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ABSTRACT

Singularities in the source functions of partial differential equations (PDEs) can
pose significant challenges for physics-informed neural networks (PINNs), of-
ten leading to numerical instability and necessitating a large number of sampling
points thereby increasing the computational time. In this paper, we introduce a
novel sampling point selection method to address these challenges. Our approach
is based on diffusion models capable of generative sampling from the distribution
of PDE residuals. Specifically, we apply the optimal transport coupling flow-
matching technique to generate more sampling points in regions where the PDE
residuals are higher, enhancing the accuracy and efficiency of the solution. In
contrast to existing approaches in the literature, our method avoids explicit mod-
eling of the probability density proportional to residuals, instead using the bene-
fits of flow matching to generate novel and probable samples from more complex
distributions, thereby enhancing PINN solutions for problems with singularities.
We demonstrate that this method, in certain scenarios, outperforms existing tech-
niques such as normalizing flow-based sampling PINN. Especially, our approach
demonstrates effectiveness in improving the solution quality for the linear elastic-
ity equation in the case of material with complex geometry of inclusion. A detailed
comparison of the flow matching sampling method with other approaches is also
provided.

1 INTRODUCTION

Physics-Informed Neural Networks (PINNs) are used to solve Partial Differential Equations (PDEs)
using neural networks. With the rapid development of computing resources and machine learning
algorithms, PINNs have become popular for a wide range of realistic simulations Raissi et al. (2019)
. PINNs utilize automatic differentiation mechanisms to encode PDEs into loss functions, incorpo-
rating PDE residuals and boundary conditions. PINNs may be preferred over classical numerical
solvers due to their easy coding algorithms for both forward and inverse problems, and their ability
to handle high-dimensional problems. Despite the widespread success of PINNs in various PDE-
related problems they often struggle with complex PDEs, leading to ”failure modes” Wang et al.
(2022). Specifically, PINN loss function is very non-convex making it challenging to find a global
minimum using conventional optimization algorithms for neural network training, such as Adam.
Moreover, according to the F-principle Xu (2020), in PINNs the low frequency features of the solu-
tion are captured emerge first, while it will take several training epochs to reproduce high frequency
features. In this regard, PINNs may be not efficient for solving PDEs with high-frequency solu-
tions, as shown in Chuprov et al. (2023). For simple PDEs (single-scale, single-mode), conventional
PINNs can quickly achieve satisfactory solutions Buzaev et al. (2023). However, for more complex
PDEs, conventional PINNs often fall short as the low-frequency global solution deviates from the
exact solution. To address these issues, recent years have seen the emergence of efficient imple-
mentations of the PINNs method. For instance, loss re-weighting methods McClenny & Braga-Neto
(2023) and adaptive sampling strategies Gao et al. (2023) have been developed to find a balance be-
tween loss and probability distribution on weight or sampling, enhancing the performance of PINNs
in complex scenarios.
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The goal of this paper is to design a novel method of point sampling to address these challenges.
This approach uses the idea of diffusion models which are capable of generative sampling from the
distribution of loss residuals. The optimal transport flow-matching technique is applied to generate
more sampling points in regions where the PDE residuals have large values, enhancing the accuracy
and efficiency of the solution.

2 PINN OVERVIEW

Consider a domain Ω on which we want to solve a partial differential equation Du(x) = s(x),
where s(x) is the source function, D is a differential operator, while x is a d-dimensional vector
from Ω. The domain is bounded by ∂Ω on which solution is subject to the following boundary
condition: Bu(x) = g(x) for x ∈ ∂Ω, where B is the boundary operator (e.g. Neumann or Dirichlet
conditions). Thus, we have

Du(x) = s(x), ∀x ∈ Ω

Bu(x) = g(x), ∀x ∈ ∂Ω. (1)

We consider a neural network uψ(x) that approximates the solution of Equation 1, where ψ repre-
sents the parameters of the neural network that will be optimized during the training process. The
training of the neural network is based on the minimization of the following function:

min
ψ
L(ψ) = LPDE(ψ) + LBC(ψ) = ||r(xi, ψ)||2,Ω + ||Bu(x)− g(x)||2,∂Ω,

where
LPDE,N (ψ) =

∑
xi∈Sk

(Du(xi, ψ)− s(xi))2 (2)

and
LBC,N (ψ) =

∑
xi∈∂Sk

(Bu(xi, ψ)− g(xi))2. (3)

The partial derivatives of PINN with respect to the vector x can be computed on the basis of auto-
matic differentiation libraries.

3 RELATED WORK

3.1 ADAPTIVE SAMPLING AND ITS RELATION TO GENERATIVE LEARNING

The easiest method for selecting points is a mesh grid (regular grid), that is often used in finite
difference schemes. However, in Wu et al. (2023) it was shown that this approach can potentially
yield trivial solutions and that the PINN solution derived on a uniform grid is more accurate than
that obtained on a mesh grid. In addition, sampling based on pseudo-random series (e.g. Sobol
sequences, Latin hypercube etc) can be utilized.

Adaptive sampling methods are based on the principle to select points based on their influence on
the loss function. One of the algorithms that pioneered this approach is the so called Residual Aided
Refinement (RAR) algorithm Lu et al. (2021). The RAR algorithm aims to improve the distribution
of residual points during training by introducing additional points in areas where the PDE loss values
are large after a certain number of iterations. An advanced version of RAR is called residual adaptive
distribution algorithm: RAD Wu et al. (2023). The PINN training begins with uniformly distributed
points. After a few iterations, residual values are evaluated, and new points are added in areas
with high residuals. The PINN model is retrained with the updated set of points, and this process
is repeated to improve accuracy. This algorithm is similar to the classical importance sampling
method, an extension of Monte-Carlo methods.

The algorithm that apply importance sampling idea to estimation of loss and sampling points for
PINN is Nabian et al. (2021), where they propose to a special proposal distribution that is based
on calculation of residual error at nearest to a point specially selected seed points. For instance,
the proposal is a distribution that is a PDE residual loss at nearest seed point divided by sum of all
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residual values. It means that points with larger values of PDE residual are more likely to be added
to a batch. A similar methods are presented in Nabian et al. (2021).

One of the first methods introduced for sampling for variance reduction purposes was normalizing
flows. In image generation such methods as GANs Goodfellow et al. (2020), VAEs and diffusion
models can be used to digest data distribution and get a new sample from the population. In Bond-
Taylor et al. (2021) it was shown that GANs generation can achieve higher quality for high resolution
images than VAEs. However, GANs can be unstable due to mode covering problem while VAEs are
able to cover all modes of distribution.

Diffusion models Song et al. (2020) do not suffer from mode collapse and can beat GAN models
in image quality. They are based on the idea of iterative refinement of an input noise signal until
it converges to a specific data distribution, such as an image. Diffusion models are trained by the
forward process of incremental noise injection into data image and sampling represents the inverse
process of image generation from noise. However, they require a substantial time for training Xiao
et al. (2021) as compared to GANs and VAEs.

To improve the inference time of diffusion models with minimal depreciation in quality flow match-
ing for image generation, a method Lipman et al. (2022) was introduced that is based on the refine-
ment of loss function of the continuous normalizing flows Mathieu & Nickel (2020). This model
do not implicitly approximate the probability distribution but can produce high quality samples at
reasonable time. Flow matching is more stable during training because of its loss function, making
it a preferable choice for generation tasks compared to score-based diffusion methods, especially for
low-dimensional data such as points of collocation for training PINNs. This is the reason why this
model was used as a tool to add samples that move in the direction of large residual regions.

3.2 ADAPTIVE SAMPLING STRATEGIES FOR PINNS

In Tang et al. (2023a), the so called DAS PINN was proposed, in which a normalizing flow was
applied for adaptive PDE residual sampling for solution of Poisson equation with singular source
peaks, while in Wang et al. (2024a) a similar approach was used for a cavity flow problem. In
Tang et al. (2023b) the Wassertein GAN-like model (WGAN) was proposed to solve the Poisson
equation with narrow peaks in the source function. It generalizes a sampling approach for any
normalized residual distribution pα but also uses the KR-net architecture same, as in Tang et al.
(2023a). The main difference of AAS-PINN Tang et al. (2023b) from DAS-PINN is that AAS PINN
learns the distribution of residual with WGAN like a loss function that also applies regularization to
the gradient of pα: ∇pα, while Tang et al. (2023a) uses KL divergence loss.

Due to the fact that KR net model for probability density function (PDF) approximation is invertible,
it implicitly models PDF. However let us note that it may face difficulties to approximate more
complex probability density functions of points with large residual. Moreover, as it is articulated in
Wang et al. (2024b) due to the fact that normalizing flows preserve the topology of the input space
through continuous transformations, they face difficulties in representing certain simple classes of
function Dupont et al. (2019).

This property leads to limited representation capabilities, high computational costs, and training
problems in practical implementations Ho et al. (2019). That is why in this paper, we decided to
use an architecture different from KR-net and other normalizing flow architectures that represent
invertible transformations for our proposed method.

3.3 NORMALIZING FLOW PINN

In Tang et al. (2023a), a model was developed, which integrates the PINN training with sampling
from a normalizing flow. Subsequently, the flow model is refined through the minimization of
the cross entropy loss between the residual and the flow’s output logarithmic density. The flow
model, implemented as KR-net, is constructed with affine coupling layers and the Knothe-Rosenblatt
rearrangement. This architecture is uniquely designed to calculate both the forward and inverse
probability density.

The optimization problem for the flow model is articulated as minimizing the Kullback-Leibler (KL)
divergence between the residual function and the probability density generated by the flow. This
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approach was specifically applied to solve the Poisson equation with a single peak source function
and two peaks.

In the following section, we compare the normalizing flow PINN with our approach, providing a
comprehensive analysis of the performance and efficiency pf sampling techniques.

3.4 FLOW MATCHING PINN

3.1 Flow matching

Flow matching Lipman et al. (2022) is the generative algorithm that can deal with high complexity
of data. Unlike the normalizing flow method, it does not require the neural network transformation
to be invertible. Instead of implicitly modeling the probability density function p1(x), the flow
matching model enables sampling from this probability density function p1(x) by modeling vector
field flow dynamics restoration. As sampling is based on sampling prior of Gaussian distribution
p0(x) that though flow field dynamics fθ(x, t) is transformed into more complex distribution p1(x),
where time t varies from 0 to 1. In this regard, the sample from unconditional probability density
function can be generated with the solution of the ODE:{

dXt = f(Xt, t)dt ,

X0 ∼ p0 .
(4)

This fact is proved in Lipman et al. (2022) (see Theorem 1 therein) that relates the conditional prob-
ability distribution law dynamics pt(x|x1) with vector field fθ(x, t) through the continuity equation
:

d

dt
pt(x) = −div (pt(x)ft(x)) (5)

∫ 1

0

Ept(x)||fθ(x, t)− f(x, t)|| (6)

Let us note that f(x, t) is unknown and this functional is not feasible to evaluate. It turns out that
it can be reduced to the conditional flow dynamics fθ(x, t|z), where z can be a latent variable that
is sampled from a prior distribution. That is why according to Theorem 2 Lipman et al. (2022) the
intractable integral in 6 can be reduced to the following optimization problem that is tractable to
solve:

1∫
0

Eq(z)pt(x|z)∥fθ(x, t)− f(x, t|z)∥
2dt→ min

θ
, (7)

The minimum that is a solution to this optimization problem is attained on the real vector field
f(x, t).

In order to find the minimum of such optimization problem the gradient can be calculated as an
expectation that is found using the Monte Carlo approximation, namely,

∇θ

1∫
0

Eq(z)pt(x|z)∥fθ(x, t)− f(x, t|z)∥
2dt (8)

where z ∼ q(z), x ∼ pt(x|z). The equivalence of this fact was proved in Appendix that is based
Theorem 2 from Lipman et al. (2022). Here we consider special case of optimal transport conditional
vector field: f(x, t|z) = (1− (1− σmin)t)x+ tz for this we can rewrite the flow matching loss as:

LCFM (θ) = Et,q(x1),p(x0) ∥fθ(x, t)− (x1 − (1− σmin )x0)∥2

where x1 belong to data sample. According Theorem 1 in Lipman et al. (2022) this marginal vector
field produces the probability path that is justified through continuity equation 5.
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3.4.1 THE SAMPLING ALGORITHM FOR PINN WITH BOOTSTRAP REWEIGHING

In order to tackle complex singularities in the domain (e.g. narrow peaks in the source function),
we propose the following adaptive sampling algorithm for PINN. We apply flow matching paradigm
as a vector field approximation of residual distribution approximation to sample points according to
this vector field to add new points to the collocation point set for PINN training. The idea of the
algorithm is based on refinement of PINN though adding points from region where high residual
is concentrated. Instead of approximating the probability density function proportional to residual
distribution we use this residual distribution in our algorithm to construct a probable sample from
this distribution. For this case the residual of r(xi, ψk) is calculated from PINN:

r(xi, ψ
k) = Du(xi, ψk)− s(xi). (9)

We construct a sub-sample Ai of size M from previous sample Si−1 proportional to residual values
using weighted bootstrap procedure. We train the vector field neural fθ(x, t) net on this sub-sample
Ai by minimizing flow matching objective 7 reformulated for tractability as in 8.

This vector field fθ(x, t) governs the dynamics of point from prior distribution to the closest point
in residual distribution. In this way by application of flow matching sampling we generate points
according to this fθ(x, t) by ODE dynamics to construct a new sample Vi :{

dXt = fθ(Xt, t)dt ,

X0 ∼ p0 .
(10)

This ODE can be solved numerically by using the Euler-Maruyama discretization scheme.

Moreover, for efficient sampling of points we propose the following algorithm of solving PINN with
generation point proposal based on flow matching form:

Algorithm 1: FMS PINN: PINN with matching flow
Input : number of points in initial sample N , number of points for training sample for vector

field M , number of stages K
Sample N points uniformly from the domain Ω denote this set as S0 = {xi}Ni=1 ;
Train PINN model on sample S0 by optimizing empirical loss

min
ψ
L(ψ,N) = LPDE,N (ψ) + LBC,N (ψ) (11)

where LBC,N (ψ) defined in 3 and LPDE,N (ψ) defined in 2. ;
for k from 1 to K do

Calculate r(xi, k) at each point of Ak, i.e., and get values {r(xi, ψk−1)}Ni=1;
Based on these weights, perform a weighted bootstrap resampling of points to form the root

points Ak for the flow, denoted as {x∗
i }Ni=1;

Train the vector field fθ(x, t) on this root points sample Ak by optimizing flow matching
objective as in 7;

Sample new points Vk according to the vector field fθ(x, t) that corresponds to p1(x) using
the Euler method for solving ODE 10;

Construct a sample for PINN as Sk+1 = Vk ∪ Sk;
Train PINN model u(x, ψk) on Sk+1 by optimizing loss 11 ;

return u(x, ψk) ;

The sampling step of flow matching is performed following the steps listed below:

Algorithm 2: Flow-matching Sampling
Input: Trained network fθ, Sample-access to base distribution q, Step-size ∆t
Output: Sample from target distribution p
x1 ← Sample(q);
for t = 1, (1−∆t), (1− 2∆t), ...,∆t do

xt−∆t ← xt + fθ(xt, t)∆t;
return x0;

The idea of Algorithm 1 can be represented by this diagram shown in Figure.
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Figure 1: FMS PINN algorithm

4 NUMERICAL RESULTS

4.1 9 PEAKS PROBLEM

The issue of singular domains characterized by multi-modality in terms of peaks poses a significant
challenge for simple generative models. These models, such as GANs, often struggle with the
problem of mode collapse in terms of mode covering. This is why the Poisson equation with a
source function consisting of 9 peaks is an important example to demonstrate the effectiveness of
our method in enhancing PINN to address the problem of mode covering. By doing so, our method
enables the production of accurate solutions that capture the complex structure of the domain.

The Poisson equation with 9 peaks looks as follows:

−∆u(x) = s(x) in D,
u(x) = g(x) on ∂D,

(12)

where x = [x1, x2]
T and D = [−1, 1]2. Here s(x) has centers in (xi0, y

i
0) = (−0.5, 0.5) +

(mod(i,3)2 , 0) + (0, ⌊i/3⌋2 ), i = 0, ..., 8 and is represented by s(x) =
∑8
i=0 si(x), where

si(x) = −e−1000((x−ci,0)2+(y−ci,1)2)
(
(−2 · 1000 (x− ci,0))2 − 2 · 1000

)
−

−e−1000((x−ci,0)2+(y−ci,1)2)
(
(−2 · 1000 (y − ci,1))2 − 2 · 1000

)
, i = 0, ..., 8

(13)

We also evaluate the absolute difference profile at the validation dataset for a network approximating
the PDE solution. For the network, we used a fully connected network (FCN) with 6 blocks and a
layer width of 64. For the flow matching model, we used an optimal transport coupling based on
a FCN network. We trained the flow vector field model for 2000 iterations, each time resampling
points and repeating the resampling every 5000 iterations, adding 28000 points each time. For

(a) Reference solution (b) Solution of FMS PINN (c) Solution of DAS PINN

Figure 2: Comparison of solution for 9 peaks problem

the normalizing flow comparison, we used the KR-net implementation from Tang et al. (2023a) in

6
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TensorFlow with the same number of points, epochs, and resampling stages. We added the 9 peaks
loss functional and reference in TensorFlow to make the comparison. In Figure 12, we observe
that the normalizing flow method fails to capture the main solution compared to the matching flow
approach. The flow matching PINN solution accurately depicts all nine peaks, keeping the solution
outside the peaks close to zero. Figure 3 show that, in most of the domain, the solution of the
flow matching PINN is quite accurate. The mean square difference (MSE) comparison between
normalizing flow PINN and matching flow PINN during training for the 9 peak Poisson equation is
illustrated by the MSE metrics calculated for different epochs and depicted in Figure 4b. The MSE
of the Flow matching PINN decreases and converges to an order of 10−3. Our method samples
points from peaks center as depicted by Figure 4a.

(a) Residual profile of FMS
PINN

(b) Residual profile of DAS
PINN

Figure 3: Comparison of residual profiles for 9 peaks problem

(a) Resampled points of FMS PINN added at 1
stage

(b) MSE comparison of FMS PINN with DAS
PINN for 9 peaks problem

Figure 4: MSE plot and samples from FMS PINN

4.1.1 FIVE-DIMENSIONAL TWO PEAKS PROBLEM

For five dimensional problem the two centers of peaks are placed in (x1, x2, x3, x4, x5) =
(0.5, 0.5, 0, 0, 0) and at (x1, x2, x3, x4, x5) = (−0.5,−0.5, 0, 0, 0). As in Zhang et al. (2024) the
reference solution of this problem is:

u∗(x, y) =

c∑
i=1

d∑
j=1

exp
[
−K

((
xj − xij

)2)]
, (x1, x2, . . . , x5) ∈ Ω (14)

whereK = 100. In order to make an inference of the model and compute numerical errors efficiently
we follow the methodology as in Zhang et al. (2024) where the two-stage sampling strategy for
inference where proposed, where firstly 100k points are sampled uniformly across the domain. Then
these points are combined with 15k points drawn from Gaussian distributions, whose mean and
covariance are determined by each part of the solution led by one of the centers. These points

7
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Table 1: Comparison of linear elasticity equation PINN with Normalizing flow PINN in terms of
MSE

Method 2 peaks problem 16 2 peaks in 5D 9 peaks problem

FMS PINN 7.7e-5 6.1e-3 4.2e-4
DAS PINN 5.2e-4 2.3 1e-1

with 10k points on the boundary are subsequently used to compute numerical errors for this five-
dimensional two peaks problem.

For training purpose at initial step of training we draw 100k points from uniform distribution and
60k points from Gaussian centers. For optimizer algorithm we used Adam with learning rate 0.001.

We trained FMS PINN with sampling 40000 additional points at every resampling stage from the
vector field trained via optimal transport flow matching objective on weighted bootstrap sub-sample
from PINN training set Sk−1 and its residual distribution as weights.

We compare our algorithm with DAS PINN approach on the same number of training points equal
to 100k and 60k points from center and for comparison use normalizing flow architecture of KR-
net. We see that our method successfully captures all features of the solution, while method based on
normalizing flow DAS PINN fails to produce the solution for same number of points and resampling
stages.

(a) Projection on first two coordi-
nates of reference solution of 5D
2 peaks problem

(b) Projection of solution of 5D 2
peaks problem by FMS PINN al-
gorithm

(c) Projection of solution of 5D
2 peaks problem by DAS PINN
algorithm

Figure 5: 5D 2 peaks problem

(a) MSE per epoch comparison
of FMS PINN algorithm with
DAS PINN

(b) Error profile of 5D 2 peaks
problem by FMS PINN algo-
rithm

(c) Error profile of 5D 2 peaks
problem by DAS PINN algo-
rithm

Figure 6: MSE comparison of FMS PINN algorithm with DAS PINN and comparison with reference

Finally, Table 1 summarizes comparison results for the normalizing flow PINN and the flow match-
ing PINN for Poisson problems with peaks in source function, revealing comparable efficiency of
the proposed method comparing to the normalizing flow.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 LINEAR ELASTICITY EQUATION

In this section we consider solving a special instance of the mechanical equilibrium equation for a
rectangular plate with a unique geometric inclusion made of a second material that we call linear
elasticity equation. The primary equation that governs the mechanism of stress under deformation
is

∇ · σ = 0,

where σ is the stress tensor - the 2-nd order tensor describing the internal pressure state of the object.
This equation is then can be represented:

C(1− ν)∂
2ux

∂x2 + Cν
∂2uy

∂x∂y + 1
2C(1− 2ν)

(
∂2ux

∂y2 +
∂2uy

∂x∂y

)
= 0 (x-axis)

1
2C(1− 2ν)

(
∂2ux

∂x∂y +
∂2uy

∂x2

)
+ Cν ∂

2ux

∂x∂y + C(1− ν)∂
2uy

∂y2 = 0 (y-axis) ,
(15)

where E and ν are the Young modulus and Poisson ratio-constants, describing the material proper-
ties, while ux and uy represent horizontal and vertical displacement respectively.

The detailed derivation of this equation can be found in the subsection A.2.

where C = E
(1+2)(1−2v)− constant.

We consider square plate with (x, y) ∈ [xmin, xmax]× [ymin, ymax]. Dirichlet boundary conditions
are enforced on horizontal displacement for the boundary of square.{

ux(x, y) = −0.01, x = xmin, ∀y ∈ [ymin, ymax]
ux(x, y) = 0.01, x = xmax, ∀y ∈ [ymin, ymax]
uy(x, y) = 0.0, on the boundary

We consider a specific kind of plate,that consists of one base material and second material in complex
geometry inclusion, that is characterised with different Young modulus (= material property of
stiffness) E. The geometric configurations are diamond and 2 circles.

Structure of the neural network is represented by 5 separate fully connected neural nets.

(a) Reference solution (b) Solution of FMS PINN (c) Solution of DAS PINN

Figure 7: Comparison of solution for 2 circles ux problem

For 30000 epochs of training we see that flow matching PINN outperforms DAS PINN. The results
of MSE comparison for the flow matching PINN with the normalizing flow PINN is shown in Table
2. For two circles problem the flow matching method helps to improve quality, while for the diamond
configuration it provides the solution of the same quality as the normalizing flow PINN.

Results of our method compared to the reference solution and DAS PINN for 2 circles case is
illustrated in Figure 7 and Figure 8. PINN neural net architecture for our methods consists of 5
separate neural networks that have 5 fully connected layers with 40 neurons in each layer. As an
optimizer, we use Adam with the scheduler ReduceLROnPlateau. As it is shown in Figure 9, our
method captured all main patterns of the reference solution as wee see our algorithm FMS PINN
outperforms DAS PINN.

9
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(a) Reference solution (b) Solution of FMS PINN (c) Solution of DAS PINN

Figure 8: Comparison of solution for 2 circles uy problem

(a) Profile of 2 circles
FMS PINN solution for
ux

(b) Profile of 2 circles
DAS PINN solution for
ux

(c) Profile of 2 circles
FMS PINN solution for
uy

(d) Profile of 2 circles
DAS PINN solution for
uy

Figure 9: Comparison of error profiles for DAS PINN and FMS PINN for 2 cirlces problem

Table 2: Comparison of Elasticity PINN with Normalizing flow PINN in terms of MSE

Method 2 circles ux 2 circles uy diamond ux diamonds uy

FMS PINN 1.5e-3 7.9e-3 4.6e-3 9.2e-3
DAS PINN 1.7e-2 1.2e-2 7.1e-3 8.6e-3

5 CONCLUSION

In this paper a novel approach referred to as flow-matching sampling is proposed. It allows to select
points for PINNs training, at which the evaluation of the PDE residual is performed. The idea of the
method is based on the generative matching flows and adaptive sampling.

The numerical experiments show that our approach helps to solve singular problems and enhance
the solution. We have examined an efficiency of the proposed method for the Poisson equation and
linear elasticity equation system. It has been shown that the proposed method in several cases allow
to achieve more accurate solution than the normalization flow approach. The latter can be considered
as the closest competitor of the flow-matching method. It has been shown that the flow-matching
method is efficient in the case of singularities in the solution. In our future work we will examine
this method on larger number of epochs.

6 REPRODUCIBILITY STATEMENT

All of our experimental results are fully reproducible, and we have documented all settings and pa-
rameters used in our experiments. Upon request from the reviewers, we are prepared to provide the
code and detailed instructions to help to replicate our findings. For the comparison with the DAS
PINN method, we utilized the publicly available repository at https://github.com/MJfadeaway/DAS.
By employing this repository, we ensured that our comparative analysis was conducted under consis-
tent conditions, thereby guaranteeing a fair and accurate assessment between our proposed approach
and the DAS PINN algorithm.
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A APPENDIX

In this section, we apply the flow matching PINN and normalizing flow PINN to several PDEs. We
begin our analysis with the Poisson equation that contains a singular source with peaks, representing
the complex structure of the domain. As uniform sampling may not adequately cover the peak region
within the domain, it can result in significant deviations of the PINN solution from the reference
solution

A.1 2 PEAKS PROBLEM

Next we consider an equation that has part that correspond to Laplace operator of the function
that resembles Poisson equation combined with the divergence of the vector field of the function
u(x)∇v(x):


−∇ · [u(x)∇v(x)] +∇2u(x) = s(x) in D,
u(x) = g(x) on ∂D,
s(x) = s1(x) + s2(x),

(16)

s1(x) =
(
e−1000(x1−0.5)2+(x2−0.5)2

)
(4000(1000(x1)

2−1000x1+1000(x2)
2−1000x2+499)+

+ 4(1000(x1)
2 − 500x1 + 1000(x2)

2 − 500x2 − 1))

s2(x) = e500(2x1
2+2x1+2x2

2+2x2+1) (4000(1000x12 + 1000x1 + 1000x2
2 + 1000x2 + 499

)
+

+ 4(1000x1
2 + 500x1 + 1000x2

2 + 500x2 − 1))

where x = [x1, x2]
T, v(x) = (x1)

2 + (x2)
2, and the domain is D = [−1, 1]2. According to Tang

et al. (2023a), the exact solution of 16 reads as follows:

u(x1, x2) = e−1000[(x1−0.5)2+(x2−0.5)2] + e−1000[(x1+0.5)2+(x2+0.5)2], (17)
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which has two peaks at the points (0.5, 0.5) and (−0.5,−0.5). Here, the Dirichlet boundary condi-
tion on ∂Ω is given by the exact solution.

We see that our method succeeds in capturing the solution for the two-peaks problem and achieves
the same order of error as compared to the normalizing flow PINN. Nevertheless, the MSE score is
1.5 times lower for the matching flow PINN as compared to the normalizing flow PINN.

To improve the flow matching model, we trained it for 2,000 iterations each time we resampled
points and repeated the resampling process every 10,000 iterations, adding 28,000 points during
each resampling stage. In the initial stage to prevent overfitting, we trained the initial PINN model
for 10,000 epochs. For comparison of our flow matching with the normalizing flow we use a KR-
net implementation from Tang et al. (2023a) code implementation in Tensorflow with same number
of points, epochs and re-sampling stages. Figure 10 indicates that after 6000 epochs the matching
flow algorithm achieves better quality than normalizing flow PINN. For this problems flow matching
PINN after 25000 is better than solution of the normalizing flow PINN, while Figure 11 shows that
both normalizing flow PINN and flow matching PINN approximate the solution in a descend way.

Figure 10: MSE comparison for 2 peaks problem

(a) Residual profile of FMS PINN (b) Residual profile of DAS PINN

Figure 11: Comparison of residual profiles for 2 peaks problem

A.2 LINEAR ELASTICITY EQUATION: DETAILS

Here is more detailed derivation of linear elasticity equation. The primary equation that governs the
mechanism of stress under deformation is

∇ · σ = 0,

where σ is the stress tensor - the 2-nd order tensor describing the internal pressure state of the object.
In matrix notation, equation for the 2D case takes the form:( ∂

∂x
∂
∂y

)
·
(
σxx σxy
σxy σyy

)
= 0, (18)
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(a) Reference solution (b) Solution of FMS PINN (c) Solution of DAS PINN

Figure 12: Comparison of solution for 2 peaks problem

We can express the stress tensor σ in terms of the 4th order elasticity tensor C and th 2nd order
strain tensor ϵ :

σij = Cijkl · ϵlk

For the case of linear isotropic materials in 2D, this reduces to 2-dimensional Hooke’s law for plane
strain: (

σxx
σyy
σxy

)
=

E

(1 + ν) · (1− 2ν)

(
1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

)
·

(
ϵxx
ϵyy
ϵxy

)
, (19)

where E and ν are the Young modulus and Poisson ratio constants, describing the material proper-
ties, E and ν are individual for each material and can vary a lot from one material to another

The strain tensor C describes the deformation of the solid body in each elementary volume. The
ϵxx and ϵyy components are describing the relative elongation of the elementary volume in x and y
directions respectively, and the ϵxy , component describes the shift deformations.

In classical case the equation is solved with respect to displacements, and the strain tensor can be
expressed:

ϵxx =
∂ux
∂x

,

ϵyy =
∂uy
∂y

,

ϵxy = 0.5

(
∂ux
∂y

+
∂uy
∂x

)
.

(20)

where ux and uy are the displacements of the points of solid body in directions x and y respectively

By substituting this idea 18 to initial equation 20 we can finally obtain:

C(1− ν)∂
2ux

∂x2 + Cν
∂2uy

∂x∂y + 1
2C(1− 2ν)

(
∂2ux

∂y2 +
∂2uy

∂x∂y

)
= 0 (x-axis)

1
2C(1− 2ν)

(
∂2ux

∂x∂y +
∂2uy

∂x2

)
+ Cν ∂

2ux

∂x∂y + C(1− ν)∂
2uy

∂y2 = 0 (y-axis) ,
(21)

where C = E
(1+2)(1−2v)− constant

We consider square plate with (x, y) ∈ [xmin, xmax]× [ymin, ymax]. Dirichlet boundary conditions
are enforced on horizontal displacement for the boundary of square.{

ux(x, y) = −0.01, x = xmin, ∀y ∈ [ymin, ymax]
ux(x, y) = 0.01, x = xmax, ∀y ∈ [ymin, ymax]
uy(x, y) = 0.0, on the boundary
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We consider a specific kind of plate,that consists of one base material and second material in com-
plex geometry inclusion, that is characterised with different Young modulus E. The geometric
configurations are diamond and 2 circles.

Here is the solution for diamond configuration for FMS PINN compared with DAS PINN:

(a) Reference solution (b) Solution of FMS PINN (c) Solution of DAS PINN

Figure 13: Comparison of solution for diamond ux problem

(a) Reference solution (b) Solution of FMS PINN (c) Solution of DAS PINN

Figure 14: Comparison of solution for diamond uy problem

(a) Profile of diamond
FMS PINN solution for
ux

(b) Profile of diamond
DAS PINN solution for
ux

(c) Profile of diamond
FMS PINN solution for
uy

(d) Profile of diamonds
DAS PINN solution for
uy

Figure 15: Comparison of error profiles for DAS PINN and FMS PINN for diamond problem

Here is comparison in terms of MAE for 2 configurations: 2 circles and diamond.

We also see that our method outperforms DAS PINN in terms of sum MSE for ux and uy for both
diamond and 2 circles setups as depicted by Figure 16:
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Table 3: Comparison of Elasticity PINN with Normalizing flow PINN in terms of MAE

Method 2 circles ux 2 circles uy diamond ux diamonds uy

FMS PINN 0.04184 0.07817 0.073 0.097
DAS PINN 0.12 0.17 0.10 0.14

(a) MSE per epoch for 2 circles setup of linear
elasticity equation

(b) MSE per epoch for diamond setup of linear
elasticity equation

Figure 16: Comparison of MSE for diamond and 2 circles setup for FMS PINN and DAS PINN
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