
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBUSTIFY SPIKING NEURAL NETWORKS VIA
DOMINANT SINGULAR DEFLATION UNDER
HETEROGENEOUS TRAINING VULNERABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) process information via discrete spikes, enabling
them to operate at remarkably low energy levels. However, our experimental
observations reveal a striking vulnerability when SNNs are trained using the
mainstream method—direct encoding combined with backpropagation through
time (BPTT): even a single backward pass on data drawn from a slightly different
distribution can lead to catastrophic network collapse. We refer to this phenomenon
as the heterogeneous training vulnerability of SNNs. Our theoretical analysis
attributes this vulnerability to the repeated inputs inherent in direct encoding and
the gradient accumulation characteristic of BPTT, which together produce an
exceptional large Hessian spectral radius. To address this challenge, we develop
a hyperparameter-free method called Dominant Singular Deflation (DSD). By
orthogonally projecting the dominant singular components of gradients, DSD
effectively reduces the Hessian spectral radius, thereby preventing SNNs from
settling into sharp minima. Extensive experiments demonstrate that DSD not
only mitigates the vulnerability of SNNs under heterogeneous training, but also
significantly enhances overall robustness compared to key baselines, providing
strong support for safer SNNs. Codes are available in the supplementary materials.

1 INTRODUCTION

As an emerging brain-inspired computational paradigm, Spiking Neural Networks (SNNs) leverage
event-driven, discrete spike streams for feature representation (Maass, 1997). By eliminating the need
for pervasive and computationally intensive matrix multiplications of traditional Artificial Neural
Networks (ANNs), SNNs achieve remarkable computational efficiency and significantly lower energy
consumption (Pei et al., 2019; Meng et al., 2023). Owing to these inherent advantages, SNNs have
been applied across a diverse array of application domains, such as autonomous driving (Zhu et al.,
2024; Shalumov et al., 2021; Viale et al., 2021), edge computing (Liu et al., 2024a; Zhang et al.,
2024), image process (Liu et al., 2025; Pan et al., 2024), and robot control (Jiang et al., 2025).

In the practical deployment of SNNs, safety and reliability are of paramount importance, particularly
in terms of robustness against perturbations. Even subtle perturbations in the input data that are
imperceptible to human senses can trigger severely adverse and unpredictable network responses
(Ding et al., 2024a). To enhance the robustness of SNNs, existing studies predominantly adopt a
homogeneous training paradigm, where models are trained on data drawn from a single, uniform
distribution—for instance, vanilla training using only clean samples (Ding et al., 2024b;a; Geng
& Li, 2023; Ding et al., 2022), or adversarial training where all inputs are perturbed with equal
intensity (Ding et al., 2024b; Geng & Li, 2023; Liu et al., 2024b). However, such training settings
are idealized and do not reflect the variability and complexity of real-world data. In practical
scenarios, models are often required to learn from inherently unpredictable and heterogeneous data
distributions, as adversaries may employ a wide range of poisoning strategies to deliberately disrupt
distributional homogeneity. We refer to this more realistic paradigm as heterogeneous training (hetero-
training). Notably, from the perspective of the attacker, when the number of manipulable samples is
limited, concentrating these perturbed samples as a batch—rather than dispersing them sporadically
throughout the dataset—often leads to a more pronounced degradation of model performance (Zou
et al., 2022). When exposed to batch-level heterogeneity in the training data, we observe:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

…

Train normally

B
a

tc
h

 1
B

a
tc

h
 2

L
a
s
t
B

a
tc

h

Acc. / Loss

Batch

…B
a

tc
h

 1
B

a
tc

h
 N

L
a
s
t
B

a
tc

h

Acc. / Loss

…

Batch

Model Collapses

N

…

Train normally

B
a

tc
h

 1
B

a
tc

h
 2

L
a
s
t
B

a
tc

h

Acc. / Loss

Batch

…B
a

tc
h

 1
B

a
tc

h
 N

L
a
s
t
B

a
tc

h

Acc. / Loss

…

Batch

Model Collapses

N

Homogeneous Training (Vanilla) Heterogeneous TrainingHomogeneous Training (Adversarial) Heterogeneous Training

Clean Data Perturbed Data Clean Data Perturbed DataClean Data Perturbed Data

Figure 1: The vulnerability of SNNs in heterogeneous training.

Observation 1. In SNN training phase, even a single backward pass with a slightly differently-
distributed batch can trigger complete model collapse. As depicted in Fig. 1, SNNs trained on
homogeneous datasets—whether comprised solely of clean samples or perturbed ones—exhibit a
stable training trajectory. However, introducing just one batch of perturbed data into a clean dataset,
or vice versa, leads to abrupt and catastrophic model collapse. We refer to this phenomenon as the
heterogeneous training vulnerability of SNNs. (Sec. 3.1 presents a comprehensive analysis of the
experimental results regarding the Observation 1.)

This observation reveals a fundamental security risk in SNNs when dealing with training data that
is inherently unpredictable and cannot be predefined—a scenario often encountered in real-world
adversarial contexts (Goodfellow et al., 2014; Kurakin et al., 2018). This prompts these questions:

�

1. Why do SNNs experience model collapse in hetero-training?
2. Without relying on input data manipulation, how to design an approach for SNNs that
effectively mitigates the model collapse induced by hetero-training and enhance robustness?

Motivated by these questions, we propose a novel training method that enhances the robustness of
SNNs under both homogeneous and heterogeneous training conditions. Specifically,

• We theoretically show that BPTT yields a Gauss-Newton Hessian with at most linear spectral
growth, and that direct encoding makes this bound tight, explaining the abnormally large
spectral radius underlying SNN hetero-training vulnerability.

• Building on these theoretical insights, we develop a hyperparameter-free Dominant Singular
Deflation (DSD) method. By explicitly deflate the dominant singular components of gradi-
ents, DSD effectively reduces the Hessian spectral radius, thereby preventing the network
from falling into sharp minima.

• Extensive experimental results demonstrate that DSD mitigates SNN vulnerabilities and
significantly enhances robustness under both homogeneous and heterogeneous training
conditions, outperforming key baselines and thereby ensuring greater safety in deployment.

2 PRELIMINARY

Spiking Neuron Dynamic. In SNNs, neurons emulate the spiking behavior of biological neurons to
facilitate information transmission. One of the most prevalent nonlinear spiking neuron models in
SNNs is the Leaky Integrate-and-Fire (LIF) neuron (Xu et al., 2022; Fang et al., 2021; Ding et al.,
2022). The dynamics of a LIF neuron are described by Eq. (1), where It, Vt, and St represent the
input current, membrane potential, and spike output at time t, respectively. Here, τ denotes the
membrane time constant, Vth is the potential threshold, and Θ corresponds to the Heaviside function.

τ
dVt

dt
= −Vt + It, St = Θ(Vt − Vth). (1)

Adversarial Attack. Given an input x with label y, adversarial examples are generated by finding
a perturbation δ within an ℓp-norm ball of radius ϵ that maximizes the loss L(h(x + δ), y). This
optimization problem is formally expressed as:

argmax
∥δ∥p≤ϵ

L(f(x+ δ), y). (2)

In this paper, we employ two widely adopted adversarial attack methods in main experiments—Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014) and Projected Gradient Descent (PGD)
(Madry et al., 2017). Hyperparameter configurations are provided in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 50 100 150 20010 30

1

2

3

L
o

s
s

Epoch

(b) BPTT VGG+D Test Accuracy (a) Collapse Comparison (c) BPTT VGG+D Test LossRes: ResNet-18 VGG: VGG-11

R: Rate encoding D: Direct encoding

0 50 100 150 20010 30
10

16

22

28

34

40

A
c
c
.
(%

)

Epoch

 c/+p_0

 c/+p_10

 c/+p_30

 c/+p_50

 c/+p_100

 p/+c_0

 p/+c_10

 p/+c_30

 p/+c_50

 p/+c_100

Res+R Res+D VGG+R VGG+D Res+R Res+D VGG+R VGG+D Res VGG
10

20

30

40

50

60

70

A
c
c
.

(%
)

Network Architecture and Encoding Method

 Homogeneous Training

 Heterogeneous Training
SLTT BPTT ANN

Figure 2: SNN model degradation under hetero-training and collapse curves. In (a), homogeneous
training uses clean CIFAR-10 data, while hetero-training employs perturbed CIFAR-10 data. In
(b) and (c), the “clean/+perturbation 10 (c/+p 10)” setting denotes homogeneous training on clean
CIFAR-10 for the first 9 epochs, followed by hetero-training starting from epoch 10, during which
one random batch per epoch is poisoned with perturbed data. Conversely, the “p/+c” setting denotes
homogeneous training on perturbed data, with the heterogeneous phase poisoning one random batch
per epoch using clean data. All perturbations are generated with FGSM on CIFAR-10 using ϵ = 2.

3 ANALYSIS AND METHOD

In this section, we first present experimental results that demonstrate the model collapse phenomenon
described in Observation 1 and analyze why SNNs exhibit a disconcerting vulnerability in hetero-
training (Sec. 3.1). Building on this analysis, we introduce the Dominant Singular Deflation method
and provide a theoretical analysis explaining how our approach mitigates the vulnerabilities associated
with hetero-training while simultaneously enhancing network robustness (Sec. 3.2).

3.1 PRELIMINARY EXPERIMENT: WHY SNN MODEL COLLAPSES IN HETERO-TRAINING?

We conduct controlled experiments to examine network collapse in SNNs under heterogeneous
training across three core factors: training paradigm, encoding method, and network architecture.
For training paradigms, we consider BPTT and SLTT (Spatial Learning Through Time (Meng et al.,
2023)). BPTT backpropagates gradients through temporal multiplication, whereas SLTT eliminates
the multiplicative terms in BPTT. For encoding methods, we evaluate direct encoding and rate
encoding (Poisson). For network architectures, we adopt two widely used backbones: ResNet-18
and VGG-11. Further experimental settings are provided in Appendix B.1. Fig. 2(a) presents
all combinations of these three factors, alongside ANN baselines, and compares their collapse
behaviors under hetero-training. The most severe collapses: BPTT+ResNet-18+direct encoding and
BPTT+VGG-11+direct encoding, are highlighted with red boxes, and both collapse to the point of
exhibiting almost no effective training. From these comparisons, we draw the following observations:

Observation 2. (i). Under hetero-training, ANNs exhibit moderate degradation yet far from collapse,
SLTT suffers much less collapse compared with BPTT. (ii). Direct encoding leads to far more severe
collapse than rate encoding. (iii). Regarding architectures, both ResNet-18 and VGG-11 show
comparable levels of degradation or collapse, suggesting that collapse is not tied to architecture.

To further illustrate this phenomenon, Fig. 2(b) and (c) display training curves of the BPTT+VGG-
11+Direct Encoding combination when switching abruptly from homogeneous to heterogeneous
training at different stages. In all cases, such a switch induces catastrophic collapse, manifested by
an immediate drop in accuracy, a complete degradation in loss, and unstable oscillations thereafter.
Taken together, these results suggest that the damage caused by hetero-training is independent of
network architecture and training stage, but strongly dependent on the training paradigm (BPTT) and
the encoding method (direct encoding).

This phenomenon suggests that, within a single epoch, the BPTT+direct encoding combination may
intermittently drive the network parameters into extremely sharp local minima, characterized by an
abnormally large spectral radius of the loss Hessian (Cheng et al., 2022). To interpret this behavior,
we conduct an analysis in the context of SNN-specific properties as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 1 (Layer-wise GN spectral bound under BPTT with LIF neuron dynamics). For the l-th
layer parameters W l, the BPTT gradient expansion (Xiao et al., 2022; Huang et al., 2024) is

∂L

∂W l
=

T∑
t=1

gt︷ ︸︸ ︷[
∂L

∂Sl+1
t

∂Sl+1
t

∂V l+1
t︸ ︷︷ ︸

Gt

(
∂V l+1

t

∂W l︸ ︷︷ ︸
Dt

+
∑
k<t

t−1∏
i=k

(∂V l+1
i+1

∂V l+1
i

+
∂V l+1

i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

)
︸ ︷︷ ︸

Jk:t−1

∂V l+1
k

∂W l

)]

︸ ︷︷ ︸
JW
t

. (3)

By bounded surrogate derivatives and the contractive LIF dynamics (See Appendix C for detailed
derivations for all bounds mentioned in this analysis), there exist constants CG, CD < ∞ and ρ ∈
(0, 1), independent of t and T , such that ∥Gt∥ ≤ CG, ∥Dt∥ ≤ CD, and

∥∥∥∂V l+1
i+1

∂V l+1
i

+
∂V l+1

i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

∥∥∥ ≤ ρ.

Then, we have ∥JW
t ∥ =

∥∥∥Dt +
∑

k<t Jk:t−1Dk

∥∥∥ ≤ CD

1−ρ = CJ , therefore ∥gt∥ = ∥GtJ
W
t ∥ ≤

CGCJ . Hence each per-step gradient contribution is O(1). The Gauss–Newton (GN) Hessian block
with respect to W l satisfies

H(W l) ≈
T∑

t=1

(JW
t)⊤HtJ

W
t ⪰ 0, (4)

where Ht = B⊤
t Hz,tBt is the effective Hessian with respect to the membrane potential V l+1

t ,
Hz,t indicates the output-layer Hessian at time t, and Bt =

∂zt
∂V l+1

t

denotes the readout Jacobian

from the membrane potential to the output logits zt. Since Hz,t ⪰ 0 and ∥Bt∥ ≤ CB , where
Cz = supt λmax(Hz,t) < ∞, we have ∥Ht∥ ≤ C2

BCz , and therefore

λmax(H(W l)) ≤ C2
BCz

T∑
t=1

∥JW
t ∥2 ≤ C2

BCz C
2
J︸ ︷︷ ︸

constant

T, (5)

Thus, the largest eigenvalue (equivalently, the spectral radius) of H(W l) is linearly bounded in T .

Theorem 2 (Direct encoding makes the GN bound tight). Consider the same setting as Theorem 1
with the GN block H(W l) ≈

∑T
t=1(J

W
t)⊤HtJ

W
t ⪰ 0, where Ht = B⊤

t Hz,tBt. Under direct
encoding, the per-step inputs are stationary, and the recurrent Jacobians become nearly time-
invariant up to bounded perturbations (Zenke & Ganguli, 2018; Bellec et al., 2020). Consequently,
by the power-iteration effect of repeatedly applying contractive operators, the BPTT Jacobians {JW

t }
concentrate along a common dominant singular direction. Formally, there exist unit vectors a (output
space) and b (parameter space), scalars αt, and residual terms Rt such that for all t we have

JW
t = αt ab

⊤ +Rt, m ≤ |αt| ≤ M,

T∑
t=1

∥Rt∥2 = o(T), (6)

where m,M > 0 denote finite constants independent of t and T , and we use the Landau notation
o(T) to denote a sublinear term, i.e., f(T) = o(T) if f(T)/T → 0 as T → ∞. Moreover, suppose
the output-layer curvature along a has a strictly positive time-average, 1

T

∑T
t=1 a

⊤Hta ≥ c−z > 0,
where c−z denotes a uniform positive lower bound, serving as the lower-bound counterpart of Cz .
Then we have equation as follows, where Θ(·) denotes the standard asymptotic order notation.

λmax

(
H(W l)

)
= Θ

(T∑
t=1

α2
t

)
= Θ(T). (7)

Together, Theorem 1 and Theorem 2 establish a two-stage picture of the Gauss–Newton curvature in
SNNs. The first result shows that under LIF dynamics the per-step BPTT contributions are uniformly
bounded, and consequently the spectral radius of the Hessian grows at most linearly in T . The second
result demonstrates that when direct encoding is used, the stationarity of inputs and the time-invariant
structure of the recurrent operators lead to a power-iteration effect, aligning the Jacobians JW

t along

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a common rank-one component. This alignment ensures that the lower bound grows at the same
linear rate, thereby making the Gauss–Newton bound asymptotically tight. In summary, BPTT
establishes the O(T) upper bound for spectral radius, and direct encoding sharpens it to Θ(T). This
spectral pathology becomes particularly severe under heterogeneous training, where even a small
fraction of distributional variation is sufficient to excite the sharp directions amplified by the O(T)
curvature growth. Because the dominant Hessian eigenmodes scale linearly with T , perturbations
from mismatched batches accumulate disproportionately along these fragile directions, causing
instabilities that can quickly lead to collapse. Hence, the vulnerability of SNNs under hetero-training
can be traced to the same mechanism identified above: the alignment of BPTT Jacobians and the
resulting unbounded growth of the spectral radius.

1 2 3 4 8 12 16 24 32
0

20

40

60

80

100

A
c
c
.

(%
)

Time Step

 Homogeneous Heterogeneous Degraded Accuracy

Figure 3: Degradation comparison.

Furthermore, we conduct experiments to vali-
date our theoretical analysis. As shown in Fig.
3, we train on CIFAR-10 with the VGG-11 archi-
tecture under direct encoding at different time
step scales for 200 epochs (additional experi-
mental details are provided in Appendix B.1).
The results indicate that network degradation
under hetero-training becomes increasingly se-
vere as the number of time steps grows. This
confirms that time step scaling is indeed one of
the factors affecting robustness, thereby support-
ing the reliability of our earlier analysis. How-
ever, robustness against hetero-training cannot
be achieved simply by reducing the number of time steps, since doing so causes a drastic performance
drop under homogeneous training as Fig. 3. This motivates the need for a mechanism that can ac-
tively suppress the dominant curvature growth, thereby enhancing the robustness and hetero-training
resistance without sacrificing the efficiency of direct encoding.

3.2 REDUCING SPECTRAL RADIUS VIA DOMINANT SINGULAR DEFLATION

Dominant Singular Deflation. To mitigate the pathological spectral growth identified above, that
is, to suppress the excessive enlargement of the Hessian spectral radius, we propose a deterministic
and hyperparameter-free gradient update technique named Dominant Singular Deflation (DSD). The
key idea is to deflate the gradient by explicitly removing its rank-one dominant singular component,
thereby directly reducing the maximal singular value that drives curvature amplification.

Formally, for parameter set θ, let ∇θL(θ) denote the gradient of the loss function, represented as a
k-dimensional tensor ∇θL(θ) ∈ Rd1×d2×···×dk . To systematically analyze its principal components,
we introduce a deterministic matrixization operator M : Rd1×···×dk → Rm×n with m = d1 and
n =

∏k
j=2 dj . Applying singular value decomposition gives

M
(
∇θL(θ)

)
= UΣV ⊤ =

r∑
i=1

σi ui v
⊤
i , r = min(m,n), σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. (8)

We refer to σ1u1v
⊤
1 as the dominant singular component. To remove this component, we define the

projection operator D(A) for any A ∈ Rm×n as

D(A) =
⟨A, u1v

⊤
1 ⟩F

∥u1v⊤1 ∥2F
u1v

⊤
1 , (9)

where ⟨A,B⟩F =
∑

i,j AijBij is the Frobenius inner product. Thus, DSD orthogonally projects
M
(
∇θL(θ)

)
onto the complement of the dominant singular component, yielding the deflated update

∇̃θL(θ) = M−1
(
M
(
∇θL(θ)

)
−D

(
M
(
∇θL(θ)

)))
. (10)

Effectiveness of DSD. Under direct encoding, Theorem 2 shows that the GN spectral bound becomes
tight: the largest eigenvalue λmax(H(W l)) is governed by the squared maximal singular value of the
Jacobians, i.e., λmax

(
H(W l)

)
= Θ

(∑T
t=1 σmax(J

W
t)2

)
. Hence the curvature growth is dominated

by the rank-one component associated with the leading singular pair (σ1, u1, v1). By construction,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

DSD removes this rank-one component σ1u1v
⊤
1 from the gradient, yielding deflated Jacobians J ′

t.
Consequently, their maximal singular value satisfies σmax(J

′
t) = σ2(Jt) < σ1(Jt), and the Hessian

spectral radius strictly decreases:

λmax

(
H(W l; ∇̃θL(θ))

)
< λmax

(
H(W l; ∇θL(θ))

)
. (11)

In other words, under the alignment effect induced by direct encoding, DSD deterministically sup-
presses the spectral radius by eliminating its dominant contributor, thereby mitigating the instability
that causes vulnerability in SNN training. Besides, a reduction in Hessian spectral radius can indi-
rectly lower the upper bound of the network’s Lipschitz constant (Nesterov, 2013; Yao et al., 2020;
Ghorbani et al., 2019), thereby contributing to improved robustness and enhanced generalization
capabilities (Ding et al., 2022).

Descent preservation of DSD. Although DSD explicitly modifies the gradient by removing its
dominant singular component, it does not compromise the descent property of gradient-based
optimization. Formally, DSD in Eq. (10) rewrites the matrixized gradient as

M(∇̃θL(θ)) = M(∇θL(θ))−D
(
M(∇θL(θ))

)
. (12)

The directional derivative of the loss DL(θ)[d], i.e., the rate of change of L at θ along a direction
d, is given by the inner product between the gradient and d. Under DSD, for the update direction
d = −∇̃θL(θ) we obtain

DL(θ)[d] =
〈
∇θL(θ), d

〉
= −

〈
M
(
∇θL(θ)

)
, M

(
∇̃θL(θ)

)〉
F
. (13)

Since D is an orthogonal projection operator, we can expand and simplify as〈
M
(
∇θL(θ)

)
, M

(
∇̃θL(θ)

)〉
F
=
〈
M(∇θL(θ)), M(∇θL(θ))−D

(
M(∇θL(θ))

)〉
F

∗
=
∥∥M(∇θL(θ))

∥∥2
F
−
∥∥D(M(∇θL(θ))

)∥∥2
F

=
∥∥M(∇̃θL(θ)

)∥∥2
F
,

(14)

where (∗) uses the self-adjointness and idempotence of the orthogonal projection D with respect to
the Frobenius inner product, namely, ⟨A,D(A)⟩F = ⟨D(A),D(A)⟩F = ∥D(A)∥2F . Substituting this
into the directional derivative gives Eq. (15), with strict inequality whenever ∇̃θL(θ) ̸= 0.

DL(θ)[d] = −
∥∥M(∇̃θL(θ)

)∥∥2
F

≤ 0, (15)

In summary, DSD guarantees that the update direction always yields non-increasing loss, and it is a
strict descent direction whenever the deflated gradient is non-zero.
Remark 1. This conclusion follows solely from the general mathematical property of orthogonal
projections in Hilbert spaces (Horn & Johnson, 2012), and does not rely on any special structure of
SNNs, BPTT, or the cross-entropy loss. Hence the guarantee of descent preservation is universal and
independent of the particular network architecture or loss function.

4 EXPERIMENT

Our experiments are structured into four parts. First, we assess the robustness of DSD in homogeneous
training (Sec. 4.1), which are divided into two settings: vanilla training using clean data and
adversarial training (AT) (Kundu et al., 2021) using perturbed data generated by white box FGSM
with an ϵ of 2/255. Second, we investigate whether DSD can prevent network collapse in hetero-
training (Sec. 4.2). Third, we evaluate the effect of our approach on the Hessian eigenvalue during
inference (Sec. 4.3). Finally, we inspect DSD for any instances of gradient obfuscation (Sec. 4.4). In
addition, the extra computational overhead of DSD during training is reported in Appendix E, while
DSD introduces no overhead at inference.

To ensure comprehensive evaluation, we conduct experiments on static visual datasets of varying
scales, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), TinyIm-
ageNet (Deng et al., 2009), and ImageNet (Deng et al., 2009) and Dynamic Vision Sensor (DVS)
datasets DVS-CIFAR10 (Li et al., 2017) and DVS-Gesture (Amir et al., 2017). Implementation
specifics are provided in Appendix B.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 COMPARISON WITH STATE-OF-THE-ART (SOTA) IN HOMOGENEOUS TRAINING

White box attack in static datasets. Table 1 summarizes DSD accuracies under various homo-
geneous training settings, compared with SOTA defenses (StoG (Ding et al., 2024b), DLIF (Ding
et al., 2024a), HoSNN (Geng & Li, 2023), and FEEL (Xu et al., 2024)). Overall, DSD consistently
outperforms prior defenses against gradient-based white box attacks across all datasets and training
modes. Notably, it yields over 10% accuracy gains in several cases, including CIFAR-100 with FGSM
in vanilla training, CIFAR-10 and ImageNet with FGSM, and TinyImageNet with PGD in AT. In
TinyImageNet AT, DSD reaches 30.87% accuracy, a striking 22.68% improvement over the baseline
SNN’s 8.19%. Robustness under vanilla training remains difficult, particularly against PGD. Even so,
DSD achieves 8.09% accuracy on CIFAR-100 under PGD in vanilla training, a major improvement
over the previous best of 2.04% from FEEL (Xu et al., 2024).

Table 1: White box performance comparison (%). The highest accuracy in each column is highlighted
in bold. The “Improvement” quantifies the gain of DSD over the other best-performing baseline.

Methods CIFAR-10 CIFAR-100 TinyImageNet ImageNet
Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

Homogeneous Training: Vanilla Training
SNN 93.75 8.19 0.03 72.39 4.55 0.19 56.82 3.51 0.14 57.84 4.99 0.01

StoG (Ding et al., 2024b) 91.64 16.22 0.28 70.44 8.27 0.49 - - - - - -
DLIF (Ding et al., 2024a) 92.22 13.24 0.09 70.79 6.95 0.08 - - - - - -

HoSNN (Geng & Li, 2023) 92.43 54.76 15.32 71.98 13.48 0.19 - - - - - -
FEEL (Xu et al., 2024) 93.29 44.96 28.35 73.79 9.60 2.04 43.83 9.59 4.53 - - -

DSD (Ours) 90.21 55.86 31.44 70.26 23.81 8.09 54.54 19.50 12.02 53.47 14.69 4.30
Improvement ▼ 3.54 ▲ 1.10 ▲ 3.09 ▼ 3.53 ▲ 10.33 ▲ 6.05 ▼ 2.28 ▲ 9.91 ▲ 7.49 ▼ 4.37 ▲ 9.70 ▲ 4.29

Homogeneous Training: Adversarial Training (AT)
SNN 91.16 38.20 14.07 69.69 16.31 8.49 49.91 8.19 2.97 51.00 15.74 6.39

StoG (Ding et al., 2024b) 90.13 45.74 27.74 66.37 24.45 14.42 - - - - -
DLIF (Ding et al., 2024a) 88.91 56.71 40.30 66.33 36.83 24.25 - - - - - -

HoSNN (Geng & Li, 2023) 90.00 63.98 43.33 64.64 26.97 16.66 - - - - - -
FEEL (Xu et al., 2024) - - - 69.79 18.67 11.07 - - - - - -

DSD (Ours) 86.62 74.43 44.38 64.21 43.91 27.11 46.30 30.87 18.21 49.78 26.83 9.12
Improvement ▼ 4.54 ▲ 10.45 ▲ 1.05 ▼ 5.58 ▲ 7.08 ▲ 2.86 ▼ 3.61 ▲ 22.68▲ 15.24 ▼ 1.22 ▲ 10.09 ▲ 2.73

Table 2: APGD performance (%). The highest
accuracy in each column is highlighted in bold.

Methods CIFAR10 CIFAR-100
APGDCE APGDDLR APGDCE APGDDLR

Homogeneous Training: Vanilla Training
SNN 0.61 2.06 0.09 0.12
DLIF 0.05 0.03 0.02 0.18

HoSNN 10.35 27.39 2.55 0.02
DSD (Ours) 22.19 29.77 5.99 5.98

Homogeneous Training: Adversarial Training (AT)
SNN 10.98 17.72 5.87 6.20
DLIF 35.09 39.85 20.68 24.21

HoSNN 38.89 37.94 12.55 13.66
DSD (Ours) 47.08 44.62 22.86 23.04

Stronger white box attack. Beyond conven-
tional white-box attacks, we further evaluate
whether DSD can defend against stronger adver-
saries. We employ the APGD attack (Croce &
Hein, 2020), which incorporates adaptive step-
size control and a momentum-like update during
iterations, enabling more efficient exploration
of the loss landscape and avoiding local op-
tima to generate stronger adversarial samples.
Two variants of APGD are used—APGDCE and
APGDDLR—with detailed descriptions and hy-
perparameter settings provided in Appendix A.
As shown in Table 2, our method achieves the highest accuracy under all attack settings except for
APGDDLR on CIFAR-100 with AT, where it slightly lags behind DLIF (Ding et al., 2024a). These
results demonstrate that DSD remains effective and superior even against stronger white box attacks.

Table 3: Performance comparion in DVS datasets
(%). he highest accuracy in each column is high-
lighted in bold. SR: (Liu et al., 2024b)

Methods DVS-CIFAR10 DVS-Gesture
Clean FGSM PGD Clean FGSM PGD

SNN 76.30 17.20 5.00 95.49 39.24 9.72
SR 75.50 64.60 61.20 - - -

DSD 75.10 65.80 61.20 93.75 90.28 55.21

White box attack in DVS datasets. In DVS
datasets, we trained the model and performed
inference under FGSM and PGD attacks by di-
rectly perturbing the preprocessed event frames,
as implemented in (Liu et al., 2024b). It can be
seen from Table 4 that our method also demon-
strates excellent robustness when dealing with
the DVS dataset, surpassing SOTA method SR.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 8 16 32 64 128

0

5

10

15

20

25
 SNN PGD White Box

 SNN PGD Black Box

T
e

s
t

A
c
c
.

(%
)

e (/255)

(a) CIFAR-10 (b) CIFAR-100 (c) TinyImageNet (d) ImageNet

0 8 16 32 64 128

0

20

40

60

80

 DSD FGSM White Box

 DSD FGSM Black Box

T
e

s
t

A
c
c
.

(%
)

e (/255)

0 8 16 32 64 128

0

10

20

30

40 DSD PGD White Box

 DSD PGD Black Box

T
e

s
t

A
c
c
.

(%
)

e (/255)

0 8 16 32 64 128

0

5

10

15

20

25

30
 SNN FGSM White Box

 SNN FGSM Black Box

T
e

s
t

A
c
c
.

(%
)

e (/255)

Figure 4: Performance comparison in different white box and black box attacks.

Black box attack. Black box adversarial examples are generated using the substitute-model approach
in this experiment. We evaluated DSD’s resilience across a range of perturbation magnitudes and
compared its performance to that of a vanilla SNN under the same attack strengths. Fig. 4 visualizes
these results, and the complete experimental data are provided in Appendix F. Across all four
dashed-line baselines, DSD consistently achieves substantially higher accuracy than the vanilla
model, demonstrating its effectiveness against diverse black box threat scenarios.

4.2 PERFORMANCE IN HETEROGENEOUS TRAINING

Comparison with SOTA Methods. Building on the effectiveness of DSD under homogeneous
training, we further examine its behavior under heterogeneous training conditions. We compare DSD
against SOTA methods, including RAT (Ding et al., 2022), DLIF (Ding et al., 2024a), and FEEL (Xu
et al., 2024). The results are represented by float bar figures as Fig. 5, with detailed numerical values
provided in Appendix F. As illustrated in the figure, DSD exhibits the least performance degradation
under hetero-training (i.e., it produces the shortest floating bars), and moreover achieves clearly
higher absolute accuracy than all competing methods under batch injections with b = 1. These
findings demonstrate that DSD effectively mitigates the model collapse induced by hetero-training,
outperforming existing approaches.

(a) CIFAR-10, c/+p_0

DSD SNN RAT DLIF FEEL DSD SNN RAT DLIF FEEL DSD SNN RAT DLIF FEEL DSD SNN RAT DLIF FEEL

80

60

40

20

0 0

10

20

30

40

50

60

70

(b) CIFAR-10, p/+c_0 (c) CIFAR-100, c/+p_0 (d) CIFAR-100, p/+c_0

Clean FGSM PGD

A
c
c
.
(%

)

Figure 5: Performance degradation comparison in hetero-training. Following the protocol of Sec. 3.1,
we define two poisoning schemes: c/+p 0 and p/+c 0. In c/+p 0, training with clean data, beginning
at epoch 0, we inject b = 0, 1 FGSM–perturbed (ϵ = 2/255) batches at the end of each epoch; p/+c 0
is defined analogously: trained with perturbed data and injected with clean data. Subfigures (a), (b)
and (c), (d) are vertically aligned, with each pair sharing the same y-axis. For any floating bar in the
figure, the top represents the accuracy at (b = 0), the bottom represents the accuracy at (b = 1), and
the bar length indicates the degree of performance degradation. For some methods under PGD, the
floating bars are barely visible because their accuracies at both (b=0) and (b=1) are nearly zero.

DSD’s Resilience in Different Heterogeneous Intensities. Furthermore, we evaluate the maximum
poisoning intensity that DSD can tolerate under hetero-training. In this experiment, we inject different
numbers of heterogeneous batches (b = 1, 2, 5) to measure the extent of performance degradation.
The results, including the performance degeneration, visualized in Fig. 6, with detailed experimental
data in Appendix F, omit the vanilla SNN baselines due to their near-total failure under hetero-training.
Remarkably, DSD maintains strong resilience across all settings, with no instance of full collapse.
Even at the highest poisoning strength (b = 5), DSD sustains a 30% accuracy on CIFAR-10 under
FGSM inference, demonstrating that DSD can withstand high-intensity hetero-training and further
indicates its ability to remain robust under realistic batch-level data poisoning scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5b =

20

40

60

80

TinyImageNetCIFAR-100CIFAR-10 ImageNet TinyImageNetCIFAR-100CIFAR-10 ImageNet

A
c
c
.
(%

)

Clean

FGSM

PGD

Hetero-training: c/+p_0 Hetero-training: p/+c_0

Figure 6: DSD performance in hetero-training. All subfigures share the same y-axis.

4.3 HESSIAN EIGENVALUE EVALUATION

In this experiment, we compare the Hessian eigenvalue of the DSD-trained model against those of a
vanilla SNN during inference. Specifically, for each inference batch, we compute two metrics: (i).
λmax(H): The spectral radius of the Hessian; (ii). Pr(H): The proportion of λmax(H) within the
top-five eigenvalues, serving as an indicator of the overall smoothness of the loss landscape. The
details for this experiment are provided in Appendix B.2. Table 4 reports both metrics under three
distinct adversarial attack scenarios. Across all cases, DSD consistently achieves a lower λmax(H)
and markedly reduces its proportional presence among the top-five eigenvalues. These findings
corroborate our theoretical design, demonstrating that DSD indeed reduces the Hessian spectral
radius, smooths the Hessian sharpness, and underpins its robustness enhancements.

Table 4: Hessian eigenvalue evaluation. The smaller λmax(H) and Pr(H) are, the better.

Methods CIFAR-10 CIFAR-100 TinyImageNet ImageNet
λmax(H) Pr(H) λmax(H) Pr(H) λmax(H) Pr(H) λmax(H) Pr(H)

Clean Inference
SNN 261.94 0.98 187.49 0.41 2077.09 0.60 174.88 0.43
DSD 209.90 ▼ 52.04 0.35 ▼ 0.63 135.55 ▼ 51.94 0.30 ▼ 0.11 1802.80 ▼ 274.29 0.51 ▼ 0.09 110.56 ▼ 64.32 0.33 ▼ 0.10

FGSM Inference
SNN 269.90 1.15 190.82 0.46 1998.11 0.61 162.57 0.44
DSD 218.27 ▼ 51.63 0.38 ▼ 0.77 132.01 ▼ 58.81 0.29 ▼ 0.17 1767.57 ▼ 230.54 0.50 ▼ 0.11 111.77 ▼ 50.80 0.32 ▼ 0.12

PGD Inference
SNN 265.47 1.03 200.11 0.46 2072.77 0.62 174.16 0.41
DSD 202.89 ▼ 62.58 0.35 ▼ 0.68 143.07 ▼ 57.04 0.30 ▼ 0.16 1793.12 ▼ 279.65 0.56 ▼ 0.06 113.73 ▼ 60.43 0.32 ▼ 0.09

4.4 INSPECTION OF GRADIENT OBFUSCATION

Next, we examine whether DSD suffers from gradient obfuscation (Athalye et al., 2018). For items
(1) and (2) in Table 5, Fig. 3 presents DSD’s accuracy under FGSM and PGD attacks across a
range of perturbation bounds, as well as a side-by-side comparison of white box versus black box
performance. It is clear that DSD is consistently more vulnerable to iterative PGD than to single-step
FGSM, and that white box attacks inflict greater degradation than black box attacks. Items (3) and (4)
are also evident in Fig. 3: as the perturbation limit increases, DSD’s accuracy drops sharply, even
reaching 0% under several settings. Fig. 7 further corroborates this trend, showing that although
DSD’s performance progressively worsens with more PGD iterations, it eventually converges to a
steady minimum. Item (5) indicates that gradient-based attacks fail to locate adversarial examples;
however, our results in Fig. 3 demonstrate the opposite—both FGSM and PGD continue to fool DSD
despite the training. In short, DSD does not utilize gradient obfuscation to achieve false robustness.

Table 5: Checklist for identifying gradient obfuscation.

Characteristics to identify gradient obfuscation Pass?
(1) Single-step attack performs better compared to iterative attacks ✓
(2) Black-box attacks perform better compared to white-box attacks ✓
(3) Increasing perturbation bound can’t increase attack strength ✓
(4) Unbounded attacks can’t reach 100% success ✓
(5) Adversarial example can be found through random sampling ✓

0 7 15 20 30 40 50 60 70 80
0

20

40

60

80
 SNN SNN+AT

 DSD DSD+AT

T
e

s
t

A
c
c
.

(%
)

K (with e=8/255)

Figure 7: Acc. under different K.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORK

SNN Defensive Methods. Direct encoding with BPTT is the prevailing paradigm for SNN training
(Wu et al., 2018; Deng et al., 2022; Meng et al., 2023; Xiao et al., 2022; Wang et al., 2023), which
improves efficiency but sacrifices the robustness inherent to rate encoding. To counteract this
vulnerability, prior studies have explored input noise injection (Kundu et al., 2021), adversarial
training with Lipschitz regularization (Ding et al., 2022), gradient sparsity regularization (Liu et al.,
2024b), stochastic gating mechanisms (Ding et al., 2024b), randomized smoothing coding (Wu et al.,
2024), noise sensitivity regularization (Zheng et al., 2023), adaptive leak dynamics (Xu et al., 2024),
and modified objectives to suppress membrane potential perturbations (Ding et al., 2024a). While
these methods improve robustness empirically, they do not address the underlying mechanism by
which direct encoding with BPTT induces vulnerability.

Beyond SNNs. Related ideas of suppressing dominant directions have been studied in the broader
context of SNNs. Classical works control spectral growth through Parseval networks (Cisse et al.,
2017) or spectral norm regularization (Yoshida & Miyato, 2017), while Lipschitz-margin training
(Tsuzuku et al., 2018) and Jacobian regularization (Hoffman et al., 2019) constrain large singular
values of Jacobians. Recent efforts further reduce sharpness via SAM (Foret et al., 2020) or project
adversarial inputs back to the data manifold using generative defenses (Meng & Chen, 2017; Saman-
gouei et al., 2018). Yet existing methods typically act indirectly, depend on auxiliary models, or
require sensitive hyperparameters that hinder deployment. By contrast, DSD operates directly in
gradient space, deterministically removing the dominant singular component to suppress the principal
curvature contributor while provably preserving descent. Being hyperparameter-free and readily
practicable, DSD offers a simple yet principled mechanism for enhancing SNN robustness.

6 CONCLUSION AND DISCUSSION

Conclusion. In this paper, we experimentally demonstrate that SNNs trained with direct encoding and
BPTT can undergo catastrophic model collapse when hetero-training which is common in real-world
scenarios. Through theoretical analysis, we show that the repeated inputs of direct encoding combined
with gradient accumulation in BPTT induce extremely large spectral radius in the Hessian matrix
of the loss function, causing the model parameters to become trapped in precarious local minima.
Motivated by these insights, we propose a hyperparameter-free method named Domaint Singular
Deflation (DSD): by orthogonally projecting gradients to precisely eliminate their dominant singular
components, DSD effectively reduces the Hessian spectral radius. Extensive evaluations under both
homogeneous and heterogeneous training conditions demonstrate that DSD substantially enhances
SNN robustness, paving the way for safer and more reliable deployments.

Limitation. The gradient-based adjustment inherent to DSD induces a deliberate divergence between
the gradients actually applied during training and those that would be obtained under an ideal,
unmodified regime. While this adjustment markedly bolsters SNNs’ robustness, it unavoidably incurs
a slight degradation in accuracy when evaluated on unperturbed data. This limitation is also prevalent
in existing SOTA methods (Ding et al., 2024b;a; Geng & Li, 2023; Xu et al., 2024) according to
Table 1, this calls for more extensive and in-depth future research to overcome.

REPRODUCIBILITY STATEMENT

The complete code with fixed random seed utilized in this work is provided in the supplementary
materials and will be made publicly available after this paper is published. All datasets employed
in this research, including CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet, DVS-CIFAR10, and
DVS-Gesture are publicly accessible. Details regarding the hardware, coding environment, and
hyperparameter settings used in our experiments are also included in the Appendix. We dedicate to
enable researchers to reproduce the results presented in this paper using similar computational setups.

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

event-based gesture recognition system. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7243–7252, 2017.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
Nature communications, 11(1):3625, 2020.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International conference on machine learning, pp.
1059–1071. PMLR, 2021.

Xu Cheng, Hao Zhang, Yue Xin, Wen Shen, Jie Ren, and Quanshi Zhang. Why adversarial training
of relu networks is difficult? arXiv preprint arXiv:2205.15130, 2022.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International conference on machine
learning, pp. 854–863. PMLR, 2017.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–2216.
PMLR, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. Snn-rat: Robustness-enhanced
spiking neural network through regularized adversarial training. Advances in Neural Information
Processing Systems, 35:24780–24793, 2022.

Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking neural
networks. arXiv preprint arXiv:2405.20694, 2024a.

Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K Liu. Enhancing the robustness of spiking neural
networks with stochastic gating mechanisms. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 492–502, 2024b.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Hejia Geng and Peng Li. Hosnn: Adversarially-robust homeostatic spiking neural networks with
adaptive firing thresholds. arXiv preprint arXiv:2308.10373, 2023.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–2241.
PMLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization. arXiv
preprint arXiv:1908.02729, 2019.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and
Bojun Cheng. Clif: Complementary leaky integrate-and-fire neuron for spiking neural networks.
arXiv preprint arXiv:2402.04663, 2024.

Xiaoyang Jiang, Qiang Zhang, Jingkai Sun, Jiahang Cao, Jingtong Ma, and Renjing Xu. Fully
spiking neural network for legged robots. In ICASSP 2025-2025 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness of
energy-efficient deep spiking neural networks by training with crafted input noise. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 5209–5218, 2021.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99–112. Chapman and Hall/CRC, 2018.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy.
Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in
neuroscience, 14:497482, 2020.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:244131, 2017.

Shiqiang Liu, Weisheng Li, Dan He, Guofen Wang, and Yuping Huang. Ssefusion: Salient semantic
enhancement for multimodal medical image fusion with mamba and dynamic spiking neural
networks. Information Fusion, 119:103031, 2025.

Yanzhen Liu, Zhijin Qin, and Geoffrey Ye Li. Energy-efficient distributed spiking neural network for
wireless edge intelligence. IEEE Transactions on Wireless Communications, 2024a.

Yujia Liu, Tong Bu, Jianhao Ding, Zecheng Hao, Tiejun Huang, and Zhaofei Yu. Enhancing
adversarial robustness in snns with sparse gradients. arXiv preprint arXiv:2405.20355, 2024b.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp.
135–147, 2017.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6166–6176, 2023.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yi Pan, Hanqi Jiang, Junhao Chen, Yiwei Li, Huaqin Zhao, Yifan Zhou, Peng Shu, Zihao Wu,
Zhengliang Liu, Dajiang Zhu, et al. Eg-spikeformer: Eye-gaze guided transformer on spiking
neural networks for medical image analysis. arXiv preprint arXiv:2410.09674, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Pouya Samangouei, Maya Kabkab, and R Defense-GAN Chellappa. Protecting classifiers against
adversarial attacks using generative models. arxiv 2018. arXiv preprint arXiv:1805.06605, 1, 2018.

Albert Shalumov, Raz Halaly, and Elishai Ezra Tsur. Lidar-driven spiking neural network for collision
avoidance in autonomous driving. Bioinspiration & Biomimetics, 16(6):066016, 2021.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. Advances in neural information processing
systems, 31, 2018.

Alberto Viale, Alberto Marchisio, Maurizio Martina, Guido Masera, and Muhammad Shafique.
Carsnn: An efficient spiking neural network for event-based autonomous cars on the loihi neuro-
morphic research processor. In 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–10. IEEE, 2021.

Jingtao Wang, Zengjie Song, Yuxi Wang, Jun Xiao, Yuran Yang, Shuqi Mei, and Zhaoxiang Zhang.
Ssf: Accelerating training of spiking neural networks with stabilized spiking flow. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991, 2023.

Keming Wu, Man Yao, Yuhong Chou, Xuerui Qiu, Rui Yang, Bo Xu, and Guoqi Li. Rsc-snn:
Exploring the trade-off between adversarial robustness and accuracy in spiking neural networks
via randomized smoothing coding. In Proceedings of the 32nd ACM International Conference on
Multimedia, pp. 2748–2756, 2024.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. Advances in neural information processing systems, 35:
20717–20730, 2022.

Mengting Xu, De Ma, Huajin Tang, Qian Zheng, and Gang Pan. Feel-snn: Robust spiking neural
networks with frequency encoding and evolutionary leak factor. Advances in Neural Information
Processing Systems, 37:91930–91950, 2024.

Qi Xu, Yaxin Li, Jiangrong Shen, Pingping Zhang, Jian K Liu, Huajin Tang, and Gang Pan. Hierar-
chical spiking-based model for efficient image classification with enhanced feature extraction and
encoding. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pp.
581–590. IEEE, 2020.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541, 2018.

Guanlei Zhang, Lei Feng, Fanqin Zhou, Zhixiang Yang, Qiyang Zhang, Alaa Saleh, Praveen Kumar
Donta, and Chinmaya Kumar Dehury. Spiking neural networks in intelligent edge computing.
IEEE Consumer Electronics Magazine, 2024.

Wendong Zheng, Yu Zhou, Gang Chen, Zonghua Gu, and Kai Huang. Towards effective training of
robust spiking recurrent neural networks under general input noise via provable analysis. In 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rui-Jie Zhu, Ziqing Wang, Leilani Gilpin, and Jason Eshraghian. Autonomous driving with spiking
neural networks. Advances in Neural Information Processing Systems, 37:136782–136804, 2024.

Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, Qiang Yang, and Ya-Qin
Zhang. Defending batch-level label inference and replacement attacks in vertical federated learning.
IEEE Transactions on Big Data, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADVERSARIAL ATTACK DETAILS AND CONFIGURATIONS

FGSM. FGSM is a simple yet effective technique to generate adversarial examples. In FGSM, given
an input x with its true label y, a perturbation is computed in the direction of the gradient of the loss
function with respect to x. The perturbation is defined as:

δ = ϵ · sign (∇xL(f(x), y)) . (16)

where ϵ controls the magnitude of the perturbation and h(x) represents the model’s output. The
adversarial example is then constructed as x+ δ, which is designed to force the model into misclassi-
fication.

PGD. PGD is an iterative method for generating adversarial examples and can be regarded as an
extension of the FGSM. PGD updates the adversarial example iteratively by performing a gradient
ascent step and then projecting the result back onto the feasible set defined by the Lp-norm constraint.
Formally, the update rule is given by:

xt+1 = ΠB(x,ϵ)

(
xt + α · sign

(
∇xL(f(xt), y)

))
. (17)

where α denotes the step size, L(f(xt), y) is the loss function of the model h with true label
y, and ΠB(x,ϵ) is the projection operator that projects the perturbed example back into the ball
B(x, ϵ) = {x′ : ∥x′ − x∥p ≤ ϵ}. By iterating this process, PGD effectively seeks a perturbation
that maximizes the loss while ensuring that the adversarial example remains within the specified
perturbation budget.

APGD. Auto-PGD (APGD) (Croce & Hein, 2020) is an iterative adversarial attack based on PGD,
equipped with an adaptive step-size strategy and a momentum-like update. Given a perturbation
budget ϵ, the APGD update is defined as

xt+1 = ΠB(x,ϵ)

(
xt + αt · sign

(
∇xL(f(x

t), y)
))

, (18)

where αt denotes the step size at iteration t. APGD further maintains an auxiliary momentum
variable:

zt = xt + βt(x
t − xt−1), xt+1 = ΠB(x,ϵ)

(
zt + αt · sign

(
∇xL(f(z

t), y)
))

, (19)

where βt is the momentum coefficient.

Hyperparameters. For these attack methods, we set ϵ = 8/255 for all experimental cases. For PGD,
step size α = 0.01 and step number K = 7. For APGD, there are two loss versions: APGDCE
(Cross Entropy loss) and APGDDLR (Difference of Logits Ratio loss), we use the L∞-bounded
setting with perturbation budget ϵ = 8/255, initial step size α0 = 2/255.

B EXPERIMENTAL SETTING

B.1 SETTINGS FOR PRELIMINARY EXPERIMENTS

In this section, we detail the network architectures and hyperparameter settings used in the preliminary
experiments of Sec. 3.1. Any configurations not mentioned here are identical to those in the main
experiments (Appendix B.2). For Fig. 2(a), we set the number of epochs to 50, adopt Poisson
encoding for rate encoding (Lee et al., 2020), and use a standard convolutional neural networks
(CNN) for ANN. All experiments in Figs.2(a–c) employ the hyperparameters listed in Table 6. Direct
encoding is performed with T = 4, while rate encoding uses T = 64.

Table 6: Hyperparameter settings for preliminary experiments.

Dataset Optimizer LeaningRate WeightDecay BatchSize
CIFAR-10 SGD 0.1 5e-5 128

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 SETTINGS FOR MAIN EXPERIMENTS

In our main experiments, all training cases are implemented using PyTorch (Paszke, 2019) with the
SpikingJelly (Fang et al., 2023) framework and executed on an NVIDIA GeForce RTX 5090 GPU.
For each dataset, we utilize the hyperparameters listed as Table 7, consistently employing the SGD
optimizer and setting the membrane time constant τ to 1.1. We leverage the PyHessian framework
(Yao et al., 2020) to compute Hessian eigenvalues1.

Table 7: Hyperparameter settings for experiments. *(Brock et al., 2021)

Dataset Model LeaningRate WeightDecay Epoch BatchSize TimeStep
CIFAR-10 VGG-11 0.1 5e-5 300 128 4
CIFAR-100 VGG-11 0.1 5e-4 300 128 4

TinyImageNet VGG-16 0.1 5e-4 300 128 4
ImageNet NF-ResNet-18* 0.1 1e-5 100 512 4

ImageNet (AT) ResNet-18 0.1 1e-5 100 512 4
DVS-CIFAR10 VGG-11 0.05 5e-4 200 128 10
DVS-Gesture VGG-11 0.05 5e-4 200 8 20

C ANALYSIS OF BOUNDED BPTT FACTORS UNDER LIF DYNAMICS

We make explicit why the constants in the inequalities ∥Gt∥ ≤ CG, ∥Dt∥ ≤ CD,
∥∥∂V l+1

i+1

∂V l+1
i

+

∂V l+1
i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

∥∥ ≤ ρ < 1 exist and are independent of t and T .

(i) Bound on Gt. Write Gt = ∂L

∂Sl+1
t

∂Sl+1
t

∂V l+1
t

. Let ϕ(·) be the surrogate nonlinearity for spikes,

with |ϕ′(u)| ≤ κ (e.g., sigmoid with slope β gives κ ≤ β/4; piecewise-linear surrogates have a
fixed maximal slope). For standard losses,

∥∥∂L
∂z

∥∥ ≤ Closs uniformly in the logits z: for softmax
cross-entropy, Hz = ∇2

zL = Diag(p) − pp⊤ ⪰ 0 gives
∥∥∂L

∂z

∥∥ ≤ 1 and ∥Hz∥ ≤ 1
4 (binary)

or ≤ 1
2 (multi-class). Since ∂L

∂Sl+1
t

= ∂L

∂zl+1
t

∂zl+1
t

∂Sl+1
t

and the readout weights are kept bounded by

regularization/clipping,
∥∥ ∂zl+1

t

∂Sl+1
t

∥∥ ≤ Λout. Therefore,

∥Gt∥ =
∥∥∥ ∂L

∂Sl+1
t

∂Sl+1
t

∂V l+1
t

∥∥∥ ≤ ClossΛout · κ = CG, (20)

a uniform bound independent of t, T .

(ii) Bound on Dt. For a LIF layer, V l+1
t = αV l+1

t−1 + W l+1Sl
t + b (plus optional input term) in

practical code implementation (Fang et al., 2023), with α = 1− 1
τ ∈ (0, 1) . The local Jacobian w.r.t.

W l at time t is linear in the presynaptic spikes: Dt =
∂V l+1

t

∂W l = L(Sl
t) where ∥Sl

t∥ ≤ √
nin rmax

because spikes are binary and rmax ≤ 1. Hence there exists Cin such that

∥Dt∥ ≤ Cin = CD. (21)

(iii) Contraction of the recurrent Jacobian chain. For LIF,
∂V l+1

i+1

∂V l+1
i

= αI and
∂V l+1

i+1

∂Sl+1
i

= W l+1, while
∂Sl+1

i

∂V l+1
i

= ϕ′(V l+1
i) with ∥ϕ′∥∞ ≤ κ. Therefore∥∥∥∂V l+1

i+1

∂V l+1
i

+
∂V l+1

i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

∥∥∥ ≤ α+ ∥W l+1∥κ. (22)

1Hyperparameters set as default: maxIter = 100, tol = 1e−3, where maxIter: maximum iterations used
to compute each single eigenvalue, tol: the relative tolerance between two consecutive eigenvalue computations
from power iteration.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Imposing a spectral-norm control ∥W l+1∥ ≤ Λ with α+ κΛ < 1 yields a uniform contraction rate

ρ = α+ κΛ < 1, (23)

so that every time-local Jacobian factor and their products satisfy ∥Jk:t−1∥ ≤ ρ t−k.

(iv) Bound on the readout Jacobian Bt. Let zt denote the logits at time t and Bt =
∂zt

∂V l+1
t

. The

readout in SNNs is typically linear w.r.t. a hidden state ht (either the membrane potential V l+1
t or the

spike Sl+1
t):

zt = Wout ht + b, ht ∈ {V l+1
t , Sl+1

t = ϕ(V l+1
t) }, (24)

and z = 1
αT

∑T
t=1 zt with αT ≥ 1 (e.g., αT = T for averaging). Let Λout = ∥Wout∥ (controlled by

weight decay / clipping / spectral normalization), and let κ := supu |ϕ′(u)| be the maximal slope of
the surrogate nonlinearity ϕ.

• Case 1 (direct-V readout). If ht = V l+1
t , then Bt =

∂zt
∂V l+1

t

= Wout, hence

∥Bt∥ ≤ ∥Wout∥ = Λout. (25)

• Case 2 (spike readout). If ht = Sl+1
t = ϕ(V l+1

t), then Bt = ∂zt
∂Sl+1

t

∂Sl+1
t

∂V l+1
t

=

Wout ϕ
′(V l+1

t), hence

∥Bt∥ ≤ ∥Wout∥ ∥ϕ′(V l+1
t)∥ ≤ Λout κ. (26)

Combining the cases, there exists a uniform constant

CB = κΛout (27)

such that ∥Bt∥ ≤ CB for all t, independent of T . Consequently, ∥Ht∥ = ∥B⊤
t Hz,tBt∥ ≤

C2
B ∥Hz,t∥ ≤ C2

BCz .

(v) Bound on Hz,t. For softmax cross-entropy, Hz,t = Diag(pt)− ptp
⊤
t has ∥Hz,t∥ ≤ 1

2 (and ≤ 1
4

for binary); for squared loss, ∥Hz,t∥ ≤ 1. Hence there exists a global Cz < ∞ with ∥Hz,t∥ ≤ Cz

for all t.

(vi) Bound on JW
t . We now show why the bound ∥JW

t ∥ ≤ CD

1−ρ = CJ holds. Recall that
∥Dk∥ ≤ CD for all k, and ∥Jk:t−1∥ ≤ ρ t−k with ρ ∈ (0, 1). Using the triangle inequality and the
sub-multiplicativity of the operator norm, we obtain

∥JW
t ∥ =

∥∥∥Dt +
∑
k<t

Jk:t−1Dk

∥∥∥
≤ ∥Dt∥+

∑
k<t

∥Jk:t−1Dk∥

≤ CD +
∑
k<t

∥Jk:t−1∥ ∥Dk∥

≤ CD +
∑
k<t

ρ t−k CD

= CD

(
1 +

t−1∑
q=1

ρq
)

≤ CD

∞∑
q=0

ρq

=
CD

1− ρ
= CJ .

(28)

Here we re-indexed with q = t − k and used the geometric series bound
∑∞

q=0 ρ
q = 1

1−ρ . Thus
∥JW

t ∥ is uniformly bounded by CJ , independent of t and T .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D DATASET

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each of
size 32×32 pixels, divided into 10 different classes, such as airplanes, cars, birds, cats, and dogs. Each
class has 6,000 images, with 50,000 images used for training and 10,000 for testing. Normalization,
random horizontal flipping, random cropping with 4 padding, and CutOut (DeVries & Taylor, 2017)
are applied for data augmentation.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each
of size 32×32 pixels, categorized into 100 different classes. Each class contains 600 images, with
500 used for training and 100 for testing. The same processing methods as for dataset CIFAR-10 are
applied to dataset CIFAR-100.

Tiny-ImageNet. The Tiny-ImageNet dataset is a scaled-down version of the ImageNet dataset (Deng
et al., 2009). It contains 200 different classes, with 500 training images and 50 testing images per
class, resulting in a total of 100,000 training images and 10,000 testing images. Each image is resized
to 64×64 pixels. Normalization, random horizontal flipping, and random cropping with 4 padding
are applied for data augmentation for the Tiny-ImageNet dataset.

ImageNet. We evaluate on the ILSVRC-2012 ImageNet dataset (Deng et al., 2009), which contains
∼1.28M training images and 50,000 validation images spanning 1,000 classes. Images are of variable
resolution; following common practice and our implementation, training augmentation includes
RandomResizedCrop to 224× 224, RandomHorizontalFlip, conversion to tensors, and channel-wise
normalization. For test, images are resized to have a shorter side of 256 pixels and then center-cropped
to 224× 224 before applying the same normalization.

DVS-CIFAR10. The DVS-CIFAR-10 dataset (Li et al., 2017) is a neuromorphic version of the
traditional CIFAR-10 dataset. DVS-CIFAR10 captures the visual information using a Dynamic Vision
Sensor (DVS), which records changes in the scene as a series of asynchronous events rather than as
a sequence of frames. The dataset consists of recordings of 10 object classes, corresponding to the
original CIFAR-10 categories, with each object presented in front of a DVS camera under various
conditions. The dataset contains 10,000 128×128 images, of which 9,000 are used as the training set
and the remaining 1,000 as the test set.

DVS-Gesture. The DVS-Gesture dataset (Amir et al., 2017) is a neuromorphic dataset, consisting of
11 different hand gesture classes, such as hand clapping, arm rolling, and air guitar, performed by 29
subjects under various lighting conditions. Each gesture is represented by a sequence of events rather
than frames. The dataset contains 1,176 training samples and 288 testing samples.

E EVALUATION OF ADDITIONAL TRAINING COMPUTATIONAL OVERHEAD

During training, we benchmarked its SVD overhead against a vanilla SNN using a VGG-11 framework.
Our measurements, as Table 8, show no increase in memory usage, and on an NVIDIA GeForce RTX
4070 Ti, DSD adds only around 0.1s of extra training time per batch, this is nearly neglectable. In
summary, although DSD does introduce slight training overhead, the increase is minimal.

Table 8: Computational overhead evaluation.

Dataset BatchSize BatchNum DSD Memory AvgTime
perEpoch

AvgTime
perBatch

CIFAR-10, 100 128 390
✗ 1.4102GB 34s 0.0872s
✓ 1.4102GB 63s 0.1616s ▲ 0.0743

DVS-CIFAR10 128 71
✗ 5.1797GB 38s 0.5352s
✓ 5.1797GB 46s 0.6479s ▲ 0.1127

DVS-Gesture 8 73
✗ 8.4727GB 63s 0.8630s
✓ 8.4727GB 70s 0.9589s ▲ 0.0959

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Performance of DSD with different attack methods (%). This is detailed experimental results
for Fig. 4.

Attack ϵ = 0 2 4 6 8 16 32 64 128
CIFAR-10

SNN FGSM WB 93.75 17.06 14.22 11.78 8.19 4.21 1.99 0.58 0.00
SNN FGSM BB 93.75 24.13 18.41 13.86 10.26 7.88 3.82 1.48 0.59
SNN PGD WB 93.75 2.37 1.01 0.34 0.03 0.00 0.00 0.00 0.00
SNN PGD BB 93.75 4.01 2.80 1.20 0.89 0.02 0.00 0.00 0.00
DSD FGSM WB 90.21 59.75 58.22 57.00 55.86 50.36 39.82 26.61 8.01
DSD FGSM BB 90.21 81.42 79.37 76.65 74.90 67.18 49.30 31.09 12.81
DSD PGD WB 90.21 40.78 37.46 34.50 31.44 22.04 6.36 0.03 0.00
DSD PGD BB 90.21 57.88 54.09 47.80 43.15 30.73 12.11 0.91 0.24

CIFAR-100
SNN FGSM WB 72.39 9.37 7.42 5.46 4.55 2.35 1.19 0.33 0.00
SNN FGSM BB 72.39 13.26 12.11 10.84 9.16 5.31 2.07 1.47 0.49
SNN PGD WB 72.39 2.53 1.15 0.50 0.19 0.02 0.00 0.00 0.00
SNN PGD BB 72.39 3.65 2.68 1.89 0.78 0.15 0.02 0.00 0.00
DSD FGSM WB 70.26 27.89 26.65 24.83 23.81 14.81 8.38 3.36 0.20
DSD FGSM BB 70.26 40.89 38.67 35.67 31.55 21.63 13.31 9.03 1.01
DSD PGD WB 70.26 20.52 15.78 12.35 8.09 2.37 0.00 0.00 0.00
DSD PGD BB 70.26 27.99 26.01 23.84 18.37 9.01 1.07 0.00 0.00

TinyImageNet
SNN FGSM WB 56.82 9.42 7.60 4.82 3.51 1.53 0.67 0.00 0.00
SNN FGSM BB 56.82 16.27 15.59 13.69 12.46 8.20 4.80 2.74 1.28
SNN PGD WB 56.82 2.98 1.46 0.89 0.14 0.00 0.00 0.00 0.00
SNN PGD BB 56.82 4.07 2.99 2.12 1.67 0.99 0.46 0.00 0.00
DSD FGSM WB 54.54 22.80 21.74 21.00 19.50 12.66 6.58 1.58 0.02
DSD FGSM BB 54.54 34.63 31.02 29.40 27.68 20.22 10.35 3.20 1.38
DSD PGD WB 54.54 18.42 15.70 13.22 12.02 5.78 2.96 0.20 0.00
DSD PGD BB 54.54 24.92 20.66 16.82 14.84 6.55 4.47 2.10 0.25

ImageNet
SNN FGSM WB 57.84 10.75 8.59 6.73 4.99 1.56 0.14 0.01 0.00
SNN FGSM BB 57.84 12.13 11.43 10.25 8.46 5.42 3.93 1.25 0.35
SNN PGD WB 57.84 1.02 0.48 0.13 0.01 0.00 0.00 0.00 0.00
SNN PGD BB 57.84 9.19 6.05 4.06 3.67 2.02 1.79 0.05 0.00
DSD FGSM WB 53.47 18.62 17.31 15.65 14.69 10.98 5.30 2.01 0.02
DSD FGSM BB 53.47 27.68 25.58 24.44 22.40 16.24 8.96 4.90 2.16
DSD PGD WB 53.47 11.63 8.12 6.33 4.30 2.97 1.50 0.00 0.00
DSD PGD BB 53.47 16.10 12.22 8.33 5.68 4.09 1.67 0.20 0.04

F DETAILED EXPERIMENTAL RESULT

In this section, we present the full experimental results underlying Figs. 4, 5, 6, and 7 as Tables 9, 11,
and 12, respectively, from the main text.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Comparison of hetero-training performance degradation (%). This is detailed experimental
results for Fig. 5, where ”*” indicates self-implementation.

Methods b
CIFAR-10, c/+p 0 CIFAR-10, p/+c 0 CIFAR-100, c/+p 0 CIFAR-100, p/+c 0

Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

SNN
0* 93.75 8.19 0.03 91.16 38.20 14.07 72.39 4.55 0.19 69.69 16.31 8.49
1* 12.97 0.34 0.01 18.54 4.07 1.98 3.75 0.07 0.01 3.41 1.40 0.20

RAT (Ding et al., 2022)
0 93.01* 12.63* 0.05* 90.74 45.23 21.16 71.00* 5.77* 0.15* 70.89 25.86 10.38

1* 27.24 8.76 0.03 29.01 27.67 8.00 19.20 2.59 0.04 20.11 10.78 3.81

DLIF (Ding et al., 2024a)
0 92.22 13.24 0.09 88.91 56.71 40.30 70.79 6.95 0.08 66.33 36.83 24.25

1* 18.40 3.50 0.02 14.75 19.02 5.74 9.98 1.02 0.02 11.40 8.02 2.97

FEEL (Xu et al., 2024)
0 93.29 44.96 28.35 90.20* 59.08* 39.87* 73.79 9.60 2.04 69.79 18.07 11.07

1* 20.01 8.19 2.77 13.99 17.50 7.07 12.84 2.00 0.10 13.86 9.39 1.89

DSD
0* 90.21 55.86 31.44 86.62 74.43 44.38 70.26 23.81 9.09 64.21 43.91 27.11
1* 40.58 33.70 22.87 38.61 40.09 20.77 27.40 12.54 3.97 22.08 19.16 13.71

Table 11: DSD performance in hetero-training (%). The data in parentheses represents the difference
from the baseline (b = 0). This is detailed experimental results for Fig. 6.

b
Hetero-training: c/+p 0 Hetero-training: p/+c 0

CIFAR-10 CIFAR-100 TinyImageNet ImageNet CIFAR-10 CIFAR-100 TinyImageNet ImageNet
Clean Inference

0 90.21 70.26 54.54 53.47 86.62 64.21 46.30 49.78
1 40.58 (-49.63) 27.40 (-42.86) 21.45 (-33.09) 23.54 (-29.93) 38.61 (-48.01) 22.08 (-42.13) 19.30 (-27.00) 22.69 (-27.09)
2 31.08 (-59.13) 12.76 (-57.50) 9.64 (-44.90) 10.53 (-42.94) 29.95 (-56.67) 11.58 (-52.63) 8.95 (-37.35) 9.03 (-40.75)
5 12.07 (-78.14) 4.18 (-66.08) 3.98 (-50.56) 5.67 (-47.80) 12.02 (-74.60) 3.77 (-60.44) 2.72 (-43.58) 3.44 (-46.34)

FGSM Inference
0 55.86 23.81 19.50 14.59 74.43 43.91 30.87 26.83
1 33.70 (-22.16) 12.54 (-11.27) 14.67 (-4.83) 11.45 (-3.14) 40.09 (-34.34) 19.16 (-24.75) 12.04 (-18.83) 11.68 (-15.15)
2 33.29 (-22.57) 13.70 (-10.11) 14.78 (-4.72) 11.12 (-3.47) 38.22 (-36.21) 17.31 (-26.60) 10.11 (-20.76) 8.64 (-18.19)
5 34.85 (-21.01) 14.93 (-8.88) 15.56 (-3.94) 11.86 (-2.73) 31.58 (-42.85) 8.49 (-35.42) 5.80 (-25.07) 3.10 (-23.73)

PGD Inference
0 31.44 9.09 12.02 4.30 44.38 27.11 18.21 9.12
1 22.87 (-8.57) 3.97 (-5.12) 8.89 (-3.13) 2.67 (-1.63) 20.77 (-23.61) 13.71 (-13.40) 12.44 (-5.77) 4.90 (-4.22)
2 21.23 (-10.21) 3.34 (-5.75) 8.67 (-3.35) 2.21 (-2.09) 18.72 (-25.66) 11.22 (-15.89) 11.90 (-6.31) 3.38 (-5.74)
5 21.69 (-9.75) 3.01 (-6.08) 9.02 (-3.00) 1.88 (-2.42) 14.31 (-30.07) 7.93 (-19.18) 8.78 (-9.43) 1.94 (-7.18)

Table 12: Performance comparison with different PGD step number on CIFAR-10 (%). This is
detailed experimental results for Fig. 7.

Method K = 7 10 15 20 30 40 50 60 70 80
SNN 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SNN (AT) 14.07 13.48 12.99 12.03 11.36 10.79 10.49 10.44 10.42 10.41
DSD 31.44 30.34 29.12 27.66 26.40 25.74 25.50 25.46 25.45 25.44

DSD (AT) 44.38 43.10 42.56 41.29 40.78 40.01 39.80 39.78 39.77 39.77

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G STATEMENT OF LARGE LANGUAGE MODEL (LLM) USAGE

In the preparation of this manuscript, an LLM was employed to assist with non-scientific tasks. These
included polishing the English writing for clarity and style, providing suggestions for figure design
and color schemes, supporting LATEX formatting and typesetting, and drafting this statement.

21

	Introduction
	Preliminary
	Analysis and Method
	Preliminary Experiment: Why SNN Model Collapses in Hetero-training?
	Reducing Spectral Radius via Dominant Singular Deflation

	Experiment
	Comparison with State-of-the-art (SOTA) in Homogeneous Training
	Performance in Heterogeneous Training
	Hessian Eigenvalue Evaluation
	Inspection of Gradient Obfuscation

	Related Work
	Conclusion and Discussion
	Adversarial Attack Details and Configurations
	Experimental Setting
	Settings for Preliminary Experiments
	Settings for Main Experiments

	Analysis of Bounded BPTT Factors Under LIF Dynamics
	Dataset
	Evaluation of Additional Training Computational Overhead
	Detailed Experimental Result
	Statement of Large Language Model (LLM) Usage

