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ABSTRACT

Spiking Neural Networks (SNNs) process information via discrete spikes, enabling
them to operate at remarkably low energy levels. However, our experimental
observations reveal a striking vulnerability when SNNs are trained using the
mainstream method—direct encoding combined with backpropagation through
time (BPTT): even a single backward pass on data drawn from a slightly different
distribution can lead to catastrophic network collapse. We refer to this phenomenon
as the heterogeneous training vulnerability of SNNs. Our theoretical analysis
attributes this vulnerability to the repeated inputs inherent in direct encoding and
the gradient accumulation characteristic of BPTT, which together produce an
exceptional large Hessian spectral radius. To address this challenge, we develop
a hyperparameter-free method called Dominant Singular Deflation (DSD). By
orthogonally projecting the dominant singular components of gradients, DSD
effectively reduces the Hessian spectral radius, thereby preventing SNNs from
settling into sharp minima. Extensive experiments demonstrate that DSD not
only mitigates the vulnerability of SNNs under heterogeneous training, but also
significantly enhances overall robustness compared to key baselines, providing
strong support for safer SNNs. Codes are available in the supplementary materials.

1 INTRODUCTION

As an emerging brain-inspired computational paradigm, Spiking Neural Networks (SNNs) leverage
event-driven, discrete spike streams for feature representation (Maass, 1997). By eliminating the need
for pervasive and computationally intensive matrix multiplications of traditional Artificial Neural
Networks (ANNs), SNNs achieve remarkable computational efficiency and significantly lower energy
consumption (Pei et al., 2019; Meng et al., 2023). Owing to these inherent advantages, SNNs have
been applied across a diverse array of application domains, such as autonomous driving (Zhu et al.,
2024; Shalumov et al., 2021; Viale et al., 2021), edge computing (Liu et al., 2024a; Zhang et al.,
2024), image process (Liu et al., 2025; Pan et al., 2024), and robot control (Jiang et al., 2025).

In the practical deployment of SNNs, safety and reliability are of paramount importance, particularly
in terms of robustness against perturbations. Even subtle perturbations in the input data that are
imperceptible to human senses can trigger severely adverse and unpredictable network responses
(Ding et al., 2024a). To enhance the robustness of SNNs, existing studies predominantly adopt a
homogeneous training paradigm, where models are trained on data drawn from a single, uniform
distribution—for instance, vanilla training using only clean samples (Ding et al., 2024b;a; Geng
& Li, 2023; Ding et al., 2022), or adversarial training where all inputs are perturbed with equal
intensity (Ding et al., 2024b; Geng & Li, 2023; Liu et al., 2024b). However, such training settings
are idealized and do not reflect the variability and complexity of real-world data. In practical
scenarios, models are often required to learn from inherently unpredictable and heterogeneous data
distributions, as adversaries may employ a wide range of poisoning strategies to deliberately disrupt
distributional homogeneity. We refer to this more realistic paradigm as heterogeneous training (hetero-
training). Notably, from the perspective of the attacker, when the number of manipulable samples is
limited, concentrating these perturbed samples as a batch—rather than dispersing them sporadically
throughout the dataset—often leads to a more pronounced degradation of model performance (Zou
et al., 2022). When exposed to batch-level heterogeneity in the training data, we observe:
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Figure 1: The vulnerability of SNNs in heterogeneous training.

Observation 1. In SNN training phase, even a single backward pass with a slightly differently-
distributed batch can trigger complete model collapse. As depicted in Fig. 1, SNNs trained on
homogeneous datasets—whether comprised solely of clean samples or perturbed ones—exhibit a
stable training trajectory. However, introducing just one batch of perturbed data into a clean dataset,
or vice versa, leads to abrupt and catastrophic model collapse. We refer to this phenomenon as the
heterogeneous training vulnerability of SNNs. (Sec. 3.1 presents a comprehensive analysis of the
experimental results regarding the Observation 1.)

This observation reveals a fundamental security risk in SNNs when dealing with training data that
is inherently unpredictable and cannot be predefined—a scenario often encountered in real-world
adversarial contexts (Goodfellow et al., 2014; Kurakin et al., 2018). This prompts these questions:

�

1. Why do SNNs experience model collapse in hetero-training?
2. Without relying on input data manipulation, how to design an approach for SNNs that
effectively mitigates the model collapse induced by hetero-training and enhance robustness?

Motivated by these questions, we propose a novel training method that enhances the robustness of
SNNs under both homogeneous and heterogeneous training conditions. Specifically,

• We theoretically show that BPTT yields a Gauss-Newton Hessian with at most linear spectral
growth, and that direct encoding makes this bound tight, explaining the abnormally large
spectral radius underlying SNN hetero-training vulnerability.

• Building on these theoretical insights, we develop a hyperparameter-free Dominant Singular
Deflation (DSD) method. By explicitly deflate the dominant singular components of gradi-
ents, DSD effectively reduces the Hessian spectral radius, thereby preventing the network
from falling into sharp minima.

• Extensive experimental results demonstrate that DSD mitigates SNN vulnerabilities and
significantly enhances robustness under both homogeneous and heterogeneous training
conditions, outperforming key baselines and thereby ensuring greater safety in deployment.

2 PRELIMINARY

Spiking Neuron Dynamic. In SNNs, neurons emulate the spiking behavior of biological neurons to
facilitate information transmission. One of the most prevalent nonlinear spiking neuron models in
SNNs is the Leaky Integrate-and-Fire (LIF) neuron (Xu et al., 2022; Fang et al., 2021; Ding et al.,
2022). The dynamics of a LIF neuron are described by Eq. (1), where It, Vt, and St represent the
input current, membrane potential, and spike output at time t, respectively. Here, τ denotes the
membrane time constant, Vth is the potential threshold, and Θ corresponds to the Heaviside function.

τ
dVt

dt
= −Vt + It, St = Θ(Vt − Vth). (1)

Adversarial Attack. Given an input x with label y, adversarial examples are generated by finding
a perturbation δ within an ℓp-norm ball of radius ϵ that maximizes the loss L(h(x + δ), y). This
optimization problem is formally expressed as:

argmax
∥δ∥p≤ϵ

L(f(x+ δ), y). (2)

In this paper, we employ two widely adopted gradient-based adversarial attack methods—Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014) and Projected Gradient Descent method
(PGD) (Madry et al., 2017). Hyperparameter configurations are provided in Appendix A.
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Figure 2: SNN model degradation under hetero-training and collapse curves. In (a), homogeneous
training uses clean CIFAR-10 data, while hetero-training employs perturbed CIFAR-10 data. In
(b) and (c), the “c/+p 10” setting denotes homogeneous training on clean CIFAR-10 for the first
9 epochs, followed by hetero-training starting from epoch 10, during which one random batch per
epoch is poisoned with perturbed data. Conversely, the “p/+c” setting denotes homogeneous training
on perturbed data, with the heterogeneous phase poisoning one random batch per epoch using clean
data. All perturbations are generated with FGSM on CIFAR-10 using ϵ = 2.

3 ANALYSIS AND METHOD

In this section, we first present experimental results that demonstrate the model collapse phenomenon
described in Observation 1 and analyze why SNNs exhibit a disconcerting vulnerability in hetero-
training (Sec. 3.1). Building on this analysis, we introduce the Dominant Singular Deflation method
and provide a theoretical analysis explaining how our approach mitigates the vulnerabilities associated
with hetero-training while simultaneously enhancing network robustness (Sec. 3.2).

3.1 PRELIMINARY EXPERIMENT: WHY SNN MODEL COLLAPSES IN HETERO-TRAINING?

We conduct controlled experiments to examine network collapse in SNNs under heterogeneous
training across three core factors: training paradigm, encoding method, and network architecture.
For training paradigms, we consider BPTT and SLTT (Spatial Learning Through Time (Meng et al.,
2023)). BPTT backpropagates gradients through temporal multiplication, whereas SLTT eliminates
the multiplicative terms in BPTT. For encoding methods, we evaluate direct encoding and rate
encoding (Poisson). For network architectures, we adopt two widely used backbones: ResNet-18
and VGG-11. Further experimental settings are provided in Appendix B.1. Fig. 2(a) presents
all combinations of these three factors, alongside ANN baselines, and compares their collapse
behaviors under hetero-training. The most severe collapses: BPTT+ResNet-18+direct encoding and
BPTT+VGG-11+direct encoding, are highlighted with red boxes, and both collapse to the point of
exhibiting almost no effective training. From these comparisons, we draw the following observations:

Observation 2. (i). Under hetero-training, ANNs exhibit moderate degradation yet far from collapse,
SLTT suffers much less collapse compared with BPTT. (ii). Direct encoding leads to far more severe
collapse than rate encoding. (iii). Regarding architectures, both ResNet-18 and VGG-11 show
comparable levels of degradation or collapse, suggesting that collapse is not tied to architecture.

To further illustrate this phenomenon, Fig. 2(b) and (c) display training curves of the BPTT+VGG-
11+Direct Encoding combination when switching abruptly from homogeneous to heterogeneous
training at different stages. In all cases, such a switch induces catastrophic collapse, manifested by
an immediate drop in accuracy, a complete degradation in loss, and unstable oscillations thereafter.
Taken together, these results suggest that the damage caused by hetero-training is independent of
network architecture and training stage, but strongly dependent on the training paradigm (BPTT) and
the encoding method (direct encoding).

This phenomenon suggests that, within a single epoch, the BPTT+direct encoding combination may
intermittently drive the network parameters into extremely sharp local minima, characterized by an
abnormally large spectral radius of the loss Hessian (Cheng et al., 2022). To interpret this behavior,
we conduct an analysis in the context of SNN-specific properties as follows.
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Theorem 1 (Layer-wise GN spectral bound under BPTT with LIF neuron dynamics). For the l-th
layer parameters W l, the BPTT gradient expansion (Xiao et al., 2022; Huang et al., 2024) is

∂L

∂W l
=

T∑
t=1

gt︷ ︸︸ ︷[
∂L

∂Sl+1
t

∂Sl+1
t

∂V l+1
t︸ ︷︷ ︸

Gt

(
∂V l+1

t

∂W l︸ ︷︷ ︸
Dt

+
∑
k<t

t−1∏
i=k

(∂V l+1
i+1

∂V l+1
i

+
∂V l+1

i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

)
︸ ︷︷ ︸

Jk:t−1

∂V l+1
k

∂W l

)]

︸ ︷︷ ︸
JW
t

. (3)

By bounded surrogate derivatives and the contractive LIF dynamics (See Appendix C for detailed
derivations for all bounds mentioned in this analysis), there exist constants CG, CD < ∞ and ρ ∈
(0, 1), independent of t and T , such that ∥Gt∥ ≤ CG, ∥Dt∥ ≤ CD, and

∥∥∥∂V l+1
i+1

∂V l+1
i

+
∂V l+1

i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

∥∥∥ ≤ ρ.

Then, we have ∥JW
t ∥ =

∥∥∥Dt +
∑

k<t Jk:t−1Dk

∥∥∥ ≤ CD

1−ρ = CJ , therefore ∥gt∥ = ∥GtJ
W
t ∥ ≤

CGCJ . Hence each per-step gradient contribution is O(1). The Gauss–Newton (GN) Hessian block
with respect to W l satisfies

H(W l) ≈
T∑

t=1

(JW
t )⊤HtJ

W
t ⪰ 0, (4)

where Ht = B⊤
t Hz,tBt is the effective Hessian with respect to the membrane potential V l+1

t ,
Hz,t indicates the output-layer Hessian at time t, and Bt =

∂zt
∂V l+1

t

denotes the readout Jacobian

from the membrane potential to the output logits zt. Since Hz,t ⪰ 0 and ∥Bt∥ ≤ CB , where
Cz = supt λmax(Hz,t) < ∞, we have ∥Ht∥ ≤ C2

BCz , and therefore

λmax(H(W l)) ≤ C2
BCz

T∑
t=1

∥JW
t ∥2 ≤ C2

BCz C
2
J︸ ︷︷ ︸

constant

T, (5)

Thus, the largest eigenvalue (equivalently, the spectral radius) of H(W l) is linearly bounded in T .

Theorem 2 (Direct encoding makes the GN bound tight). Consider the same setting as Theorem 1
with the GN block H(W l) ≈

∑T
t=1(J

W
t )⊤HtJ

W
t ⪰ 0, where Ht = B⊤

t Hz,tBt. Under direct
encoding, the per-step inputs are stationary, and the recurrent Jacobians become nearly time-
invariant up to bounded perturbations (Zenke & Ganguli, 2018; Bellec et al., 2020). Consequently,
by the power-iteration effect of repeatedly applying contractive operators, the BPTT Jacobians {JW

t }
concentrate along a common dominant singular direction. Formally, there exist unit vectors a (output
space) and b (parameter space), scalars αt, and residual terms Rt such that for all t we have

JW
t = αt ab

⊤ +Rt, m ≤ |αt| ≤ M,

T∑
t=1

∥Rt∥2 = o(T ), (6)

where m,M > 0 denote finite constants independent of t and T , and we use the Landau notation
o(T ) to denote a sublinear term, i.e., f(T ) = o(T ) if f(T )/T → 0 as T → ∞. Moreover, suppose
the output-layer curvature along a has a strictly positive time-average, 1

T

∑T
t=1 a

⊤Hta ≥ c−z > 0,
where c−z denotes a uniform positive lower bound, serving as the lower-bound counterpart of Cz .
Then we have equation as follows, where Θ(·) denotes the standard asymptotic order notation.

λmax

(
H(W l)

)
= Θ

( T∑
t=1

α2
t

)
= Θ(T ). (7)

Together, Theorem 1 and Theorem 2 establish a two-stage picture of the Gauss–Newton curvature in
SNNs. The first result shows that under LIF dynamics the per-step BPTT contributions are uniformly
bounded, and consequently the spectral radius of the Hessian grows at most linearly in T . The second
result demonstrates that when direct encoding is used, the stationarity of inputs and the time-invariant
structure of the recurrent operators lead to a power-iteration effect, aligning the Jacobians JW

t along
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a common rank-one component. This alignment ensures that the lower bound grows at the same
linear rate, thereby making the Gauss–Newton bound asymptotically tight. In summary, BPTT
establishes the O(T ) upper bound for spectral radius, and direct encoding sharpens it to Θ(T ). This
spectral pathology becomes particularly severe under heterogeneous training, where even a small
fraction of distributional variation is sufficient to excite the sharp directions amplified by the O(T )
curvature growth. Because the dominant Hessian eigenmodes scale linearly with T , perturbations
from mismatched batches accumulate disproportionately along these fragile directions, causing
instabilities that can quickly lead to collapse. Hence, the vulnerability of SNNs under hetero-training
can be traced to the same mechanism identified above: the alignment of BPTT Jacobians and the
resulting unbounded growth of the spectral radius.
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Figure 3: Degradation comparison.

Furthermore, we conduct experiments to vali-
date our theoretical analysis. As shown in Fig.
3, we train on CIFAR-10 with the VGG-11 archi-
tecture under direct encoding at different time
step scales for 200 epochs (additional experi-
mental details are provided in Appendix B.1).
The results indicate that network degradation
under hetero-training becomes increasingly se-
vere as the number of time steps grows. This
confirms that time step scaling is indeed one of
the factors affecting robustness, thereby support-
ing the reliability of our earlier analysis. How-
ever, robustness against hetero-training cannot
be achieved simply by reducing the number of time steps, since doing so causes a drastic performance
drop under homogeneous training as Fig. 3. This motivates the need for a mechanism that can ac-
tively suppress the dominant curvature growth, thereby enhancing the robustness and hetero-training
resistance without sacrificing the efficiency of direct encoding.

3.2 REDUCING SPECTRAL RADIUS VIA DOMINANT SINGULAR DEFLATION

Dominant Singular Deflation. To mitigate the pathological spectral growth identified above, that
is, to suppress the excessive enlargement of the Hessian spectral radius, we propose a deterministic
and hyperparameter-free gradient update technique named Dominant Singular Deflation (DSD). The
key idea is to deflate the gradient by explicitly removing its rank-one dominant singular component,
thereby directly reducing the maximal singular value that drives curvature amplification.

Formally, for parameter set θ, let ∇θL(θ) denote the gradient of the loss function, represented as a
k-dimensional tensor ∇θL(θ) ∈ Rd1×d2×···×dk . To systematically analyze its principal components,
we introduce a deterministic matrixization operator M : Rd1×···×dk → Rm×n with m = d1 and
n =

∏k
j=2 dj . Applying singular value decomposition gives

M
(
∇θL(θ)

)
= UΣV ⊤ =

r∑
i=1

σi ui v
⊤
i , r = min(m,n), σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. (8)

We refer to σ1u1v
⊤
1 as the dominant singular component. To remove this component, we define the

projection operator D(A) for any A ∈ Rm×n as

D(A) =
⟨A, u1v

⊤
1 ⟩F

∥u1v⊤1 ∥2F
u1v

⊤
1 , (9)

where ⟨A,B⟩F =
∑

i,j AijBij is the Frobenius inner product. Thus, DSD orthogonally projects
M
(
∇θL(θ)

)
onto the complement of the dominant singular component, yielding the deflated update

∇̃θL(θ) = M−1
(
M
(
∇θL(θ)

)
−D

(
M
(
∇θL(θ)

)))
. (10)

Effectiveness of DSD. Under direct encoding, Theorem 2 shows that the GN spectral bound becomes
tight: the largest eigenvalue λmax(H(W l)) is governed by the squared maximal singular value of the
Jacobians, i.e., λmax

(
H(W l)

)
= Θ

(∑T
t=1 σmax(J

W
t )2

)
. Hence the curvature growth is dominated

by the rank-one component associated with the leading singular pair (σ1, u1, v1). By construction,
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DSD removes this rank-one component σ1u1v
⊤
1 from the gradient, yielding deflated Jacobians J ′

t.
Consequently, their maximal singular value satisfies σmax(J

′
t) = σ2(Jt) < σ1(Jt), and the Hessian

spectral radius strictly decreases:

λmax

(
H(W l; ∇̃θL(θ))

)
< λmax

(
H(W l; ∇θL(θ))

)
. (11)

In other words, under the alignment effect induced by direct encoding, DSD deterministically sup-
presses the spectral radius by eliminating its dominant contributor, thereby mitigating the instability
that causes vulnerability in SNN training. Besides, a reduction in Hessian spectral radius can indi-
rectly lower the upper bound of the network’s Lipschitz constant (Nesterov, 2013; Yao et al., 2020;
Ghorbani et al., 2019), thereby contributing to improved robustness and enhanced generalization
capabilities (Ding et al., 2022).

Descent preservation of DSD. Although DSD explicitly modifies the gradient by removing its
dominant singular component, it does not compromise the descent property of gradient-based
optimization. Formally, DSD in Eq. (10) rewrites the matrixized gradient as

M(∇̃θL(θ)) = M(∇θL(θ))−D
(
M(∇θL(θ))

)
. (12)

The directional derivative of the loss DL(θ)[d], i.e., the rate of change of L at θ along a direction
d, is given by the inner product between the gradient and d. Under DSD, for the update direction
d = −∇̃θL(θ) we obtain

DL(θ)[d] =
〈
∇θL(θ), d

〉
= −

〈
M
(
∇θL(θ)

)
, M

(
∇̃θL(θ)

)〉
F
. (13)

Since D is an orthogonal projection operator, we can expand and simplify as〈
M
(
∇θL(θ)

)
, M

(
∇̃θL(θ)

)〉
F
=
〈
M(∇θL(θ)), M(∇θL(θ))−D

(
M(∇θL(θ))

)〉
F

∗
=
∥∥M(∇θL(θ))

∥∥2
F
−
∥∥D(M(∇θL(θ))

)∥∥2
F

=
∥∥M(∇̃θL(θ)

)∥∥2
F
,

(14)

where (∗) uses the self-adjointness and idempotence of the orthogonal projection D with respect to
the Frobenius inner product, namely, ⟨A,D(A)⟩F = ⟨D(A),D(A)⟩F = ∥D(A)∥2F . Substituting this
into the directional derivative gives Eq. (15), with strict inequality whenever ∇̃θL(θ) ̸= 0.

DL(θ)[d] = −
∥∥M(∇̃θL(θ)

)∥∥2
F

≤ 0, (15)

In summary, DSD guarantees that the update direction always yields non-increasing loss, and it is a
strict descent direction whenever the deflated gradient is non-zero.
Remark 1. This conclusion follows solely from the general mathematical property of orthogonal
projections in Hilbert spaces (Horn & Johnson, 2012), and does not rely on any special structure of
SNNs, BPTT, or the cross-entropy loss. Hence the guarantee of descent preservation is universal and
independent of the particular network architecture or loss function.

4 EXPERIMENT

Our experiments are structured into four parts. First, we assess the robustness of DSD in homogeneous
training (Sec. 4.1), which are divided into two settings: vanilla training using clean data and
adversarial training (AT) (Kundu et al., 2021) using perturbed data generated by white box FGSM
with an ϵ of 2/255. Second, we investigate whether DSD can prevent network collapse in hetero-
training (Sec. 4.2). Third, we evaluate the effect of our approach on the Hessian eigenvalue during
inference (Sec. 4.3). Finally, we inspect DSD for any instances of gradient obfuscation (Sec. 4.4). In
addition, the extra computational overhead of DSD during training is reported in Appendix E, while
DSD introduces no overhead at inference.

To ensure comprehensive evaluation, we conduct experiments on static visual datasets of varying
scales, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), TinyIm-
ageNet (Deng et al., 2009), and ImageNet (Deng et al., 2009) and Dynamic Vision Sensor (DVS)
datasets DVS-CIFAR10 (Li et al., 2017) and DVS-Gesture (Amir et al., 2017). Implementation
specifics are provided in Appendix B.2.
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Figure 4: Performance comparison in different white box and black box attack.

4.1 COMPARISON WITH STATE-OF-THE-ART (SOTA) IN HOMOGENEOUS TRAINING

White box attack in static datasets. Table 1 summarizes DSD accuracies under various homo-
geneous training settings, compared with SOTA defenses (StoG (Ding et al., 2024b), DLIF (Ding
et al., 2024a), HoSNN (Geng & Li, 2023), and FEEL (Xu et al., 2024)). Overall, DSD consistently
outperforms prior defenses against gradient-based white box attacks across all datasets and training
modes. Notably, it yields over 10% accuracy gains in several cases, including CIFAR-100 with FGSM
in vanilla training, CIFAR-10 and ImageNet with FGSM, and TinyImageNet with PGD in AT. In
TinyImageNet AT, DSD reaches 30.87% accuracy, a striking 22.68% improvement over the baseline
SNN’s 8.19%. Robustness under vanilla training remains difficult, particularly against PGD. Even so,
DSD achieves 8.09% accuracy on CIFAR-100 under PGD in vanilla training, a major improvement
over the previous best of 2.04% from FEEL (Xu et al., 2024).

Table 1: White box performance comparison (%). The highest accuracy in each column is highlighted
in bold. The “Improvement” quantifies the gain of DSD over the other best-performing baseline.

Methods CIFAR-10 CIFAR-100 TinyImageNet ImageNet
Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

Homogeneous Training: Vanilla Training
SNN 93.75 8.19 0.03 72.39 4.55 0.19 56.82 3.51 0.14 57.84 4.99 0.01

StoG (Ding et al., 2024b) 91.64 16.22 0.28 70.44 8.27 0.49 - - - - - -
DLIF (Ding et al., 2024a) 92.22 13.24 0.09 70.79 6.95 0.08 - - - - - -

HoSNN (Geng & Li, 2023) 92.43 54.76 15.32 71.98 13.48 0.19 - - - - - -
FEEL (Xu et al., 2024) 93.29 44.96 28.35 73.79 9.60 2.04 43.83 9.59 4.53 - - -

DSD (Ours) 90.21 55.86 31.44 70.26 23.81 8.09 54.54 19.50 12.02 53.47 14.69 4.30
Improvement ▼ 3.54 ▲ 1.10 ▲ 3.09 ▼ 3.53 ▲ 10.33 ▲ 6.05 ▼ 2.28 ▲ 9.91 ▲ 7.49 ▼ 4.37 ▲ 9.70 ▲ 4.29

Homogeneous Training: Adversarial Training (AT)
SNN 91.16 38.20 14.07 69.69 16.31 8.49 49.91 8.19 2.97 51.00 15.74 6.39

StoG (Ding et al., 2024b) 90.13 45.74 27.74 66.37 24.45 14.42 - - - - -
DLIF (Ding et al., 2024a) 88.91 56.71 40.30 66.33 36.83 24.25 - - - - - -

HoSNN (Geng & Li, 2023) 90.00 63.98 43.33 64.64 26.97 16.66 - - - - - -
FEEL (Xu et al., 2024) - - - 69.79 18.67 11.07 - - - - - -

DSD (Ours) 86.62 74.43 44.38 64.21 43.91 27.11 46.30 30.87 18.21 49.78 26.83 9.12
Improvement ▼ 4.54 ▲ 10.45 ▲ 1.05 ▼ 5.58 ▲ 7.08 ▲ 2.86 ▼ 3.61 ▲ 22.68▲ 15.24 ▼ 1.22 ▲ 10.09 ▲ 2.73

Table 2: Performance comparion in DVS datasets
(%). he highest accuracy in each column is high-
lighted in bold. SR: (Ding et al., 2024a)

Methods DVS-CIFAR10 DVS-Gesture
Clean FGSM PGD Clean FGSM PGD

SNN 76.30 17.20 5.00 95.49 39.24 9.72
SR 75.50 64.60 61.20 - - -

DSD 75.10 65.80 61.20 93.75 90.28 55.21

White box attack in DVS datasets. In DVS
datasets, we trained the model and performed
inference under FGSM and PGD attacks by di-
rectly perturbing the preprocessed event frames,
as implemented in (Ding et al., 2024a). It can be
seen from Table 3 that our method also demon-
strates excellent robustness when dealing with
the DVS dataset, surpassing SOTA method SR.

Black box attack. Black box adversarial examples are generated using the substitute-model approach
in this experiment. We evaluated DSD’s resilience across a range of perturbation magnitudes and
compared its performance to that of a vanilla SNN under the same attack strengths. Fig. 4 visualizes
these results, and the complete experimental data are provided in Appendix F. Across all four
dashed-line baselines, DSD consistently achieves substantially higher accuracy than the vanilla
model, demonstrating its effectiveness against diverse black box threat scenarios.
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Figure 5: DSD performance in hetero-training. Following the protocol of Sec. 3.1, we define two
poisoning schemes: c/+p 0 and p/+c 0. In c/+p 0, training with clean data, beginning at epoch 0,
we inject b = 0, 1, 2, 5 FGSM–perturbed (ϵ = 2/255) batches at the end of each epoch; p/+c 0 is
defined analogously: trained with perturbed data and injected with clean data.

4.2 PERFORMANCE IN HETEROGENEOUS TRAINING

Having confirmed DSD’s robustness in homogeneous training, we next evaluate its resilience in
heterogeneous settings. In hetero-training, we test poisoning intensities, i.e., number of batches,
of b = 1, 2, 5 to examine whether DSD can avert catastrophic collapse under increasing poison
strength. The results, including the performance degeneration, visualized in Fig. 5, with detailed
experimental data in Appendix F, omit the vanilla SNN baselines due to their near-total failure under
hetero-training. Remarkably, DSD maintains strong resilience across all settings, with no instance
of full collapse. Even at the highest poisoning strength (b = 5), DSD sustains a 30% accuracy on
CIFAR-10 under FGSM inference, demonstrating its capacity to withstand batch-level data poisoning.

4.3 HESSIAN EIGENVALUE EVALUATION

In this experiment, we compare the Hessian eigenvalue of the DSD-trained model against those of a
vanilla SNN during inference. Specifically, for each inference batch, we compute two metrics: (i).
λmax(H): The spectral radius of the Hessian; (ii). Pr(H): The proportion of λmax(H) within the
top-five eigenvalues, serving as an indicator of the overall smoothness of the loss landscape. The
details for this experiment are provided in Appendix B.2. Table 3 reports both metrics under three
distinct adversarial attack scenarios. Across all cases, DSD consistently achieves a lower λmax(H)
and markedly reduces its proportional presence among the top-five eigenvalues. These findings
corroborate our theoretical design, demonstrating that DSD indeed reduces the Hessian spectral
radius, smooths the Hessian sharpness, and underpins its robustness enhancements.

Table 3: Batch-averaged Hessian eigenvalue evaluation. Theoretically, the smaller λmax(H) and
Pr(H) are, the better.

Methods CIFAR-10 CIFAR-100 TinyImageNet ImageNet
λmax(H) Pr(H) λmax(H) Pr(H) λmax(H) Pr(H) λmax(H) Pr(H)

Clean Inference
SNN 261.94 0.98 187.49 0.41 2077.09 0.60 174.88 0.43
DSD 209.90 ▼ 52.04 0.35 ▼ 0.63 135.55 ▼ 51.94 0.30 ▼ 0.11 1802.80 ▼ 274.29 0.51 ▼ 0.09 110.56 ▼ 64.32 0.33 ▼ 0.10

FGSM Inference
SNN 269.90 1.15 190.82 0.46 1998.11 0.61 162.57 0.44
DSD 218.27 ▼ 51.63 0.38 ▼ 0.77 132.01 ▼ 58.81 0.29 ▼ 0.17 1767.57 ▼ 230.54 0.50 ▼ 0.11 111.77 ▼ 50.80 0.32 ▼ 0.12

PGD Inference
SNN 265.47 1.03 200.11 0.46 2072.77 0.62 174.16 0.41
DSD 202.89 ▼ 62.58 0.35 ▼ 0.68 143.07 ▼ 57.04 0.30 ▼ 0.16 1793.12 ▼ 279.65 0.56 ▼ 0.06 113.73 ▼ 60.43 0.32 ▼ 0.09

4.4 INSPECTION OF GRADIENT OBFUSCATION

Next, we examine whether DSD suffers from gradient obfuscation (Athalye et al., 2018). For items
(1) and (2) in Table 4, Fig. 3 presents DSD’s accuracy under FGSM and PGD attacks across a
range of perturbation bounds, as well as a side-by-side comparison of white box versus black box
performance. It is clear that DSD is consistently more vulnerable to iterative PGD than to single-step
FGSM, and that white box attacks inflict greater degradation than black box attacks. Items (3) and (4)
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are also evident in Fig. 3: as the perturbation limit increases, DSD’s accuracy drops sharply, even
reaching 0% under several settings. Fig. 6 further corroborates this trend, showing that although
DSD’s performance progressively worsens with more PGD iterations, it eventually converges to a
steady minimum. Item (5) indicates that gradient-based attacks fail to locate adversarial examples;
however, our results in Fig. 3 demonstrate the opposite—both FGSM and PGD continue to fool DSD
despite the training. In short, DSD does not utilize gradient obfuscation to achieve false robustness.

Table 4: Checklist for identifying gradient obfuscation.

Characteristics to identify gradient obfuscation Pass?
(1) Single-step attack performs better compared to iterative attacks ✓
(2) Black-box attacks perform better compared to white-box attacks ✓
(3) Increasing perturbation bound can’t increase attack strength ✓
(4) Unbounded attacks can’t reach 100% success ✓
(5) Adversarial example can be found through random sampling ✓
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Figure 6: Acc. under different K.

5 RELATED WORK

SNN Defensive Methods. Direct encoding with BPTT is the prevailing paradigm for SNN training
(Wu et al., 2018; Deng et al., 2022; Meng et al., 2023; Xiao et al., 2022; Wang et al., 2023), which
improves efficiency but sacrifices the robustness inherent to rate encoding. To counteract this
vulnerability, prior studies have explored input noise injection (Kundu et al., 2021), adversarial
training with Lipschitz regularization (Ding et al., 2022), gradient sparsity regularization (Liu et al.,
2024b), adaptive leak dynamics (Xu et al., 2024), and modified objectives to suppress membrane
potential perturbations (Ding et al., 2024a). While these methods improve robustness empirically, they
do not address the underlying mechanism by which direct encoding with BPTT induces vulnerability.

Beyond SNNs. Related ideas of suppressing dominant directions have been studied in the broader
context of SNNs. Classical works control spectral growth through Parseval networks (Cisse et al.,
2017) or spectral norm regularization (Yoshida & Miyato, 2017), while Lipschitz-margin training
(Tsuzuku et al., 2018) and Jacobian regularization (Hoffman et al., 2019) constrain large singular
values of Jacobians. Recent efforts further reduce sharpness via SAM (Foret et al., 2020) or project
adversarial inputs back to the data manifold using generative defenses (Meng & Chen, 2017; Saman-
gouei et al., 2018). Yet existing methods typically act indirectly, depend on auxiliary models, or
require sensitive hyperparameters that hinder deployment. By contrast, DSD operates directly in
gradient space, deterministically removing the dominant singular component to suppress the principal
curvature contributor while provably preserving descent. Being hyperparameter-free and readily
practicable, DSD offers a simple yet principled mechanism for enhancing SNN robustness.

6 CONCLUSION AND DISCUSSION

Conclusion. In this paper, we experimentally demonstrate that SNNs trained with direct encoding and
BPTT can undergo catastrophic model collapse when hetero-training which is common in real-world
scenarios. Through theoretical analysis, we show that the repeated inputs of direct encoding combined
with gradient accumulation in BPTT induce extremely large spectral radius in the Hessian matrix
of the loss function, causing the model parameters to become trapped in precarious local minima.
Motivated by these insights, we propose a hyperparameter-free method named Domaint Singular
Deflation (DSD): by orthogonally projecting gradients to precisely eliminate their dominant singular
components, DSD effectively reduces the Hessian spectral radius. Extensive evaluations under both
homogeneous and heterogeneous training conditions demonstrate that DSD substantially enhances
SNN robustness, paving the way for safer and more reliable deployments.

Limitation. The gradient-based adjustment inherent to DSD induces a deliberate divergence between
the gradients actually applied during training and those that would be obtained under an ideal,
unmodified regime. While this adjustment markedly bolsters SNNs’ robustness, it unavoidably incurs
a slight degradation in accuracy when evaluated on unperturbed data. This limitation is also prevalent
in existing SOTA methods (Ding et al., 2024b;a; Geng & Li, 2023; Xu et al., 2024) according to
Table 1, this calls for more extensive and in-depth future research to overcome.
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REPRODUCIBILITY STATEMENT

The complete code with fixed random seed utilized in this work is provided in the supplementary
materials and will be made publicly available after this paper is published. All datasets employed
in this research, including CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet, DVS-CIFAR10, and
DVS-Gesture are publicly accessible. Details regarding the hardware, coding environment, and
hyperparameter settings used in our experiments are also included in the Appendix. We dedicate to
enable future researchers to reproduce the results presented in this paper using similar computational
setups.
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A ADVERSARIAL ATTACK DETAILS AND CONFIGURATIONS

FGSM. FGSM is a simple yet effective technique to generate adversarial examples. In FGSM, given
an input x with its true label y, a perturbation is computed in the direction of the gradient of the loss
function with respect to x. The perturbation is defined as:

δ = ϵ · sign (∇xL(f(x), y)) . (16)

where ϵ controls the magnitude of the perturbation and h(x) represents the model’s output. The
adversarial example is then constructed as x+ δ, which is designed to force the model into misclassi-
fication.

PGD. PGD is an iterative method for generating adversarial examples and can be regarded as an
extension of the FGSM. PGD updates the adversarial example iteratively by performing a gradient
ascent step and then projecting the result back onto the feasible set defined by the Lp-norm constraint.
Formally, the update rule is given by:

xt+1 = ΠB(x,ϵ)

(
xt + α · sign

(
∇xL(f(xt), y)

))
. (17)

where α denotes the step size, L(f(xt), y) is the loss function of the model h with true label
y, and ΠB(x,ϵ) is the projection operator that projects the perturbed example back into the ball
B(x, ϵ) = {x′ : ∥x′ − x∥p ≤ ϵ}. By iterating this process, PGD effectively seeks a perturbation
that maximizes the loss while ensuring that the adversarial example remains within the specified
perturbation budget.

For these attack methods, we set ϵ = 8/255 for all experimental cases. For PGD, step size α = 0.01
and step number K = 7.

B EXPERIMENTAL SETTING

B.1 SETTINGS FOR PRELIMINARY EXPERIMENTS

In this section, we detail the network architectures and hyperparameter settings used in the preliminary
experiments of Sec. 3.1. Any configurations not mentioned here are identical to those in the main
experiments (Appendix B.2). For Fig. 2(a), we set the number of epochs to 50, adopt Poisson
encoding for rate encoding (Lee et al., 2020), and use a standard convolutional neural networks
(CNN) for ANN. All experiments in Figs.2(a–c) employ the hyperparameters listed in Table 5. Direct
encoding is performed with T = 4, while rate encoding uses T = 64.

Table 5: Hyperparameter settings for preliminary experiments.

Dataset Optimizer LeaningRate WeightDecay BatchSize
CIFAR-10 SGD 0.1 5e-5 128

B.2 SETTINGS FOR MAIN EXPERIMENTS

In our main experiments, all training cases are implemented using PyTorch (Paszke, 2019) with the
SpikingJelly (Fang et al., 2023) framework and executed on an NVIDIA GeForce RTX 5090 GPU.
For each dataset, we utilize the hyperparameters listed as Table 6, consistently employing the SGD
optimizer and setting the membrane time constant τ to 1.1. We leverage the PyHessian framework
(Yao et al., 2020) to compute Hessian eigenvalues1.

1Hyperparameters set as default: maxIter = 100, tol = 1e−3, where maxIter: maximum iterations used
to compute each single eigenvalue, tol: the relative tolerance between two consecutive eigenvalue computations
from power iteration
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Table 6: Hyperparameter settings for experiments. *(Brock et al., 2021)

Dataset Model LeaningRate WeightDecay Epoch BatchSize TimeStep
CIFAR-10 VGG-11 0.1 5e-5 300 128 4
CIFAR-100 VGG-11 0.1 5e-4 300 128 4

TinyImageNet VGG-16 0.1 5e-4 300 128 4
ImageNet NF-ResNet-18* 0.1 1e-5 100 512 4

ImageNet (AT) ResNet-18 0.1 1e-5 100 512 4
DVS-CIFAR10 VGG-11 0.05 5e-4 200 128 10
DVS-Gesture VGG-11 0.05 5e-4 200 8 20

C ANALYSIS OF BOUNDED BPTT FACTORS UNDER LIF DYNAMICS

We make explicit why the constants in the inequalities ∥Gt∥ ≤ CG, ∥Dt∥ ≤ CD,
∥∥∂V l+1

i+1

∂V l+1
i

+

∂V l+1
i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

∥∥ ≤ ρ < 1 exist and are independent of t and T .

(i) Bound on Gt. Write Gt = ∂L

∂Sl+1
t

∂Sl+1
t

∂V l+1
t

. Let ϕ(·) be the surrogate nonlinearity for spikes,

with |ϕ′(u)| ≤ κ (e.g., sigmoid with slope β gives κ ≤ β/4; piecewise-linear surrogates have a
fixed maximal slope). For standard losses,

∥∥∂L
∂z

∥∥ ≤ Closs uniformly in the logits z: for softmax
cross-entropy, Hz = ∇2

zL = Diag(p) − pp⊤ ⪰ 0 gives
∥∥∂L

∂z

∥∥ ≤ 1 and ∥Hz∥ ≤ 1
4 (binary)

or ≤ 1
2 (multi-class). Since ∂L

∂Sl+1
t

= ∂L

∂zl+1
t

∂zl+1
t

∂Sl+1
t

and the readout weights are kept bounded by

regularization/clipping,
∥∥ ∂zl+1

t

∂Sl+1
t

∥∥ ≤ Λout. Therefore,

∥Gt∥ =
∥∥∥ ∂L

∂Sl+1
t

∂Sl+1
t

∂V l+1
t

∥∥∥ ≤ ClossΛout · κ = CG, (18)

a uniform bound independent of t, T .

(ii) Bound on Dt. For a LIF layer, V l+1
t = αV l+1

t−1 + W l+1Sl
t + b (plus optional input term) in

practical code implementation (Fang et al., 2023), with α = 1− 1
τ ∈ (0, 1) . The local Jacobian w.r.t.

W l at time t is linear in the presynaptic spikes: Dt =
∂V l+1

t

∂W l = L(Sl
t) where ∥Sl

t∥ ≤ √
nin rmax

because spikes are binary and rmax ≤ 1. Hence there exists Cin such that

∥Dt∥ ≤ Cin = CD. (19)

(iii) Contraction of the recurrent Jacobian chain. For LIF,
∂V l+1

i+1

∂V l+1
i

= αI and
∂V l+1

i+1

∂Sl+1
i

= W l+1, while
∂Sl+1

i

∂V l+1
i

= ϕ′(V l+1
i ) with ∥ϕ′∥∞ ≤ κ. Therefore

∥∥∥∂V l+1
i+1

∂V l+1
i

+
∂V l+1

i+1

∂Sl+1
i

∂Sl+1
i

∂V l+1
i

∥∥∥ ≤ α+ ∥W l+1∥κ. (20)

Imposing a spectral-norm control ∥W l+1∥ ≤ Λ with α+ κΛ < 1 yields a uniform contraction rate

ρ = α+ κΛ < 1, (21)

so that every time-local Jacobian factor and their products satisfy ∥Jk:t−1∥ ≤ ρ t−k.

(iv) Bound on the readout Jacobian Bt. Let zt denote the logits at time t and Bt =
∂zt

∂V l+1
t

. The

readout in SNNs is typically linear w.r.t. a hidden state ht (either the membrane potential V l+1
t or the

spike Sl+1
t ):

zt = Wout ht + b, ht ∈ {V l+1
t , Sl+1

t = ϕ(V l+1
t ) }, (22)
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and z = 1
αT

∑T
t=1 zt with αT ≥ 1 (e.g., αT = T for averaging). Let Λout = ∥Wout∥ (controlled by

weight decay / clipping / spectral normalization), and let κ := supu |ϕ′(u)| be the maximal slope of
the surrogate nonlinearity ϕ.

• Case 1 (direct-V readout). If ht = V l+1
t , then Bt =

∂zt
∂V l+1

t

= Wout, hence

∥Bt∥ ≤ ∥Wout∥ = Λout. (23)

• Case 2 (spike readout). If ht = Sl+1
t = ϕ(V l+1

t ), then Bt = ∂zt
∂Sl+1

t

∂Sl+1
t

∂V l+1
t

=

Wout ϕ
′(V l+1

t ), hence

∥Bt∥ ≤ ∥Wout∥ ∥ϕ′(V l+1
t )∥ ≤ Λout κ. (24)

Combining the cases, there exists a uniform constant

CB = κΛout (25)

such that ∥Bt∥ ≤ CB for all t, independent of T . Consequently, ∥Ht∥ = ∥B⊤
t Hz,tBt∥ ≤

C2
B ∥Hz,t∥ ≤ C2

BCz .

(v) Bound on Hz,t. For softmax cross-entropy, Hz,t = Diag(pt)− ptp
⊤
t has ∥Hz,t∥ ≤ 1

2 (and ≤ 1
4

for binary); for squared loss, ∥Hz,t∥ ≤ 1. Hence there exists a global Cz < ∞ with ∥Hz,t∥ ≤ Cz

for all t.

(vi) Bound on JW
t . We now show why the bound ∥JW

t ∥ ≤ CD

1−ρ = CJ holds. Recall that
∥Dk∥ ≤ CD for all k, and ∥Jk:t−1∥ ≤ ρ t−k with ρ ∈ (0, 1). Using the triangle inequality and the
sub-multiplicativity of the operator norm, we obtain

∥JW
t ∥ =

∥∥∥Dt +
∑
k<t

Jk:t−1Dk

∥∥∥
≤ ∥Dt∥+

∑
k<t

∥Jk:t−1Dk∥

≤ CD +
∑
k<t

∥Jk:t−1∥ ∥Dk∥

≤ CD +
∑
k<t

ρ t−k CD

= CD

(
1 +

t−1∑
q=1

ρq
)

≤ CD

∞∑
q=0

ρq

=
CD

1− ρ
= CJ .

(26)

Here we re-indexed with q = t − k and used the geometric series bound
∑∞

q=0 ρ
q = 1

1−ρ . Thus
∥JW

t ∥ is uniformly bounded by CJ , independent of t and T .

D DATASET

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each of
size 32×32 pixels, divided into 10 different classes, such as airplanes, cars, birds, cats, and dogs. Each
class has 6,000 images, with 50,000 images used for training and 10,000 for testing. Normalization,
random horizontal flipping, random cropping with 4 padding, and CutOut (DeVries & Taylor, 2017)
are applied for data augmentation.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each
of size 32×32 pixels, categorized into 100 different classes. Each class contains 600 images, with
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500 used for training and 100 for testing. The same processing methods as for dataset CIFAR-10 are
applied to dataset CIFAR-100.

Tiny-ImageNet. The Tiny-ImageNet dataset is a scaled-down version of the ImageNet dataset (Deng
et al., 2009). It contains 200 different classes, with 500 training images and 50 testing images per
class, resulting in a total of 100,000 training images and 10,000 testing images. Each image is resized
to 64×64 pixels. Normalization, random horizontal flipping, and random cropping with 4 padding
are applied for data augmentation for the Tiny-ImageNet dataset.

ImageNet. We evaluate on the ILSVRC-2012 ImageNet dataset (Deng et al., 2009), which contains
∼1.28M training images and 50,000 validation images spanning 1,000 classes. Images are of variable
resolution; following common practice and our implementation, training augmentation includes
RandomResizedCrop to 224× 224, RandomHorizontalFlip, conversion to tensors, and channel-wise
normalization. For test, images are resized to have a shorter side of 256 pixels and then center-cropped
to 224× 224 before applying the same normalization.

DVS-CIFAR10. The DVS-CIFAR-10 dataset (Li et al., 2017) is a neuromorphic version of the
traditional CIFAR-10 dataset. DVS-CIFAR10 captures the visual information using a Dynamic Vision
Sensor (DVS), which records changes in the scene as a series of asynchronous events rather than as
a sequence of frames. The dataset consists of recordings of 10 object classes, corresponding to the
original CIFAR-10 categories, with each object presented in front of a DVS camera under various
conditions. The dataset contains 10,000 128×128 images, of which 9,000 are used as the training set
and the remaining 1,000 as the test set.

DVS-Gesture. The DVS-Gesture dataset (Amir et al., 2017) is a neuromorphic dataset, consisting of
11 different hand gesture classes, such as hand clapping, arm rolling, and air guitar, performed by 29
subjects under various lighting conditions. Each gesture is represented by a sequence of events rather
than frames. The dataset contains 1,176 training samples and 288 testing samples.

E EVALUATION OF ADDITIONAL TRAINING COMPUTATIONAL OVERHEAD

During training, we benchmarked its SVD overhead against a vanilla SNN using a VGG-11 framework.
Our measurements, as Table 7, show no increase in memory usage, and on an NVIDIA GeForce RTX
4070 Ti, DSD adds only around 0.1s of extra training time per batch, this is nearly neglectable. In
summary, although DSD does introduce slight training overhead, the increase is minimal.

Table 7: Hyperparameter settings for preliminary experiments.

Dataset BatchSize BatchNum DSD Memory AvgTime
perEpoch

AvgTime
perBatch

CIFAR-10, 100 128 390
✗ 1.4102GB 34s 0.0872s
✓ 1.4102GB 63s 0.1616s ▲ 0.0743

DVS-CIFAR10 128 71
✗ 5.1797GB 38s 0.5352s
✓ 5.1797GB 46s 0.6479s ▲ 0.1127

DVS-Gesture 8 73
✗ 8.4727GB 63s 0.8630s
✓ 8.4727GB 70s 0.9589s ▲ 0.0959

F DETAILED EXPERIMENTAL RESULT

In this section, we present the full experimental results underlying Figs. 4, 5, and 6 as Tables 8, 9,
and 10, respectively, from the main text.

G STATEMENT OF LARGE LANGUAGE MODEL (LLM) USAGE

In the preparation of this manuscript, an LLM was employed to assist with non-scientific tasks. These
included polishing the English writing for clarity and style, providing suggestions for figure design
and color schemes, supporting LATEX formatting and typesetting, and drafting this statement.
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Table 8: Performance of DSD with different attack methods (%). This is detailed experimental results
for Fig. 4

Attack ϵ = 0 2 4 6 8 16 32 64 128
CIFAR-10

SNN FGSM WB 93.75 17.06 14.22 11.78 8.19 4.21 1.99 0.58 0.00
SNN FGSM BB 93.75 24.13 18.41 13.86 10.26 7.88 3.82 1.48 0.59
SNN PGD WB 93.75 2.37 1.01 0.34 0.03 0.00 0.00 0.00 0.00
SNN PGD BB 93.75 4.01 2.80 1.20 0.89 0.02 0.00 0.00 0.00
DSD FGSM WB 90.21 59.75 58.22 57.00 55.86 50.36 39.82 26.61 8.01
DSD FGSM BB 90.21 81.42 79.37 76.65 74.90 67.18 49.30 31.09 12.81
DSD PGD WB 90.21 40.78 37.46 34.50 31.44 22.04 6.36 0.03 0.00
DSD PGD BB 90.21 57.88 54.09 47.80 43.15 30.73 12.11 0.91 0.24

CIFAR-100
SNN FGSM WB 72.39 9.37 7.42 5.46 4.55 2.35 1.19 0.33 0.00
SNN FGSM BB 72.39 13.26 12.11 10.84 9.16 5.31 2.07 1.47 0.49
SNN PGD WB 72.39 2.53 1.15 0.50 0.19 0.02 0.00 0.00 0.00
SNN PGD BB 72.39 3.65 2.68 1.89 0.78 0.15 0.02 0.00 0.00
DSD FGSM WB 70.26 27.89 26.65 24.83 23.81 14.81 8.38 3.36 0.20
DSD FGSM BB 70.26 40.89 38.67 35.67 31.55 21.63 13.31 9.03 1.01
DSD PGD WB 70.26 20.52 15.78 12.35 8.09 2.37 0.00 0.00 0.00
DSD PGD BB 70.26 27.99 26.01 23.84 18.37 9.01 1.07 0.00 0.00

TinyImageNet
SNN FGSM WB 56.82 9.42 7.60 4.82 3.51 1.53 0.67 0.00 0.00
SNN FGSM BB 56.82 16.27 15.59 13.69 12.46 8.20 4.80 2.74 1.28
SNN PGD WB 56.82 2.98 1.46 0.89 0.14 0.00 0.00 0.00 0.00
SNN PGD BB 56.82 4.07 2.99 2.12 1.67 0.99 0.46 0.00 0.00
DSD FGSM WB 54.54 22.80 21.74 21.00 19.50 12.66 6.58 1.58 0.02
DSD FGSM BB 54.54 34.63 31.02 29.40 27.68 20.22 10.35 3.20 1.38
DSD PGD WB 54.54 18.42 15.70 13.22 12.02 5.78 2.96 0.20 0.00
DSD PGD BB 54.54 24.92 20.66 16.82 14.84 6.55 4.47 2.10 0.25

ImageNet
SNN FGSM WB 57.84 10.75 8.59 6.73 4.99 1.56 0.14 0.01 0.00
SNN FGSM BB 57.84 12.13 11.43 10.25 8.46 5.42 3.93 1.25 0.35
SNN PGD WB 57.84 1.02 0.48 0.13 0.01 0.00 0.00 0.00 0.00
SNN PGD BB 57.84 9.19 6.05 4.06 3.67 2.02 1.79 0.05 0.00
DSD FGSM WB 53.47 18.62 17.31 15.65 14.69 10.98 5.30 2.01 0.02
DSD FGSM BB 53.47 27.68 25.58 24.44 22.40 16.24 8.96 4.90 2.16
DSD PGD WB 53.47 11.63 8.12 6.33 4.30 2.97 1.50 0.00 0.00
DSD PGD BB 53.47 16.10 12.22 8.33 5.68 4.09 1.67 0.20 0.04
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Table 9: DSD performance in hetero-training (%). The data in parentheses represents the difference
from the baseline (b = 0). This is detailed experimental results for Fig. 5.

b
Hetero-training: c/+p 0 Hetero-training: p/+c 0

CIFAR-10 CIFAR-100 TinyImageNet ImageNet CIFAR-10 CIFAR-100 TinyImageNet ImageNet
Clean Inference

0 90.21 70.26 54.54 53.47 86.62 64.21 46.30 49.78
1 40.58 (-49.63) 27.40 (-42.86) 21.45 (-33.09) 23.54 (-29.93) 38.61 (-48.01) 22.08 (-42.13) 19.30 (-27.00) 22.69 (-27.09)
2 31.08 (-59.13) 12.76 (-57.50) 9.64 (-44.90) 10.53 (-42.94) 29.95 (-56.67) 11.58 (-52.63) 8.95 (-37.35) 9.03 (-40.75)
5 12.07 (-78.14) 4.18 (-66.08) 3.98 (-50.56) 5.67 (-47.80) 12.02 (-74.60) 3.77 (-60.44) 2.72 (-43.58) 3.44 (-46.34)

FGSM Inference
0 55.86 23.81 19.50 14.59 74.43 43.91 30.87 26.83
1 33.70 (-22.16) 12.54 (-11.27) 14.67 (-4.83) 11.45 (-3.14) 40.09 (-34.34) 19.16 (-24.75) 12.04 (-18.83) 11.68 (-15.15)
2 33.29 (-22.57) 13.70 (-10.11) 14.78 (-4.72) 11.12 (-3.47) 38.22 (-36.21) 17.31 (-26.60) 10.11 (-20.76) 8.64 (-18.19)
5 34.85 (-21.01) 14.93 (-8.88) 15.56 (-3.94) 11.86 (-2.73) 31.58 (-42.85) 8.49 (-35.42) 5.80 (-25.07) 3.10 (-23.73)

PGD Inference
0 31.44 9.09 12.02 4.30 44.38 27.11 18.21 9.12
1 22.87 (-8.57) 3.97 (-5.12) 8.89 (-3.13) 2.67 (-1.63) 20.77 (-23.61) 13.71 (-13.40) 12.44 (-5.77) 4.90 (-4.22)
2 21.23 (-10.21) 3.34 (-5.75) 8.67 (-3.35) 2.21 (-2.09) 18.72 (-25.66) 11.22 (-15.89) 11.90 (-6.31) 3.38 (-5.74)
5 21.69 (-9.75) 3.01 (-6.08) 9.02 (-3.00) 1.88 (-2.42) 14.31 (-30.07) 7.93 (-19.18) 8.78 (-9.43) 1.94 (-7.18)

Table 10: Performance comparison with different PGD step number on CIFAR-10 (%). This is
detailed experimental results for Fig. 6.

Method K = 7 10 15 20 30 40 50 60 70 80
SNN 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SNN (AT) 14.07 13.48 12.99 12.03 11.36 10.79 10.49 10.44 10.42 10.41
DSD 31.44 30.34 29.12 27.66 26.40 25.74 25.50 25.46 25.45 25.44

DSD (AT) 44.38 43.10 42.56 41.29 40.78 40.01 39.80 39.78 39.77 39.77
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