching the end more efficiently.

Abstract Environment: Shortcuts. We consider
a procedurally-generated collection of abstract envi-
ronments that are designed to have dynamics similar
to key-door relationships from our previous applica-
tion, called Shortcuts. (see example in Figure 6).
The agent starts at some initial node and needs to
move one node at a time until they reach node N .
Each move costs one unit of time but reaching the
target returns a reward of N . What makes the envi-
ronment interesting is there are shortcuts that jump
over multiple nodes at once. A shortcut becomes
available after performing certain preparation actions (similar to keys in GridWorld). Preparation
actions cost a fixed amount C < 1/2. They become advantageous through shortcuts they enable:
Jumping forward via a shortcut that spans n nodes and requires k preparations costs n− k · 2C rather
than n individual moves. We generate 100 environments with 10 nodes, 5 shortcuts, and 5 preparation
actions, setting C = 0.1. Which nodes the shortcuts jump over and which preparations they require
are randomized, while preparation actions are always placed at the initial node.

Realistic Environment: Hypotension. We consider a healthcare scenario, called Hypotension,
about assigning treatments to ICU patients with hypotension, which is based on a realistic simulator
created by fitting a Markov decision process (MDP) to the real health record data from the MIMIC-
IV dataset. As the state space, we consider discretized measurements of four biomarkers: partial
pressure of O2 over fraction of inspired O2, mean blood pressure, Glasgow Coma Scale, creatinine
levels (|S| = 36). As the action space, we consider two binary treatments: administering vasopressor
therapy or intravenous fluid bolus (|A| = 4). The reward function is a weighted combination of the
four measurements that constitute the state space, pushing each biomarker towards what is considered
healthy for that biomarker. A description of the exact MDP can be found in the appendix.

Methods. Our goal is to recommend actions to a suboptimal agent to improve their performance. For
Shortcuts, we consider an agent that knows of shortcuts and makes use of them when they are
available, however, their behavior suboptimal because they are not aware of the required preparations—
that is, they never take a preparation action unless one is recommended by us. Hence, a recom-
mendation becomes a set of specific preparation actions. For instance, in Figure 6, the two shorter
jumps happen to be more efficient, so the optimal recommendations are {prep1,prep2,prep4}.
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Figure 7: Performance following various recommendation methods. In (a) Shortcuts, Pick-and-Choose is
not safe, potentially leading to worse performance than to begin with. All-or-Nothing is safe but not effective
unless a large number of recommendations are implemented. Strategic-Aware is both safe and effective for
smaller number of implemented recommendations. In (b) Hypotension, Pick-and-Choose happens to be safe
but Strategy-Aware is still an improvement (especially in worst-case scenarios for low adoption rates).

For Hypotension, we create 100 suboptimal agents by adding Gaussian noise to the true reward
function and training RL agents using the resulting noisy reward functions. Whenever, in a state, a
suboptimal agent’s most likely action differs from the optimal action in a state, we recommend them
to take the optimal action in that state. So, our recommendations form a list of state-action pairs.

Given a set of policy change recommendations, we consider three ways to share them with the user:

Algorithm 2
Strategy-Aware Recommendations

1: Input: Planner P , its recommended
decisions D = {(s, a)i}Ni=1

2: for i ∈ {1, . . . , N} do
3: Di ← {(s, a)i}
4: for j ∈ {1, . . . , N} do
5: if S(s,a)i→(s,a)j ≫ 0 then
6: Di ← Di ∪ {(s, a)j}
7: Output: {D1, . . . ,DN}

(i) Pick-and-Choose: The user can pick which changes to
implement. The risk is if two changes are strategically linked,
the user might implement only one and end up worse off. For
evaluation, we consider all possible combinations and report
average as well as worst-case performances.

(ii) All-or-Nothing: One can inform the user that the recom-
mendations might be related, and thus must be implemented
all together or not at all. This can be overly cautious: If the
user does not want to make many changes, they might miss
out on individual improvements that are not reliant on others.

(iii) Strategy-Aware: Each recommendation is considered as a potential set-up decision, and it is
grouped together with every other recommendation that is strategically linked to it as a pay-off
decision (see Algorithm 2). As an example, consider the recommendations for the environment in
Figure 6. Strategy-Aware would group them as { {prep1,prep2}, {prep4} }, while Pick-and-
Choose is equivalent to the grouping { {prep1}, {prep2}, {prep4} }, and All-or-Nothing is
equivalent to { {prep1,prep2,prep4} }.
In Shortcuts, strategy-aware decision support avoids harm due to partial adoption of linked
recommendations. For each strategy, we consider all subsets of recommendations the agent can
implement and average the mean and the worst-case performance across the 100 randomly generated
environments. Figure 7a shows the results broken down with respect to the number of individual
recommendations implemented. The worst-case performance of Pick-and-Choose tends to be worse
than that of the original policy. All-or-Nothing is safer, never resulting in worse performance, as it does
not allow for partial adoption of recommendations. However, it leads to significant improvements only
if a large number of recommendations are implemented. Meanwhile, our Strategy-Aware approach,
which takes advantage of our concept of strategically-linked actions, is safe and effective even when
the user only wishes to make a few changes to their policy.

In Hypotension, strategy-aware decisions support is beneficial even when partial adoptions are
not actively harmful. In Figure 7b, we plot the same quantities as earlier but for Hypotension,
calculating means across the 100 suboptimal agents we have trained using noisy reward functions.
As it happens, a partial adoption of recommendations is almost never harmful in Hypotension;
the worst-case performance for Pick-and-Choose does not drop below the initial performance (except
slightly when only a single recommendation is implemented). However, Strategy-Aware still leads to
better improvements over the baseline performance (both on average and in the worst-case scenarios).
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6 VERSATILITY OF STRATEGIC LINK SCORES ACROSS PLANNING SETTINGS

We now describe how our strategic link scores can be applied across a range of planning settings.
Specifically, our approach to defining strategic link scores enables us to reason about planners even
when the planning process is a potentially complex, reward-less black box (e.g. the output of a traffic
simulator, Section 6.1). We also demonstrate that we can infer strategic link scores from a finite batch
of trajectories from one policy via inverse reinforcement learning (IRL, Section 6.2).

6.1 STRATEGIC LINK SCORES FOR REWARDLESS, BLACKBOX PLANNER VIA INTERVENTIONS

Realistic traffic simulators, such as UXsim (Seo, 2025), have explicit rules for an individual driver’s
behavior. However, how these rules executed by many individual drivers collectively shape the traffic
flow policy is difficult to track formally, resulting in an unknown planner. Below, we construct strate-
gic link scores for this blackbox, rewardless planning setting, and demonstrate that we can infer inter-
esting properties of the planner such as how far ahead drivers plan when making their routing decisions.

J1 J2 J3
· · ·

J9 J10

· · ·

entry exit

Arterial Road

Highway

Figure 8: The traffic scenario. ‘Entry’ to ‘exit’,
drivers need to decide whether to stay on an
arterial road or divert to the highway at junctions
‘J1’ to ‘J10’. Despite having a lower speed limit,
the arterial route is shorter hence overall quicker.
But, if one of its segments were to be closed off,
it is better to divert to the highway the soonest
to make use of its higher speed limit for longer.

Road Network. We consider the road network in Fig-
ure 8, which we call ArterialHighway. Each driver
can use either the arterial road (slower but shorter) or
the highway (faster but longer) to get from the entry
to the exit; along the arterial road, there are junctions,
“J1” to “J10”, where drivers can switch onto the high-
way. If there is no congestion, then the arterial road is
the optimal route. However, if one knows that part of
the arterial road is congested or clogged, then diverting
to the highway as early as possible is optimal to take
advantage of the higher speed limit.

Intervention. Taking advantage of the road structure,
we can compute strategic link scores—and thus measure
the planning horizon of drivers—through a simple intervention: closing off the arterial road at the
last junction and then observing how early drivers tend to change their route. In formal terms, let
π† : S = {J1, . . . , J10} → A = [0, 1] be the collective policy that emerges out of individual drivers’
decisions such that π†(JX) is the frequency with which drivers take the arterial road at junction JX.
Then, we are interested in the following strategic link score, modified slightly to fit the continuous
action setting: S†

JX→J10 = π†(JX)− π†:{π(J10)=0}(JX).
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Figure 9: Vehicle counts. The rate at which
vehicles pass through each junction and still
stay on the arterial road changes significantly
after the intervention at J10.

Simulation. We run a simulation for 50k time steps,
where the intervention to close off the arterial road at J10
is performed at time step 10k. Figure 9 shows our raw
data: the number of vehicles over time that pass through
each junction and stay on the arterial road; we see a clear
change in behavior after the intervention. By taking
the average slope of these count-over-time plots, we
obtain traffic flow rates—number of vehicles per time
step—at each junction, before and after the intervention,
either staying on the arterial road or switching to the
highway (Figure 10a). By normalizing the flow rates at
each junction so that they add up to one, we obtain the
pre- and post-intervention routing policies (Figure 10b).
Taking the difference between the two policies gives us
the strategic link scores we are after (Figure 10c).

Result: Blackbox, reward-free strategic link scores reveal planning horizon. First, note the link
score for J10 is one. This is by definition of link scores; every decision is strategically linked to
itself with a score one. Since the intervention is performed at J10, every driver reaching J10 has no
choice but to continue to the highway. Besides J10, we see that the most significant link score is at J9,
corresponding to a 25% percentage-point drop in the rate of drivers that still decide to stay on the
arterial road and continue to J10. This suggest that the collective behavior of drivers respond rather
myopically to changes in traffic conditions. Compare their behavior to the optimal routing behavior in
Figure 11. Besides J10, the only strategic link is to J1—the earliest diversion point—which requires
a planning horizon of at least ten junctions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
0.0

0.5

1.0

1.5

Tr
af

fic
Fl

ow
(V

eh
ic

le
s

pe
rT

im
e

S
te

p) Pre-Intervention
Arterial Highway

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
0.0

0.5

1.0

Tr
af

fic
Fl

ow
(V

eh
ic

le
s

pe
rT

im
e

S
te

p) Post-Intervention
Arterial Highway

(a) Traffic Flow Rates

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
0.0

0.5

1.0

R
ou

tin
g

Po
lic

y
(F

re
q.

of
R

oa
d

gi
ve

n
JX

) Pre-Intervention

Arterial Highway

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
0.0

0.5

1.0

R
ou

tin
g

Po
lic

y
(F

re
q.

of
R

oa
d

gi
ve

n
JX

) Post-Intervention

Arterial Highway

(b) Routing Policy
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(c) Strategic Link Scores
Figure 10: Strategic link scores for the simulated drivers. Using the count data in Figure 9, we extract traffic flow
rates (a), and normalizing those rates, we obtain the emergent routing policy of drivers, pre- and post-intervention
(b). Strategic link scores are the difference between the two policies (c). When it comes to the decision of saying
on the arterial road, the strongest strategic link to J10—besides J10 itself—is at J9. In other words, following the
closure of the arterial road past J10, the drivers tend to divert to the highway mostly at J9.
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Figure 11: Strategic link scores for
optimal routing—diverting at J1.

While the emergent behavior of drivers is limited in horizon when
diverting from the arterial road, one long-horizon effect still stands
out: the significant negative link score at J1. This reflects drivers
who were avoiding the arterial road even before the intervention,
and whose avoidance was strategically linked to the road connec-
tion following J10. That connection is what made majority of the
drivers prefer the arterial road, leading to congestion that slowed
down the traffic enough for the longer highway route to become competitive. That is why some drivers
decided to avoid the arterial road altogether. Once the intervention caused drivers to leave the arterial
road, reducing congestion, this avoidance strategy became less frequent—hence the negative score.

6.2 STRATEGIC LINK SCORES FROM FINITE SAMPLES FROM A SINGLE POLICY VIA IRL

When a goal-driven planner is not available as an explicit algorithm but only observable through
demonstrations—that is, trajectories generated by its unconstrained policy—we can still identify
strategic links by first inferring a reward function that captures the planner’s objective. We achieve
this via maximum entorpy IRL (Ziebart et al., 2008). Because the coverage of demonstrations
is critical for IRL, we experiment with different levels of stochasticity in actions by varying the
temperature parameter in soft value iteration.

Result: We can compute accurate strategic links from finite trajectories from one policy. We
evaluate inferred rewards using the EPIC distance, (Gleave et al., 2021), which accounts for equivalent
reward expressions up to shaping, and measure the accuracy of strategic link scores computed based
on those rewards using mean square error (MSE). In Figure 12, we see that demonstrations from one
policy can carry enough information to model not just the policy of a decision-maker but also their
planning process in the form of a reward function, and thereby identify strategic links.

7 CONCLUSION

We introduced strategic link scores, which formalize a key aspect of long-term planning: actions being
taken to enable future actions. By identifying strategic links, we were able to provide planning-level
explanations of RL agents, and even directly improve decision-making performance by guiding safe
implementation of action recommendations. Beyond reward-based settings, we also used strategic
link scores as a tool for characterizing planning processes that are not given as explicit algorithms.
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(a) GridWorld
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(b) Shortcuts
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(c) ArterialHighway
Figure 12: Strategic link scores inferred from demonstrations become more accurate with increasing variation,
following a similar trend to reward inference (until policies are almost uniformly random and rewards become
unidentifiable, strategic link scores remain accurate as recognizing policies to be uniformly random is sufficient).
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A EXPERIMENTAL DETAILS

A.1 DETAILS FOR PLANNING-LEVEL EXPLANATIONS

GridWorld. The state space consists of the agent’s position, represented as row and column
indices (i, j), and a binary flag fk for each key k, indicating whether the corresponding key has
been retrieved. The action space consists of the four cardinal directions: up, down, left, and right.
Transitions are deterministic. At each time step when the agent is not in the target cell, they receives a
reward of −1. When collecting the most likely trajectory in Algorithm 1, we let the agent to interact
with the environment until they reach the target, which determines the value of T .

As the planner, we consider soft value iteration (Haarnoja et al., 2017), setting the discount factor
as γ = 0.99, the number of iterations as 250, and the inverse temperature parameter as β = 100.
When computing strategic link scores, we constrain the decision (s, a) by setting the reward value at
that decision to negative infinity: r(s, a) ← −∞. In GridWorld, we ignore flags {fk} and only
consider the agent’s position (i, j) to be part of the state. That is, we consider moving a specific
direction in a specific cell to be the same decision, regardless of which keys have been picked up so
far. Accordingly, when constraining the decision (i, j, {fk}, a), we set r(i, j, {f ′

k}, a)← −∞ for all
f ′
k ∈ {0, 1}, independent of the values {fk}.

Chess. Players decide on moves by (i) considering the next board state after each legal move available
to them, (ii) computing the value of those board states, and (iii) soft-maxing the computed values to
obtain a distribution over which move to make next. When evaluating boards, we use a chess engine
called Stockfish (https://github.com/official-stockfish/Stockfish), fixing its
search depth to 20 and turning off threading and hashing options to get deterministic values back.

A.2 DETAILS FOR STRATEGY-AWARE DECISION SUPPORT

Shortcuts. The state space consists of the node that the agent is currently at, along with binary
flags corresponding to each preparation action, indicating whether that action has been taken or
not. The action space consists of moving forward (move), jumping via the i-th shortcut ({jumpi}),
and or taking the j-th preparation action (prepj). Letting n be the current node and fj be the flag
corresponding to action prepj , the transition dynamics are given by the following rules:

n← n+ 1 if a = move ∧ Vmove
.
= {n ̸= N} (8)

n← n(to)
jumpi

if a = jumpj ∧ Vjumpi

.
= {n = n(from)

jumpi
} ∧ {fj = 1,∀j ∈ Jjumpi

} (9)

fj ← 1 if a = prepj ∧ Vprepj

.
= {n = nprepj

} (10)

where Va denotes the validity condition for action a, n(to)
jumpi

is the destination of shortcut i, n(from)
jumpi

is
the origin of shortcut i, Jjumpi

is the set of preparation actions required to use shortcut i, and nprepj

is the node where action prepj is located at. Meanwhile, the reward function is given by

r(n, {fj},move) =
{
−1 if n+ 1 ̸= N

−1 +N if n+ 1 = N
(11)

r(n, {fj},jumpi) =


−1 if ¬Vjumpi

−(n(to)
jumpi

− n(from)
jumpi

) + |Jjumpi
| · 2C if Vjumpi

∧ n(to)
jumpi

̸= N

−(n(to)
jumpi

− n(from)
jumpi

) + |Jjumpi
| · 2C +N if Vjumpi

∧ n(to)
jumpi

= N

(12)

r(n, {fj},prepj) =

{
−1 if ¬Vprepj

−C if Vprepj

(13)

We generate these environments randomly according to following procedure, letting I be the number
of shortcuts and J be the number of preparation actions:
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Algorithm 3 Shortcuts Environment Generation

1: for i ∈ {1, . . . , I} do
2: n′ ∼ Uniform({1, . . . , N}); n′′ ∼ Uniform({1, . . . , N} \ {n′})
3: n(from)

jumpi
← min{n′, n′′}; n(to)

jumpi
← max{n′, n′′}

4: J ′ ∼ Uniform({1, . . . , J}); Jjumpi
← {}

5: for ∈ {1, . . . , J ′} do
6: j′ ∼ Uniform({1, . . . , J} \ Jjumpi

); Jjumpi
← Jjumpi

∪ {j′}
7: for j ∈ {1, . . . , J} do
8: nprepj

← 1

When using soft value iteration to plan policies, we set the discount factor as γ = 0.99, the number of
iterations as 30 (twice the total number of nodes and preparation actions), and the inverse temperature
as β = 100. When checking whether a strategic link score is significantly greater than zero, as in
Line 5 of Algorithm 2, we set the significance threshold to halfway between 0 and 1/5 (one over
the number of preparation action). This is because: When all preparation actions are recommended
together, a soft-optimal policy assigns them equal probabilities at the initial state, since the order in
which they are taken does not matter. Therefore, the strategic link score between any two preparation
actions becomes at most 1/5, as the probability of a recommendation cannot drop more than its
original value after a constraint.

Hypotension. Starting with the MIMIC-IV dataset, we selected adults who (i) are aged 18 to 80,
(ii) had an ICU stay that is at least 24 hours long, and (iii) exhibited mean arterial pressure (MAP)
readings of 65mmHg or below, indicative of acute hypotension. After this filtering, we are left with
1684 distinct ICU admissions, each constituting a ‘trajectory’.

We form states by discretizing four biomarkers, partial pressure of O2 over fraction of inspired O2,
mean blood pressure, Glasgow Coma Scale, creatinine levels, according to the table below, resulting
in tuples s = (s[1], s[2], s[3], s[4]) ∈ S = {0, 1, 2} × {0, 1} × {0, 1} × {0, 1, 2}.

Table 1: Discretization of Biomarkers

Biomarker Interval Bin Value

Partial Pressure of O2 / Fraction of Inspired O2 [200,∞) s[1] = 0
[100, 200) s[1] = 1
(−∞, 100) s[1] = 2

Mean Blood Pressure [70mmHg,∞) s[2] = 0
(−∞, 70mmHg) s[2] = 1

Glasgow Coma Scale (−∞, 12] s[3] = 0
(12,∞) s[3] = 1

Creatinine (−∞, 1.9mg/dL] s[4] = 0
(1.9mg/dL, 4.9mg/dL] s[4] = 1

(4.9mg/dL,∞) s[4] = 2

The action space consist of two binary treatments, administering vasopressor therapy or intravenous
fluid bolus, resulting in four distinct actions: administering no treatment, one or the other treatment,
or both treatments. We infer the initial state distribution σ and the transition function τ by counting
initial states and transitions in the MIMIC-IV dataset. As the reward function, we consider r(s) =
60−10s[1]−10s[2]−10s[4], which is inline with the fact that higher bin values signify a deterioration
in the patient’s condition.

As the optimal planner, we consider soft value iteration with discount factor γ = 0.95 and inverse
temperature β = 100, running it for 250 iterations. We create suboptimal policies by adding Gaussian
noise to the true reward function such that r′(s) = r(s) + 2ηs and ηs ∼ N (0, 1) and training
“optimal” agents under the resulting noisy reward functions. We reject any suboptimal policy that
differs from the optimal policy in more than 10 states.
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A.3 DETAILS FOR STRATEGIC LINK SCORES VIA INTERVENTIONS

Simulation. We refer to Seo (2025) for the details regarding the mechanisms underlying the traf-
fic simulator. In our experiments, the simulation parameters are set as follows: deltan = 5,
reaction time = 1, duo update time = 500, duo update weight = 0.5, and
duo noise = 0.01. Each road segment along the highway, as well as the on-ramps leading
to it, has two lanes, a length of 1000, and a free flow speed of 20. Road segments along the arterial
have the same number of lanes and the same length, but a lower free flow speed of 20

√
J/(J + 1).

We choose this value so that the arterial road is reasonably quicker (takes less overall time): If the
speed on the arterial road were to be 20 · J/(J + 1), both the arterial and highway routes would
have taken the same amount of time as their length ratio is J/(J + 1). If it were to be 20 instead, so
that the two routes have the same speed, shorter length would have always meant a quicker route,
requiring no strategic routing. The actual free flow speed is the geometric mean of these extreme
scenarios. Finally, the incoming traffic flow into the road network through the “entry” is set to be 2.0.

Reinforcement Learning. In addition to simulated agents, we also use RL to find the optimal routing
policy that minimizes the average travel time throughout the whole road network. Each road segment
has a travel time that depends on the traffic flow it carries, which we denote as TA(f) and TH(f)
given flow f for the arterial and the highway (including on-ramps) respectively. Since the incoming
flow must be equal to the outgoing flow at each junction, the initial entry flow f0 determines the flow
throughout the network, conditioned on a routing policy π. Letting fA,Ji , fR,Ji , and fH,Ji denote
the traffic flow on the arterial segment following junction Ji, the on-ramp leaving that junction, and
the highway segment that follows, we can write

fA,J1
= f0 · π(J1) fR,J1

= f0 − fA,J1
fH,J1

= fR,J1
(14)

fA,Ji
= fA,Ji−1

· π(Ji) fR,Ji
= fA,Ji−1

− fA,Ji
fH,Ji

= fH,Ji−1
+ fR,Ji

(15)
=

∑i
i′=1fR,Ji′ = f0 − fA,Ji

(16)

Notice that the flow rates past each junction, fA,Ji
, fR,Ji

, fH,Ji
, can be determined solely from the

flow rate coming into that junction, fA,Ji−1
. Leveraging this structure, we find the policy π(Ji) that

would result in the shortest average travel time efficiently via the following three steps: First, we
include in our state space the incoming flow f to junction Ji, for which we can write the following
deterministic transition function:

τ(Ji, f, a) = (Ji+1, f
′ = fa) (17)

Second, we use value iteration to compute the optimal flow-dependent policy π∗(Ji, f), which
captures optimal routing under any flow condition, not just for our specific entry flow rate f0. Third,
we roll this policy out, starting from the entry flow rate f0, to obtain a flow-free policy π∗(Ji), which
would remain optimal as long as the entry flow rate does not change:

π∗(J1)← π∗(J1, f0) fA,J1
← f0 · π∗(J1) (18)

π∗(Ji)← π∗(Ji, fA,Ji−1
) fA,Ji

← fA,Ji−1
· π∗(Ji) (19)

We use the following reward function

r(Ji, f, a) = fa · TA(fa)︸ ︷︷ ︸
arterial

+ f(1− a) · TH(f(1− a))︸ ︷︷ ︸
on-ramp

+(f0 − fa) · TH(f0 − fa)︸ ︷︷ ︸
highway

(20)

which ensures that cumulative rewards correspond to the average travel time across all road segments,
weighted by the actual traffic flow carried by each segment. When using value iteration, we quantize
the continuous actions space A = [0, 1] using 100 equally-spaced quantization points.

A.4 DETAILS FOR STRATEGIC LINK SCORES VIA REWARD-BASED MODELING

For these experiments, we compute strategic link scores using reward functions inferred from
demonstrations via IRL, rather than using the true reward functions. The specific scores we evaluate
depends on the environment: For GridWorld, we consider the same score matrices as in Section 5.1;
for Shorcuts, we consider the same scores that needed to be computed for the application in
Section 5.2; and for ArterialHighway, we consider the same scores computed in Section 6.1.
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Although compute the same scores as in our applications, we use slightly smaller versions of
each environments to reduce the computational demand of performing IRL: For GridWorld, we
consider only the simple layout shown in Figure 3; for Shortcuts, we generate 10 environments
with 5 nodes, 3 shortcuts, and 3 preparation actions instead of 100 environments with 10 nodes, 5
shortcuts, and 5 preparation actions; for ArterialHighway, we consider a road network with 5
junctions instead of 10. In ArterialHighway, using soft value iteration requires us to quantize
the continuous action space. We normally use 100 quantization points, but for these experiments, we
reduce it to 10.

As demonstrations, we sample 10,000 trajectories following optimal policies computed via soft value
iteration. In GridWorld, we fix the time horizon of each trajectory to T = W ×H , where W is the
grid width and H is the grid height; in Shortcuts, we fix T = N × L, where N is the number of
nodes and L is the number of preparation actions; and in ArterialHighway, we fix T = J + 1,
where J is the number of junctions. For each environment, the number of soft value iteration steps is
set accordingly. We vary the inverse temperature parameter to obtain demonstrations with different
levels of stochasticity—see Figure 12 for the specific temperature values considered.

As the IRL algorithm, we use maximum entropy IRL (Ziebart et al., 2008). The RL algorithm used in
the inner loop of maximum entropy IRLis again soft value iteration with the same hyperparameters
(number of iterations and inverse temperature) as those used for generating demonstrations. Since
all our environments have deterministic transitions, we consider the setting where the true transition
dynamics are known. Meanwhile, reward functions are represented as |S|-by-|A| matrices; initialized
to all zeros; and updated via gradient steps over 10,000 iterations using the Adam optimizer with
hyperparameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The learning rate is set to 10−4 for
GridWorld and Shortcuts, and to 5 · 10−3 for ArterialHighway.

We repeat each experiment five times to obtain 1-sigma error bars.
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