

000 001 002 003 004 005 006 007 ROBUSTIFY SPIKING NEURAL NETWORKS VIA 008 DOMINANT SINGULAR DEFLATION UNDER 009 HETEROGENEOUS TRAINING VULNERABILITY 010 011

012 **Anonymous authors**
013 Paper under double-blind review
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030 Spiking Neural Networks (SNNs) process information via discrete spikes, enabling
031 them to operate at remarkably low energy levels. However, our experimental
032 observations reveal a striking vulnerability when SNNs are trained using the
033 mainstream method—direct encoding combined with backpropagation through
034 time (BPTT): even a single backward pass on data drawn from a slightly different
035 distribution can lead to catastrophic network collapse. We refer to this phenomenon
036 as the heterogeneous training vulnerability of SNNs. Our theoretical analysis
037 attributes this vulnerability to the repeated inputs inherent in direct encoding and
038 the gradient accumulation characteristic of BPTT, which together produce an
039 exceptional large Hessian spectral radius. To address this challenge, we develop
040 a hyperparameter-free method called **Dominant Singular Deflation** (DSD). By
041 orthogonally projecting the dominant singular components of gradients, DSD
042 effectively reduces the Hessian spectral radius, thereby preventing SNNs from
043 settling into sharp minima. Extensive experiments demonstrate that DSD not
044 only mitigates the vulnerability of SNNs under heterogeneous training, but also
045 significantly enhances overall robustness compared to key baselines, providing
046 strong support for safer SNNs. [Codes are available in the supplementary materials.](#)
047
048

1 INTRODUCTION

049 As an emerging brain-inspired computational paradigm, Spiking Neural Networks (SNNs) leverage
050 event-driven, discrete spike streams for feature representation (Maass, 1997). By eliminating the need
051 for pervasive and computationally intensive matrix multiplications of traditional Artificial Neural
052 Networks (ANNs), SNNs achieve remarkable computational efficiency and significantly lower energy
053 consumption (Pei et al., 2019; Meng et al., 2023). Owing to these inherent advantages, SNNs have
054 been applied across a diverse array of application domains, such as autonomous driving (Zhu et al.,
055 2024; Shalumov et al., 2021; Viale et al., 2021), edge computing (Liu et al., 2024a; Zhang et al.,
056 2024), image process (Liu et al., 2025; Pan et al., 2024), and robot control (Jiang et al., 2025).
057

058 In the practical deployment of SNNs, safety and reliability are of paramount importance, particularly
059 in terms of robustness against perturbations. Even subtle perturbations in the input data that are
060 imperceptible to human senses can trigger severely adverse and unpredictable network responses
061 (Ding et al., 2024a). To enhance the robustness of SNNs, existing studies predominantly adopt a
062 homogeneous training paradigm, where models are trained on data drawn from a single, uniform
063 distribution—for instance, vanilla training using only clean samples (Ding et al., 2024b;a; Geng
064 & Li, 2023; Ding et al., 2022), or adversarial training where all inputs are perturbed with equal
065 intensity (Ding et al., 2024b; Geng & Li, 2023; Liu et al., 2024b). However, such training settings
066 are idealized and do not reflect the variability and complexity of real-world data. In practical
067 scenarios, models are often required to learn from inherently unpredictable and heterogeneous data
068 distributions, as adversaries may employ a wide range of poisoning strategies to deliberately disrupt
069 distributional homogeneity. We refer to this more realistic paradigm as heterogeneous training (hetero-
070 training). Notably, from the perspective of the attacker, when the number of manipulable samples is
071 limited, concentrating these perturbed samples as a batch—rather than dispersing them sporadically
072 throughout the dataset—often leads to a more pronounced degradation of model performance (Zou
073 et al., 2022). When exposed to batch-level heterogeneity in the training data, we observe:

Figure 1: The vulnerability of SNNs in heterogeneous training.

Observation 1. *In SNN training phase, even a single backward pass with a slightly differently-distributed batch can trigger complete model collapse. As depicted in Fig. 1, SNNs trained on homogeneous datasets—whether comprised solely of clean samples or perturbed ones—exhibit a stable training trajectory. However, introducing just one batch of perturbed data into a clean dataset, or vice versa, leads to abrupt and catastrophic model collapse. We refer to this phenomenon as the heterogeneous training vulnerability of SNNs. (Sec. 3.1 presents a comprehensive analysis of the experimental results regarding the Observation 1.)*

This observation reveals a fundamental security risk in SNNs when dealing with training data that is inherently unpredictable and cannot be predefined—a scenario often encountered in real-world adversarial contexts (Goodfellow et al., 2014; Kurakin et al., 2018). This prompts these questions:

1. Why do SNNs experience model collapse in hetero-training?
- 💡 2. Without relying on input data manipulation, how to design an approach for SNNs that effectively mitigates the model collapse induced by hetero-training and enhance robustness?

Motivated by these questions, we propose a novel training method that enhances the robustness of SNNs under both homogeneous and heterogeneous training conditions. Specifically,

- We theoretically show that BPTT yields a Gauss-Newton Hessian with at most linear spectral growth, and that direct encoding makes this bound tight, explaining the abnormally large spectral radius underlying SNN hetero-training vulnerability.
- Building on these theoretical insights, we develop a hyperparameter-free Dominant Singular Deflation (DSD) method. By explicitly deflate the dominant singular components of gradients, DSD effectively reduces the Hessian spectral radius, thereby preventing the network from falling into sharp minima.
- Extensive experimental results demonstrate that DSD mitigates SNN vulnerabilities and significantly enhances robustness under both homogeneous and heterogeneous training conditions, outperforming key baselines and thereby ensuring greater safety in deployment.

2 PRELIMINARY

Spiking Neuron Dynamic. In SNNs, neurons emulate the spiking behavior of biological neurons to facilitate information transmission. One of the most prevalent nonlinear spiking neuron models in SNNs is the Leaky Integrate-and-Fire (LIF) neuron (Xu et al., 2022; Fang et al., 2021; Ding et al., 2022). The dynamics of a LIF neuron are described by Eq. (1), where I_t , V_t , and S_t represent the input current, membrane potential, and spike output at time t , respectively. Here, τ denotes the membrane time constant, V_{th} is the potential threshold, and Θ corresponds to the Heaviside function.

$$\tau \frac{dV_t}{dt} = -V_t + I_t, \quad S_t = \Theta(V_t - V_{\text{th}}). \quad (1)$$

Adversarial Attack. Given an input x with label y , adversarial examples are generated by finding a perturbation δ within an ℓ_p -norm ball of radius ϵ that maximizes the loss $\mathcal{L}(h(x + \delta), y)$. This optimization problem is formally expressed as:

$$\arg \max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(f(x + \delta), y). \quad (2)$$

In this paper, we employ two widely adopted adversarial attack methods in main experiments—Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) and Projected Gradient Descent (PGD) (Madry et al., 2017). Hyperparameter configurations are provided in Appendix A.

Figure 2: SNN model degradation under hetero-training and collapse curves. In (a), homogeneous training uses clean CIFAR-10 data, while hetero-training employs perturbed CIFAR-10 data. In (b) and (c), the “clean/+perturbation_10 (c/+p_10)” setting denotes homogeneous training on clean CIFAR-10 for the first 9 epochs, followed by hetero-training starting from epoch 10, during which one random batch per epoch is poisoned with perturbed data. Conversely, the “p/+c” setting denotes homogeneous training on perturbed data, with the heterogeneous phase poisoning one random batch per epoch using clean data. All perturbations are generated with FGSM on CIFAR-10 using $\epsilon = 2$.

3 ANALYSIS AND METHOD

In this section, we first present experimental results that demonstrate the model collapse phenomenon described in *Observation 1* and analyze why SNNs exhibit a disconcerting vulnerability in hetero-training (Sec. 3.1). Building on this analysis, we introduce the Dominant Singular Deflation method and provide a theoretical analysis explaining how our approach mitigates the vulnerabilities associated with hetero-training while simultaneously enhancing network robustness (Sec. 3.2).

3.1 PRELIMINARY EXPERIMENT: WHY SNN MODEL COLLAPSES IN HETERO-TRAINING?

We conduct controlled experiments to examine network collapse in SNNs under heterogeneous training across three core factors: training paradigm, encoding method, and network architecture. For training paradigms, we consider BPTT and SLTT (Spatial Learning Through Time (Meng et al., 2023)). BPTT backpropagates gradients through temporal multiplication, whereas SLTT eliminates the multiplicative terms in BPTT. For encoding methods, we evaluate direct encoding and rate encoding (Poisson). For network architectures, we adopt two widely used backbones: ResNet-18 and VGG-11. Further experimental settings are provided in Appendix B.1. Fig. 2(a) presents all combinations of these three factors, alongside ANN baselines, and compares their collapse behaviors under hetero-training. The most severe collapses: BPTT+ResNet-18+direct encoding and BPTT+VGG-11+direct encoding, are highlighted with red boxes, and both collapse to the point of exhibiting almost no effective training. From these comparisons, we draw the following observations:

Observation 2. (i). Under hetero-training, ANNs exhibit moderate degradation yet far from collapse, SLTT suffers much less collapse compared with BPTT. (ii). Direct encoding leads to far more severe collapse than rate encoding. (iii). Regarding architectures, both ResNet-18 and VGG-11 show comparable levels of degradation or collapse, suggesting that collapse is not tied to architecture.

To further illustrate this phenomenon, Fig. 2(b) and (c) display training curves of the BPTT+VGG-11+Direct Encoding combination when switching abruptly from homogeneous to heterogeneous training at different stages. In all cases, such a switch induces catastrophic collapse, manifested by an immediate drop in accuracy, a complete degradation in loss, and unstable oscillations thereafter. Taken together, these results suggest that the damage caused by hetero-training is independent of network architecture and training stage, but strongly dependent on the training paradigm (BPTT) and the encoding method (direct encoding).

This phenomenon suggests that, within a single epoch, the BPTT+direct encoding combination may intermittently drive the network parameters into extremely sharp local minima, characterized by an abnormally large spectral radius of the loss Hessian (Cheng et al., 2022). To interpret this behavior, we conduct an analysis in the context of SNN-specific properties as follows.

162
163 **Theorem 1** (Layer-wise GN spectral bound under BPTT with LIF neuron dynamics). *For the l -th*
164 *layer parameters W^l , the BPTT gradient expansion (Xiao et al., 2022; Huang et al., 2024) is*

$$165 \quad \frac{\partial L}{\partial W^l} = \sum_{t=1}^T \underbrace{\left[\underbrace{\frac{\partial L}{\partial S_t^{l+1}} \frac{\partial S_t^{l+1}}{\partial V_t^{l+1}}}_{G_t} \left(\underbrace{\frac{\partial V_t^{l+1}}{\partial W^l}}_{D_t} + \sum_{k < t} \prod_{i=k}^{t-1} \underbrace{\left(\frac{\partial V_i^{l+1}}{\partial V_i^{l+1}} + \frac{\partial V_i^{l+1}}{\partial S_i^{l+1}} \frac{\partial S_i^{l+1}}{\partial V_i^{l+1}} \right) \frac{\partial V_k^{l+1}}{\partial W^l}}_{J_{k:t-1}} \right) \right]}_{J_t^W}. \quad (3)$$

172 *By bounded surrogate derivatives and the contractive LIF dynamics (See Appendix C for detailed*
173 *derivations for all bounds mentioned in this analysis), there exist constants $C_G, C_D < \infty$ and $\rho \in$*
174 *(0, 1), independent of t and T , such that $\|G_t\| \leq C_G$, $\|D_t\| \leq C_D$, and $\left\| \frac{\partial V_i^{l+1}}{\partial V_i^{l+1}} + \frac{\partial V_i^{l+1}}{\partial S_i^{l+1}} \frac{\partial S_i^{l+1}}{\partial V_i^{l+1}} \right\| \leq \rho$.*
175 *Then, we have $\|J_t^W\| = \|D_t + \sum_{k < t} J_{k:t-1} D_k\| \leq \frac{C_D}{1-\rho} = C_J$, therefore $\|g_t\| = \|G_t J_t^W\| \leq$*
176 *$C_G C_J$. Hence each per-step gradient contribution is $O(1)$. The Gauss–Newton (GN) Hessian block*
177 *with respect to W^l satisfies*

$$179 \quad H(W^l) \approx \sum_{t=1}^T (J_t^W)^\top H_t J_t^W \succeq 0, \quad (4)$$

180 *where $H_t = B_t^\top H_{z,t} B_t$ is the effective Hessian with respect to the membrane potential V_t^{l+1} ,*
181 *$H_{z,t}$ indicates the output-layer Hessian at time t , and $B_t = \frac{\partial z_t}{\partial V_t^{l+1}}$ denotes the readout Jacobian*
182 *from the membrane potential to the output logits z_t . Since $H_{z,t} \succeq 0$ and $\|B_t\| \leq C_B$, where*
183 *$C_z = \sup_t \lambda_{\max}(H_{z,t}) < \infty$, we have $\|H_t\| \leq C_B^2 C_z$, and therefore*

$$188 \quad \lambda_{\max}(H(W^l)) \leq C_B^2 C_z \sum_{t=1}^T \|J_t^W\|^2 \leq \underbrace{C_B^2 C_z C_J^2}_{\text{constant}} T, \quad (5)$$

191 *Thus, the largest eigenvalue (equivalently, the spectral radius) of $H(W^l)$ is linearly bounded in T .*

192 **Theorem 2** (Direct encoding makes the GN bound tight). *Consider the same setting as Theorem 1*
193 *with the GN block $H(W^l) \approx \sum_{t=1}^T (J_t^W)^\top H_t J_t^W \succeq 0$, where $H_t = B_t^\top H_{z,t} B_t$. Under direct*
194 *encoding, the per-step inputs are stationary, and the recurrent Jacobians become nearly time-*
195 *invariant up to bounded perturbations (Zenke & Ganguli, 2018; Bellec et al., 2020). Consequently,*
196 *by the power-iteration effect of repeatedly applying contractive operators, the BPTT Jacobians $\{J_t^W\}$*
197 *concentrate along a common dominant singular direction. Formally, there exist unit vectors a (output*
198 *space) and b (parameter space), scalars α_t , and residual terms R_t such that for all t we have*

$$200 \quad J_t^W = \alpha_t ab^\top + R_t, \quad m \leq |\alpha_t| \leq M, \quad \sum_{t=1}^T \|R_t\|^2 = o(T), \quad (6)$$

201 *where $m, M > 0$ denote finite constants independent of t and T , and we use the Landau notation*
202 *$o(T)$ to denote a sublinear term, i.e., $f(T) = o(T)$ if $f(T)/T \rightarrow 0$ as $T \rightarrow \infty$. Moreover, suppose*
203 *the output-layer curvature along a has a strictly positive time-average, $\frac{1}{T} \sum_{t=1}^T a^\top H_t a \geq c_z^- > 0$,*
204 *where c_z^- denotes a uniform positive lower bound, serving as the lower-bound counterpart of C_z .*
205 *Then we have equation as follows, where $\Theta(\cdot)$ denotes the standard asymptotic order notation.*

$$209 \quad \lambda_{\max}(H(W^l)) = \Theta\left(\sum_{t=1}^T \alpha_t^2\right) = \Theta(T). \quad (7)$$

212 *Together, Theorem 1 and Theorem 2 establish a two-stage picture of the Gauss–Newton curvature in*
213 *SNNs. The first result shows that under LIF dynamics the per-step BPTT contributions are uniformly*
214 *bounded, and consequently the spectral radius of the Hessian grows at most linearly in T . The second*
215 *result demonstrates that when direct encoding is used, the stationarity of inputs and the time-invariant*
216 *structure of the recurrent operators lead to a power-iteration effect, aligning the Jacobians J_t^W along*

216 a common rank-one component. This alignment ensures that the lower bound grows at the same
 217 linear rate, thereby making the Gauss–Newton bound asymptotically tight. In summary, BPTT
 218 establishes the $O(T)$ upper bound for spectral radius, and direct encoding sharpens it to $\Theta(T)$. This
 219 spectral pathology becomes particularly severe under heterogeneous training, where even a small
 220 fraction of distributional variation is sufficient to excite the sharp directions amplified by the $O(T)$
 221 curvature growth. Because the dominant Hessian eigenmodes scale linearly with T , perturbations
 222 from mismatched batches accumulate disproportionately along these fragile directions, causing
 223 instabilities that can quickly lead to collapse. Hence, the vulnerability of SNNs under hetero-training
 224 can be traced to the same mechanism identified above: the alignment of BPTT Jacobians and the
 225 resulting unbounded growth of the spectral radius.

226 Furthermore, we conduct experiments to validate our theoretical analysis. As shown in Fig.
 227 3, we train on CIFAR-10 with the VGG-11 architecture under direct encoding at different time
 228 step scales for 200 epochs (additional experimental details are provided in Appendix B.1).
 229 The results indicate that network degradation under hetero-training becomes increasingly se-
 230 vere as the number of time steps grows. This
 231 confirms that time step scaling is indeed one of
 232 the factors affecting robustness, thereby sup-
 233 porting the reliability of our earlier analysis. How-
 234 ever, robustness against hetero-training cannot
 235 be achieved simply by reducing the number of time steps, since doing so causes a drastic performance
 236 drop under homogeneous training as Fig. 3. This motivates the need for a mechanism that can ac-
 237 tively suppress the dominant curvature growth, thereby enhancing the robustness and hetero-training
 238 resistance without sacrificing the efficiency of direct encoding.

242 3.2 REDUCING SPECTRAL RADIUS VIA DOMINANT SINGULAR DEFLATION

244 **Dominant Singular Deflation.** To mitigate the pathological spectral growth identified above, that
 245 is, to suppress the excessive enlargement of the Hessian spectral radius, we propose a deterministic
 246 and hyperparameter-free gradient update technique named Dominant Singular Deflation (DSD). The
 247 key idea is to deflate the gradient by explicitly removing its rank-one dominant singular component,
 248 thereby directly reducing the maximal singular value that drives curvature amplification.

249 Formally, for parameter set θ , let $\nabla_\theta \mathcal{L}(\theta)$ denote the gradient of the loss function, represented as a
 250 k -dimensional tensor $\nabla_\theta \mathcal{L}(\theta) \in \mathbb{R}^{d_1 \times d_2 \times \dots \times d_k}$. To systematically analyze its principal components,
 251 we introduce a deterministic matrixization operator $\mathcal{M} : \mathbb{R}^{d_1 \times \dots \times d_k} \rightarrow \mathbb{R}^{m \times n}$ with $m = d_1$ and
 252 $n = \prod_{j=2}^k d_j$. Applying singular value decomposition gives

$$254 \quad \mathcal{M}(\nabla_\theta \mathcal{L}(\theta)) = U \Sigma V^\top = \sum_{i=1}^r \sigma_i u_i v_i^\top, \quad r = \min(m, n), \quad \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0. \quad (8)$$

257 We refer to $\sigma_1 u_1 v_1^\top$ as the dominant singular component. To remove this component, we define the
 258 projection operator $\mathcal{D}(A)$ for any $A \in \mathbb{R}^{m \times n}$ as

$$260 \quad \mathcal{D}(A) = \frac{\langle A, u_1 v_1^\top \rangle_F}{\|u_1 v_1^\top\|_F^2} u_1 v_1^\top, \quad (9)$$

262 where $\langle A, B \rangle_F = \sum_{i,j} A_{ij} B_{ij}$ is the Frobenius inner product. Thus, DSD orthogonally projects
 263 $\mathcal{M}(\nabla_\theta \mathcal{L}(\theta))$ onto the complement of the dominant singular component, yielding the deflated update

$$265 \quad \widetilde{\nabla_\theta \mathcal{L}}(\theta) = \mathcal{M}^{-1}(\mathcal{M}(\nabla_\theta \mathcal{L}(\theta)) - \mathcal{D}(\mathcal{M}(\nabla_\theta \mathcal{L}(\theta))). \quad (10)$$

266 **Effectiveness of DSD.** Under direct encoding, Theorem 2 shows that the GN spectral bound becomes
 267 tight: the largest eigenvalue $\lambda_{\max}(H(W^l))$ is governed by the squared maximal singular value of the
 268 Jacobians, i.e., $\lambda_{\max}(H(W^l)) = \Theta\left(\sum_{t=1}^T \sigma_{\max}(J_t^W)^2\right)$. Hence the curvature growth is dominated
 269 by the rank-one component associated with the leading singular pair (σ_1, u_1, v_1) . By construction,

270 DSD removes this rank-one component $\sigma_1 u_1 v_1^\top$ from the gradient, yielding deflated Jacobians J'_t .
 271 Consequently, their maximal singular value satisfies $\sigma_{\max}(J'_t) = \sigma_2(J_t) < \sigma_1(J_t)$, and the Hessian
 272 spectral radius strictly decreases:
 273

$$274 \quad \lambda_{\max}(H(W^l; \widetilde{\nabla_\theta \mathcal{L}}(\theta))) < \lambda_{\max}(H(W^l; \nabla_\theta \mathcal{L}(\theta))). \quad (11)$$

275 In other words, under the alignment effect induced by direct encoding, DSD deterministically sup-
 276 presses the spectral radius by eliminating its dominant contributor, thereby mitigating the instability
 277 that causes vulnerability in SNN training. Besides, a reduction in Hessian spectral radius can indi-
 278 rectly lower the upper bound of the network’s Lipschitz constant (Nesterov, 2013; Yao et al., 2020;
 279 Ghorbani et al., 2019), thereby contributing to improved robustness and enhanced generalization
 280 capabilities (Ding et al., 2022).

281 **Descent preservation of DSD.** Although DSD explicitly modifies the gradient by removing its
 282 dominant singular component, it does not compromise the descent property of gradient-based
 283 optimization. Formally, DSD in Eq. (10) rewrites the matrixized gradient as
 284

$$285 \quad \mathcal{M}(\widetilde{\nabla_\theta \mathcal{L}}(\theta)) = \mathcal{M}(\nabla_\theta \mathcal{L}(\theta)) - \mathcal{D}(\mathcal{M}(\nabla_\theta \mathcal{L}(\theta))). \quad (12)$$

286 The directional derivative of the loss $D\mathcal{L}(\theta)[d]$, i.e., the rate of change of \mathcal{L} at θ along a direction
 287 d , is given by the inner product between the gradient and d . Under DSD, for the update direction
 288 $d = -\widetilde{\nabla_\theta \mathcal{L}}(\theta)$ we obtain
 289

$$290 \quad D\mathcal{L}(\theta)[d] = \langle \nabla_\theta \mathcal{L}(\theta), d \rangle = -\langle \mathcal{M}(\nabla_\theta \mathcal{L}(\theta)), \mathcal{M}(\widetilde{\nabla_\theta \mathcal{L}}(\theta)) \rangle_F. \quad (13)$$

291 Since \mathcal{D} is an orthogonal projection operator, we can expand and simplify as
 292

$$293 \quad \begin{aligned} \langle \mathcal{M}(\nabla_\theta \mathcal{L}(\theta)), \mathcal{M}(\widetilde{\nabla_\theta \mathcal{L}}(\theta)) \rangle_F &= \langle \mathcal{M}(\nabla_\theta \mathcal{L}(\theta)), \mathcal{M}(\nabla_\theta \mathcal{L}(\theta)) - \mathcal{D}(\mathcal{M}(\nabla_\theta \mathcal{L}(\theta))) \rangle_F \\ 294 &\stackrel{*}{=} \|\mathcal{M}(\nabla_\theta \mathcal{L}(\theta))\|_F^2 - \|\mathcal{D}(\mathcal{M}(\nabla_\theta \mathcal{L}(\theta)))\|_F^2 \\ 295 &= \|\mathcal{M}(\widetilde{\nabla_\theta \mathcal{L}}(\theta))\|_F^2, \end{aligned} \quad (14)$$

296 where $(*)$ uses the *self-adjointness* and *idempotence* of the orthogonal projection \mathcal{D} with respect to
 297 the Frobenius inner product, namely, $\langle A, \mathcal{D}(A) \rangle_F = \langle \mathcal{D}(A), \mathcal{D}(A) \rangle_F = \|\mathcal{D}(A)\|_F^2$. Substituting this
 298 into the directional derivative gives Eq. (15), with strict inequality whenever $\nabla_\theta \mathcal{L}(\theta) \neq 0$.
 299

$$300 \quad D\mathcal{L}(\theta)[d] = -\|\mathcal{M}(\widetilde{\nabla_\theta \mathcal{L}}(\theta))\|_F^2 \leq 0, \quad (15)$$

301 In summary, DSD guarantees that the update direction always yields non-increasing loss, and it is a
 302 strict descent direction whenever the deflated gradient is non-zero.
 303

304 **Remark 1.** *This conclusion follows solely from the general mathematical property of orthogonal
 305 projections in Hilbert spaces (Horn & Johnson, 2012), and does not rely on any special structure of
 306 SNNs, BPTT, or the cross-entropy loss. Hence the guarantee of descent preservation is universal and
 307 independent of the particular network architecture or loss function.*
 308

310 4 EXPERIMENT

311 Our experiments are structured into four parts. First, we assess the robustness of DSD in homogeneous
 312 training (Sec. 4.1), which are divided into two settings: vanilla training using clean data and
 313 adversarial training (AT) (Kundu et al., 2021) using perturbed data generated by white box FGSM
 314 with an ϵ of 2/255. Second, we investigate whether DSD can prevent network collapse in hetero-
 315 training (Sec. 4.2). Third, we evaluate the effect of our approach on the Hessian eigenvalue during
 316 inference (Sec. 4.3). Finally, we inspect DSD for any instances of gradient obfuscation (Sec. 4.4). In
 317 addition, the extra computational overhead of DSD during training is reported in Appendix E, while
 318 **DSD introduces no overhead at inference.**
 319

320 To ensure comprehensive evaluation, we conduct experiments on static visual datasets of varying
 321 scales, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), TinyIm-
 322 ageNet (Deng et al., 2009), and ImageNet (Deng et al., 2009) and Dynamic Vision Sensor (DVS)
 323 datasets DVS-CIFAR10 (Li et al., 2017) and DVS-Gesture (Amir et al., 2017). Implementation
 324 specifics are provided in Appendix B.2.

324 4.1 COMPARISON WITH STATE-OF-THE-ART (SOTA) IN HOMOGENEOUS TRAINING
325

326 **White box attack in static datasets.** Table 1 summarizes DSD accuracies under various homo-
327 geneous training settings, compared with SOTA defenses (StoG (Ding et al., 2024b), DLIF (Ding
328 et al., 2024a), HoSNN (Geng & Li, 2023), and FEEL (Xu et al., 2024)). Overall, DSD consistently
329 outperforms prior defenses against gradient-based white box attacks across all datasets and training
330 modes. Notably, it yields over 10% accuracy gains in several cases, including CIFAR-100 with FGSM
331 in vanilla training, CIFAR-10 and ImageNet with FGSM, and TinyImageNet with PGD in AT. In
332 TinyImageNet AT, DSD reaches 30.87% accuracy, a striking 22.68% improvement over the baseline
333 SNN’s 8.19%. Robustness under vanilla training remains difficult, particularly against PGD. Even so,
334 DSD achieves 8.09% accuracy on CIFAR-100 under PGD in vanilla training, a major improvement
335 over the previous best of 2.04% from FEEL (Xu et al., 2024).

336 Table 1: White box performance comparison (%). The highest accuracy in each column is highlighted
337 in bold. The “Improvement” quantifies the gain of DSD over the other best-performing baseline.

Methods	CIFAR-10			CIFAR-100			TinyImageNet			ImageNet		
	Clean	FGSM	PGD	Clean	FGSM	PGD	Clean	FGSM	PGD	Clean	FGSM	PGD
Homogeneous Training: Vanilla Training												
SNN	93.75	8.19	0.03	72.39	4.55	0.19	56.82	3.51	0.14	57.84	4.99	0.01
StoG (Ding et al., 2024b)	91.64	16.22	0.28	70.44	8.27	0.49	-	-	-	-	-	-
DLIF (Ding et al., 2024a)	92.22	13.24	0.09	70.79	6.95	0.08	-	-	-	-	-	-
HoSNN (Geng & Li, 2023)	92.43	54.76	15.32	71.98	13.48	0.19	-	-	-	-	-	-
FEEL (Xu et al., 2024)	93.29	44.96	28.35	73.79	9.60	2.04	43.83	9.59	4.53	-	-	-
DSD (Ours)	90.21	55.86	31.44	70.26	23.81	8.09	54.54	19.50	12.02	53.47	14.69	4.30
Improvement	▼ 3.54	▲ 1.10	▲ 3.09	▼ 3.53	▲ 10.33	▲ 6.05	▼ 2.28	▲ 9.91	▲ 7.49	▼ 4.37	▲ 9.70	▲ 4.29
Homogeneous Training: Adversarial Training (AT)												
SNN	91.16	38.20	14.07	69.69	16.31	8.49	49.91	8.19	2.97	51.00	15.74	6.39
StoG (Ding et al., 2024b)	90.13	45.74	27.74	66.37	24.45	14.42	-	-	-	-	-	-
DLIF (Ding et al., 2024a)	88.91	56.71	40.30	66.33	36.83	24.25	-	-	-	-	-	-
HoSNN (Geng & Li, 2023)	90.00	63.98	43.33	64.64	26.97	16.66	-	-	-	-	-	-
FEEL (Xu et al., 2024)	-	-	-	69.79	18.67	11.07	-	-	-	-	-	-
DSD (Ours)	86.62	74.43	44.38	64.21	43.91	27.11	46.30	30.87	18.21	49.78	26.83	9.12
Improvement	▼ 4.54	▲ 10.45	▲ 1.05	▼ 5.58	▲ 7.08	▲ 2.86	▼ 3.61	▲ 22.68	▲ 15.24	▼ 1.22	▲ 10.09	▲ 2.73

356 **Stronger white box attack.** Beyond conventional
357 white-box attacks, we further evaluate
358 whether DSD can defend against stronger adver-
359 sararies. We employ the APGD attack (Croce &
360 Hein, 2020), which incorporates adaptive step-
361 size control and a momentum-like update during
362 iterations, enabling more efficient exploration
363 of the loss landscape and avoiding local optima
364 to generate stronger adversarial samples.
365 Two variants of APGD are used—APGDCE and
366 APGDDLR—with detailed descriptions and hy-
367 perparameter settings provided in Appendix A.

368 As shown in Table 2, our method achieves the highest accuracy under all attack settings except for
369 APGDDLR on CIFAR-100 with AT, where it slightly lags behind DLIF (Ding et al., 2024a). These
370 results demonstrate that DSD remains effective and superior even against stronger white box attacks.

371 **White box attack in DVS datasets.** In DVS
372 datasets, we trained the model and performed
373 inference under FGSM and PGD attacks by di-
374 rectly perturbing the preprocessed event frames,
375 as implemented in (Liu et al., 2024b). It can be
376 seen from Table 4 that our method also demon-
377 strates excellent robustness when dealing with
the DVS dataset, surpassing SOTA method SR.

Table 2: APGD performance (%). The highest accuracy in each column is highlighted in bold.

Methods	CIFAR10			CIFAR-100		
	APGDCE	APGDDLR	APGDCE	APGDDLR		
Homogeneous Training: Vanilla Training						
SNN	0.61	2.06	0.09	0.12		
DLIF	0.05	0.03	0.02	0.18		
HoSNN	10.35	27.39	2.55	0.02		
DSD (Ours)	22.19	29.77	5.99	5.98		
Homogeneous Training: Adversarial Training (AT)						
SNN	10.98	17.72	5.87	6.20		
DLIF	35.09	39.85	20.68	24.21		
HoSNN	38.89	37.94	12.55	13.66		
DSD (Ours)	47.08	44.62	22.86	23.04		

Table 3: Performance comparison in DVS datasets (%). The highest accuracy in each column is highlighted in bold. SR: (Liu et al., 2024b)

Methods	DVS-CIFAR10			DVS-Gesture		
	Clean	FGSM	PGD	Clean	FGSM	PGD
SNN	76.30	17.20	5.00	95.49	39.24	9.72
SR	75.50	64.60	61.20	-	-	-
DSD	75.10	65.80	61.20	93.75	90.28	55.21

Figure 4: Performance comparison in different white box and black box attacks.

Black box attack. Black box adversarial examples are generated using the substitute-model approach in this experiment. We evaluated DSD’s resilience across a range of perturbation magnitudes and compared its performance to that of a vanilla SNN under the same attack strengths. Fig. 4 visualizes these results, and the complete experimental data are provided in Appendix F. Across all four dashed-line baselines, DSD consistently achieves substantially higher accuracy than the vanilla model, demonstrating its effectiveness against diverse black box threat scenarios.

4.2 PERFORMANCE IN HETEROGENEOUS TRAINING

Comparison with SOTA Methods. Building on the effectiveness of DSD under homogeneous training, we further examine its behavior under heterogeneous training conditions. We compare DSD against SOTA methods, including RAT (Ding et al., 2022), DLIF (Ding et al., 2024a), and FEEL (Xu et al., 2024). The results are represented by float bar figures as Fig. 5, with detailed numerical values provided in Appendix F. As illustrated in the figure, DSD exhibits the least performance degradation under hetero-training (i.e., it produces the shortest floating bars), and moreover achieves clearly higher absolute accuracy than all competing methods under batch injections with $b = 1$. These findings demonstrate that DSD effectively mitigates the model collapse induced by hetero-training, outperforming existing approaches.

Figure 5: Performance degradation comparison in hetero-training. Following the protocol of Sec. 3.1, we define two poisoning schemes: $c+p_0$ and $p+c_0$. In $c+p_0$, training with clean data, beginning at epoch 0, we inject $b = 0, 1$ FGSM-perturbed ($\epsilon = 2/255$) batches at the end of each epoch; $p+c_0$ is defined analogously: trained with perturbed data and injected with clean data. Subfigures (a), (b) and (c), (d) are vertically aligned, with each pair sharing the same y-axis. For any floating bar in the figure, the top represents the accuracy at $(b = 0)$, the bottom represents the accuracy at $(b = 1)$, and the bar length indicates the degree of performance degradation. For some methods under PGD, the floating bars are barely visible because their accuracies at both ($b=0$) and ($b=1$) are nearly zero.

DSD’s Resilience in Different Heterogeneous Intensities. Furthermore, we evaluate the maximum poisoning intensity that DSD can tolerate under hetero-training. In this experiment, we inject different numbers of heterogeneous batches ($b = 1, 2, 5$) to measure the extent of performance degradation. The results, including the performance degeneration, visualized in Fig. 6, with detailed experimental data in Appendix F, omit the vanilla SNN baselines due to their near-total failure under hetero-training. Remarkably, DSD maintains strong resilience across all settings, with no instance of full collapse. Even at the highest poisoning strength ($b = 5$), DSD sustains a 30% accuracy on CIFAR-10 under FGSM inference, demonstrating that DSD can withstand high-intensity hetero-training and further indicates its ability to remain robust under realistic batch-level data poisoning scenarios.

Figure 6: DSD performance in hetero-training. All subfigures share the same y-axis.

4.3 HESSIAN EIGENVALUE EVALUATION

In this experiment, we compare the Hessian eigenvalue of the DSD-trained model against those of a vanilla SNN during inference. Specifically, for each inference batch, we compute two metrics: (i). $\lambda_{\max}(H)$: The spectral radius of the Hessian; (ii). $\text{Pr}(H)$: The proportion of $\lambda_{\max}(H)$ within the top-five eigenvalues, serving as an indicator of the overall smoothness of the loss landscape. The details for this experiment are provided in Appendix B.2. Table 4 reports both metrics under three distinct adversarial attack scenarios. Across all cases, DSD consistently achieves a lower $\lambda_{\max}(H)$ and markedly reduces its proportional presence among the top-five eigenvalues. These findings corroborate our theoretical design, demonstrating that DSD indeed reduces the Hessian spectral radius, smooths the Hessian sharpness, and underpins its robustness enhancements.

Table 4: Hessian eigenvalue evaluation. The smaller $\lambda_{\max}(H)$ and $\text{Pr}(H)$ are, the better.

Methods	CIFAR-10		CIFAR-100		TinyImageNet		ImageNet	
	$\lambda_{\max}(H)$	$\text{Pr}(H)$	$\lambda_{\max}(H)$	$\text{Pr}(H)$	$\lambda_{\max}(H)$	$\text{Pr}(H)$	$\lambda_{\max}(H)$	$\text{Pr}(H)$
Clean Inference								
SNN	261.94	0.98	187.49	0.41	2077.09	0.60	174.88	0.43
DSD	209.90 ▼ 52.04	0.35 ▼ 0.63	135.55 ▼ 51.94	0.30 ▼ 0.11	1802.80 ▼ 274.29	0.51 ▼ 0.09	110.56 ▼ 64.32	0.33 ▼ 0.10
FGSM Inference								
SNN	269.90	1.15	190.82	0.46	1998.11	0.61	162.57	0.44
DSD	218.27 ▼ 51.63	0.38 ▼ 0.77	132.01 ▼ 58.81	0.29 ▼ 0.17	1767.57 ▼ 230.54	0.50 ▼ 0.11	111.77 ▼ 50.80	0.32 ▼ 0.12
PGD Inference								
SNN	265.47	1.03	200.11	0.46	2072.77	0.62	174.16	0.41
DSD	202.89 ▼ 62.58	0.35 ▼ 0.68	143.07 ▼ 57.04	0.30 ▼ 0.16	1793.12 ▼ 279.65	0.56 ▼ 0.06	113.73 ▼ 60.43	0.32 ▼ 0.09

4.4 INSPECTION OF GRADIENT OBFUSCATION

Next, we examine whether DSD suffers from gradient obfuscation (Athalye et al., 2018). For items (1) and (2) in Table 5, Fig. 3 presents DSD’s accuracy under FGSM and PGD attacks across a range of perturbation bounds, as well as a side-by-side comparison of white box versus black box performance. It is clear that DSD is consistently more vulnerable to iterative PGD than to single-step FGSM, and that white box attacks inflict greater degradation than black box attacks. Items (3) and (4) are also evident in Fig. 3: as the perturbation limit increases, DSD’s accuracy drops sharply, even reaching 0% under several settings. Fig. 7 further corroborates this trend, showing that although DSD’s performance progressively worsens with more PGD iterations, it eventually converges to a steady minimum. Item (5) indicates that gradient-based attacks fail to locate adversarial examples; however, our results in Fig. 3 demonstrate the opposite—both FGSM and PGD continue to fool DSD despite the training. In short, DSD does not utilize gradient obfuscation to achieve false robustness.

Table 5: Checklist for identifying gradient obfuscation.

Characteristics to identify gradient obfuscation	Pass?
(1) Single-step attack performs better compared to iterative attacks	✓
(2) Black-box attacks perform better compared to white-box attacks	✓
(3) Increasing perturbation bound can’t increase attack strength	✓
(4) Unbounded attacks can’t reach 100% success	✓
(5) Adversarial example can be found through random sampling	✓

Figure 7: Acc. under different K .

486 5 RELATED WORK

488 **SNN Defensive Methods.** Direct encoding with BPTT is the prevailing paradigm for SNN training
 489 (Wu et al., 2018; Deng et al., 2022; Meng et al., 2023; Xiao et al., 2022; Wang et al., 2023), which
 490 improves efficiency but sacrifices the robustness inherent to rate encoding. To counteract this
 491 vulnerability, prior studies have explored input noise injection (Kundu et al., 2021), adversarial
 492 training with Lipschitz regularization (Ding et al., 2022), gradient sparsity regularization (Liu et al.,
 493 2024b), **stochastic gating mechanisms** (Ding et al., 2024b), **randomized smoothing coding** (Wu et al.,
 494 2024), **noise sensitivity regularization** (Zheng et al., 2023), adaptive leak dynamics (Xu et al., 2024),
 495 and modified objectives to suppress membrane potential perturbations (Ding et al., 2024a). While
 496 these methods improve robustness empirically, they do not address the underlying mechanism by
 497 which direct encoding with BPTT induces vulnerability.

498 **Beyond SNNs.** Related ideas of suppressing dominant directions have been studied in the broader
 499 context of SNNs. Classical works control spectral growth through Parseval networks (Cisse et al.,
 500 2017) or spectral norm regularization (Yoshida & Miyato, 2017), while Lipschitz-margin training
 501 (Tsuzuku et al., 2018) and Jacobian regularization (Hoffman et al., 2019) constrain large singular
 502 values of Jacobians. Recent efforts further reduce sharpness via SAM (Foret et al., 2020) or project
 503 adversarial inputs back to the data manifold using generative defenses (Meng & Chen, 2017; Saman-
 504 goui et al., 2018). Yet existing methods typically act indirectly, depend on auxiliary models, or
 505 require sensitive hyperparameters that hinder deployment. By contrast, DSD operates directly in
 506 gradient space, deterministically removing the dominant singular component to suppress the principal
 507 curvature contributor while provably preserving descent. Being hyperparameter-free and readily
 508 practicable, DSD offers a simple yet principled mechanism for enhancing SNN robustness.

509 6 CONCLUSION AND DISCUSSION

511 **Conclusion.** In this paper, we experimentally demonstrate that SNNs trained with direct encoding and
 512 BPTT can undergo catastrophic model collapse when hetero-training which is common in real-world
 513 scenarios. Through theoretical analysis, we show that the repeated inputs of direct encoding combined
 514 with gradient accumulation in BPTT induce extremely large spectral radius in the Hessian matrix
 515 of the loss function, causing the model parameters to become trapped in precarious local minima.
 516 Motivated by these insights, we propose a hyperparameter-free method named Domain Singular
 517 Deflation (DSD): by orthogonally projecting gradients to precisely eliminate their dominant singular
 518 components, DSD effectively reduces the Hessian spectral radius. Extensive evaluations under both
 519 homogeneous and heterogeneous training conditions demonstrate that DSD substantially enhances
 520 SNN robustness, paving the way for safer and more reliable deployments.

521 **Limitation.** The gradient-based adjustment inherent to DSD induces a deliberate divergence between
 522 the gradients actually applied during training and those that would be obtained under an ideal,
 523 unmodified regime. While this adjustment markedly bolsters SNNs’ robustness, it unavoidably incurs
 524 a slight degradation in accuracy when evaluated on unperturbed data. This limitation is also prevalent
 525 in existing SOTA methods (Ding et al., 2024b;a; Geng & Li, 2023; Xu et al., 2024) according to
 526 Table 1, this calls for more extensive and in-depth future research to overcome.

528 REPRODUCIBILITY STATEMENT

530 The complete code with fixed random seed utilized in this work is provided in the supplementary
 531 materials and will be made publicly available after this paper is published. All datasets employed
 532 in this research, including CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet, DVS-CIFAR10, and
 533 DVS-Gesture are publicly accessible. Details regarding the hardware, coding environment, and
 534 hyperparameter settings used in our experiments are also included in the Appendix. We dedicate to
 535 enable researchers to reproduce the results presented in this paper using similar computational setups.

537 REFERENCES

538 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
 539 Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully

540 event-based gesture recognition system. In *Proceedings of the IEEE conference on computer vision*
 541 and pattern recognition, pp. 7243–7252, 2017.

542

543 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
 544 security: Circumventing defenses to adversarial examples. In *International conference on machine*
 545 *learning*, pp. 274–283. PMLR, 2018.

546 Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
 547 and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
 548 *Nature communications*, 11(1):3625, 2020.

549

550 Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
 551 image recognition without normalization. In *International conference on machine learning*, pp.
 552 1059–1071. PMLR, 2021.

553 Xu Cheng, Hao Zhang, Yue Xin, Wen Shen, Jie Ren, and Quanshi Zhang. Why adversarial training
 554 of relu networks is difficult? *arXiv preprint arXiv:2205.15130*, 2022.

555

556 Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
 557 networks: Improving robustness to adversarial examples. In *International conference on machine*
 558 *learning*, pp. 854–863. PMLR, 2017.

559

560 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 561 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–2216.
 562 PMLR, 2020.

563

564 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 565 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 566 pp. 248–255. Ieee, 2009.

567

568 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
 569 neural network via gradient re-weighting. *arXiv preprint arXiv:2202.11946*, 2022.

570

571 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
 572 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

573

574 Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. Snn-rat: Robustness-enhanced
 575 spiking neural network through regularized adversarial training. *Advances in Neural Information*
 576 *Processing Systems*, 35:24780–24793, 2022.

577

578 Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking neural
 579 networks. *arXiv preprint arXiv:2405.20694*, 2024a.

580

581 Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K Liu. Enhancing the robustness of spiking neural
 582 networks with stochastic gating mechanisms. In *Proceedings of the AAAI Conference on Artificial*
 583 *Intelligence*, volume 38, pp. 492–502, 2024b.

584

585 Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
 586 residual learning in spiking neural networks. *Advances in Neural Information Processing Systems*,
 587 34:21056–21069, 2021.

588

589 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
 590 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
 591 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):ead1480, 2023.

592

593 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 594 for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

595

596 Hejia Geng and Peng Li. Hosnn: Adversarially-robust homeostatic spiking neural networks with
 597 adaptive firing thresholds. *arXiv preprint arXiv:2308.10373*, 2023.

598

599 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 600 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–2241.
 601 PMLR, 2019.

594 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 595 examples. *arXiv preprint arXiv:1412.6572*, 2014.
 596

597 Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization. *arXiv
 598 preprint arXiv:1908.02729*, 2019.

599 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.
 600

601 Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and
 602 Bojun Cheng. Clif: Complementary leaky integrate-and-fire neuron for spiking neural networks.
 603 *arXiv preprint arXiv:2402.04663*, 2024.

604 Xiaoyang Jiang, Qiang Zhang, Jingkai Sun, Jiahang Cao, Jingtong Ma, and Renjing Xu. Fully
 605 spiking neural network for legged robots. In *ICASSP 2025-2025 IEEE International Conference
 606 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

607

608 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 609

610 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness of
 611 energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceedings
 612 of the IEEE/CVF international conference on computer vision*, pp. 5209–5218, 2021.

613 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
 614 In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.

615

616 Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy.
 617 Enabling spike-based backpropagation for training deep neural network architectures. *Frontiers in
 618 neuroscience*, 14:497482, 2020.

619 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 620 dataset for object classification. *Frontiers in neuroscience*, 11:244131, 2017.

621

622 Shiqiang Liu, Weisheng Li, Dan He, Guofen Wang, and Yuping Huang. Ssefusion: Salient semantic
 623 enhancement for multimodal medical image fusion with mamba and dynamic spiking neural
 624 networks. *Information Fusion*, 119:103031, 2025.

625 Yanzhen Liu, Zhijin Qin, and Geoffrey Ye Li. Energy-efficient distributed spiking neural network for
 626 wireless edge intelligence. *IEEE Transactions on Wireless Communications*, 2024a.

627

628 Yujia Liu, Tong Bu, Jianhao Ding, Zecheng Hao, Tiejun Huang, and Zhaofei Yu. Enhancing
 629 adversarial robustness in snns with sparse gradients. *arXiv preprint arXiv:2405.20355*, 2024b.

630 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 631 *Neural networks*, 10(9):1659–1671, 1997.

632

633 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 634 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 635 2017.

636 Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In
 637 *Proceedings of the 2017 ACM SIGSAC conference on computer and communications security*, pp.
 638 135–147, 2017.

639

640 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
 641 memory-and time-efficient backpropagation for training spiking neural networks. In *Proceedings
 642 of the IEEE/CVF International Conference on Computer Vision*, pp. 6166–6176, 2023.

643 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 644 Science & Business Media, 2013.

645

646 Yi Pan, Hanqi Jiang, Junhao Chen, Yiwei Li, Huaqin Zhao, Yifan Zhou, Peng Shu, Zihao Wu,
 647 Zhengliang Liu, Dajiang Zhu, et al. Eg-spikeformer: Eye-gaze guided transformer on spiking
 neural networks for medical image analysis. *arXiv preprint arXiv:2410.09674*, 2024.

648 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
 649 *arXiv:1912.01703*, 2019.

650

651 Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
 652 Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
 653 architecture. *Nature*, 572(7767):106–111, 2019.

654

655 Pouya Samangouei, Maya Kabkab, and R Defense-GAN Chellappa. Protecting classifiers against
 656 adversarial attacks using generative models. *arxiv* 2018. *arXiv preprint arXiv:1805.06605*, 1, 2018.

657

658 Albert Shalumov, Raz Halaly, and Elishai Ezra Tsur. Lidar-driven spiking neural network for collision
 659 avoidance in autonomous driving. *Bioinspiration & Biomimetics*, 16(6):066016, 2021.

660

661 Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
 662 of perturbation invariance for deep neural networks. *Advances in neural information processing*
 663 systems, 31, 2018.

664

665 Alberto Viale, Alberto Marchisio, Maurizio Martina, Guido Masera, and Muhammad Shafique.
 666 Carsnn: An efficient spiking neural network for event-based autonomous cars on the loihi neuro-
 667 morphic research processor. In *2021 International Joint Conference on Neural Networks (IJCNN)*,
 668 pp. 1–10. IEEE, 2021.

669

670 Jingtao Wang, Zengjie Song, Yuxi Wang, Jun Xiao, Yuran Yang, Shuqi Mei, and Zhaoxiang Zhang.
 671 Ssf: Accelerating training of spiking neural networks with stabilized spiking flow. In *Proceedings*
 672 *of the IEEE/CVF International Conference on Computer Vision*, pp. 5982–5991, 2023.

673

674 Keming Wu, Man Yao, Yuhong Chou, Xuerui Qiu, Rui Yang, Bo Xu, and Guoqi Li. Rsc-snn:
 675 Exploring the trade-off between adversarial robustness and accuracy in spiking neural networks
 676 via randomized smoothing coding. In *Proceedings of the 32nd ACM International Conference on*
 677 *Multimedia*, pp. 2748–2756, 2024.

678

679 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 680 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

681

682 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
 683 through time for spiking neural networks. *Advances in neural information processing systems*, 35:
 684 20717–20730, 2022.

685

686 Mengting Xu, De Ma, Huajin Tang, Qian Zheng, and Gang Pan. Feel-snn: Robust spiking neural
 687 networks with frequency encoding and evolutionary leak factor. *Advances in Neural Information*
 688 *Processing Systems*, 37:91930–91950, 2024.

689

690 Qi Xu, Yixin Li, Jiangrong Shen, Pingping Zhang, Jian K Liu, Huajin Tang, and Gang Pan. Hierar-
 691 chical spiking-based model for efficient image classification with enhanced feature extraction and
 692 encoding. *IEEE Transactions on Neural Networks and Learning Systems*, 2022.

693

694 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
 695 through the lens of the hessian. In *2020 IEEE international conference on big data (Big data)*, pp.
 696 581–590. IEEE, 2020.

697

698 Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
 699 of deep learning. *arXiv preprint arXiv:1705.10941*, 2017.

700

701 Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
 702 networks. *Neural computation*, 30(6):1514–1541, 2018.

703

704 Guanlei Zhang, Lei Feng, Fanqin Zhou, Zhixiang Yang, Qiyang Zhang, Alaa Saleh, Praveen Kumar
 705 Donta, and Chinnmaya Kumar Dehury. Spiking neural networks in intelligent edge computing.
 706 *IEEE Consumer Electronics Magazine*, 2024.

707

708 Wendong Zheng, Yu Zhou, Gang Chen, Zonghua Gu, and Kai Huang. Towards effective training of
 709 robust spiking recurrent neural networks under general input noise via provable analysis. In *2023*
 710 *IEEE/ACM International Conference on Computer Aided Design (ICCAD)*, pp. 1–9. IEEE, 2023.

702 Rui-Jie Zhu, Ziqing Wang, Leilani Gilpin, and Jason Eshraghian. Autonomous driving with spiking
703 neural networks. *Advances in Neural Information Processing Systems*, 37:136782–136804, 2024.
704

705 Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, Qiang Yang, and Ya-Qin
706 Zhang. Defending batch-level label inference and replacement attacks in vertical federated learning.
707 *IEEE Transactions on Big Data*, 2022.

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A ADVERSARIAL ATTACK DETAILS AND CONFIGURATIONS**
757758 **FGSM.** FGSM is a simple yet effective technique to generate adversarial examples. In FGSM, given
759 an input x with its true label y , a perturbation is computed in the direction of the gradient of the loss
760 function with respect to x . The perturbation is defined as:
761

762
$$\delta = \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(f(x), y)). \quad (16)$$

763

764 where ϵ controls the magnitude of the perturbation and $h(x)$ represents the model’s output. The
765 adversarial example is then constructed as $x + \delta$, which is designed to force the model into misclassi-
766 fication.
767768 **PGD.** PGD is an iterative method for generating adversarial examples and can be regarded as an
769 extension of the FGSM. PGD updates the adversarial example iteratively by performing a gradient
770 ascent step and then projecting the result back onto the feasible set defined by the L_p -norm constraint.
771 Formally, the update rule is given by:
772

773
$$x^{t+1} = \Pi_{\mathcal{B}(x, \epsilon)} \left(x^t + \alpha \cdot \text{sign}(\nabla_x \mathcal{L}(f(x^t), y)) \right). \quad (17)$$

774

775 where α denotes the step size, $\mathcal{L}(f(x^t), y)$ is the loss function of the model h with true label
776 y , and $\Pi_{\mathcal{B}(x, \epsilon)}$ is the projection operator that projects the perturbed example back into the ball
777 $\mathcal{B}(x, \epsilon) = \{x' : \|x' - x\|_p \leq \epsilon\}$. By iterating this process, PGD effectively seeks a perturbation
778 that maximizes the loss while ensuring that the adversarial example remains within the specified
779 perturbation budget.
780781 **APGD.** Auto-PGD (APGD) (Croce & Hein, 2020) is an iterative adversarial attack based on PGD,
782 equipped with an adaptive step-size strategy and a momentum-like update. Given a perturbation
783 budget ϵ , the APGD update is defined as
784

785
$$x^{t+1} = \Pi_{\mathcal{B}(x, \epsilon)} \left(x^t + \alpha_t \cdot \text{sign}(\nabla_x L(f(x^t), y)) \right), \quad (18)$$

786

787 where α_t denotes the step size at iteration t . APGD further maintains an auxiliary momentum
788 variable:
789

790
$$z^t = x^t + \beta_t(x^t - x^{t-1}), \quad x^{t+1} = \Pi_{\mathcal{B}(x, \epsilon)} \left(z^t + \alpha_t \cdot \text{sign}(\nabla_x L(f(z^t), y)) \right), \quad (19)$$

791

792 where β_t is the momentum coefficient.
793794 **Hyperparameters.** For these attack methods, we set $\epsilon = 8/255$ for all experimental cases. For PGD,
795 step size $\alpha = 0.01$ and step number $K = 7$. For APGD, there are two loss versions: APGDCE
796 (Cross Entropy loss) and APGDDLR (Difference of Logits Ratio loss), we use the L_∞ -bounded
797 setting with perturbation budget $\epsilon = 8/255$, initial step size $\alpha_0 = 2/255$.
798799 **B EXPERIMENTAL SETTING**
800801 **B.1 SETTINGS FOR PRELIMINARY EXPERIMENTS**
802803 In this section, we detail the network architectures and hyperparameter settings used in the preliminary
804 experiments of Sec. 3.1. Any configurations not mentioned here are identical to those in the main
805 experiments (Appendix B.2). For Fig. 2(a), we set the number of epochs to 50, adopt Poisson
806 encoding for rate encoding (Lee et al., 2020), and use a standard convolutional neural networks
807 (CNN) for ANN. All experiments in Figs. 2(a–c) employ the hyperparameters listed in Table 6. Direct
808 encoding is performed with $T = 4$, while rate encoding uses $T = 64$.
809810 Table 6: Hyperparameter settings for preliminary experiments.
811812

Dataset	Optimizer	LeaningRate	WeightDecay	BatchSize
CIFAR-10	SGD	0.1	5e-5	128

810 B.2 SETTINGS FOR MAIN EXPERIMENTS
811

812 In our main experiments, all training cases are implemented using PyTorch (Paszke, 2019) with the
813 SpikingJelly (Fang et al., 2023) framework and executed on an NVIDIA GeForce RTX 5090 GPU.
814 For each dataset, we utilize the hyperparameters listed as Table 7, consistently employing the SGD
815 optimizer and setting the membrane time constant τ to 1.1. We leverage the PyHessian framework
816 (Yao et al., 2020) to compute Hessian eigenvalues¹.

817 Table 7: Hyperparameter settings for experiments. *(Brock et al., 2021)
818

819 Dataset	820 Model	821 LeaningRate	822 WeightDecay	823 Epoch	824 BatchSize	825 TimeStep
821 CIFAR-10	822 VGG-11	823 0.1	824 5e-5	825 300	826 128	827 4
822 CIFAR-100	823 VGG-11	824 0.1	825 5e-4	826 300	827 128	828 4
823 TinyImageNet	824 VGG-16	825 0.1	826 5e-4	827 300	828 128	829 4
824 ImageNet	825 NF-ResNet-18*	826 0.1	827 1e-5	828 100	829 512	830 4
825 ImageNet (AT)	826 ResNet-18	827 0.1	828 1e-5	829 100	830 512	831 4
826 DVS-CIFAR10	827 VGG-11	828 0.05	829 5e-4	830 200	831 128	832 10
827 DVS-Gesture	828 VGG-11	829 0.05	830 5e-4	831 200	832 8	833 20

830 C ANALYSIS OF BOUNDED BPTT FACTORS UNDER LIF DYNAMICS
831

832 We make explicit why the constants in the inequalities $\|G_t\| \leq C_G$, $\|D_t\| \leq C_D$, $\left\| \frac{\partial V_i^{l+1}}{\partial V_i^l} + \right.$
833 $\left. \frac{\partial V_i^{l+1}}{\partial S_i^l} \frac{\partial S_i^l}{\partial V_i^l} \right\| \leq \rho < 1$ exist and are independent of t and T .
834

835 **(i) Bound on G_t .** Write $G_t = \frac{\partial L}{\partial S_t^{l+1}} \frac{\partial S_t^{l+1}}{\partial V_t^l}$. Let $\phi(\cdot)$ be the surrogate nonlinearity for spikes,
836 with $|\phi'(u)| \leq \kappa$ (e.g., sigmoid with slope β gives $\kappa \leq \beta/4$; piecewise-linear surrogates have a
837 fixed maximal slope). For standard losses, $\left\| \frac{\partial L}{\partial z} \right\| \leq C_{\text{loss}}$ uniformly in the logits z : for softmax
838 cross-entropy, $H_z = \nabla_z^2 L = \text{Diag}(p) - pp^\top \succeq 0$ gives $\left\| \frac{\partial L}{\partial z} \right\| \leq 1$ and $\|H_z\| \leq \frac{1}{4}$ (binary)
839 or $\leq \frac{1}{2}$ (multi-class). Since $\frac{\partial L}{\partial S_t^{l+1}} = \frac{\partial L}{\partial z_t^{l+1}} \frac{\partial z_t^{l+1}}{\partial S_t^{l+1}}$ and the readout weights are kept bounded by
840 regularization/clipping, $\left\| \frac{\partial z_t^{l+1}}{\partial S_t^{l+1}} \right\| \leq \Lambda_{\text{out}}$. Therefore,
841

$$842 \|G_t\| = \left\| \frac{\partial L}{\partial S_t^{l+1}} \frac{\partial S_t^{l+1}}{\partial V_t^l} \right\| \leq C_{\text{loss}} \Lambda_{\text{out}} \cdot \kappa = C_G, \quad (20)$$

843 a uniform bound independent of t, T .
844

845 **(ii) Bound on D_t .** For a LIF layer, $V_t^{l+1} = \alpha V_{t-1}^{l+1} + W^{l+1} S_t^l + b$ (plus optional input term) in
846 practical code implementation (Fang et al., 2023), with $\alpha = 1 - \frac{1}{\tau} \in (0, 1)$. The local Jacobian w.r.t.
847 W^l at time t is linear in the presynaptic spikes: $D_t = \frac{\partial V_t^{l+1}}{\partial W^l} = \mathcal{L}(S_t^l)$ where $\|S_t^l\| \leq \sqrt{n_{\text{in}}} r_{\text{max}}$
848 because spikes are binary and $r_{\text{max}} \leq 1$. Hence there exists C_{in} such that
849

$$850 \|D_t\| \leq C_{\text{in}} = C_D. \quad (21)$$

851 **(iii) Contraction of the recurrent Jacobian chain.** For LIF, $\frac{\partial V_i^{l+1}}{\partial V_i^l} = \alpha I$ and $\frac{\partial V_i^{l+1}}{\partial S_i^l} = W^{l+1}$, while
852 $\frac{\partial S_i^{l+1}}{\partial V_i^l} = \phi'(V_i^{l+1})$ with $\|\phi'\|_\infty \leq \kappa$. Therefore
853

$$854 \left\| \frac{\partial V_i^{l+1}}{\partial V_i^l} + \frac{\partial V_i^{l+1}}{\partial S_i^l} \frac{\partial S_i^l}{\partial V_i^l} \right\| \leq \alpha + \|W^{l+1}\| \kappa. \quad (22)$$

855 ¹Hyperparameters set as default: $\text{maxIter} = 100$, $\text{tol} = 1e-3$, where maxIter : maximum iterations used
856 to compute each single eigenvalue, tol : the relative tolerance between two consecutive eigenvalue computations
857 from power iteration.
858

864 Imposing a spectral-norm control $\|W^{l+1}\| \leq \Lambda$ with $\alpha + \kappa\Lambda < 1$ yields a uniform contraction rate
 865

$$866 \rho = \alpha + \kappa\Lambda < 1, \quad (23)$$

867 so that every time-local Jacobian factor and their products satisfy $\|J_{k:t-1}\| \leq \rho^{t-k}$.
 868

869 **(iv) Bound on the readout Jacobian B_t .** Let z_t denote the logits at time t and $B_t = \frac{\partial z_t}{\partial V_t^{l+1}}$. The
 870 readout in SNNs is typically linear w.r.t. a hidden state h_t (either the membrane potential V_t^{l+1} or the
 871 spike S_t^{l+1}):
 872

$$873 z_t = W_{\text{out}} h_t + b, \quad h_t \in \{V_t^{l+1}, S_t^{l+1} = \phi(V_t^{l+1})\}, \quad (24)$$

874 and $z = \frac{1}{\alpha_T} \sum_{t=1}^T z_t$ with $\alpha_T \geq 1$ (e.g., $\alpha_T = T$ for averaging). Let $\Lambda_{\text{out}} = \|W_{\text{out}}\|$ (controlled by
 875 weight decay / clipping / spectral normalization), and let $\kappa := \sup_u |\phi'(u)|$ be the maximal slope of
 876 the surrogate nonlinearity ϕ .
 877

- 878 • **Case 1 (direct- V readout).** If $h_t = V_t^{l+1}$, then $B_t = \frac{\partial z_t}{\partial V_t^{l+1}} = W_{\text{out}}$, hence
 879

$$880 \|B_t\| \leq \|W_{\text{out}}\| = \Lambda_{\text{out}}. \quad (25)$$

- 881 • **Case 2 (spike readout).** If $h_t = S_t^{l+1} = \phi(V_t^{l+1})$, then $B_t = \frac{\partial z_t}{\partial S_t^{l+1}} \frac{\partial S_t^{l+1}}{\partial V_t^{l+1}} =$
 882 $W_{\text{out}} \phi'(V_t^{l+1})$, hence
 883

$$884 \|B_t\| \leq \|W_{\text{out}}\| \|\phi'(V_t^{l+1})\| \leq \Lambda_{\text{out}} \kappa. \quad (26)$$

886 Combining the cases, there exists a uniform constant
 887

$$888 C_B = \kappa \Lambda_{\text{out}} \quad (27)$$

889 such that $\|B_t\| \leq C_B$ for all t , independent of T . Consequently, $\|H_t\| = \|B_t^\top H_{z,t} B_t\| \leq$
 890 $C_B^2 \|H_{z,t}\| \leq C_B^2 C_z$.
 891

892 **(v) Bound on $H_{z,t}$.** For softmax cross-entropy, $H_{z,t} = \text{Diag}(p_t) - p_t p_t^\top$ has $\|H_{z,t}\| \leq \frac{1}{2}$ (and $\leq \frac{1}{4}$
 893 for binary); for squared loss, $\|H_{z,t}\| \leq 1$. Hence there exists a global $C_z < \infty$ with $\|\tilde{H}_{z,t}\| \leq C_z$
 894 for all t .
 895

896 **(vi) Bound on J_t^W .** We now show why the bound $\|J_t^W\| \leq \frac{C_D}{1-\rho} = C_J$ holds. Recall that
 897 $\|D_k\| \leq C_D$ for all k , and $\|J_{k:t-1}\| \leq \rho^{t-k}$ with $\rho \in (0, 1)$. Using the triangle inequality and the
 898 sub-multiplicativity of the operator norm, we obtain
 899

$$\begin{aligned} 900 \|J_t^W\| &= \left\| D_t + \sum_{k < t} J_{k:t-1} D_k \right\| \\ 901 &\leq \|D_t\| + \sum_{k < t} \|J_{k:t-1} D_k\| \\ 902 &\leq C_D + \sum_{k < t} \|J_{k:t-1}\| \|D_k\| \\ 903 &\leq C_D + \sum_{k < t} \rho^{t-k} C_D \\ 904 &= C_D \left(1 + \sum_{q=1}^{t-1} \rho^q \right) \\ 905 &\leq C_D \sum_{q=0}^{\infty} \rho^q \\ 906 &= \frac{C_D}{1-\rho} = C_J. \end{aligned} \quad (28)$$

911 Here we re-indexed with $q = t - k$ and used the geometric series bound $\sum_{q=0}^{\infty} \rho^q = \frac{1}{1-\rho}$. Thus
 912 $\|J_t^W\|$ is uniformly bounded by C_J , independent of t and T .
 913

918 **D DATASET**
919920 **CIFAR-10.** The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each of
921 size 32×32 pixels, divided into 10 different classes, such as airplanes, cars, birds, cats, and dogs. Each
922 class has 6,000 images, with 50,000 images used for training and 10,000 for testing. Normalization,
923 random horizontal flipping, random cropping with 4 padding, and CutOut (DeVries & Taylor, 2017)
924 are applied for data augmentation.
925926 **CIFAR-100.** The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each
927 of size 32×32 pixels, categorized into 100 different classes. Each class contains 600 images, with
928 500 used for training and 100 for testing. The same processing methods as for dataset CIFAR-10 are
929 applied to dataset CIFAR-100.
930931 **Tiny-ImageNet.** The Tiny-ImageNet dataset is a scaled-down version of the ImageNet dataset (Deng
932 et al., 2009). It contains 200 different classes, with 500 training images and 50 testing images per
933 class, resulting in a total of 100,000 training images and 10,000 testing images. Each image is resized
934 to 64×64 pixels. Normalization, random horizontal flipping, and random cropping with 4 padding
935 are applied for data augmentation for the Tiny-ImageNet dataset.
936937 **ImageNet.** We evaluate on the ILSVRC-2012 ImageNet dataset (Deng et al., 2009), which contains
938 $\sim 1.28M$ training images and 50,000 validation images spanning 1,000 classes. Images are of variable
939 resolution; following common practice and our implementation, training augmentation includes
940 RandomResizedCrop to 224×224 , RandomHorizontalFlip, conversion to tensors, and channel-wise
941 normalization. For test, images are resized to have a shorter side of 256 pixels and then center-cropped
942 to 224×224 before applying the same normalization.
943944 **DVS-CIFAR10.** The DVS-CIFAR-10 dataset (Li et al., 2017) is a neuromorphic version of the
945 traditional CIFAR-10 dataset. DVS-CIFAR10 captures the visual information using a Dynamic Vision
946 Sensor (DVS), which records changes in the scene as a series of asynchronous events rather than as
947 a sequence of frames. The dataset consists of recordings of 10 object classes, corresponding to the
948 original CIFAR-10 categories, with each object presented in front of a DVS camera under various
949 conditions. The dataset contains 10,000 128×128 images, of which 9,000 are used as the training set
950 and the remaining 1,000 as the test set.
951952 **DVS-Gesture.** The DVS-Gesture dataset (Amir et al., 2017) is a neuromorphic dataset, consisting of
953 11 different hand gesture classes, such as hand clapping, arm rolling, and air guitar, performed by 29
954 subjects under various lighting conditions. Each gesture is represented by a sequence of events rather
955 than frames. The dataset contains 1,176 training samples and 288 testing samples.
956957 **E EVALUATION OF ADDITIONAL TRAINING COMPUTATIONAL OVERHEAD**
958959 During training, we benchmarked its SVD overhead against a vanilla SNN using a VGG-11 framework.
960 Our measurements, as Table 8, show **no increase in memory usage**, and on an NVIDIA GeForce RTX
961 4070 Ti, DSD adds only **around 0.1s of extra training time per batch**, this is nearly neglectable. In
962 summary, although DSD does introduce slight training overhead, the increase is minimal.
963964 Table 8: Computational overhead evaluation.
965966

967 Dataset	968 BatchSize	969 BatchNum	970 DSD	971 Memory	972 AvgTime perEpoch	973 AvgTime perBatch
974 CIFAR-10, 100	128	390	✗	1.4102GB	34s	0.0872s
			✓	1.4102GB	63s	0.1616s ▲ 0.0743
975 DVS-CIFAR10	128	71	✗	5.1797GB	38s	0.5352s
			✓	5.1797GB	46s	0.6479s ▲ 0.1127
976 DVS-Gesture	8	73	✗	8.4727GB	63s	0.8630s
			✓	8.4727GB	70s	0.9589s ▲ 0.0959

972 Table 9: Performance of DSD with different attack methods (%). This is detailed experimental results
 973 for Fig. 4.

Attack	$\epsilon = 0$	2	4	6	8	16	32	64	128
CIFAR-10									
SNN FGSM WB	93.75	17.06	14.22	11.78	8.19	4.21	1.99	0.58	0.00
SNN FGSM BB	93.75	24.13	18.41	13.86	10.26	7.88	3.82	1.48	0.59
SNN PGD WB	93.75	2.37	1.01	0.34	0.03	0.00	0.00	0.00	0.00
SNN PGD BB	93.75	4.01	2.80	1.20	0.89	0.02	0.00	0.00	0.00
DSD FGSM WB	90.21	59.75	58.22	57.00	55.86	50.36	39.82	26.61	8.01
DSD FGSM BB	90.21	81.42	79.37	76.65	74.90	67.18	49.30	31.09	12.81
DSD PGD WB	90.21	40.78	37.46	34.50	31.44	22.04	6.36	0.03	0.00
DSD PGD BB	90.21	57.88	54.09	47.80	43.15	30.73	12.11	0.91	0.24
CIFAR-100									
SNN FGSM WB	72.39	9.37	7.42	5.46	4.55	2.35	1.19	0.33	0.00
SNN FGSM BB	72.39	13.26	12.11	10.84	9.16	5.31	2.07	1.47	0.49
SNN PGD WB	72.39	2.53	1.15	0.50	0.19	0.02	0.00	0.00	0.00
SNN PGD BB	72.39	3.65	2.68	1.89	0.78	0.15	0.02	0.00	0.00
DSD FGSM WB	70.26	27.89	26.65	24.83	23.81	14.81	8.38	3.36	0.20
DSD FGSM BB	70.26	40.89	38.67	35.67	31.55	21.63	13.31	9.03	1.01
DSD PGD WB	70.26	20.52	15.78	12.35	8.09	2.37	0.00	0.00	0.00
DSD PGD BB	70.26	27.99	26.01	23.84	18.37	9.01	1.07	0.00	0.00
TinyImageNet									
SNN FGSM WB	56.82	9.42	7.60	4.82	3.51	1.53	0.67	0.00	0.00
SNN FGSM BB	56.82	16.27	15.59	13.69	12.46	8.20	4.80	2.74	1.28
SNN PGD WB	56.82	2.98	1.46	0.89	0.14	0.00	0.00	0.00	0.00
SNN PGD BB	56.82	4.07	2.99	2.12	1.67	0.99	0.46	0.00	0.00
DSD FGSM WB	54.54	22.80	21.74	21.00	19.50	12.66	6.58	1.58	0.02
DSD FGSM BB	54.54	34.63	31.02	29.40	27.68	20.22	10.35	3.20	1.38
DSD PGD WB	54.54	18.42	15.70	13.22	12.02	5.78	2.96	0.20	0.00
DSD PGD BB	54.54	24.92	20.66	16.82	14.84	6.55	4.47	2.10	0.25
ImageNet									
SNN FGSM WB	57.84	10.75	8.59	6.73	4.99	1.56	0.14	0.01	0.00
SNN FGSM BB	57.84	12.13	11.43	10.25	8.46	5.42	3.93	1.25	0.35
SNN PGD WB	57.84	1.02	0.48	0.13	0.01	0.00	0.00	0.00	0.00
SNN PGD BB	57.84	9.19	6.05	4.06	3.67	2.02	1.79	0.05	0.00
DSD FGSM WB	53.47	18.62	17.31	15.65	14.69	10.98	5.30	2.01	0.02
DSD FGSM BB	53.47	27.68	25.58	24.44	22.40	16.24	8.96	4.90	2.16
DSD PGD WB	53.47	11.63	8.12	6.33	4.30	2.97	1.50	0.00	0.00
DSD PGD BB	53.47	16.10	12.22	8.33	5.68	4.09	1.67	0.20	0.04

F DETAILED EXPERIMENTAL RESULT

In this section, we present the full experimental results underlying Figs. 4, 5, 6, and 7 as Tables 9, 11, and 12, respectively, from the main text.

1026
1027
1028
1029 Table 10: Comparison of hetero-training performance degradation (%). This is detailed experimental
1030 results for Fig. 5, where “*” indicates self-implementation.

Methods	b	CIFAR-10, c+p.0			CIFAR-10, p+c.0			CIFAR-100, c+p.0			CIFAR-100, p+c.0		
		Clean	FGSM	PGD	Clean	FGSM	PGD	Clean	FGSM	PGD	Clean	FGSM	PGD
SNN	0*	93.75	8.19	0.03	91.16	38.20	14.07	72.39	4.55	0.19	69.69	16.31	8.49
	1*	12.97	0.34	0.01	18.54	4.07	1.98	3.75	0.07	0.01	3.41	1.40	0.20
RAT (Ding et al., 2022)	0	93.01*	12.63*	0.05*	90.74	45.23	21.16	71.00*	5.77*	0.15*	70.89	25.86	10.38
	1*	27.24	8.76	0.03	29.01	27.67	8.00	19.20	2.59	0.04	20.11	10.78	3.81
DLIF (Ding et al., 2024a)	0	92.22	13.24	0.09	88.91	56.71	40.30	70.79	6.95	0.08	66.33	36.83	24.25
	1*	18.40	3.50	0.02	14.75	19.02	5.74	9.98	1.02	0.02	11.40	8.02	2.97
FEEL (Xu et al., 2024)	0	93.29	44.96	28.35	90.20*	59.08*	39.87*	73.79	9.60	2.04	69.79	18.07	11.07
	1*	20.01	8.19	2.77	13.99	17.50	7.07	12.84	2.00	0.10	13.86	9.39	1.89
DSD	0*	90.21	55.86	31.44	86.62	74.43	44.38	70.26	23.81	9.09	64.21	43.91	27.11
	1*	40.58	33.70	22.87	38.61	40.09	20.77	27.40	12.54	3.97	22.08	19.16	13.71

1042
1043
1044
1045
1046
1047 Table 11: DSD performance in hetero-training (%). The data in parentheses represents the difference
1048 from the baseline ($b = 0$). This is detailed experimental results for Fig. 6.
1049

b	Hetero-training: c+p.0				Hetero-training: p+c.0			
	CIFAR-10	CIFAR-100	TinyImageNet	ImageNet	CIFAR-10	CIFAR-100	TinyImageNet	ImageNet
Clean Inference								
0	90.21	70.26	54.54	53.47	86.62	64.21	46.30	49.78
1	40.58 (-49.63)	27.40 (-42.86)	21.45 (-33.09)	23.54 (-29.93)	38.61 (-48.01)	22.08 (-42.13)	19.30 (-27.00)	22.69 (-27.09)
2	31.08 (-59.13)	12.76 (-57.50)	9.64 (-44.90)	10.53 (-42.94)	29.95 (-56.67)	11.58 (-52.63)	8.95 (-37.35)	9.03 (-40.75)
5	12.07 (-78.14)	4.18 (-66.08)	3.98 (-50.56)	5.67 (-47.80)	12.02 (-74.60)	3.77 (-60.44)	2.72 (-43.58)	3.44 (-46.34)
FGSM Inference								
0	55.86	23.81	19.50	14.59	74.43	43.91	30.87	26.83
1	33.70 (-22.16)	12.54 (-11.27)	14.67 (-4.83)	11.45 (-3.14)	40.09 (-34.34)	19.16 (-24.75)	12.04 (-18.83)	11.68 (-15.15)
2	33.29 (-22.57)	13.70 (-10.11)	14.78 (-4.72)	11.12 (-3.47)	38.22 (-36.21)	17.31 (-26.60)	10.11 (-20.76)	8.64 (-18.19)
5	34.85 (-21.01)	14.93 (-8.88)	15.56 (-3.94)	11.86 (-2.73)	31.58 (-42.85)	8.49 (-35.42)	5.80 (-25.07)	3.10 (-23.73)
PGD Inference								
0	31.44	9.09	12.02	4.30	44.38	27.11	18.21	9.12
1	22.87 (-8.57)	3.97 (-5.12)	8.89 (-3.13)	2.67 (-1.63)	20.77 (-23.61)	13.71 (-13.40)	12.44 (-5.77)	4.90 (-4.22)
2	21.23 (-10.21)	3.34 (-5.75)	8.67 (-3.35)	2.21 (-2.09)	18.72 (-25.66)	11.22 (-15.89)	11.90 (-6.31)	3.38 (-5.74)
5	21.69 (-9.75)	3.01 (-6.08)	9.02 (-3.00)	1.88 (-2.42)	14.31 (-30.07)	7.93 (-19.18)	8.78 (-9.43)	1.94 (-7.18)

1064
1065
1066
1067
1068
1069 Table 12: Performance comparison with different PGD step number on CIFAR-10 (%). This is
1070 detailed experimental results for Fig. 7.
1071

Method	$K = 7$	10	15	20	30	40	50	60	70	80
SNN	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SNN (AT)	14.07	13.48	12.99	12.03	11.36	10.79	10.49	10.44	10.42	10.41
DSD	31.44	30.34	29.12	27.66	26.40	25.74	25.50	25.46	25.45	25.44
DSD (AT)	44.38	43.10	42.56	41.29	40.78	40.01	39.80	39.78	39.77	39.77

1080 G STATEMENT OF LARGE LANGUAGE MODEL (LLM) USAGE
10811082 In the preparation of this manuscript, an LLM was employed to assist with non-scientific tasks. These
1083 included polishing the English writing for clarity and style, providing suggestions for figure design
1084 and color schemes, supporting L^AT_EX formatting and typesetting, and drafting this statement.
1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133